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Abstract
We analyze the tail behavior of solutions to sample average approximations (SAAs) 
of stochastic programs posed in Hilbert spaces. We require that the integrand be 
strongly convex with the same convexity parameter for each realization. Combined 
with a standard condition from the literature on stochastic programming, we estab-
lish non-asymptotic exponential tail bounds for the distance between the SAA solu-
tions and the stochastic program’s solution, without assuming compactness of the 
feasible set. Our assumptions are verified on a class of infinite-dimensional optimi-
zation problems governed by affine-linear partial differential equations with random 
inputs. We present numerical results illustrating our theoretical findings.

Keywords  Sample average approximation · PDE-constrained optimization under 
uncertainty · Linear-quadratic optimal control under uncertainty · Exponential tail 
bounds · Stochastic programming

1  Introduction

We apply the sample average approximation (SAA) to a class of strongly convex 
stochastic programs posed in Hilbert spaces, and study the tail behavior of the dis-
tance between SAA solutions and their true counterparts. Our work sheds light on 
the number of samples needed to reliably estimate solutions to infinite-dimensional, 
linear-quadratic optimal control problems governed by affine-linear partial differ-
ential equations (PDEs) with random inputs, a class of optimization problems that 
has received much attention recently [30, 40, 42]. Our analysis requires that the 
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integrand be strongly convex with the same convexity parameter for each random 
element’s sample. This assumption is fulfilled for convex optimal controls prob-
lems with a strongly convex control regularizer, such as those considered in [30, 40, 
42]. Throughout the paper, a function 𝖿 ∶ H → ℝ ∪ {∞} is �-strongly convex with 
parameter 𝛼 > 0 if �(⋅) − (�∕2)‖ ⋅ ‖2

H
 is convex, where H is a real Hilbert space with 

norm ‖ ⋅ ‖H . Moreover, a function on a real Hilbert space is strongly convex if it is �
-strongly convex with some parameter 𝛼 > 0.

We consider the potentially infinite-dimensional stochastic program

where U is a real, separable Hilbert space, � ∶ U → ℝ ∪ {∞} is proper, lower-
semicontinuous and convex, and J ∶ U × � → ℝ is the integrand. Moreover, � is a 
random element mapping from a probability space to a complete, separable metric 
space � equipped with its Borel �-field. We also use � ∈ � to represent a determin-
istic element.

Let �1 , �2 , ...  be independent identically distributed �-valued random elements 
defined on a complete probability space (�,F,P) such that each �i has the same dis-
tribution as that of � . The SAA problem corresponding to (1) is

We define F ∶ U → ℝ ∪ {∞} and the sample average function FN ∶ U → ℝ by

Since we assume that the random elements �1, �2,… are defined on the common 
probability space (�,F,P) , we can view the functions fN and FN as defined on 
U ×� and the solution u∗

N
 to (2) as a mapping from � to U . The second argument of 

fN and of FN is often dropped.
Let u∗ be a solution to (1) and u∗

N
 be a solution to (2). We assume that J(⋅, �) is �

-strongly convex with parameter 𝛼 > 0 for each � ∈ � . Furthermore, we assume that 
F(⋅) and J(⋅, �) for all � ∈ � are Gâteaux differentiable. Under these assumptions, we 
establish the error estimate

valid with probability one. If ‖∇uJ(u
∗, �)‖U is integrable, then ∇FN(u

∗) is just 
the empirical mean of ∇F(u∗) since F(⋅) and J(⋅, �) for all � ∈ � are convex and 
Gâteaux differentiable at u∗ ; see Lemma 3. Hence we can analyze the mean square 
error �[‖u∗ − u∗

N
‖2
U
] and the exponential tail behavior of ‖u∗ − u∗

N
‖U using stand-

ard conditions from the literature on stochastic programming. To obtain a bound on 
�[‖u∗ − u∗

N
‖2
U
] , we assume that there exists 𝜎 > 0 with

(1)min
u∈U

{ f (u) = �[J(u, �)] + � (u) },

(2)min
u∈U

{
fN(u) =

1

N

N∑

i=1

J(u, �i) + � (u)
}
,

(3)F(u) = �[J(u, �)] and FN(u) =
1

N

N∑

i=1

J(u, �i).

(4)�‖u∗ − u∗
N
‖U ≤ ‖∇FN(u

∗) − ∇F(u∗)‖U ,
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yielding with (4) the bound

To derive exponential tail bounds on ‖u∗ − u∗
N
‖U , we further assume the existence of 

𝜏 > 0 with

This condition and its variants are used, for example, in [15, 25, 44]. Using Jens-
en’s inequality, we find that (7) implies (5) with �2 = �2 [44, p. 1584]. Combining 
(4) and (7) with the exponential moment inequality proven in [48, Theorem 3], we 
establish the exponential tail bound, our main contribution,

This bound solely depends on the characteristics of J but not on properties of the 
feasible set, { u ∈ U ∶ 𝛹 (u) < ∞} , other than its convexity. For each � ∈ (0, 1) , the 
exponential tail bound yields, with a probability of at least 1 − �,

In particular, if 𝜀 > 0 and N ≥ 3�2

�2�2
ln(2∕�) , then ‖u∗ − u∗

N
‖U < 𝜀 with a probability 

of at least 1 − � , that is, u∗ can be estimated reliably via u∗
N

.
Requiring J(⋅, �) to be �-strongly convex for each � ∈ � is a restrictive assumption. 

However, it is fulfilled for the following class of stochastic programs:

where 𝛼 > 0 , H and U are real Hilbert spaces, and K(�) ∶ U → H is a bounded, 
linear operator and h(�) ∈ H for each � ∈ � . The control problems governed by 
affine-linear PDEs with random inputs considered, for example, in [21, 22, 30, 41, 
42] can be formulated as instances of (10). In many of these works, the operator 
K(�) is compact for each � ∈ � , the expectation function F1 ∶ U → ℝ defined by 
F1(u) = (1∕2)�[‖K(�)u + h(�)‖2

H
] is twice continuously differentiable, and U is 

infinite-dimensional. In this case, the function F1 generally lacks strong convexity. 
This may suggest that the �-strong convexity of the objective function of (10) is 
solely implied by the function (�∕2)‖ ⋅ ‖2

U
+ � (⋅) . The lack of the expectation func-

tion’s strong convexity is essentially known [6, p. 3]. For example, if the set � has 
finite cardinality, then the Hessian ∇2F1(0) is the finite sum of compact operators 
and hence F1 lacks strong convexity; see Sect. 6.

(5)�[‖∇uJ(u
∗, �) − ∇F(u∗)‖2

U
] ≤ �2,

(6)�[‖u∗ − u∗
N
‖2
U
] ≤ �2∕(�2N).

(7)�[exp(�−2‖∇uJ(u
∗, �) − ∇F(u∗)‖2

U
)] ≤ e.

