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Abstract
Since preparative chromatography is a sustainability challenge due to large amounts of consumables used in downstream process-
ing of biomolecules, protein crystallization offers a promising alternative as a purification method. While the limited crystalliz-
ability of proteins often restricts a broad application of crystallization as a purification method, advances in molecular biology, 
as well as computational methods are pushing the applicability towards integration in biotechnological downstream processes. 
However, in industrial and academic settings, monitoring protein crystallization processes non-invasively by microscopic pho-
tography and automated image evaluation remains a challenging problem. Recently, the identification of single crystal objects 
using deep learning has been the subject of increased attention for various model systems. However, the advancement of crystal 
detection using deep learning for biotechnological applications is limited: robust models obtained through supervised machine 
learning tasks require large-scale and high-quality data sets usually obtained in large projects through extensive manual labeling, 
an approach that is highly error-prone for dense systems of transparent crystals. For the first time, recent trends involving the 
use of synthetic data sets for supervised learning are transferred, thus generating photorealistic images of virtual protein crys-
tals in suspension (PCS) through the use of ray tracing algorithms, accompanied by specialized data augmentations modelling 
experimental noise. Further, it is demonstrated that state-of-the-art models trained with the large-scale synthetic PCS data set 
outperform similar fine-tuned models based on the average precision metric on a validation data set, followed by experimental 
validation using high-resolution photomicrographs from stirred tank protein crystallization processes.
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Introduction

Protein purification from impure bacterial cell lysate by crys-
tallization is a promising alternative to diffusion-controlled 
preparative chromatography with potential economic benefits 

[1, 2] and improved sustainability aspects. While the limited 
crystallizability of proteins often restricts a broad application 
of crystallization as a purification method, advances in molec-
ular biology, as well as computational methods are pushing the 
applicability towards integration in biotechnological down-
stream processes [3–6]. In industrial and academic settings, 
monitoring protein crystallization processes non-invasively by 
microscopic photography and automated image evaluation 
remains a challenging problem, while being essential for rapid 
development cycles and precise process control. Bright-field 
imaging is a general illumination technique for optical micros-
copy that can be used to monitor crystallization processes in 
static drops, or in situ, with the advantage of being non-inva-
sive and cost-efficient [7, 8]. However, crystals may appear 
predominantly transparent, surrounded fully or partially by 
visible edges due to the system’s refractive properties and 
lighting conditions. Additionally, visual monitoring of general 
in situ crystallization processes may be subject to varying 
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sources of noise and varying object sizes, resulting in (non-
trivial) challenges for image analysis techniques that are fur-
ther strained by the requirement for fast evaluation times to 
enable statistically informed feedback for process controls [9]. 
Early methods for crystal detection relied on a combination of 
image preprocessing steps, thresholding, edge detection and 
segmentation, followed by size-based or convexity-based par-
ticle sieving [10, 11]. Further developments included a multi-
scale approach, in which edges were detected at two image 
scales and then combined for segmentation, resulting in binary 
images with connected components representing crystals [9]. 
However, segmentation-based approaches tended to merge 
overlapping or attached crystals and therefore distort the real 
crystal size distribution in dense systems. Further analysis and 
subsequent splitting of the object’s concave boundaries over-
came this shortcoming, but was not able to separate attached 
crystals that form convex hulls and relied on high-quality 
images with clearly visible crystal borders [12, 13]. An alter-
native to the segmentation-based approach was introduced 
with the SHARC algorithm, which identified line segments 
and then combined them based on the observation that parallel 
line segments in spatial proximity probably represent either 
the same crystal edge interrupted by noise, or opposite crystal 
edges [14]. The M-SHARC algorithm improved upon this by 
fitting line segments to several predefined wire-frame models, 
thus achieving crystal outline detection without image seg-
mentation. Nevertheless, the authors still detailed challenges 
with blurred or low-contrast crystal edges [15]. Additional 
work focused on the extraction of 3D shape descriptors from 
2D images, or more elaborate imaging setups with less focus 
on the resistance to noise, requiring single- or multi-scale seg-
mentation as one of the early image analysis steps [16–19]. In 
a parallel development fuelled by the automatization of protein 
crystallization experiments, machine learning methods began 
to be applied to classification tasks and accelerated the search 
for crystals suitable for X-Ray diffraction and structure deter-
mination [20]. While conventional machine learning 
approaches required careful engineering, the development of 
the deep learning subcategory enabled to learn relevant pat-
terns automatically [21]. Further advances in object detection 
were applied to the task of detecting individual crystals of the 
α - and β-forms of l-glutamic acid by fine-tuning a two-stage 
Mask R-CNN detector model [22, 23], which was later used 
to estimate the crystals population growth rate [24]. While 
two-stage detectors are able to yield per-object masks, their 
disadvantages are slow inference times and low detection rates 
of crystals with high-aspect ratios in dense images, caused by 
non-maximum suppression (NMS) of non-rotated rectangular 
region proposals. For a high-throughput system, the mask pre-
diction was omitted completely, the system instead focusing 
on the classification of morphology of individual crystals of 
the pharmaceutical ingredient indometacin [25]. The problem 
of slow inference times was addressed by the introduction of 

