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Abstract
Purpose  The number of primary total knee arthroplasties (TKA) is expected to rise constantly. For patients and healthcare 
providers, the early identification of risk factors therefore becomes increasingly fundamental in the context of precision medi-
cine. Others have already investigated the detection of risk factors by conducting literature reviews and applying conventional 
statistical methods. Since the prediction of events has been moderately accurate, a more comprehensive approach is needed. 
Machine learning (ML) algorithms have had ample success in many disciplines. However, these methods have not yet had a 
significant impact in orthopaedic research. The selection of a data source as well as the inclusion of relevant parameters is 
of utmost importance in this context. In this study, a standardized approach for ML in TKA to predict complications during 
surgery and an irregular surgery duration using data from two German arthroplasty-specific registries was evaluated.
Methods  The dataset is based on two initiatives of the German Society for Orthopaedics and Orthopaedic Surgery. A prob-
lem statement and initial parameters were defined. After screening, cleaning and preparation of these datasets, 864 cases of 
primary TKA (2016–2019) were gathered. The XGBoost algorithm was chosen and applied with a hyperparameter search, a 
cross validation and a loss weighting to cope with class imbalance. For final evaluation, several metrics (accuracy, sensitiv-
ity, specificity, AUC) were calculated.
Results  An accuracy of 92.0%, sensitivity of 34.8%, specificity of 95.8%, and AUC of 78.0% were achieved for predicting 
complications in primary TKA and 93.4%, 74.0%, 96.3%, and 91.6% for predicting irregular surgery duration, respectively. 
While traditional statistics (correlation coefficient) could not find any relevant correlation between any two parameters, the 
feature importance revealed several non-linear outcomes.
Conclusion  In this study, a feasible ML model to predict outcomes of primary TKA with very promising results was built. 
Complex correlations between parameters were detected, which could not be recognized by conventional statistical analysis. 
Arthroplasty-specific data were identified as relevant by the ML model and should be included in future clinical applications. 
Furthermore, an interdisciplinary interpretation as well as evaluation of the results by a data scientist and an orthopaedic 
surgeon are of paramount importance.
Level of evidence  Level IV.

Keywords  Artificial intelligence · Machine learning · Knee surgery · Total knee arthroplasty · Knee arthroscopy · 
Supervised learning

Introduction

With the growing functional demands of patients and 
increasing advances in arthroplasty, the number of primary 
total knee arthroplasties (TKA) is expected to rise continu-
ously [20, 27]. Although the percentage of early revisions 
in TKA is only between 2 and 3%, the absolute number of 
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patients who have to undergo revision will increase dramati-
cally [5, 23, 26]. Revision TKA is a more demanding pro-
cedure and is associated with higher costs and often inferior 
outcomes than primary TKA [9]. Hence, the early identifica-
tion of patients at risk for revision will become increasingly 
relevant. Risk adjustment tools with clinical applicability 
will therefore gain importance as the rising incidence of 
primary and revision procedures will require patients and 
health care providers to make decisions when faced with the 
individual odds of unfavourable outcomes and the necessity 
of resource allocation.

Considerable efforts have already been made towards the 
development of risk stratification models based on admin-
istrative and medical registry data. However, the predic-
tion of adverse events has so far been moderately accurate 
and the external validation is difficult to achieve [10, 22]. 
Risk adjustment as a part of precision medicine will play 
an increasingly important role in the future of arthroplasty 
and novel, more comprehensive and specific risk analysis 
tools are urgently needed. Machine learning (ML) represents 
a distinct application of artificial intelligence (AI), which 
evolved from pattern recognition and learning theory. ML 
is just in its early stages in orthopaedics and standardized 
approaches are not yet established. ML was recently applied 
and evaluated in predicting adverse events in TKA with het-
erogeneous results: El Galaly et al. built models to predict 
the likelihood of revision TKA within 2 years using data 
from the Danish Knee Arthroplasty Registry [11]. Simi-
larly, Harris et al. applied machine learning methods using 
large administrative databases to develop and validate pre-
diction models for mortality and complications after total 
joint arthroplasty, yielding moderate results. Both studies 
highlighted that no clinically useful prediction model was 
achievable. The inherent difficulty in predicting rare out-
comes—such as adverse events in TKA—is based on the 
limitation of the applied data. ML may be capable to expose 
unseen patterns in large datasets. However, from a data sci-
ence perspective, the data volumes of tabular data in arthro-
plasty are relatively small. Hence, the data sources must be 
chosen carefully so that the presence of relevant patterns in 
the dataset is warranted in the first place. The selection and 
inclusion of relevant input parameters is therefore of utmost 
importance to allow patterns that are specific to TKA. The 
use of arthroplasty-specific databases in this context appears 
to be crucial.

