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Abstract
A brief review of methods in design of experiments and criteria to determine space-
filling properties of a set of samples is given. Subsequently, the so-called curse of 
dimensionality in sampling is reviewed and used as motivation for the proposal of 
an adaptation to the strata creation process in Latin hypercube sampling based on 
the idea of nested same-sized hypervolumes. The proposed approach places samples 
closer to design space boundaries, where in higher dimensions the majority of the 
design space volume is located. The same idea is introduced for Monte Carlo con-
sidering an affordable number of samples as an a-posteriori transformation. Both 
ideas are studied on different algorithms and compared using different distance-
based space-filling criteria. The proposed new sampling approach then enables more 
efficient sampling for optimization especially for high-dimensional problems, i.e. for 
problems with a high number of design variables.

Keywords  Sampling-based optimization · Design of experiments · Space-
filling designs · (Optimal) Latin hypercube · Monte Carlo methods · Curse of 
dimensionality

1  Introduction

Design of experiments (DoE) deals with the problem of distributing samples in a 
design space. As such, it is highly relevant in various fields of applications rang-
ing from physical experiments over optimization problems to all kinds of modeling 
problems. Every population-based optimization as well as every surrogate model 
requires some form of DoE.
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DoE in its original form predates the computer era and was initially aimed at 
physical experiments. With the advent of computers and consequently numerical 
simulations, the need for different and more flexible ways of sampling has emerged 
and as a result the DoE literature has vastly expanded. In the original branch, called 
classical DoE, sampling is deterministic, i.e., the location of samples is predefined. 
In many classical designs, like full-factorial, samples are located in regular pat-
terns with many samples close to design space boundaries. Then, the variation of 
the response can be estimated over the entire range of the inputs. For full factorial 
designs, many sample points are at the boundaries, especially the lower-levels ones. 
The number of samples in factorial designs grows very fast with dimensions, and 
only certain number of samples are possible. More information on classical DoE can 
for example be found in Montgomery (2009).

In modern DoE, which is also called design of computer experiments (DoCE), 
more focus is put on uniformity and space-filling properties of samples across the 
design space. To that end, multiple space-filling criteria have been suggested [for 
example in Johnson et al. (1990), Morris and Mitchell (1995)]. Overall, they can be 
divided into two groups – uniformity-based measures like discrepancy or entropy 
and distance-based measures (Garud et al. 2017). Discrepancy in this context can be 
thought of as the deviation of samples from a uniform distribution.

In modern DoE, the sampling itself is usually (quasi) stochastic. One popular 
class of approaches are (Quasi) Monte Carlo ((Q)MC) methods, which are based on 
samples being picked (quasi) randomly from the design space. The second popular 
class of approaches, which also includes Latin hypercube sampling (LHS), is based 
on subdivision of the design space (also called stratification) and subsequent random 
selection of the created strata. In LHS, each dimension is usually divided into uni-
form strata and subsequent sampling performed in a way that each stratum in each 
dimension only contains a single sample. DoE can be one-shot like LHS and (Q)
MC or in addition designed to be sequential. In the latter case, the new samples are 
defined based on keeping a desired property like space-filling (Wu et al. 2017; Li 
et al. 2017) and in addition being non-collapsing (Crombecq et al. 2011). Also, the 
output (response) may be taken into account to balance exploration and exploitation. 
In other words, the sequential design may be adaptive based on the output values. 
A more comprehensive review of DoE can be found in Garud et al. (2017). DoE is 
used in many research areas such as numerical integration (Harase 2019), uncer-
tainty quantification (Abdar et al. 2021) and construction of surrogate models (Chen 
et al. 2006; Alizadeh et al. 2020). Since surrogate models represent a rather efficient 
approximation to the underlying functions, they are extensively used in various types 
and classes of optimization, such as, multifidelity and multidisciplinary (Zadeh et al. 
2016), Bayesian (Hebbal et  al. 2021), robust design (Wurm and Bestle 2016) and 
so on. DoE has also been used as a baseline for validation of an optimization algo-
rithm (Frank et al. 2018). More information on surrogate modeling using DoE can 
be found in Fang et al. (2017) and Yondo et al. (2018). In this work, the focus lies on 
enhancing Latin hypercube and Monte Carlo sampling. The most relevant uniform-
ity criteria as well as sampling algorithms will be introduced in more details later.