the focal loss for general object detection tasks, enabling fast 
one-stage detectors that competed in accuracy with state-of-
the-art detectors [26]. In the context of crystal detection, one-
stage detectors were first applied to a model system of low-
aspect ratio crystalline sodium chloride [27]. More recently, a 
model crystallization system of an aqueous taurine solution 
was extensively studied using a one-stage state-of-the-art S 2
A-Net oriented object detection (OOD) model, validating the 
obtained crystal counts and two-dimensional crystal shape 
distributions by numerical simulations [28, 29]. The referred 
to approaches utilizing machine learning often investigate 
these techniques for model systems under imaging conditions 
that are not realistic for protein crystallization. In addition to 
widely varying crystal shapes and sizes, protein crystallization 
processes are often confronted by additional disturbances 
resulting from precipitation, aggregation, or thin-film effects. 
This work studies the possibility of crystal detection models 
that are effective for a wide range of crystal systems. However, 
advancing machine learning-based crystal detection for bio-
technological applications is limited: robust models obtained 
through supervised machine learning tasks require large-scale 
and high-quality data sets. Such data sets are usually obtained 
in large projects involving extensive manual labeling. How-
ever, human labeling of dense systems of almost transparent 
crystals is considered to be highly error-prone, especially con-
sidering that widely used data sets contain annotation errors 
and biases even in comparably simple annotation tasks [30]. 
Recent work in the field of facial recognition has demon-
strated, that the generation of synthetic data through computer 
graphics is faster, more cost-efficient, and can avoid the men-
tioned annotation errors [31, 32]. For microscopy, parametric 
models of materials science phenomena were used in combi-
nation with Perlin noise to generate synthetic images. The 
parameters of the researchers’ convolutional neural networks 
were initialized from pre-trained ImageNet models and 
achieved better segmentation and classification results when 
trained on their large synthetic data set compared to models 
fine-tuned on a limited amount of real images [33, 34]. On the 
other hand, the use of ImageNet pre-training was recently re-
examined, and compared to random parameter initialization 
for general object detection tasks. It was observed that locali-
zation-sensitive tasks might benefit from random initialization, 
provided that large-scale data sets are available [35]. To model 
the glass-like appearance of crystals under bright-field micros-
copy using 3D materials and ray tracing algorithms with mini-
mal effort offers the opportunity of transferring this strategy 
to crystallization processes. The present work is focused on 
the targeted design of a synthetic data set with the aim of ena-
bling training of robust object detection models, specifically 
for the quantification and characterization of protein crystal-
lization processes under various and difficult experimental 
conditions, and specialized in the lower resolution limits of the 
imaging equipment. First, a synthetic large-scale data set 
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containing 332,558 images of protein crystals in suspension 
(PCS) for general crystal detection tasks is formulated and 
generated. All crystals in the PCS data set are fully labeled 
with oriented bounding boxes, as well as their segmentation 
masks. Second, it is demonstrated that the PCS data set ena-
bles the training of the previously used state-of-the-art OOD 
crystal detection model from random initialization, resulting 
in significant improvements of model precision compared to 
previously used fine-tuning approaches. Finally, the best per-
forming model is used to monitor crystal growth during pro-
tein crystallization experiments, validated by measurements 
of soluble protein concentration of the supernatant of the crys-
tal suspension.

Materials and methods

Data set generation

A statistical model is defined, that guides the generation of 
an unbiased synthetic data set, designed for modern object 

detection algorithms that leverage deep learning. The set of 
possible observations represent general minimum area rectan-
gles in image space enclosing crystal objects:

Here, r is the aspect ratio of the rotated rectangle, a its area, 
and � the angle as shown in Fig. 1. The set of probability 
density functions corresponding to the set of observations is 
chosen to result in an unbiased data set. This can generally 
be modelled through continuous uniform distributions U[a,b] 
where a and b define the supported interval:

with the maximum aspect ratio set to rmax = 11.4 , approxi-
mated by crystals observed during previous experiments. 
However, a uniform distribution for the area a ∼ U[amin,amax]

 
of rotated rectangles results in visually underrepresented 
smaller crystals, an effect exacerbated by subsequent data 