Furthermore, pattern recognition cannot be immediately 
transformed into constellations of specific risk factors. These 
patterns must subsequently be interpreted in the medical 
context, especially when occurrence of the predicted out-
come is rare, as already demonstrated by El Galaly et al. 
[11]. In this context, consideration must be given to the 
extent to which a specific outcome such as revision can be 
replaced with a simpler surrogate. It was hypothesized by us 

that the matching of the outcome with specific input param-
eters and the corresponding adjustment of the ML algorithm 
is critical to improve the predictive accuracy of ML algo-
rithms in TKA. Since all of these considerations require an 
extensive knowledge about statistics, information technology 
and orthopaedics, an interdisciplinary collaboration between 
data scientists and orthopaedic surgeons is essential to the 
success of the ML model. The development of clinically 
applicable risk analysis models is of high clinical relevance 
and ML is perfectly suited for this task. In this study, a stand-
ardized approach for ML in TKA with inclusion of data from 
two German arthroplasty-specific registries was evaluated to 
investigate if ML with arthroplasty-specific data is feasible 
and if arthroplasty-specific data increases the performance 
of such algorithms.

Material and methods

This study was approved by an institutional ethics commis-
sion under no. 714/20 S (Klinikum rechts der Isar, Technical 
University of Munich).

Following a standardized approach for ML model devel-
opment, initially relevant data sources were ascertained and 
significant parameters to the research question by a literature 
review were identified. After a thorough data cleaning and 
preparation, the data was screened to assess potential objec-
tives of the ML model. Subsequently, these objectives were 
specified and defined the corresponding outcome labels. An 
ML algorithm was chosen and developed accordingly. For 
outcome evaluation, several metrics were defined a priori. To 
increase the quality of the presented observational study and 
its prediction model, it was reported in accordance with the 
Transparent Reporting of a Multivariable Prediction Model 
for Individual Prognosis or Diagnosis (TRIPOD) guidelines 
[8] and the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) statement [28].

Data source

The German Society for Orthopaedics and Orthopaedic Sur-
gery (“Deutsche Gesellschaft für Orthopädie und Orthopä-
dische Chirurgie” (DGOOC)) has introduced two initiatives 
to improve the quality of care. The German Arthroplasty 
Registry (Endoprothesenregister Deutschland (EPRD)) 
reports procedure and implant-related data of hip and knee 
replacements. EndoCert is a certification process of medi-
cal facilities in the field of joint replacement and is used to 
monitor compliance with structural, process and outcome 
quality standards in hospitals. To ensure the reproducibility 
of this study in other clinics, the results of this study are 
based on the retrospective datasets provided to these two ini-
tiatives by our institution. The data presented were collected 
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exclusively at Klinikum rechts der Isar (Munich) and include 
all primary TKA cases performed at our institution from 
2016 to 2019.

Parameters and data screening

The parameters from EndoCert and EPRD were screened 
collaboratively a priori by a data scientist (F.H.) and an 
orthopaedic surgeon (I.L.) regarding their relevance and 
applicability for ML analysis. The complete dataset consists 
of 864 patient cases from our hospital. Discrete parameters 
are presented by their distribution and continuous variables 
by their mean, standard deviation, and variance. Tables 1 
and 2 illustrate all discrete and continuous input parameters 
and their sources. It comprises data from the year 2016 
(25.6%), 2017 (35.8%), 2018 (17.1%) and 2019 (21.5%).

Data cleaning and preparation

In total, 5.7% (693/12096) of data points were missing and 
could not be retrieved from the clinical information system. 
26.7% (231/864) of data points regarding weight, height and 
therefore BMI are missing, because they were added to the 
EPRD registry only since 2017. The data samples were still 
kept for the final dataset and a model, which can cope with 
limited missing data points, was chosen.