(8)Prob(‖u∗ − u∗
N
‖U ≥ 𝜀) ≤ 2 exp(−𝜏−2N𝜀2𝛼2∕3) for all 𝜀 > 0.

(9)‖u∗ − u∗
N
‖U <

𝜏

𝛼

�
3 ln(2∕𝛿)

N
.

(10)min
u∈U

{ (1∕2)�[‖K(�)u + h(�)‖2
H
] + (�∕2)‖u‖2

U
+ � (u) },
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A common notion used to analyze the SAA solutions is that of an �-optimal solu-
tion [54, 56, 57].1 We instead study the tail behavior of ‖u∗ − u∗

N
‖U since in the lit-

erature on PDE-constrained optimization the focus is on studying the proximity of 
approximate solutions to the “true” ones. For example, when analyzing finite ele-
ment approximations of PDE-constrained problems, bounds on the error ‖w∗ − w∗

h
‖U 

as functions of the discretization parameters h are often established [28, 60], where 
w∗ is the solution to a control problem and w∗

h
 is the solution to its finite element 

approximation. The estimate (4) is similar to that established in [28, p. 49] for the 
variational discretization—a finite element approximation—of a deterministic, lin-
ear-quadratic control problem. Since both the variational discretization and the SAA 
approach yield perturbed optimization problems, it is unsurprising that similar tech-
niques can be used for some parts of the perturbation analysis.

The SAA approach has thoroughly been analyzed, for example, in [4, 7, 50, 54, 
56, 57]. Some consistency results for the SAA solutions and finite-sample size esti-
mates require the compactness and total boundedness of the feasible set, respec-
tively. However, in the literature on PDE-constrained optimization, the feasible sets 
are commonly noncompact; see, e.g., [29, Sect. 1.7.2.3]. Assuming that the function 
F defined in (3) is �-strongly convex with 𝛼 > 0 , Kouri and Shapiro [35, eq. (42)] 
establish

The setting in [35] corresponds to � being the indicator function of a closed, con-
vex, nonempty subset of U . In contrast to the estimate (4), the right-hand side in (11) 
depends on the random control u∗

N
 . This dependence implies that the right-hand side 

in (11) is more difficult to analyze than that in (4). However, the convexity assump-
tion on F made in [35] is weaker than ours which requires the function J(⋅, �) be �
-strongly convex for all � ∈ � . The right-hand side (11) may be analyzed using the 
approaches developed in [53, Sects. 2 and 4].

For finite-dimensional optimization problems, the number of samples, required 
to obtain �-optimal solutions via the SAA approach, can explicitly depend on the 
problem’s dimension [1, 55, Example 1], [25, Proposition 2]. Guigues, Juditsky, and 
Nemirovski [25] demonstrate that confidence bounds on the optimal value of sto-
chastic, convex, finite-dimensional programs, constructed via SAA optimal values, 
do not explicitly depend on the problem’s dimension. This property is shared by our 
exponential tail bound.

After the initial version of the manuscript was submitted, we became aware of the 
papers [52, 61] where assumptions similar to those used to derive (6) and (8) are uti-
lized to analyze the reliability of SAA solutions. For unconstrained minimization in 
ℝ

n with � = 0 , tail bounds for ‖u∗ − u∗
N
‖2 are established in [61] under the assump-

tion that J(⋅, �) is �-strong convex for all � ∈ � and some 𝛼 > 0 . Here, ‖ ⋅ ‖2 is the 
Euclidean norm on ℝn . Assuming further that ‖∇uJ(u

∗, �)‖2 is essentially bounded 
by L > 0 , the author establishes

(11)�‖u∗ − u∗
N
‖U ≤ ‖∇FN(u

∗
N
) − ∇F(u∗

N
)‖U .

1  A point x̄ ∈ X is an �-optimal solution to inf
x∈X � (x) if � (x̄) ≤ inf

x∈X � (x) + 𝜀.
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if � ∈ (0,L∕�] , and the right-hand side in (12) is zero otherwise [61, Corollary 2]. 
While (12) is similar to (8) with � = L , its derivation exploits the essential bound-
edness of ‖∇uJ(u

∗, �)‖2 which is generally more restrictive than (7). The author 
establishes further tail bounds for ‖u∗ − u∗

N
‖2 under different sets of assumptions on 

J(⋅, �) , and provides exponential tail bounds for f (u∗
N
) − f (u∗) assuming that J(⋅, �) 

is Lipschitz continuous with a Lipschitz constant independent of � (see [61, Theo-
rem 5]). For the possibly infinite-dimensional program (1), similar assumptions are 
used in [52, Theorem 2] to establish a non-exponential tail bound for f (u∗

N
) − f (u∗) . 

While tail bounds for f (u∗
N
) − f (u∗) are derived in [52, 61], the assumptions used to 

derive (6) and (8) do not imply bounds on f (u∗
N
) − f (u∗).

Hoffhues et  al. [30] provide qualitative and quantitative stability results for 
the optimal value and for the optimal solutions of stochastic, linear-quadratic 
optimization problems posed in Hilbert spaces, similar to those in (10), with 
respect to Fortet–Mourier and Wasserstein metrics. These stability results are 
valid for approximating probability measures other than the empirical one, which 
is used to define the SAA problem (2). However, the convergence rate 1/N for 
�[‖u∗ − u∗

N
‖2
U
] , and exponential tail bounds on ‖u∗ − u∗

N
‖U are not established in 

[30]. For a class of constrained, linear elliptic control problems, Römisch and 
Surowiec [49] demonstrate the consistency of the solutions and the optimal value, 
the convergence rate 1∕

√
N  for �[‖u∗ − u∗

N
‖U] and for �[|fN(u∗N) − f (u∗)|] , and the 

convergence in distribution of 
√
N(fN(u

∗
N
) − f (u∗)) to a real-valued random vari-

able. These results are established using empirical process theory and are built on 
smoothness of the random elliptic operator and right-hand side with respect to the 
parameters. While our assumptions yield the mean square error bound (6) and the 
exponential tail bound (8), further conditions may be required to establish bounds 
on �[|fN(u∗N) − f (u∗)|] . A bound on �[‖u∗ − u∗

N
‖2
U
] related to (6) is established in 

[41, Theorem 4.1] for class of linear elliptic control problems.
Besides considering risk-neutral, convex control problems with PDEs which 

can be expressed as those in Sect. 6, the authors of [40, 42] study the minimiza-
tion of u ↦ Prob(J(u, �) ≥ �) , where � ∈ ℝ and evaluating J(u, �) requires solv-
ing a PDE. Furthermore, the authors of Marín et  al. [40] and Martínez-Frutos 
and Esparza [42] prove the existence of solutions and use stochastic collocation 
to discretize the expected values. In [42, Sect. 5.3], the authors adaptively com-
bine a Monte Carlo sampling approach with a stochastic Galerkin finite element 
method to reduce the computational costs, but error bounds are not established. 
Stochastic collocation is also used, for example, in [21, 34]. Further approaches 
to discretize the expected value in (10) are, for example, quasi-Monte Carlo sam-
pling [26] and low-rank tensor approximations [20]. A solution method for (1) is 
(robust) stochastic approximation. It has thoroughly been analyzed in [38, 44] for 
finite-dimensional and in [22, 24, 45] for infinite-dimensional optimization prob-
lems. For reliable �-optimal solutions, the sample size estimates established in 
[44, Proposition 2.2] do not explicitly depend on the problem’s dimension.