One big challenge in DoCE is commonly named the curse of dimensionality. 
It describes the problems that arise as the number of design variables, and hence 
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the dimension of the design space, becomes large. Roughly speaking, the number 
of required samples to fill out the design space grows exponentially. Also intui-
tions that are obtained from two- or three-dimensional space considerations may 
become invalid.

Given the current computational power and lower dimensions, one can often 
obtain the desirable results even when evaluations are expensive. As the num-
ber of considered inputs increases, the required number of samples can get out 
of reach fast due to the curse of dimensionality. In recent years, some sugges-
tions have been made on how to alleviate the effects of curse of dimensionality. 
Vořechovský and Eliáš (2020) and Vořechovský and Mašek (2020) suggested an 
adaptation of uniformity criteria for a general-purpose, including (optimization 
of) LHS. One consequence of the curse of dimensionality is the fact, that one 
needs to be more economical with the sampling scheme. Adaptivity, i.e., plac-
ing samples according to the demand, would be a favorite method. However, in 
practice, the underlying function is not known in advance and the first stage of an 
adaptive scheme would more likely be a uniform design. MC, QMC and (optimal) 
LHS provide various levels of uniformity. (Sample) uniformity means samples are 
spread over the space evenly, and one tries to improve this uniformity via meth-
ods such as optimization of a distance based criterion as will be discussed later. 
This means that in the case of numerical integration not only sample uniform-
ity but also statistical uniformity are required, which makes QMC methods and 
especially Sobol suitable candidates and neither MC nor LHS. See Vořechovský 
and Eliáš (2020) for more detailed discussion of uniformity and requirements for 
numerical integration. In order to see the difficulty of uniformity in higher dimen-
sions, consider the following example. A d-dimensional unit hypercube [0, 1]d can 
be divided into 2d hyper-octants that all share the point [0.5,0.5,…]. So, in dimen-
sion fifteen, there will be 215 = 32768 hyper-octants. The number of affordable 
evaluations is often less or in the same order (e.g., for simplified models). This 
means in case of expensive-enough simulations, many of the hyper-octants may 
remain without a single sample while others would have one or even multiple 
samples. Sobol sampling avoids this by filling hyper-octants one by one (Kucher-
enko et al. 2015), while LHS and MC do not.

Here, we do not try to improve the sample uniformity of these methods, but 
to have more samples at regions with higher shares of total design space volume. 
Hence, our method is applicable to optimization, prediction and response surfaces 
but not numerical integration as stated above. We propose a variation of the stratifi-
cation process in LHS. Instead of using equally sized strata, our approach varies the 
size of strata depending on the dimensionality of the design space and number of 
samples. Just as in LHS, all dimensions are treated the same way. We compare our 
approach to the standard MC and LHS using common space-filling criteria that will 
be introduced later.

This paper is structured as follows. Initially, we review some space-filling criteria 
and sampling methods in section  2 and 3 respectively. Then, we briefly discuss the 
so-called curse of dimensionality and its implications to Latin hypercube sampling in 
section 4. Based on that, we introduce our isovolumetric weighting approach and out-
line its expected benefits and disadvantages in section 5. Initial results are discussed 
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in section 6. We conclude with a summary of our findings and an outlook to possible 
applications.

2 � Space‑filling criteria

As mentioned before, in modern DoE without any prior knowledge about the design 
space, the target is usually to fill as much of the design space as uniformly as possible. 
In this regard, two major criteria classes help to measure the space-filling properties of 
a sampling method. One is based on uniformity and the other one on distance. Other 
criteria such as entropy will not be discussed here.

The following summary is based on Garud et al. (2017). First, we define discrep-
ancy. The aim is to fill a hyper-rectangular design space called S ∈ ℝ

d . Consider H as a 
subspace of S with the volume V(H) = Δx1Δx2...Δxd . If ♯(∙) represents the number of 
samples in a space, then the L∞-discrepancy is defined as

The lower the discrepancy, the more uniformly the samples fill the design space. 
The interpretation is that the proportion of samples in a subspace should be pro-
portional to the subspace volume. This formula is not straightforward for numerical 
implementation and has in fact been shown to be an NP-hard problem (Gnewuch 
et al. 2009). Hence, different versions based on L2 norms have been proposed [for 
example by Hickernell (1998)]. They are of little practical relevance in medium- 
to high-dimensional setups due to their complexity or the high number of required 
points. Especially in DoE methods based on optimizing a space-filling criterion, 
the second class of criteria is far more popular [compare for example Table  1 in 
Garud et  al. (2017)]. Hence, the focus in the following will lie on distance-based 
criteria. However, it is expected that the adaptations presented below would increase 
the discrepancy of sample sets, i.e. worsen results in these criteria. Distance-based 
criteria are usually more popular when optimizing different DoEs for their space-
filling properties. An overview of the most popular criteria is given in Table 1. Of 
the shown criteria, Φp , potential energy and Maximin are most commonly used for 
optimizing sampling, e.g. in OLHS, due to their low computation times. Among the 
listed criteria, all but Minimax try to put samples further from each other.