Specification of the output labels

The presented model aimed to identify “difficult to treat” 
cases for primary TKA. After thorough screening of the 
data, the occurrence of any complication was defined in a 
binary classification as the primary outcome label. Com-
plications occurred in 6.3% (54/864) cases. Therefore, the 
definition of complications according to EndoCert (within 
90 days after implantation) was used:

–	 Deviation mechanical axis ± 3°
–	 Periprosthetic infection
–	 Dislocation
–	 Periprosthetic fracture
–	 Revision surgery
–	 Thromboembolism
–	 Neurologic complications
–	 Mortality

To translate the optimization problem into a binary clas-
sification task, the cases were categorised as “no compli-
cation occurred” or “at least one complication occurred”. 
Additionally, as a further surrogate for complex cases, it was 
aimed to predict irregular durations of surgery in a binary 
classification which occurred in 11.5% (99/864). According 

Table 1   Data description: discrete parameters

*  “Attending—main surgeon” corresponds to “Hauptoperateur” and 
“Attending—senior surgeon” corresponds to “Senior-Hauptopera-
teur” as defined by Endocert

Patients 864 100% Data source
Parameters Absolute Relative

Year EndoCert / EPRD
 2016 221 25.6%
 2017 309 35.8%
 2018 148 17.1%
 2019 186 21.5%

Sex EndoCert / EPRD
 Male 376 43.5%
 Female 488 56.5%

Diagnosis EndoCert / EPRD
 Primary osteoarthritis 769 89.0%
 Post-traumatic osteoarthritis 46 5.3%
 Retropatellar osteoarthritis 14 1.6%
 Aseptic osteonecrosis 5 0.6%
 Tumour/metastasis 29 3.4%
 Fracture 1 0.1%

Side EndoCert / EPRD
 Left 422 48.8%
 Right 442 51.2%

Implant type EPRD
 Primary implant 743 86.0%
 Revision implant 94 10.9%
 Tumour implant 27 3.1%

Surgeon EndoCert
 Surgeon 1 240 27.8%
 Surgeon 2 110 12.7%
 Surgeon 3 229 26.5%
 Surgeon 4 72 8.3%
 Surgeon 5 85 9.8%
 Surgeon 6 44 5.1%
 Surgeon 7 43 5.0%
 Surgeon 8 3 0.3%
 Surgeon 9 19 2.2%
 Surgeon 10 15 1.7%
 Surgeon 11 2 0.2%
 Surgeon 12 2 0.2%

Experience level of surgeon EndoCert
 1 Resident 1 0.1%
 2 Fellow 48 5.6%
 3 Attending—junior 0 0.0%
 4 Attending—main surgeon* 156 18.1%
 5 Attending—senior surgeon* 659 76.3%

Surgery type EndoCert / EPRD
 1 Primary arthroplasty 720 83.3%
 2 Mobile component exchange 10 1.2%
 3 Revision arthroplasty 124 14.4%
 4 REVISION SURGERY 10 1.2%
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to EndoCert, the duration of a TKA surgery is irregular, if 
the duration is either < 40 min or > 120 min.

Hardware and software

Model training and inference was conducted on a common 
Fujitsu Celsius W580power with 16 GB RAM (Minato 
City, Tokyo, Japan) and an Intel(R) Xeon(R) E-2124 CPU 
(3.30 GHz). Implementation of the code was realized with 
Python 3.9.6 (https://​www.​python.​org) and the Scikit-learn 
library (https://​scikit-​learn.​org). The source code for this 
study is provided on GitHub (https://​github.​com/​Flori​anH30​
00/​ML_​tabda​ta).

Algorithm  The XGBoost algorithm was chosen [3, 7]. 
XGBoost is a modern implementation of gradient boosting 
decision trees and designed for speed, performance and man-
aging missing data points. To provide statistical significance, 
a cross-validation was applied, where the data was split into 
a specific number of folds. At least onefold is used solely 
for testing, and the other folds for training. All folds must 
be disjunct to avoid cross contamination. After several runs, 
each data sample was used for testing exactly once. Then, 
the results were averaged to obtain more realistic and stable 
metric values. For this study, a hyperparameter search for the 
optimal number of folds (data split) was performed resulting 
in a split of seven folds (1 for testing, 6 for training) (Fig. 1). 
To tackle the significant class imbalance, a loss weighting 
was applied. The loss of the entity with less samples (in this 
study the occurrence of complications / irregular duration 
of surgery) was weighted higher than the dominant entities 
(no complications / normal duration of surgery). A feature 
importance was calculated to support deeper understanding 
of the algorithm’s predictions and give insight into the data. 
Feature importance refers to the technique that assigns a 
score to input parameters based on how useful they are at 
predicting a target. Figure 2 displays the overall approach 
and fine-tuning techniques. 