(12)Prob(‖u∗ − u∗
N
‖2 ≥ �) ≤ 2 exp

�
−

N�2�2

2L2

�
1 +

��

3L

�−1�
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After providing some notation and preliminaries in Sect. 2, we establish expo-
nential tail bounds for Hilbert space-valued random sums in Sect. 3. Combined 
with optimality conditions and the integrand’s �-strong convexity, we establish 
exponential tail and mean square error bounds for SAA solutions in Sect.  4. 
Sect. 5 demonstrates the optimality of the tail bounds. We apply our findings to 
linear-quadratic control under uncertainty in Sect. 6, and identify a problem class 
that violates the integrability condition (7). Numerical results are presented in 
Sect. 7. In Sect. 8, we illustrate that the “dynamics” of finite- and infinite-dimen-
sional stochastic programs can be quite different.

2 � Notation and preliminaries

Throughout the manuscript, we assume the existence of solutions to (1) and to 
(2). We refer the reader to Kouri and Surowiec [36, Proposition 3.12] and Hoff-
hues et al. [30, Theorem 1] for theorems on the existence of solutions to infinite-
dimensional stochastic programs.

The set dom 𝛹 = { u ∈ U ∶ 𝛹 (u) < ∞} is the domain of �  . The indicator 
function IU0

∶ U → ℝ ∪ {∞} of a nonempty set U0 ⊂ U is defined by IU0
(u) = 0 

if u ∈ U0 and IU0
(u) = ∞ otherwise. Let (𝛺̂, F̂, P̂) be a probability space. A 

Banach space W  is equipped with its Borel �-field B(W) . We denote by (⋅, ⋅)H the 
inner product of a real Hilbert space H equipped with the norm ‖ ⋅ ‖H given by 
‖v‖H =

√
(v, v)H  for all v ∈ H . For a real, separable Hilbert space H , 𝜂 ∶ 𝛺̂ → H 

is a mean-zero Gaussian random vector if (v, �)H is a mean-zero Gaussian ran-
dom variable for each v ∈ H [64, pp. 58–59]. For a metric space V  , a mapping 
𝖿 ∶ V × 𝛺̂ → W  is a Carathéodory mapping if �(⋅,�) is continuous for every 
𝜔 ∈ 𝛺̂ and �(x, ⋅) is F̂ -B(W)-measurable for all x ∈ V .

For two Banach spaces V  and W  , L(V ,W) is the space of bounded, linear 
operators from V  to W  , and V∗ = L(V ,ℝ) . We denote by ⟨⋅, ⋅⟩V∗,V the dual pair-
ing of V∗ and V  . A function 𝜐 ∶ 𝛺̂ → W  is strongly measurable if there exists a 
sequence of simple functions 𝜐k ∶ 𝛺̂ → W  such that �k(�) → �(�) as k → ∞ 
for all 𝜔 ∈ 𝛺̂ [31, Def. 1.1.4]. An operator-valued function 𝛶 ∶ 𝛺̂ → L(V ,W) 
is strongly measurable if the function � ↦ � (�)x is strongly measurable 
for each x ∈ V  [31, Def. 1.1.27]. Moreover, an operator-valued function 
𝛶 ∶ 𝛺̂ → L(V ,W) is uniformly measurable if there exists a sequence of sim-
ple operator-valued functions 𝛶k ∶ 𝛺̂ → L(V ,W) with �k(�) → � (�) as k → ∞ 
for all 𝜔 ∈ 𝛺̂ . An operator K ∈ L(V ,W) is compact if the closure of K(V0) is 
compact for each bounded set V0 ⊂ V  . For two real Hilbert spaces H1 and H2 , 
K∗ ∈ L(H2,H1) is the (Hilbert space-)adjoint operator of K ∈ L(H1,H2) and is 
defined by (Kv1, v2)H2

= (v1,K
∗v2)H1

 for all v1 ∈ H1 and v2 ∈ H2 [37, Def. 3.9.1]. 
For a bounded domain D ⊂ ℝ

d , L2(D) is the Lebesgue space of square-integrable 
functions and L1(D) is that of integrable functions. The Hilbert space H1

0
(D) con-

sists of all v ∈ L2(D) with weak derivatives in L2(D)d and with zero boundary 
traces. We define H−1(D) = H1

0
(D)∗.
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3 � Exponential tail bounds for Hilbert space‑valued random sums

We establish two exponential tail bounds for Hilbert space-valued random sums 
which are direct consequences of known results [47, 48]. Below, (�,�,�) denotes a 
probability space. Proofs are presented at the end of the section.

Theorem  1  Let H be a real, separable Hilbert space. Suppose that Zi ∶ � → H 
for i = 1, 2,… are independent, mean-zero random variables such that 
�[exp(�−2‖Zi‖2H)] ≤ e for some 𝜏 > 0. Then, for each N ∈ ℕ , � ≥ 0,

If in addition ‖Zi‖H ≤ � with probability one for i = 1, 2,… , then the upper bound 
in (13) improves to 2 exp(−�−2�2N∕2) [47, Theorem 3.5].

As an alternative to the condition �[exp(�−2‖Z‖2
H
)] ≤ e used in Theorem  1 

for 𝜏 > 0 and a random vector Z ∶ � → H , we can express sub-Gaussianity with 
�[cosh(�‖Z‖H)] ≤ exp(�2�2∕2) for all � ∈ ℝ and some 𝜎 > 0 . While these two 
conditions are equivalent up to problem-independent constants (see the proof of 
[11, Lemma 1.6 on p. 9] and Lemma 1), the constant � can be smaller than � . For 
example, if Z ∶ � → H is a H-valued, mean-zero Gaussian random vector, then the 
latter condition holds with �2 = �[‖Z‖2

H
] [48, Rem. 4]. However, if H = ℝ then 

�2 = 2�2∕(1 − exp(−2)) ≈ 2.31�2 [11, p. 9].

Proposition 1  Let H be a real, separable Hilbert space, and let Zi ∶ � → H be inde-
pendent, mean-zero random vectors such that �[cosh(�‖Zi‖H)] ≤ exp(�2�2∕2) for 
all � ∈ ℝ and some 𝜎 > 0 ( i = 1, 2,…). Then, for each N ∈ ℕ , � ≥ 0,

We apply the following two facts to prove Theorem 1 and Proposition 1.