(1){r, a, �}

(2)
r ∼U[1,rmax]

� ∼U[−�∕2,�∕2]

Fig. 1   With the statistical model for (a) the ratio r = w∕h , area 
a = wh , and angle � , virtual scenes (b) are generated. (c) Example 
image after crystal placement and deformation, material assignment, 
randomized placement of the light source, and ray tracing. The crys-

tal counts for different ratios (d) and angles (e) show good agreement 
with uniform distributions. (f) The total occupied area in each crystal 
size class decreases slightly for larger objects
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augmentation, overlapping crystals, as well as the almost 
completely transparent appearance of crystals for the com-
mon bright-field illumination technique. At the same time, 
high performance of trained detectors at the lower resolution 
limit is desired, to yield reliable information about crystal 
growth during early stages of crystallization processes. This 
visual underrepresentation of smaller crystals is countered 
by sampling smaller crystals more frequently, which can be 
achieved in various ways. Here, constant expected area for 
infinitesimal intervals is stipulated:

which leads to simple reciprocal distribution

that causes arbitrarily small crystal size classes to contribute 
approximately an equal amount to the total crystal area in 
the data set images. For every sample (r, a, �) , a random 3D 
crystal model is picked from a collection of 1851 models. 
Expressed in homogeneous coordinates, the linear transfor-
mation that maps a vertex of the 3D model onto the 2D 
image plane can be formulated in terms of a uniform scal-
ing matrix S , axis rotations RzRyRx , translation T , camera 
transform C , and a perspective projection matrix P:

The set of 2D points produced by applying this transforma-
tion to all vertices of the 3D crystal model is then converted 
to a rotated rectangle (r�, a�, ��) by calculating the convex 
hull followed by rotating calipers [36, 37]. The transformed 
3D model is considered for placement into the virtual scene 
(Fig. 1) once its projected rotated rectangle (r�, a�, ��) is suf-
ficiently close to the sample (r, a, �)

so that finding the correct model transformation M is for-
mulated as an optimization problem. Since the dominant 
principal axis of 3D crystal models is initially oriented in 
the êx direction and the extend in êy and êz is approximately 
equal, � ∼ U[0,2�] rotations around êx do not affect the opti-
mization process significantly. In contrast, rotations around 
Rz(�) approximate rotations of �′ . For this to hold, rotations 
� ∼ U[−�∕3,�∕3] around êy need to be confined, to not disturb 
the relation between �′ and � rotations. Similar consider-
ations lead to the association of scaling sx and the width 
w� =

√

a�r� , as well as sy , sz and height h� =
√

a�∕r� . With 
these approximations, an initial guess for the optimization 
problem can be formulated:

(3)ap(a)da = const.

(4)p(a) =
(

a ln
[

amax∕amin

])−1

(5)M = PCTRz(�)Ry(�)Rx(�)S(sx, sy, sz)

(6)
�

√

a
� −

√

a� <Δ
a

�r
� − r� <Δ

r

�𝜃� − 𝜃� <Δ𝜃

where c is an appropriate factor that is calculated after the 
initial translation T . Therefore, the absolute deviations from 
Eq. 6 can be minimized over the simplified projection matrix

The maximum allowed absolute deviations during minimiza-
tion need to be optimized in terms of how close the statisti-
cal model should be to the final distributions of the data set 
(Fig. 1), as well as in terms of computational performance. 
In this work, it was found that absolute deviations below 
Δr < 0.2 , Δa < 2 , and Δ𝜃 < 2◦ are sufficient during data 
set generation. Additional checks are performed for each 
crystal, so that they do not intersect with the image bor-
ders, as well as a maximum overlap constraint with other 
crystal objects. Once the 3D crystal models are placed in 
the virtual scene, a glass material with varying index of 
refraction n ∼ U[1.1,1.8] is assigned to them. Placement of a 
light source and subsequent rendering through ray tracing 
results in photorealistic base images that are used as inputs 
for the designed data augmentation pipeline. Since crystals 
are mainly detectable through intensity gradients at their vis-
ible edges, limiting the data set to grayscale images enabled 
a reduction of the complexity of the modelling process while 
retaining the required information for the crystal detection 
task. The virtual scenes and images were created with the 
3D modelling software Blender [38].