Statistical analysis

None of the parameters were normally distributed according 
to normality test by D’Agostino–Pearson. Figure 3 shows a 

correlation matrix according to values of Spearman’s rank-
order correlation coefficient, which is a measure for linear 
correlation between two datasets and does not assume that 
both datasets are normally distributed. A |ρ|> 0.5 con-
cludes a significant direct or indirect correlation between 
two parameters. None of the relations fulfils such a ρ value 
(indicated by the scale on the right), except for ‘weight’/ 
‘BMI’ (ρ = 0.80), ‘height’/ ‘sex’ (ρ = − 0.77) and ‘weight’/ 
‘height’ (ρ = 0.55).

Results

Eight-hundred and sixty-four patient cases and the respec-
tive events from 2016 to 2019 were evaluated in this retro-
spective dataset. The mean patient age is 66.5 ± 11.9 years. 
48.8% of interventions were conducted on the patients’ left 
side, 51.2% on the right side. The BMI resulted in a mean 
of 29.8 ± 16.6.

Indications for TKA were classified as primary osteoar-
thritis (89.0%), posttraumatic osteoarthritis (5.3%), tumour/
metastasis (3.4%), retropatellar osteoarthritis (1.6%), asep-
tic osteonecrosis (0.6%) and fracture (0.1%). The surger-
ies were performed by 12 different surgeons with a share 
of 0.2% up to 27.8% of all 864 surgeries. The experience 
level of surgeons specified by the EndoCert initiative was 
distributed from 0.1% (level 1), 5.6% (level 2), 0% (level 
3), 18.1% (level 4) to 76.3% (level 5). The following surger-
ies were performed: primary arthroplasties (83.4%), mobile 
component exchange (1.2%), revision arthroplasties with 
component exchange (14.4%) and subsequent revision sur-
gery without component exchange (1.2%).

Table 3 displays the distribution of the outcome labels. 
At least one complication occurred in 6.3% (54/864) of 
all patients. An irregular duration of surgery (< 40 min 
or > 120 min) resulted in 11.5% (99/864) of cases.

Sixty-three complications in 54 cases occurred (6 cases 
with multiple complications) in total: 20 (2.3%) deviations 
from the mechanical axis, 10 (1.2%) periprosthetic infec-
tions, 0 (0.0%) dislocations, 4 (0.5%) periprosthetic frac-
tures, 17 (2.0%) revisions, 7 (0.8%) thromboembolism, 2 

Table 2   Data description of continuous parameters

Patients 864 100%

Parameters Mean Std. deviation Variance Data scource

Age 66.5 11.9 141.4 EndoCert / EPRD
Height (in cm) 170.4 11.1 123.6 EPRD
Weight (in kg) 84.5 20.5 421.7 EPRD
BMI 29.8 16.6 274.7 EPRD

Fig. 1   Flowchart describing training and testing datasets

https://www.python.org
https://scikit-learn.org
https://github.com/FlorianH3000/ML_tabdata
https://github.com/FlorianH3000/ML_tabdata
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(0.2%) neurologic complications and 3 (0.3%) deaths. Sur-
gery duration ranged from 11 to 386 min.

Prediction of complications within 90 days 
after surgery

Table 4 demonstrates the accomplished results through vari-
ous metrics. All results were cross-validated for statistical 
significance. Additionally, Fig. 4 illustrates the metric AUC 
in an area under the curve receiver operating characteris-
tics graph. After final computations of the model, a feature 
importance (Fig. 5) was calculated. The order of param-
eters according to importance depicts as follows: age, BMI, 

height, weight, surgeon, year, side, implant type, diagnosis, 
sex, type of surgery and surgeon experience.

Prediction of irregular duration of surgery

Table 5 demonstrates the accomplished results through vari-
ous metrics. All results were cross-validated for statistical 
significance. Additionally, Fig. 6 illustrates the metric AUC 
in an area under the curve receiver operating characteris-
tics graph. After final computations of the model, a feature 
importance (Fig. 7) was calculated. The order of parameters 
according to importance depicts as follows: age, height, sur-
geon, year, BMI, weight, side, implant type, diagnosis, sex, 
type of surgery, surgeon experience.