Theorem 2  (See [48, Theorem 3]) Let H be a real, separable Hilbert space. Sup-
pose that Zi ∶ � → H (i = 1,… ,N ∈ ℕ) are independent, mean-zero random vec-
tors. Then, for all � ≥ 0,

Lemma 1  If 𝜎 > 0 and X ∶ � → ℝ is measurable with �[exp(�−2|X|2)] ≤ e,

Proof  The proof is based on the proof of [56, Proposition 7.72].
Fix � ∈ [0, 4∕(3�)] . For all s ∈ ℝ , exp(s) ≤ s + exp(9s2∕16) [56, p. 449]. Using 

Jensen’s inequality and �[exp(|X|2∕�2)] ≤ e , we obtain

(13)Prob(‖Z1 +⋯ + ZN‖H ≥ N�) ≤ 2 exp(−�−2�2N∕3).

Prob(‖Z1 +⋯ + ZN‖H ≥ N�) ≤ 2 exp(−�−2�2N∕3).

�[cosh(�‖Z1 +⋯ + ZN‖H)] ≤
N�

i=1

�[exp(�‖Zi‖H) − �‖Zi‖H].

(14)𝔼[exp(�|X|) − �|X|] ≤ exp(3�2�2∕4) for all � ∈ ℝ+.

(15)�[e�|X| − �|X|] ≤ �[e9�
2|X|2∕16] ≤ �[e|X|

2∕�2

]9�
2�2∕16 ≤ e9�

2�2∕16.
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Now, fix � ≥ 4∕(3�) . For all s ∈ ℝ , Young’s inequality yields 
�s ≤ 3�2�2∕8 + 2s2∕(3�2) . Combined with Jensen’s inequality, 
�[exp(|X|2∕�2)] ≤ e , and 2∕3 ≤ 3�2�2∕8 , we get

Together with (15), we obtain (14). 	� ◻

Proof  (Proof of Theorem 1) We use a Chernoff-type approach to establish (13). Fix 
𝜆 > 0 , � ≥ 0 , and N ∈ ℕ . We define SN = Z1 +⋯ + ZN . Using �[exp(�−2‖Zi‖2H)] ≤ e 
and applying Lemma 1 to X = ‖Zi‖H , we find that

Combined with Markov’s inequality, Theorem 2, and exp ≤ 2 cosh , we obtain

Minimizing the right-hand side over 𝜆 > 0 yields (13). 	�  ◻

Proof  (Proof of Proposition 1) We have exp(s) − s ≤ cosh(s
√
3∕2) for all s ∈ ℝ . 

Hence, the assumptions ensure �[exp(�‖Zi‖H) − �‖Zi‖H] ≤ exp(3�2�2∕4) for all 
� ∈ ℝ . The remainder of the proof is as that of Theorem 1. 	�  ◻

4 � Exponential tail bounds for SAA solutions

We state conditions that allow us to derive exponential bounds on the tail probabili-
ties of the distance between SAA solutions and their true counterparts. In Sect. 6, 
we demonstrate that our conditions are fulfilled for many linear-quadratic control 
problems considered in the literature.

4.1 � Assumptions and measurability of SAA solutions

Throughout the manuscript, u∗ is assumed to be a solution to (1).

Assumption 1 

(a)	 The space U is a real, separable Hilbert space.
(b)	 The function � ∶ U → ℝ ∪ {∞} is convex, proper, and lower-semicontinuous.
(c)	 The integrand J ∶ U × � → ℝ is a Carathéodory function, and for some 𝛼 > 0 , 

J(⋅, �) is �-strongly convex for each � ∈ �.

�[e�|X| − �|X|] ≤ �[e�|X|] ≤ e3�
2�2∕8

�[e2|X|
2∕(3�2)] ≤ e3�

2�2∕8+2∕3 ≤ e3�
2�2∕4.

N�

i=1

�[exp(�‖Zi‖H) − �‖Zi‖H] ≤
N�

i=1

exp(3�2�2∕4) = exp(3�2�2N∕4).

Prob(‖SN‖H ≥ N�) ≤ e−�N��[e�‖SN‖H ] ≤ 2e−�N��[cosh(�‖SN‖H)]
≤ 2e−�N�+3�

2�2N∕4.
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(d)	 The function J(⋅, �) is Gâteaux differentiable on a convex neighborhood of dom � 
for all � ∈ � , and ∇uJ(u

∗, ⋅) ∶ � → U is measurable.
(e)	 The map F ∶ U → ℝ ∪ {∞} defined in (3) is Gâteaux differentiable at u∗.

Lemma 2  Let Assumptions 1(a)–(c) hold. If u∗
N
∶ � → U is a solution to (2), then u∗

N
 

is the unique solution to (2) and is measurable.

Proof  For each � ∈ � , the SAA problem’s objective function fN(⋅,�) is 
strongly convex and hence u∗

N
 is the unique solution to (2). The function 

infu∈U fN(u, ⋅) ∶ � → ℝ is measurable [12, Corollary VII-2] (see also [12, Lemma 
III.39]). Hence the multifunction arg infu∈U fN(u, ⋅) is single-valued and has a meas-
urable selection [5, Theorem 8.2.9]. Therefore u∗

N
∶ � → U is measurable. 	�  ◻

We impose conditions on the integrability of ∇uJ(u
∗, �) − ∇F(u∗).

Assumption 2 

(a)	 For some 𝜎 > 0 , �[‖∇uJ(u
∗, �) − ∇F(u∗)‖2

U
] ≤ �2.

(b)	 For some 𝜏 > 0 , �[exp(�−2‖∇uJ(u
∗, �) − ∇F(u∗)‖2

U
)] ≤ e.

Assumption 2(b) implies Assumption 2(a) with �2 = �2 [44, p. 1584]. Assump-
tion  2(b) and its variants are standard conditions in the literature on stochastic 
programming [15, p. 679], [25, pp. 1035–1036], [44, Eq. (2.50)]. For example, if 
∇uJ(u

∗, �) − ∇F(u∗) is essentially bounded, then Assumption 2(b) is fulfilled. More 
generally, if ∇uJ(u

∗, �) − ∇F(u∗) is �-sub-Gaussian, then Assumption  2(b) holds 
true [17, Theorem 3.4].

4.2 � Exponential tail and mean square error bounds

We establish exponential tail and mean square error bounds on ‖u∗ − u∗
N
‖U.

Theorem 3  Let u∗ be a solution to (1) and let u∗
N

 be a solution to (2). If Assump-
tions 1 and 2(a) hold, then

If in addition Assumption 2(b) holds, then for all 𝜀 > 0,

We prepare our proof of Theorem 3.

Lemma 3  If Assumptions 1 and 2(a) hold, then �[∇uJ(u
∗, �)] = ∇F(u∗).

Proof  Using Assumptions 1(a) and (c)–(e), we have �[(∇uJ(u
∗, �), v)U] = (∇F(u∗), v)U 

for all v ∈ U ; cf. [25, p. 1050]. Owing to Assumptions  1(e) and 2(a), the mapping 

(16)�[‖u∗ − u∗
N
‖2
U
] ≤ �2∕(�2N).