Data augmentation

Variations of data augmentation are often used in machine 
learning applications to improve the performance of 
trained models on inputs that are outside of the sample dis-
tributions of the training data set, an effect that is referred 
to as overfitting and usually caused by biases during the 
data acquisition process and/or an insufficient size of the 
training data set. In addition to the design of crystal shape 
distributions, synthetic noise is modelled such that detec-
tors trained on the PCS data sets are able to perform under 
a wide range of experimental conditions. This necessarily 
implies the use of brightness and contrast augmentations, 
as well as additive gaussian noise. While the former are 
common augmentations for computer vision applications, 
the latter is an artifact of imaging techniques. However, 
these augmentations act either on a local or global scale of 
the input images, whereas experimental noise can be spa-
tially correlated, such as visible precipitative aggregation, 
or brightness gradients caused by thin-film interference or 

(7)

�0(�) = �

s
x,0(a, r) = c

√

ar

s
y,0(a, r) = c

√

a∕r

(8)M(� , sx, sy) = PCTRz(�)RyRxS(sx, sy)
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skin layers formed by aggregate and/or denatured protein 
[39]. The PCS augmentation pipeline unifies the treatment 
of both effects, differing in the underlying generator N(k) 
that computes randomized noise textures with a spatial 
scale of k, ranging from a few pixels to a diagonal span-
ning the image dimensions. While the distinctive cloudy 
appearance of aggregate is generated by a superposition 
of Perlin noise [33] textures NP(k) , thin-film interference 
or skin formation are approximated through superposition 
of plane-waves propagating in random directions n with 
phase shift � ∼ U[0,2�]

where x stands for any image pixel coordinate. Letting 
NI∕P(k) denote either of the two noise generators, a noise 
layer LI∕P is obtained by averaging N ∼ U{1,10} noise textures 
with possibly different spatial scales ki

To achieve consistent behavior, the histogram equalization 
operation H is introduced, which distributes the intensities 
of the noise textures evenly. Equipped with noise layers LI∕P , 
the remaining task is to select an appropriate blending of 
both images that does not impair the ability of the detector 
to extract the required information, as is the case if they are 
simply averaged. Instead, blending of noise layers and input 
images while maintaining a reasonable signal-to-noise ratio 
can be achieved more consistently by a weighted average

for which a default weight of the input image wb = 1 is cho-
sen, such that only appropriate weights for the noise layers 
need to be determined. First, the noise layer weights are 
set to a second noise layer l� of the same kind, therefore 
acting as a randomized transparency layer. Second, noise 
layer weights are multiplied by the standard deviation �b of 
the input image intensities to not overwhelm already weak 
signals. Lastly, by observing that both types of noise primar-
ily result in dark patterns propagating over the image, noise 
layer weights are additionally suppressed for high intensity 
values down to a factor of 1/2 and reinforced up to a factor 
of 2 for low intensity values, resulting in the final weights

where c is a constant factor acting as a way of tuning the 
contrast of the noise in the final image. For the PCS data 
sets, c = 5 during online augmentation and the generation 
of the augmented validation data sets. In addition to local 

(9)NI(x, n, k) =
1

2

[

cos
(

2�k−1xn + �
)

+ 1
]

(10)LI∕P =
1

N

N
∑

i=1

H
[

NI∕P(ki)
]

(11)A(b, l,wl) =
wbb + wll

wb + wl

(12)wl = c�bl�2
−2l+1

or spatially correlated noise layers, object-level augmen-
tations are utilized that brighten or darken single crystal 
objects slightly relative to their environment, or alterna-
tively faintly outline their refractive borders. Furthermore, 
random cubic-splines are drawn over the image and might 
represent scratches or other foreign residues. Similarly, it 
is possible to round of the corners of the image to simulate 
images taken from round reactor volumes. Finally, edges of 
crystal objects can be distorted by displacing entire rows or 
columns of pixels. A detailed overview of the complete data 
augmentation pipeline in the correct order can be found in 
the supplementary information (Table S1 and Figure S1), 
while Fig. 2 shows examples of augmented base images.