Distance-based criteria can be combined to create new ones, e.g., Bhattacharyya 
summed up the weighted intersite distance and projective distance. Intersite distance 
is a form of Maximin criterion and projected distance helps to generate samples with 
unique coordinates; so by removing dimensions, samples would not coincide in any 
projection (Bhattacharyya 2018).

(1)D = sup
H

||||
♯H

♯S
− V(H)

||||.
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3 � Sampling methods

Two of the most extensively used sampling methods – (Quasi) Monte Carlo Sam-
pling (MCS) and LHS – are described in the following.

MCS is very popular in a number of applications due to the simplicity of the 
approach. Samples are drawn pseudo-randomly from the design space. However, 
when the intention is to have samples uniformly distributed in a hypercube, more 
efficient methods under the name of Quasi Monte Carlo (QMC) were developed 
which are based on low-discrepancy sequences of prime numbers. Popular exam-
ples are Hammersley, Halton, Faure and Sobol sequences (see for example Nied-
erreiter (1992) or Antinori (2017) for more details). Low-discrepancy is consid-
ered here with respect to uniform space-filling property. Although QMC methods 
are designed to have better space-filling properties than MC, they are still prone 
to some problems. Halton samples may line up in 2D projections (Glasserman 
2013) and points of Sobol sequences may pair with each other and create a pat-
tern of clusters and gaps in 2D projections (Joe and Kuo 2008). It should be 
noted that improvements have been suggested trying to keep the merits of the 
approaches. For example, Bratley and Fox provided an implementation of Sobol 
for up to 40 dimensions (Bratley and Fox 1988), which was increased later to 
1111 dimensions (Joe and Kuo 2003), followed by further improvements in (Joe 
and Kuo 2008) where some of the poor 2D projections were fixed while keep-
ing Sobol a fast method. Halton’s performance has also been enhanced to have 
a lower discrepancy by tuning the possible permutations of its sequence using 
an evolutionary algorithm (De Rainville et al. 2012). Re-randomization of QMC 
has also been suggested, which preserves their low-discrepancy properties while 
providing an unbiased estimator of errors in numerical integration (L’Ecuyer and 
Lemieux 2002).

Another common space filling method is Latin hypercube (LH). The construc-
tion of a Latin hypercube design (LHD) for N samples in d dimensions works as 
follows. In each dimension the space is divided into N strata of equal probability. 
That means that the design space is divided into Nd cells. N of these cells are 
selected at random with the condition that in each dimension each stratum may 
only contain one sample (McKay et al. 1979). Each sample can be placed in the 
center of its cell or randomly located within (Rajabi et al. 2015). In this work, we 
consider the centered case.

One advantage of LH is that, if some dimensions are removed, the remaining 
design is still an LHD, even though space-filling properties and correlation may 
deteriorate (Viana 2013). More details on practical use and remaining challenges 
of LHS can also be found in Viana (2016).

Like QMC methods, samples may not fill the space uniformly enough and con-
siderable correlations exist between dimensions. One example is the case, where 
all samples are lined up on the main diagonal of the design space, thus exhibit-
ing perfect linear correlation and low space filling while still being a valid LHD. 
Therefore, modifications have been proposed to improve LHD. Ye introduced 
an orthogonal LHD in which the correlation is zero between all dimensions (Ye 
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1998). However, as he also mentioned, this does not necessarily translate into 
good space-filling properties. In addition, an orthogonal LHD for a given number 
of samples may not exist for some dimensions. These problems were improved 
considerably in Cioppa and Lucas (2007), by allowing small correlations (e.g., 
within [-0.3,0.3]) and a condition number of slightly greater than one. Authors 
also optimized these nearly orthogonal designs to obtain better uniformity as 
well. Ye proposed the symmetric LHD (Ye et al. 2000), in which for any row “i" 
of an LHS there exists another row in the design which is the “ ith " row’s reflec-
tion through the center. This initially symmetric design shows better optimal-
ity compared to standard LHS and therefore optimization is less costly to get a 
good end result. If LHD have uniformity in each edge, in the distributed hyper-
cube sampling (DHS) the two-dimensional projection of samples are tried to be 
well distributed by having a low coefficient of variance of the minimum distance 
between the projected samples (Manteufel 2001). In an improvement to DHS, an 
optimal distance constraint is constructed based on the ratio of the space vol-
ume and the number of samples. Then, several samples are generated and their 
minimum distances to each sample in a subspace are calculated. The sample that 
has the minimum distance closest to the mentioned optimal distance constraint is 
selected next (Beachkofski and Grandhi 2002).