(17)Prob(‖u∗ − u∗
N
‖U ≥ �) ≤ 2 exp(−�−2N�2�2∕3).
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∇uJ(u
∗, �) is integrable. Hence �[(∇uJ(u

∗, �), v)U] = (�[∇uJ(u
∗, �)], v)U for all v ∈ U 

(cf. [9, p. 78]). 	�  ◻

Lemma 4  If Assumption 1 holds, then the function FN defined in (3) is Gâteaux dif-
ferentiable on a neighborhood of dom � and with probability one,

Proof  Since, for each � ∈ � , J(⋅, �) is �-strongly convex and Gâteaux differentiable 
on a convex neighborhood V  of dom � , the sum rule and the definition of FN imply 
its Gâteaux differentiability on V  and (18) [45, p. 48]. 	�  ◻

Lemma 5  Let Assumption 1 hold and let � ∈ � be fixed. Suppose that u∗ is a solu-
tion to (1) and that u∗

N
= u∗

N
(�) is a solution to (2). Then

Proof  Following the proof of [32, Theorem 4.42], we obtain for all u ∈ dom �,

We have � (u∗) , � (u∗
N
) ∈ ℝ . Choosing u = u∗

N
 in the first and u = u∗ in the second 

estimate in (20), and adding the resulting inequalities yields (19). 	�  ◻

Lemma 6  Under the hypotheses of Lemma 5, we have

Proof  Choosing u2 = u∗ and u1 = u∗
N

 in (18), we find that

Combined with (19), and the Cauchy–Schwarz inequality, we get

	�  ◻

Proof  (Proof of Theorem  3) Lemma  2 ensures the measurability of u∗
N
∶ � → U . 

We define q ∶ � → U by q(�) = ∇uJ(u
∗, �) − ∇F(u∗) . Assumption  1(c) and (e) 

ensure that q is well-defined and measurable. Hence, the random vectors Zi = q(�i) 
( i = 1, 2,… ) are independent identically distributed, and Lemma 3 ensures that they 
have zero mean. Using the definitions of F and of FN provided in (3), the Gâteaux 
differentiability of F at u∗ [see Assumption 1(e)], and Lemma 4, we obtain

(18)(∇FN(u2) − ∇FN(u1), u2 − u1)U ≥ �‖u2 − u1‖2U for all u1, u2 ∈ dom � .

(19)(∇FN(u
∗
N
) − ∇F(u∗), u∗ − u∗

N
)U ≥ 0.

(20)
(∇F(u∗), u − u∗)U + � (u) − � (u∗) ≥ 0,

(∇FN(u
∗
N
), u − u∗

N
)U + � (u) − � (u∗

N
) ≥ 0.

(21)�‖u∗ − u∗
N
‖U ≤ ‖∇FN(u

∗) − ∇F(u∗)‖U .

(∇FN(u
∗) − ∇FN(u

∗
N
), u∗ − u∗

N
)U ≥ �‖u∗ − u∗

N
‖2
U
.

�‖u∗ − u∗
N
‖2
U
≤ (∇FN(u

∗) − ∇FN(u
∗
N
), u∗ − u∗

N
)U

+ (∇FN(u
∗
N
) − ∇F(u∗), u∗ − u∗

N
)U

≤ ‖∇FN(u
∗) − ∇F(u∗)‖U‖u∗ − u∗

N
‖U .
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Now, we prove (16). Combining the above statements with the separability of the 
Hilbert space U , we get �[‖∑N

i=1
Zi‖2U] =

∑N

i=1
�[‖Zi‖2U] [64, p. 79]. For i = 1, 2,… , 

Assumption 2(a) yields �[‖Zi‖2U] ≤ �2 . Together with the estimate (21), we find that

yielding the mean square error bound (16).
Next, we establish (17). Fix 𝜀 > 0 . If ‖u∗ − u∗

N
‖U ≥ � , then the estimate (21) 

ensures that ‖∑N

i=1
Zi‖U ≥ N�� . For i = 1, 2,… , Assumption  2(b) implies that 

�[exp(�−2‖Zi‖2U)] ≤ e . Applying Theorem 1, we get

Hence the exponential tail bound (17) holds true. 	�  ◻

5 � Optimality of SAA solutions’ exponential tail bounds

We show that the dependence of the tail bound (17) on the problem data is essentially 
optimal for the problem class modeled by Assumptions 1 and 2(b).

Our example is inspired by that analyzed in [55, Example 1]. We consider

where 𝛼 > 0 , �1 , �2 ∈ L2(0, 1) are orthonormal, h ∶ ℝ
2
→ L2(0, 1) is given by 

h(�) = �1�1 + �2�2 , and �1 , �2 are independent, standard Gaussians. The solution u∗ 
to (22) is u∗ = 0 since �[h(�)] = 0 , and the SAA solution u∗

N
 corresponding to (22) is 

u∗
N
= (1∕𝛼)𝜉1,N𝜑1 + (1∕𝛼)𝜉2,N𝜑2 , where 𝜉j,N = (1∕N)

∑N

i=1
𝜉i
j
 for j = 1, 2 . The ortho-

normality of �1 , �2 yields ‖u∗
N
‖2
L2(0,1)

= (1∕𝛼)2(𝜉1,N)
2 + (1∕𝛼)2(𝜉2,N)

2 . Since 
(1∕𝛼)𝜉1,N and (1∕𝛼)𝜉2,N are independent, mean-zero Gaussian with variance N−1�−2 , 
the random variable N�2‖u∗ − u∗

N
‖L2(0,1) has a chi-square distribution �2

2
 with two 

degrees of freedom. Hence, for all � ≥ 0,

Since J(u, �) = (�∕2)‖u‖2
L2(0,1)

+ (h(�), u)L2(0,1) and F(u) = (�∕2)‖u‖2
L2(0,1)

 , we find 
that ‖∇uJ(u

∗, �) − ∇F(u∗)‖2
L2(0,1)

= ‖h(�)‖2
L2(0,1)

 . Combined with ‖h(�)‖2
L2(0,1)

∼ �2
2
 , 

we obtain �[exp(�−2‖h(�)‖2
L2(0,1)

)] = e for �2 = 2e∕(e − 1) . Our computations and 

∇FN(u
∗) − ∇F(u∗) =

1

N

N∑

i=1

(
∇uJ(u

∗, �i) − ∇F(u∗)
)
=

1

N

N∑

i=1

Zi.

�2
�[‖u∗ − u∗

N
‖2
U
] ≤ �[‖∇FN(u

∗) − ∇F(u∗)‖2
U
] ≤ �2∕N,

Prob
(‖‖‖u

∗ − u∗
N

‖‖‖U ≥ �

) ≤ Prob

(
‖‖‖

N∑

i=1

Zi
‖‖‖U≥N��

)

≤ 2e−�
−2�2�2N∕3.