Machine learning

The one-stage state-of-the-art S 2A-Net OOD model 
was used as the basis for all fine-tuning or trained from 
random initialization experiments, with a ResNet-50 
backbone and feature pyramid network (PyTorch 1.9). 
To facilitate the detection of small and densely packed 
crystals, the following modifications were introduced. 
First, two different anchor box configurations were 
tested and compared. However, since the S 2A-Net has 
an anchor refinement network built-in, a positive effect 
of this modification needs to be demonstrated. Therefore, 
fine-tuning experiments were carried out with anchor 
sizes [8, 16, 32, 64, 128] and [16, 32, 64, 128, 256]. 
Second, the fine details of crystal edges in the input 
images are crucial information for the detectability of 
a crystal but might be lost during the initial resolution 
reduction steps in the default S 2A-Net model. A model 
configuration that skips the max-pooling layer after the 
first convolution was examined, therefore increasing the 
resolution and information that the following ResNet-50 
backbone of the model has access to. Since this modi-
fication increases the inference time, advantages and 
disadvantages were investigated. During fine-tuning 
experiments, model parameters were initialized from 
ImageNet pre-trained models, freezing the first stage 
of the ResNet-50 model. Furthermore, common fine-
tuning schedules were adopted. Therefore, eight passes 
(or epochs) over the 322,558 images from the training 
data set with learning rate 0.01 were performed, then 
three passes with learning rate 0.001 and a final pass 
with learning rate 0.0001. Long training schedules were 
tried for one ImageNet pre-trained model, as well as one 
using Kaiming initialization [40]. Both were trained with 
a learning rate of 0.01 for 80 epochs, then 15 epochs with 
learning rate 0.001 and final 15 epochs with learning 
rate 0.0001. All machine learning experiments were con-
ducted on four GPUs (Tesla V100) with two images per 
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GPU. Group normalization was utilized to stabilize train-
ing from random initialization [35]. The effects of model 
modifications were compared on a dedicated validation 
data set using the common bounding box average preci-
sion metric (bbox AP) to compare the performance of 
different detectors. Average precision is an area-under-
the-curve measure of the precision-recall curve that can 
be extracted from the evaluation of the dedicated evalu-
ation data set. Higher AP scores are interpreted as corre-
sponding to better detectors. To calculate the AP metric, 
code from the Facebook AI Research Detectron2 project 
for oriented bounding box evaluation was used [41]. To 
further elucidate the performance of the detectors for 
different crystal sizes, the AP metric is separated into 
three area a classes, APs for crystals with their oriented 
bounding box smaller than a < 82 , APm for 82 < a < 242 
and APl for 242 < a crystals.

Crystallization and imaging

Crystals of the model protein Lactobacillus kefir alcohol 
dehydrogenase (LkADH) were used for image detection to 
evaluate the trained model by monitoring crystal growth 
during stirred batch protein crystallization. LkADH 
mutants were used to compare the image detection results 

between similar protein variants. Therefore, LkADH wild 
type was mutated by QuikChange site-directed mutagen-
esis with partial overlapping primers according to Walla 
et al. (2021) [5] to generate the mutants T102E, Q126K 
(primers for both mutants recently published [5]) and 
Q126H (5 ′ -GGT​ATT​CAC​CGT​ATG​AAA​AAC​AAA​
GG-3 ′  and 5 ′-CAT​ACG​GTG​AAT​ACC​CAG​AC-3 ′  ). E. 
coli BL21(DE3) were transformed with the selected 
LkADH variants and produced in shake flasks according 
to Grob et al. (2020) [4]. After cell lysis by ultrasound 
and centrifugation of the harvested E. coli cell pellets 
(12000g, 4 ◦ C, 1 h), the supernatant of the E. coli cell 
lysate was dialyzed (20μ M HEPES/NaOH pH 7.0, 1 μ M 
MgCl2 ) and filtrated (0.2μ m polypropylene syringe fil-
ter). Stirred batch crystallization (V = 5ml, n stirrer = 150 
rpm) was initiated by addition of equal amounts of pre-
cipitation agent (0.1M Tris/HCl pH 7.0, 50 μ M MgCl2 , 
200 gl−1 PEG MME 550) to clarified and dialyzed E. coli 
cell lysate, laid out in the crystallizer located in a tem-
perature controlled water bath (20 ◦ C) according to Walla 
et al. (2021) [5]. For protein analysis and image genera-
tion, samples were taken at regular intervals for 32 h. To 
prevent further crystallization, the samples were diluted 
10-fold with buffer (20 μ M HEPES/NaOH pH 7.0, 1mM 
MgCl2 ). A 10 μ l droplet was placed in a crystallization 

Fig. 2   Data augmentations for the PCS data sets visualized. Synthetic 
base images can be seen in the top row, while augmented images are 
visible in the bottom row. Examples are for (a) edges distortions, (b) 

brightness/contrast variations and blurring (c) thin-film interference 
patterns, per-object highlights, rounded corner overlay, and (d) Perlin 
noise and random splines
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plate (MRC UnderOil Crystallization Plate, SWISSCI, 
Neuheim, Switzerland) and placed under a light micro-
scope (Nikon Eclipse 50i with 4-fold objective (CFI Plan 
Fluor), Nikon, Düsseldorf, Germany)) in a temperature 
controlled incubator (20 ◦ C) for photomicrograph record-
ing. Photomicrographs were taken automatically by a 
digital camera (DS-Fi3, 0.84μ m per pixel at 2880 × 2048 
pixel) attached to the microscope, which is controlled by 
NIS Elements AR v.5.02 imaging software (Nikon, Düs-
seldorf, Germany). The protein concentration of the crys-
tallization suspension was determined by bicinchoninic 
acid (BCA) protein assay (PierceTM BCA Protein Assay 
Kit, ThermoFisher Scientific, Munich, Germany) per-
formed with the diluted supernatant of centrifuged sam-
ples (13000 g, 20 ◦ C, 10 min).