Fig. 2   Overview of algorithm development (adapted from [10])

Fig. 3   Correlation matrix of all parameters

Table 3   Outcome labels

Patients 864 100%
Parameters Absolute Relative Data source

Complications (any) EndoCert
Yes 54 6.3%
No 810 93.8%
Irregular duration of 

surgery
(< 40 min or > 120 min) EndoCert

Yes 99 11.5%
No 765 88.5%
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Discussion

The most important finding of this study is that a highly 
accurate prediction model was developed with ML and 

arthroplasty-specific data. The accurate prediction of out-
comes in TKA will substantially contribute to personalized 
treatment algorithms and precision medicine in arthroplasty. 
Such predictions applying ML models were evaluated in 
TKA for different variables and yielded heterogeneous 
results [11, 14, 16, 18]. Harris et al. investigated various ML 
models (LASSO, gradient boosting, quadratic discriminant 
analysis) to predict pain and functioning after TKA using 
PROMs and electronic health record data from three large 
Veteran Health Administration facilities and achieved fair 
metrics [14]. Similarly, Li et al. developed a XGBoost model 
to predict the length of stay after TKA based on 1,826 cases 
in a single centre and yielded an AUC of 0.74, concluding 
an improved prediction in comparison to logistic regression 
models [21]. Recently, Klemt et al. investigated four differ-
ent ML models on 618 consecutive patients who underwent 
revision TKA for periprosthetic joint infection to predict 
recurrent infection and achieved excellent performance 
across discrimination (AUC range 0.81–0.84) [17]. Kunze 
et al. examined in a multicentre approach 430 patients and 
evaluated a Five supervised machine learning algorithms to 
identify factors for predicting dissatisfaction after primary 
TKA, yielding a Brier score of 0.082 [19]. On the other side, 
El Galaly et al. evaluated different ML models (LASSO, 
random forest, and gradient boosting neural network) to pre-
dict early revisions with data from a nationwide arthroplasty 
registry and concluded that with an AUC of 0.56 to 0.6, 
none of the models reached the threshold for clinical utility 
[11]. Furthermore, Pua et al. investigated three ML mod-
els (random forest, extreme gradient boosting, and Super-
Learner) for predicting walking limitations in a cohort of 
4026 patients who underwent primary TKA and concluded 
moderate results with AUC 0.73 to 0.75 that did not outper-
form logistic regression [24]. While all studies report similar 

Table 4   Results complications

Prediction of complications [in %]

Accuracy Sensitivity Specificity AUC​

92.0 34.8 95.8 78.0

Fig. 4   Area under the curve receiver operating characteristics (com-
plications)

Fig. 5   Feature importance of 
complication prediction
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approaches to examine ML models, their results differ sig-
nificantly. It was hypothesized that this is due to (1) the lim-
ited quality, quantity and complexity of the underlying data 
and (2) the inappropriate choice of outcome parameters to 

be predicted. The first two studies obtained their data from 
health records of few hospitals for very specific objectives, 
while the latter study applied data from a national registry 
to investigate failure of TKA in general. ML models are 
capable to reveal patterns in datasets. However, the dataset 
must first have sufficient complexity to allow for such dis-
tinct patterns. The more complex the investigated pattern 
or study aim is, the more extensive the input data have to 
be. A specific data source and architecture built for a ML 
model with a concise question will therefore likely yield 
better results than a more extensive data base with a vaguer 
objective. Hence, the ML model, its outcome labels and the 
dataset must be attuned to each other. In this context, El 
Galaly et al. discussed the inclusion of more comprehensive 
data to increase the accuracy of the ML models to predict 
revisions of any reason [11]. In this regard, the implementa-
tion of data specific to arthroplasty and the exact definition 
of the objective for the ML model is considered to be crucial 
to obtain clinical useful results.