(22)min
u∈L2(0,1)

�[(�∕2)‖u‖2
L2(0,1)

− (h(�), u)L2(0,1)],

(23)Prob(‖u∗ − u∗
N
‖L2(0,1) ≥ �) = Prob(�2

2
≥ N�2�2) = e−N�

2�2∕2.
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the tail bound (23) reveal that the exponential order of the tail bound in (17) is opti-
mal up to the constant 3�2∕2 ≈ 4.7.

6 � Application to linear‑quadratic optimal control

We consider the linear-quadratic optimal control problem

where 𝛼 > 0 , Q ∈ L(Y ,H) , yd ∈ H and H is a real, separable Hilbert space. In this 
section, U and � ∶ U → ℝ ∪ {∞} fulfill Assumptions  1(a) and (b), respectively. 
The parameterized solution operator S ∶ U × � → Y  is defined as follows. For each 
(u, �) ∈ U × � , S(u, �) is the solution to:

The spaces Y  and Z are real, separable Banach spaces, A ∶ � → L(Y , Z) and 
B ∶ � → L(U, Z) , A(�) has a bounded inverse for each � ∈ � , and g ∶ � → Z.

We can model parameterized affine-linear elliptic and parabolic PDEs 
with (25), such as the heat equation with random inputs considered in [42, 
Sect.  3.1.2], and the elliptic PDEs with random inputs considered [19, 41, 59]. 
When D ⊂ ℝ

d is a bounded domain and U = L2(D) , a popular choice has been 
� (⋅) = �‖ ⋅ ‖L1(D) + IUad

(⋅) for � ≥ 0 , where Uad ⊂ U is a nonempty, convex, closed 
set [23, 58]. Further nonsmooth regularizers are considered in [32, Sect. 4.7].

Defining K(�) = −QA(�)−1B(�) and h(�) = QA−1(�)g(�) − yd , the control prob-
lem (24) can be written as

We discuss differentiability and the lack of strong convexity of the expectation func-
tion F1 ∶ U → ℝ ∪ {∞} defined by

Assumption 3  The map K ∶ � → L(U,H) is strongly measurable and h ∶ � → H 
is strongly measurable. For each u ∈ U , �[‖K(𝜉)∗K(𝜉)u‖U] < ∞ , and �[‖h(�)‖2

H
] , 

�[‖K(𝜉)∗h(𝜉)‖U] < ∞.

We define the integrand J1 ∶ U × � → ℝ by

Under the measurability conditions stated in Assumption 3, we can show that J1 is a 
Carathéodory function.

Assumption 3 implies that the function F1 defined in (27) is smooth.

(24)min
u∈U

{ (1∕2)�[‖QS(u, �) − yd‖2H] + (�∕2)‖u‖2
U
+ � (u) },

(25)find y ∈ Y ∶ A(�)y + B(�)u = g(�).

(26)min
u∈U

{ (1∕2)�[‖K(�)u + h(�)‖2
H
] + (�∕2)‖u‖2

U
+ � (u) }.

(27)F1(u) = (1∕2)�[‖K(�)u + h(�)‖2
H
].

(28)J1(u, �) = (1∕2)‖K(�)u + h(�)‖2
H
.
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Lemma 7  If Assumption 3 holds, then F1 defined in (27) is infinitely many times con-
tinuously differentiable, and for all u, v ∈ U,

Proof  The strong measurability of K implies that of � ↦ K(�)∗ [31, Theorem 1.1.6] 
and hence that of � ↦ K(�)∗K(�) [31, Corollary 1.1.29]. Fix u, v ∈ U and � ∈ � . 
Since ‖K(�)u‖2

H
≤ ‖u‖U‖K(�)∗K(�)u‖U [37, p. 199], Assumption 3 ensures that F1 

is finite-valued.
Using (28), we find that ∇uJ1(u, �) = K(�)∗(K(�)u + h(�)) and 

∇uuJ1(u, �)[v] = K(�)∗K(�)v . Combined with Assumption 3 and [23, Lemma C.3], 
we obtain that F1 is Gâteaux differentiable with ∇F1(u) = �[∇uJ1(u, �)] . Since 
�[‖K(𝜉)∗K(𝜉)w‖U] < ∞ for all w ∈ U , w ↦ �[K(�)∗K(�)w] is linear and bounded 
[27, Theorem 3.8.2]. Combined with the fact that J1(⋅, �) is quadratic for all � ∈ � , we 
conclude that F1 is twice Gâteaux differentiable with ∇2F1(u)[v] = �[K(�)∗K(�)v] and 
hence infinitely many times continuously differentiable. 	�  ◻

The function F1 defined in (27) lacks strong convexity under natural condi-
tions; see Lemma 8. In this case, we may deduce that the strong convexity of the 
objective function of (24) solely comes from the function (�∕2)‖ ⋅ ‖2

U
+ � (⋅) , and 

that the largest strong convexity parameter of F(⋅) = F1(⋅) + (�∕2)‖ ⋅ ‖2
U

 is 𝛼 > 0.

Assumption 4  The mapping K ∶ � → L(U,H) is uniformly measurable, 
�[‖K(𝜉)‖2

L(U,H)
] < ∞ , and K(�) is compact for all � ∈ � . Moreover, the Hilbert 

space U is infinite-dimensional.

Lemma 8  If Assumptions 3 and 4 hold, then the expectation function F1 defined in 
(27) is not strongly convex.

Proof  We define T ∶ � → L(U,U) by T(�) = K(�)∗K(�) . The uniform measurabil-
ity of K implies that of � ↦ K(�)∗ (cf. [9, Theorem 2.16] and [37, p. 200]) and hence 
that of T (cf. [31, pp. 12–13]). Since K(�) is compact, T(�) is compact [37, p. 427]. 
Moreover, we have �[‖T(�)‖L(U,U)] = �[‖K(�)‖2

L(U,H)
] [37, Theorem 3.9-4].

We show that �[T(�)] is a compact operator. Let (vk) ⊂ U be weakly converg-
ing to some v̄ ∈ U . Hence there exists C ∈ (0,∞) with ‖vk‖U ≤ C for all k ∈ ℕ 
[37, Theorem 4.8-3] which implies ‖T(�)vk‖U ≤ C‖T(�)‖L(U,U) for each � ∈ � and 
k ∈ ℕ . Since T(�) is compact for all � ∈ � , we have for each � ∈ � , T(𝜉)vk → T(𝜉)v̄ 
as k → ∞ [14, Proposition 3.3.3]. Combined with �[‖T(𝜉)‖L(U,U)] < ∞ , the domi-
nated convergence theorem [31, Proposition 1.2.5] yields �[T(𝜉)vk] → �[T(𝜉)v̄] 
as k → ∞ . We also have �[T(�)w] = �[T(�)]w for all w ∈ U [27, p. 85]. Thus 
�[T(𝜉)]vk → �[T(𝜉)]v̄ as k → ∞ . Since U is reflexive and (vk) is arbitrary, �[T(�)] is 
compact [14, Proposition 3.3.3].