Optimal LH (OLH) design is among the most powerful improvements of LHD 
that can provide good space-filling properties. However, OLH can take significant 
time for higher dimensions and number of samples. For this combinatorial prob-
lem, the number of outcomes grows extremely fast as (N!)d (Viana 2013). Therefore, 
creating a high number of LH designs and comparing them based on an optimality 
criterion is not an efficient way of optimizing and hence a couple of methods are 
suggested to use an optimization procedure and not just selecting the best out of 
many designs. In these OLH, the objective function is one of the uniformity criteria 
discussed earlier (see Table 1). A common procedure used within optimization to 
change the design is the columnwise-pairwise procedure, in which a column (i.e., a 
dimension) in the design is selected and two elements in the column will exchange 
places (i.e., their corresponding level value). Morris and Mitchell used Simulated 
Annealing as the optimizer with both column and element selection realized ran-
domly. If the new design is better based on the potential energy criterion (Table 1, 
second row), it will replace the old one, but if it is not there is still a chance that 
it will be accepted (Morris and Mitchell 1995). OLH design (OLHD) as proposed 
in Ye et al. (2000) also employs the columnwise-pairwise idea, however, this time, 
new designs are obtained not randomly but deterministically and inferior designs are 
never accepted. More elaborate optimization schemes such as Enhanced Stochastic 
Evolutionary algorithm (ESE) (Jin et al. 2005) have been proposed but are not fur-
ther investigated here. OLHD with periodic structure which employs ESE has been 
proposed in Husslage et al. (2011) for up to 10 dimensions. It should be noted that 
optimization has also been employed to create designs with the desired correlation 
among inputs (Vořechovský and Novák 2009).

After the brief introduction above, we illustrate the performance of MC, LHD 
and OLHD in two dimensions. These are the methods that will be the focus of the 
present work. In the case of the OLH, optimization is done using an in-house code 



1274	 K. Komeilizadeh et al.

1 3

of the method suggested by Morris and Mitchell (1995). Figure  1 compares uni-
formity of MC, LH and OLH based on the potential energy (PE) criterion in two 
dimensions. It can be seen that MC has the highest PE, therefore it is the worst in 
terms of uniformity and OLH is the best. The variation among the four exemplary 
cases is the lowest in OLHD and highest in MC, indicating that OLHD is also the 
most robust. The results are according to our expectations concerning the relative 
behavior of these methods. Note that, Fig. 1 is just illustrative to show uniformity. 
However, in terms of time consumption and based on our experience in low dimen-
sions, the employed OLHD is also more efficient than selecting the best results out 
of many generated samples. The question remains whether the relative performance 
remains the same in higher dimensions. Before discussing this, we review concisely 
the consequences of increasing the number of dimensions in the next section.

4 � Curse of dimensionality

When increasing the input dimensionality, an exponential growth in the required 
number of samples to represent the output well-enough is expected. Still, in higher 
dimensions intuitions we have from two- or three-dimensional space can eas-
ily become invalid. For example, the volume of a unit hypersphere increases with 
dimension, but only up to dimension five and then strictly decreases (Verleysen 
2003).

If placing samples randomly, the higher the number of dimensions, the more sam-
ples are found close to boundaries of the design space. As the number of dimensions 
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increases, a higher share of the unit hypercube volume is found close to the boundaries. 
A similar discussion can be found for example in Lange et al. (2018).

The considered distance norm in this work is Euclidean, i.e., the " Lk, k = 2 " norm. 
As dimensionality increases, this norm differentiates far away points less and less. 
Hence, depending on the application and dimension, one may use more suitable norms 
(Aggarwal et al. 2001; Vořechovský and Mašek 2020).