Results and discussion

Data set generation and machine learning

A synthetic data set containing 332,558 images of resolu-
tion 384 × 384 pixels was successfully generated using 
ray tracing algorithms. In combination with special-
ized data augmentations (see Table S1), highly varying 
photorealistic scenes of crystallization experiments can 
be used during machine learning approaches. The data 
set was split into a training data set containing 322,558 
images and 16,801,555 crystal instances, as well as a 
validation data set containing 10,000 images and 513,337 
crystal instances. Figure 1 shows that the size and aspect 
ratios of the crystals are distributed according to the 
formulated statistical model (S,P) , therefore guarantee-
ing an unbiased data set. This is demonstrated through 
almost constant crystal counts for all histogram bins in 
the supported intervals of the crystal ratios, angles, and 
the total crystal area in a corresponding crystal size class. 
While the latter displays small deviations from the con-
stant behavior, this effect can be explained by the limited 
image area coupled with a maximum overlap constraint. 

During training, the specially designed data augmenta-
tions modify the base images of the PCS data sets before 
they are used as input to the model. Additionally, an 
augmented version of the validation data set was cre-
ated to enable comparability for future work. Augmented 
example images are shown in Fig. 2, while Table S1 lists 
all augmentations applied in the correct order, includ-
ing flips and rotations as geometric transformations. 
Different variations of the S 2A-Net OOD model were 
trained using either fine-tuning approaches, or starting 
from random initialization of the model weights. The AP 
metric is compared for the different detectors in Table 1. 
Decreasing the size of the smallest anchor from 16 to 8 
pixels resulted in better detector performance for small 
crystals. Furthermore, skipping the max-pooling layer 
after the first convolutional layer is shown to increase 
the model performance for all crystal sizes. Additionally, 
the large-scale PCS data set enabled training procedures 
that rely on much larger data sets when compared to fine-
tuning approaches. Longer training schedules are shown 
to result in further increases in AP scores. Finally, train-
ing object detection models from random initialization 
using group normalization (GN), results in the highest 
AP scores of all trained models.

Experimental validation

The model performance has, thus far, only been tested 
using the synthetic validation data set with the same 
underlying feature distribution as that of the training 
data set. While it was previously demonstrated that the 
PCS data sets are unbiased regarding crystal sizes and 
shapes, the presented approach to model synthetic noise, 
lighting conditions, contrast variations, and aspects of 
the observed reactor volume requires evaluation on real-
world data. Multiple batch crystallization experiments 
were conducted to investigate the performance transfer 
from synthetic data to real data. All images were evalu-
ated with the best performing S 2A-Net model from 
Table 1 which was trained from random initialization 

Table 1   Comparison of the bounding box average precision met-
ric (bbox AP) for different detector variations based on the S2A-Net 
model. AP values are further divided into AP

s
 for small objects, AP

m
 

for medium-sized objects and AP
l
 for large objects. Evaluation is per-

formed on the PCS validation set. AP values in brackets were eval-
uated on the augmented PCS validation data set. Higher AP values 
indicate better crystal detection performance

Anchors Pool Initialization Epochs AP AP
s

AP
m

AP
l

16 - 256 − ImageNet 12 33.48 (18.44) 7.26 (2.16) 34.29 (15.98) 62.75 (42.42)
8 - 128 − ImageNet 12 34.05 (18.10) 8.80 (2.31) 35.81 (16.10) 60.19 (40.39)
8 - 128 skip ImageNet 12 38.04 (21.93) 10.91 (3.48) 39.66 (20.69) 65.39 (46.66)
8 - 128 skip ImageNet 110 58.24 (29.46) 39.00 (8.76) 64.16 (29.19) 76.59 (56.82)
8 - 128 skip Random 110 60.22 (33.53) 41.87 (12.22) 65.90 (35.35) 77.80 (60.12)



6386	 Bischoff D. et al.

1 3

using the synthetic PCS data set. Automated preprocess-
ing steps first converted photomicrographs to grayscale 
images. Additionally, grayscale intensity distributions 
of each photomicrograph were shifted to the distribu-
tion used during training. To test the robustness of this 
model, three technically replicated protein crystalliza-
tion processes were conducted. High-resolution photo-
micrographs with 2272 × 1632 resolution were taken at 

different times to capture the crystal growth process of 
the selected model protein LkADH. While diluted sam-
ples result in clear images (Fig. 3), undiluted samples 
are subject to noise by precipitation and/or aggregation 
due to the unprocessed sample containing high amounts 
of host cell protein (Fig. 4). While the modified S 2A-Net 
model detects less crystals than in the undiluted case, the 
extracted crystal size distributions can be demonstrated 