Now, we show that F1 is not strongly convex. Since U is infinite-dimensional, 
the self-adjoint, compact operator �[T(�)] lacks a bounded inverse [37, p. 428], 
[27, Theorem 3.8.1]. Hence it is noncoercive [10, Lemma 4.123]. Combined with 

∇F1(u) = �[K(�)∗(K(�)u + h(�))] and ∇2F1(u)[v] = �[K(�)∗K(�)v].
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∇2F1(0) = �[T(�)] (see Lemma 7 and [27, p. 85]), we conclude that F1 is not 
strongly convex. 	�  ◻

The compactness of the Hessian of F1 may also be studied using the theory on 
spectral decomposition of compact, self-adjoint operators [63, p. 159], or the results 
on the compactness of covariance operators [63, p. 174].

6.1 � Examples

Many instances of the linear-quadratic control problem (24) frequently encountered 
in the literature are defined by the following data: 𝛼 > 0 , H = U , Y  is a real Hilbert 
space, Q ∈ L(Y ,H) is the embedding operator of the compact embedding Y ↪ H , 
B ∈ L(U, Y∗) and g ∶ � → Y∗ is essentially bounded. Moreover A ∶ � → L(Y , Y∗) 
is uniformly measurable and there exist constants 0 < 𝜅∗

min
≤ 𝜅∗

max
< ∞ with 

‖A(�)‖L(Y ,Y∗) ≤ �∗
max

 and ⟨A(�)y, y⟩Y∗,Y ≥ �∗
min

‖y‖2
Y
 for all (y, �) ∈ Y × � . The condi-

tions imply that A(�) has a bounded inverse for each � ∈ � [37, p. 101] and imply 
the existence of a solution to (24) when combined with Fatou’s lemma; cf. [30, The-
orem 1]. Moreover  Assumptions  1–4 hold true.

We show that Assumption 2(b) is violated for the class of optimal control prob-
lems where the operator A is elliptic and defined by a log-normal random diffusion 
coefficient [2, 13]. Let Q and B be the embedding operators of the embeddings 
H1

0
(0, 1) ↪ L2(0, 1) and L2(0, 1) ↪ H−1(0, 1) , respectively. We choose � = 0 , 

U = L2(0, 1) , yd(⋅) = sin(�⋅)∕�2 , and A(𝜉) = e−𝜉Ā , where the weak Laplacian opera-
tor Ā is defined by ⟨Āy, v⟩H−1(0,1),H1

0
(0,1) = (y�, v�)L2(0,1) , and � is a standard Gaussian 

random variable. We have �[e2�] = e2 and �[e�] = e1∕2 . Since (�2, yd) is an eigenpair 
of Ā , we find that u∗ = −�2e1∕2yd∕(e

2 + �4�) satisfies the sufficient optimality con-
dition of (24), the normal equation 𝛼u∗ + �[e2𝜉]K̄∗K̄u∗ = �[e𝜉]K̄∗yd , where 
K̄ = −QĀ−1B . Hence u∗ is the solution to (24) for the above data. Using the defini-
tion of J1 provided in (28), we obtain

For each � ≥ ln(2(e2 + �4�)) − 1∕2 , ‖∇uJ1(u
∗, �)‖L2(0,1) ≥ (e�∕�2)‖yd‖L2(0,1) . 

Combined with ∇uJ(u
∗, �) − ∇F(u∗) = ∇uJ1(u

∗, �) − ∇F1(u
∗) , yd ∈ L2(0, 1) , and 

�[exp(s�2∕2)] = ∞ for all s ≥ 1 [11, p. 9], we conclude that Assumption  2(b) is 
violated.

7 � Numerical illustration

We empirically verify the results derived in Theorem 3 for finite element discretiza-
tions of two linear-quadratic, elliptic optimal control problems, which are instances 
of (24).

∇uJ1(u
∗, �) =

e�yd

�2
−

e1∕2+2�yd

�2(e2 + �4�)
.
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For both examples, we consider D = (0, 1)2 , and the mapping Q in (24) is the 
embedding operator of the compact embedding H1

0
(D) ↪ L2(D) . Moreover, we 

define yd ∈ L2(D) by yd(x1, x2) = (1∕6) exp(2x1) sin(2�x1) sin(2�x2) as in [8, p. 
511]. For each (u, �) ∈ L2(D) × � , y(�) = S(u, �) ∈ H1

0
(D) solves the weak form of 

the linear elliptic PDE

where �D is the boundary of the domain D . The set � , the parameter 𝛼 > 0 , the dif-
fusion coefficient � ∶ D × � → (0,∞) and the random right-hand side 
r ∶ D × � → ℝ are defined in Examples  1 and 2. Defining 
⟨Bu, v⟩H−1(D),H1

0
(D) = −(u, v)L2(D) , and

the weak form of the linear PDE can be written in the form provided in (25).
We approximate the control problem (24) using a finite element discretization. 

The control space U = L2(D) is discretized using piecewise constant functions and 
the state space Y = H1

0
(D) is discretized using piecewise linear continuous func-

tions defined on a triangular mesh on [0, 1]2 with n ∈ ℕ being the number of cells 
in each direction, yielding finite element approximations of (24) and correspond-
ing SAA problems. To simplify notation, we omit the index n when referring to 
the solutions to these optimization problems. The dimension of the discretized 
control space is 2n2.

Example 1  We define � = 10−3 , � = [0.5, 3.5] × [−1, 1] , the random right-hand 
side r(x, �) = �2 exp(2x1) sin(2�x2) , and �(�) = �1 . The random variables �1 and �2 
are independent, and �1 has a truncated normal distribution supported on [0.5, 3.5] 
with mean 2 and standard deviation 0.25 (cf. [22, p. 2092]), and �2 is uniformly dis-
tributed over [−1, 1] . We choose � (⋅) = �‖ ⋅ ‖L1(D) + IUad

(⋅) with � = 5.5 ⋅ 10−4 and 
Uad = { u ∈ L2(D) ∶ −1 ≤ u ≤ 1 } , which is nonempty, closed, and convex [29, p. 
56]. Furthermore, let n = 256.

Since �(�) = �1 is a real-valued random variable, we can evaluate ∇F1(u) and its 
empirical mean using only two PDE solutions which can be shown by dividing (25) 
by �(�) . It allows us to compute the solutions to the finite element approximation 
of (24) and to their SAA problems with moderate computational effort even though 
n = 256 is relatively large.

We solved the finite element discretization of (24) and the SAA problems using 
a semismooth Newton method [46, 58, 62] applied to a normal map (cf. [46, Eq. 
(3.3)]), which provides a reformulation of the first-order optimality conditions as a 
nonsmooth equation [46, Sect. 3.1]. The finite element discretization was performed 
using FEniCs [3, 39]. Sparse linear systems were solved using a direct method.