Previously, an approach for the application of ML algo-
rithms in TKA was elaborated and using two TKA-specific 
databases (www.​endoc​ert.​de, www.​eprd.​de/​en/) was vali-
dated in this study. The most important finding of this study 
is that a feasible ML model to predict outcomes with high 
accuracy was built. Promising accuracy of 92.0% and 93.4% 
was achieved for the prediction of complications and irregu-
lar surgical duration in this study. Good results with distinct 
outcome predictions in TKA have already been reported. 
Katakam et al. aimed to develop ML algorithms for preoper-
ative prediction of prolonged opioid prescriptions after TKA 
and yielded an AUC of 0.76 [16]. Jo et al. predicted the risk 
of transfusion using an ML model with an AUC of 0.84 [15]. 
Similarly, Ko et al. developed a ML model for prediction of 
postoperative renal failure and yielded an AUC of 0.78 [18]. 

Table 5   Results irregular duration

Prediction of irregular duration [in %]

Accuracy Sensitivity Specificity AUC​

93.4 74.0 96.3 91.6

Fig. 6   Area under the curve receiver operating characteristics (dura-
tion)

Fig. 7   Feature importance of 
duration prediction

http://www.endocert.de
http://www.eprd.de/en/
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However, in this approach, first the dataset was evaluated to 
subsequently conclude which possible outcomes yield use-
ful results in terms of data science methodology and clini-
cal plausibility. While this attunement of input data, ML 
model and outcome labels allowed for accurate predictions 
of complications in general and deviations of surgery time 
in this study, the prediction of distinct complications like 
thromboembolisms or more general events like revision were 
not feasible. The overall low data volume was considered a 
causative factor. Future studies should investigate whether 
more accurate outcome labels are achievable using this ML 
approach with increasing data volumes.

The essential importance of an evaluation of various met-
rics by a data scientist needs to be emphasized. In arthro-
plasty, it is often the case that the occurrence of an event 
(e.g. complications in TKA) is very unlikely, but the detec-
tion is of crucial importance for the patient. When working 
with highly imbalanced datasets, algorithms are likely to 
overfit on the entities with more samples. If the ML algo-
rithm only predicts the high sample entity, the accuracy 
value might suggest good results, while the algorithm is 
not capable of predicting the low sample entity cases. Such 
a considerable class imbalance is present in the dataset at 
hand with low complication rates in TKA (6.3%). While an 
accuracy only reflects how many predictions were correct, 
other metrics give insight into which cases were predicted 
correctly. In this respect, also lower metric results (sensitiv-
ity 34.8% and AUC 78.0% for complications) were obtained. 
Interestingly, in the case of irregular duration of surgery, the 
model achieved a very high accuracy (93.4%), specificity 
(96.3%) and AUC (91.6%). The significant difference com-
pared to complication prediction though is that the sensitiv-
ity did not yield values higher than 74.0%. This might partly 
be explained by the fact, that in this case the dataset was less 
imbalanced (6.3% vs. 11.5%) and the algorithm was able to 
better learn both possible outcomes (no irregular duration 
vs. irregular duration). Hence, the importance to evaluate 
several elaborate metrics is highlighted when applying ML 
algorithms in TKA to permit comparability and detailed 
interpretation. To facilitate a substantive discussion of these 
mathematical results, collaboration between a data scientist 
and an orthopaedic surgeon is paramount for the clinical 
interpretation of the results.

In this study, the feature importance of complication 
and surgery duration prediction showed that the factors 
‘age’, ‘BMI’, ‘height’, ‘weight’ and ‘surgeon’ had the great-
est influence on the result of the ML model. An important 
finding in this study is that these parameters were identi-
fied using ML, but have not been confirmed by conven-
tional statistical analysis using a logistic function model. 
The feature importance indicates to what extent a variable 
has been weighted in the ML model. However, it does not 
implicate causality nor unbiased associations. El Galaly 

et al. described it as a reflection of how the predictions were 
calculated. It therefore might serve as a reality check of pre-
dictive models [11]. Hence, the results yielded by the ML 
algorithm cannot be directly translated to risk factors per se. 
While the influence of age and BMI as known risk factors in 
arthroplasty has already been shown [1, 4, 6, 25], it is inter-
esting to note that the particular surgeon had a major role 
in this ML model. Noteworthy, the level of experience was 
examined separately and showed a lower feature importance. 
If the particular surgeon is a risk factor in reality, is difficult 
to judge. As already mentioned, the feature importance is 
not unbiased. It would be possible that in this evaluation, a 
particular, experienced surgeon was assigned to especially 
difficult cases with a high failure rate which is subsequently 
associated to his person. Furthermore, ML is capable of 
revealing non-linear correlations. In this context, the sur-
geon may have achieved a high feature importance due to 
the high occurrence of complications in a specific parameter 
constellation, i.e. young women with posttraumatic osteoar-
thritis. However, a severe limitation of ML is the difficulty 
to interpret the results retrospectively, which is referred to 
as a “blackbox” problem. The surgeon is weighted as a sig-
nificant factor in this ML model, but it is hard to retrieve 
which of the 12 surgeons or which parameter constellations 
were decisive in this matter. However, these results may be 
reason for further investigations applying conventional sta-
tistical analysis to describe causalities more precisely and 
to examine whether the discrepancy compared to the results 
of the logistic function can be explained by, e.g. the small 
number of cases.