Fig. 3   This photomicrography 
of a diluted 10μ l droplet sample 
from a LkADH crystallization 
process was taken after 7 h. The 
width and height of the pre-
dicted oriented bounding boxes 
(green) have been enlarged 
by six pixels for illustration 
purposes. In photomicrographs 
of diluted samples, almost all 
crystals are detected

Fig. 4   This photomicrography 
of an undiluted 10μ l drop-
let sample from a LkADH 
crystallization process was 
taken after 7 h, depicting the 
performance of the trained S 2
A-Net model in the presence of 
noise due to precipitation and/
or aggregation. The width and 
height of the predicted oriented 
bounding boxes (green) have 
been enlarged by six pixels for 
illustration purposes
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to be similar. Figure 5 compares the resulting medians 
of the widths and heights of the detected crystal objects 
in 10 μ l droplets which were sampled at different times 
during the process. While distributions from diluted and 
undiluted images generally align well, deviations lead to 
a slight overestimation of the widths or heights for the 
undiluted samples at the earlier times during the crys-
tallization process. Here, the size of crystals is on the 

scale of a few image pixels ( 0.84 μm∕px ) and such devia-
tions can therefore be attributed to an inherent limitation 
due to the imaging equipment. The robustness to noise 
of the trained S 2A-Net model is further demonstrated 
through multiple two-sample Kolmogorov-Smirnov 
tests [42], which are unable to reject the hypothesis 
that the widths of detected crystals from the diluted and 
undiluted photomicrographs are drawn from the same 

Fig. 5   Crystal width and height for three technical replicates of LkADH wild type batch crystallization experiments in parallel stirred tank reac-
tors (column-wise). Shown are the medians, as well as lower and upper quartiles represented as vertical bars at different times

Table 2   Two-sided two-sample Kolmogorov-Smirnov test for the 
hypothesis that the crystal width distributions from diluted and undi-
luted samples in a technical replicate of LkADH wild type stirred 
tank crystallization are identical at the sampled time points. Bold 
p-values indicate the failure of the test to reject the hypothesis for a 

significance level of 5% in favor of the alternative that the distribu-
tions are different. Additionally, the table contains information about 
the number of detected crystals of diluted N

d
 and undiluted samples 

N

Techn. Replicate 1 Techn. Replicate 2 Techn. Replicate 3

t [h] p-value N
d

N p-value N
d

N p-value N
d

N

2.0 0.27 26 6 0.41 108 26 0.32 173 22
2.5 0.19 153 73 0.26 546 83 0.37 862 54
3.0 0.11 352 253 0.19 916 178 0.29 1246 104
4.0 0.13 496 231 0.06 1189 257 0.16 1145 150
5.0 0.08 406 196 0.10 1319 167 0.08 1050 89
6.0 0.13 241 107 0.10 1283 81 0.12 989 84
7.0 0.10 512 105 0.06 1004 124 0.17 1451 47
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distribution (Table 2). Here, in addition to comparing 
the distributions shapes, the numbers of detected crys-
tals from diluted and undiluted samples are provided. 
The detected number of crystals steadily increases for 
diluted and undiluted samples during the early stages of 
the crystallization process. However, at later times the 
crystal count is subject to fluctuations especially for the 
undiluted noisy samples. This might be caused by the 
manual sampling process, which can be improved upon 
by further automation and online microscopy probes. 
Furthermore, different equilibrium crystal size distribu-
tions indicate that stirred crystallization experiments are 
subject to small variabilities even when started from the 
same biological batch.

Since almost all crystals are detected by the trained S 2
A-Net model in the case of diluted samples, the general 
question of to what degree the detected crystal growth 
correlates with the protein concentration of supernatant 
is addressed in Fig. 6, indicating that both measurements 
can be described by a linear relationship (see Table S2). 
However, while technical replicates two and three behave 
similarly under these metrics, the first technical replicate 
results in less total crystal area in the analyzed photomicro-
graphs while reaching the same final protein concentration 
of supernatant. In addition to the previous considerations 
concerning the model’s robustness to noise, to demon-
strate the model’s robustness to varying crystal sizes and 
aspect ratios, crystallization of four LkADH variants with 
different crystallization kinetics was conducted. In prior 
studies with the homologous Lactobacillus brevis ADH 
(LbADH), mutants T102E and Q126H resulted in differ-
ent crystal sizes compared to the LbADH wild type when 
crystallized starting from identical initial conditions [4]. 
Recent work transferred the mutations T102E and Q126K 
to the LkADH and demonstrated a transfer of crystalliz-
ability for the LkADH wild type and these mutants [5]. In 