−∇ ⋅ (�(x, �)∇y(x, �)) = u(x) + r(x, �), x ∈ D, y(x, �) = 0, x ∈ �D,

⟨A(�)y, v⟩H−1(D),H1
0
(D) = ∫D

�(x, �)∇y(x) ⋅ ∇v(x)dx,

⟨g(�), v⟩H−1(D),H1
0
(D) = ∫D

r(x, �)v(x)dx,
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Example 2  We define � = 10−4 , � = [3, 5] × [0.5, 2.5] and the piecewise constant 
field � by �(x, �) = �1 if x ∈ (0, 1) × (1∕2, 1) and �(x, �) = �2 if x ∈ (0, 1) × (1∕2, 1) 
(cf. [24, Example 3]). The random variables �1 and �2 are independent and uniformly 
distributed over [3,  5] and [0.5,  2.5], respectively. Moreover r = 0 , � = 0 , and 
n = 64.

To obtain a deterministic reference solution to the finite element approximation 
of (24), we approximate the probability distribution of � by a discrete uniform dis-
tribution. It is supported on the grid points of a uniform mesh of � using 50 grid 
points in each direction, yielding a discrete distribution with 2500 scenarios. Sam-
ples for the SAA problems are generated from this discrete distribution.

We used dolfin-adjoint [16, 18, 43] with FEniCs [3, 39] to evaluate 
the SAA objective functions and their derivatives, and solved the problems using 
moola’s NewtonCG method [18, 51].

Figure 1 depicts the reference solutions for Examples 1 and 2. To generate the sur-
face plots depicted in Fig. 1, the piecewise constant reference solutions were interpo-
lated to the space of piecewise linear continuous functions.

To illustrate the convergence rate 1∕
√
N for �[‖u∗ − u∗

N
‖U] , we generated 50 inde-

pendent samples of ‖u∗ − u∗
N
‖U and computed the sample average. In order to empiri-

cally verify the exponential tail bound (17), we use the fact that it is equivalent to a cer-
tain bound on the Luxemburg norm of u∗ − u∗

N
 . We define the Luxemburg norm 

‖ ⋅ ‖L�(�;U) of a random vector Z ∶ � → U by

where � ∶ ℝ → ℝ is given by �(x) = exp(x2) − 1 , and L�(�;U) = L�(‖⋅‖U )(�;U) is 
the Orlicz space consisting of each random vector Z ∶ � → U such that there exists 

(29)‖Z‖L𝜙(𝛺;U) = inf
𝜈>0

{ 𝜈 ∶ �[𝜙(‖Z‖U∕𝜈)] ≤ 1 },
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(a) Example 1 with n = 256.
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(b) Example 2 with n = 64.

Fig. 1   Reference solutions
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𝜈 > 0 with �[𝜙(‖Z‖U∕𝜈)] < ∞ ; cf. [33, Sect. 6.2]. The exponential tail bound (17) 
implies

and (30) ensures Prob(‖u∗ − u∗
N
‖U ≥ �) ≤ 2e−�

−2N�2�2∕27 for all 𝜀 > 0 . These two 
statements follow from [11, Theorem 3.4 on p. 56] when applied to the real-valued 
random variable ‖u∗ − u∗

N
‖U . To empirically verify the convergence rate 1∕

√
N for 

‖u∗ − u∗
N
‖L�(�;U) , we approximated the expectation in (29) using the same samples 

used to estimate �[‖u∗ − u∗
N
‖U].

Figure 2 depicts 50 realizations of the errors ‖u∗ − u∗
N
‖U , the empirical approxi-

mations of �[‖u∗ − u∗
N
‖U] and of the Luxemburg norm ‖u∗ − u∗

N
‖L�(�;U) as well as 

the corresponding convergence rates. The rates were computed using least squares. 
The empirical convergences rates depicted in Fig. 2 are close to the theoretical rate 
1∕

√
N for �[‖u∗ − u∗

N
‖U] and ‖u∗ − u∗

N
‖L�(�;U) ; see (16) and (30).

8 � Discussion

We have considered convex stochastic programs posed in Hilbert spaces where the 
integrand is strongly convex with the same parameter for each random element’s 
realization. We have established exponential tail bounds for the distance between 
SAA solutions and the true ones. For this problem class, tail bounds are optimal up 
to problem-independent, moderate constants. We have applied our findings to sto-
chastic linear-quadratic control problems, a subclass of the above problem class.

(30)‖u∗ − u∗
N
‖L�(�;U) ≤ 3

√
3�

�
√
N
,

23 25 27 29

N

2−14

2−12

2−10

2−8

2−6

2−4

0.1230 ·N−0.4990

0.06848 ·N−0.5023

Luxemburg norm
mean
‖u∗ − u∗N‖U

(a) Example 1 with n = 256.

23 25 27 29

N

2−6

2−5

2−4

2−3

2−2

2−1

20

2.214 ·N−0.5060

1.635 ·N−0.5239

Luxemburg norm
mean
‖u∗ − u∗N‖U

(b) Example 2 with n = 64.

Fig. 2   For each example, 50 independent realizations of ‖u∗ − u
∗
N
‖
U

 , and the empirical mean error and 
empirical Luxemburg norm. The convergence rates were computed using least squares
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We conclude the paper by illustrating that the “dynamics” of finite- and infinite-
dimensional stochastic programs can be quite different. We consider

where � is an ℝn-valued, mean-zero Gaussian random vector with covariance matrix 
�2I and 𝜎2 > 0 . This corresponds to the choice m = 1 in [55, Example 1]. For 
� ∈ (0, 0.3) and � ∈ (0, 1) , at least N > n𝜎2∕𝜀 = �[‖𝜁‖2

2
]∕𝜀 samples are required for 

the corresponding SAA problem’s optimal solution to be an �-optimal solution to 
(31) with a probability of at least 1 − � [55, Example 1].

The infinite-dimensional analogue of (31) is given by

where � is an �2(ℕ)-valued, mean-zero Gaussian random vector, and �2(ℕ) is the 
standard sequence space. For each � ∈ (0, 1) , the SAA solution u∗

N
 corresponding to 

(32) is an �-optimal solution to (32) if and only if we have ‖(1∕N)∑N

i=1
�i‖2

�2(ℕ)
≤ � . 

Combined with Remark 4 in [48], we find that N ≥ (3∕�) ln(2∕�)𝔼[‖�‖2
�2(ℕ)

] sam-
ples are sufficient in order for u∗

N
 to be an �-optimal solution to (32), with a probabil-

ity of at least 1 − � ∈ (0, 1).
Let us compare the stochastic program (31) with (32). Whereas 

�[‖�‖2
2
] = n�2

→ ∞ as n → ∞ and �[|�k|2] = �2 ( 1 ≤ k ≤ n ), we have 
𝔼[‖𝜉‖2

�2(ℕ)
] < ∞ due to the Landau–Shepp–Fernique theorem and �[|�k|2] → 0 as 

k → ∞ [64, p. 59]. We find that the “overall level-of-randomness” for the finite-
dimensional problem (31) depends on its dimension n, while that for the infinite-
dimensional analogue (32) is fixed.
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