This study has several limitations. Although two arthro-
plasty-specific registries served as data sources, the data 
width is still limited as both registries only include a restric-
tive number of parameters that may affect outcomes. Harris 
et al. pointed out that the inclusion of more specific data 
like comorbidity severity or facility complication rates might 
improve the accuracy of ML models [14]. Both registers are 
in the process of continuous improvement and are adding 
new parameters to their evaluations. This analysis was lim-
ited to specific parameters that were available for all patients 
since 2016. However, weight and height were introduced in 
the registry in 2017. Since these parameters had a relevant 
Feature Importance despite the missing data points, they 
were kept in the analysis. While any significant deviations in 
the missing weight and height parameters are not expected, 
in principle the results could differ due to the inclusion 
of these data. Furthermore, EPRD and EndoCert are not 
designed for evaluation with ML. Therefore, not all param-
eters were usefully applicable as raw datasets. EPRD pro-
vides detailed information of the implants used. If the exact 
differentiation of manufacturers and particular implant com-
ponents has a significant impact on the outcome will only 
become evident with substantially more cases. Therefore, 
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data depth was prioritized instead of data width and general-
ized this respective information into categorical parameters. 
This also incorporated meta data into the analysis, which can 
contribute to a selection bias. The data preparation in this 
regard required a considerable amount of time. To feed the 
data into the ML algorithm, the information from EPRD and 
EndoCert had to be converted and modified, which required 
an extensive manual screening of the data. This considerable 
effort is only reasonable in the context of feasibility stud-
ies. Prospective, continuous analyses require unique data 
architecture that is specifically designed for ML. In addition, 
there are limitations concerning the outcome parameters. 
Complications are only assessed by EndoCert for 90 days 
postoperatively and the data are limited to a single hospital. 
Therefore, some complications may not have been reported.

In this study, the feasibility of the presented ML approach 
using the available data from two registries specific to 
arthroplasty was assessed. The future inclusion of currently 
unavailable specific data for arthroplasty and further cases 
will most likely improve the accuracy of the ML model and 
will allow for more specific outcome predictions. Interest-
ingly, Fontana et al. debated that the predictive power across 
information available at different time points might increase 
[12, 13]. The input parameters in this study correspond to a 
baseline at the time of surgery. In this context, Baker et al. 
investigated patient satisfaction following TKA using a 
national registry with 22,798 patients and found that post-
operative parameters were more predictive than preoperative 
factors [2]. In this regard, the inclusion of postoperative data 
might be useful in predicting more complex outcomes such 
as early revisions. Hence, with more clinically relevant and 
specific data, the prediction models will become more pre-
cise and will allow to determine individual outcome likeli-
hoods, which can be utilized in risk stratifications of treat-
ment algorithms as well as in the informed consent process. 
Before this can be achieved, however, these ML models must 
be rigorously tested on larger datasets and in clinical use.

The results of this study show that clinical data can be 
successfully applied in prediction models using ML. ML 
may soon become part of clinical practice. To achieve this, 
pre-and postoperative data should be accumulated in day-
by-day clinical work to build a foundation for precise ML 
algorithms.

Conclusion

The most important finding of this study is that it was pos-
sible to build a feasible ML model to predict outcomes using 
arthroplasty specific databases. Only high quality and sub-
ject-relevant input data will allow drawing valuable conclu-
sions. Therefore, the use of arthroplasty-specific databases 
is considered to be crucial. Furthermore, the ML model 

identified relevant parameters, which, however, were not 
observed in the conventional statistical analysis. An inter-
disciplinary evaluation and interpretation of these results 
by a data scientist and an orthopaedic surgeon is paramount 
to understand the significance of identified parameters and 
their applicability outside the prediction model.
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