this study, the transfer to LkADH was extended to mutant 
Q126H and the aspect ratio of the LkADH wild type and 
mutants was examined in addition to width and height of 
the crystals during the crystallization process. Central 
cropped sections of selected representative images can be 
seen in Fig. 7, while Fig. 8 shows empirical cumulative 
distribution functions (ECDF) for crystal width, height, 
and aspect ratio. In previous work, the widths and heights 
of the LkADH wild type and mutants T102E and Q126K 
have been measured manually to analyze crystallization 
behavior under equal initial protein concentrations [5]. 
With the presented trained S 2A-Net model, experiments 
with the same mutants result in an identical order of crystal 
sizes for widths and heights: WT > Q126K > T102E. How-
ever, while previously the wild type had the highest aspect 
ratio amongst all LkADH variants, the current analysis sug-
gests higher aspect ratios for the LkADH mutant Q126K. 
It is suspected that the present unbiased S 2A-Net model is 
more likely to detect small and more compact crystals than 
manual labeling. This is supported by the rapidly increas-
ing empirical distribution function of crystal widths for 
the wild type. Such widely varying crystal sizes are not 
present for the mutations T102E, Q126K, and Q126H. A 
possible explanation for this effect might be a tendency of 
the wild type to break during stirred crystallization experi-
ments, while in contrast, the previous work has demon-
strated stronger intermolecular interactions for protein 
crystals of the mutant T102E [5]. The newly transferred 
LkADH mutant Q126H from the LbADH is larger than 
the mutant Q126K, but remains smaller than the wild type 
on average. Moreover, Fig. 8 shows that mutants T102E 
and Q126H can be clearly distinguished from the LkADH 
wild type and mutant Q126K by their aspect ratio. More 
specifically, mutant T102E results in small and compact 
crystals with average r = 5.50 ± 1.77 , and mutant Q126H 
exhibits large average aspect ratios r = 7.97 ± 2.00 , while 

Fig. 6   Protein concentration of supernatant ( cP ) measured at differ-
ent times during the LkADH wild type crystallization process for the 
three technical replicates correlates with the total crystal area ( atot ) 

detected by the best performing trained S 2A-Net model in photomi-
crographs of the diluted samples
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Fig. 7   Central cropped sections 
of photomicrographs of samples 
taken after 24 h crystallization 
of LkADH wild type (WT) and 
mutants T102E, Q126K, and 
Q126H (left) with the corre-
sponding predictions of the best 
performing trained S 2A-Net 
model (right). The width and 
height of the predicted oriented 
bounding boxes (green) have 
been enlarged by six pixels for 
illustration purposes

Fig. 8   Empirical cumulative 
distribution functions (ECDF) 
of the LkADH wild type (WT) 
and mutants T102E, Q126K, 
and Q126H evaluated from 
photomicrographs taken after 
24 h of crystallization in stirred 
tank reactors. Shown are crystal 
lengths, widths and aspect ratios 
extracted from the photomicro-
graphs
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the wild type with r = 5.99 ± 2.64 and the mutant Q126K 
with r = 6.70 ± 2.25 are positioned between them.

Conclusions

A large-scale and unbiased data set for supervised learning 
of crystal detection tasks was generated, thus circumvent-
ing the previous error-prone and time-intensive manual 
labeling task of crystal objects. This large-scale data set 
enabled the training of state-of-the-art oriented object 
detection models. By evaluating the performance of dif-
ferent models on a validation data set, it was found that 
crystal detection tasks profit from smaller anchor sizes, 
skipping of the initial resolution reduction through max-
pooling, and random initialization coupled with long train-
ing schedules. The best performing model was validated 
experimentally, demonstrating its robustness to noise, 
and varying crystal sizes and aspect ratios. It was also 
demonstrated that the model is able to detect crystals at 
the lower resolution limit of the imaging equipment, thus 
being able to monitor the growth of LkADH crystals dur-
ing early stages of the process. Furthermore, differences 
in crystal shapes of the LkADH wild type and mutants 
T102E, Q126K, and Q126H were analyzed and compared 
to previous manual measurements. Due to the robustness 
of the model against noise-like aggregation or precipita-
tion, this work has high potential for the monitoring of 
crystallization using online microscopy probes in technical 
processes. Finally, due to the flexibility of the synthetic 
data set generating process, future work might extend it to 
model and classify different crystal morphologies, crystal 
clusters, or the effects of phase separation.
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