Obviously, these issues of high dimensionality do not happen by going from one 
dimension to the next, but more gradually. Typically the range of uniformity of a series 
of LH designs is within that of a series of MC designs in higher dimensions. The best 
MC design out of several DoEs can easily be more uniform than the best (optimized) 
LH design. In lower dimensions the range of LH designs is almost completely more 
uniform than MC designs. This effect can be observed in the figures in sect.  6. We 
observed above that as dimension increases, most of the design space volume ends up 
close to the boundaries rather than the center. When applying LHS in applications with 
higher dimensionality it seems less optimal. The bin creation in standard LHS divides 
each dimension uniformly. Hence, many samples may be generated in the center of the 
design space even though it only contains a small share of the total hypercube volume. 
A similar argument applies to MC sampling where obtaining desired properties such 
as uniformity or a special point of focus may be hard if the number of samples is not 
large. This observation leads us to our proposed stratum design for LH design that is 
introduced in the following.

5 � Isovolumetric weighting approach

As discussed before we want to obtain an approach that naturally places more samples 
closer to design space boundaries. This focus on the boundaries should increase with 
an increasing number of dimensions. In common LHD we divide each dimension inde-
pendently into N uniform strata where N is the number of samples we want to generate. 
Now let us assume that N is even. This should not be a limitation in high dimensional 
situations where N is commonly in the hundreds or thousands. What happens if we 
regard the strata as Nv =

N

2
 nested hypervolume shells? The outermost hypervolume 

would obviously be the largest. Also each hypervolume except the innermost could 
contain at maximum 2d samples with d the dimensionality of the design space. The 
innermost hypervolume may contain a maximum of 2 samples.

We propose to enforce all of the nested hypervolumes to be of the same size (com-
pare differently colored regions in Fig.  2). Assuming the design space to be a unit 
hypercube, the stratum boundaries pi and sizes aj in each dimension for the standard 
LHS are given by pi =

i

N
 and aj =

1

N
 . When enforcing our condition of identical vol-

ume for different hypervolume shells we can replace these two equations with

(2)pi =

⎧⎪⎨⎪⎩

0.5

�
1 −

�
Nv+1−i

Nv

�1∕d
�
, i ∈ {1, 2, ...,Nv}

0.5

�
1 +

�
i−(Nv+1)

Nv

�1∕d
�
, i ∈ {Nv + 1,Nv + 2, ...,N + 1}
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The equations can easily be adapted to any hyper-rectangular design space by trans-
formation to a unit hypercube. A two-dimensional unit hypercube example is visu-
alized in Fig.  2. It can be seen that the outer cells have smaller one-dimensional 
projections in each direction. All three regions of same color have the same area. 
Since all individual cells have an equal probability of being sampled, this means 
more focus on the design space boundaries. Requiring all regions to be of the same 
size naturally leads to the equations presented above.

Additionally, we apply our idea to (Q)MC designs as an a-posteriori transfor-
mation. The respective equation for each coordinate of a QMC sample point x̃(j)

k
 

reads

Here, x(j)
k

 denotes the k-th coordinate of the transformed sample point x(j) . This equa-
tion is derived from Eq. (2). We consider the limit case for a high number of sam-
ples N. When replacing Nv by N and taking into account that i/N is the coordinate 
value in the limit we get Eq. (4).

(3)aj = pj+1 − pj , j ∈ {1, 2, ...,N}.

(4)x
(j)

k
=

⎧⎪⎨⎪⎩

0.5

�
1 −

�
1 − 2x̃

(j)

k

�1∕d
�
, x̃

(j)

k
∈ [0, 0.5)

0.5

�
1 +

�
2x̃

(j)

k
− 1

�1∕d
�
, x̃

(j)

k
∈ [0.5, 1]

.

Fig. 2   Isovolumetric weighted sampling for six samples. This is basically a LH, while strata of same 
probability now have different width. Regions of same color have the same area. The beginning and end 
of strata, i.e., where dashed lines intersect an axis are symmetric with respect to the center x

i
= 0.5 and 

the values are [0.091752, 0.211325, 0.500000, 0.788675, 0.908248] (see Eq. (2))
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One advantage of our adaptations is that they are free of empirical parameters 
that would have to be chosen or tuned. Additionally, both approaches only need to 
be evaluated once per DoE creation so they should not add computational cost to the 
respective sampling approaches. This claim will be confirmed below. We expect our 
approach to increase space-filling properties if the number of design space dimen-
sions is higher than five.

A slight disadvantage of the approach is the required even number of samples. 
As mentioned before, we believe this should not be a big constraint, especially in 
medium to high dimensional applications.

6 � Discussion

Both adaptations are implemented into an in-house DoE code that does not use 
other sampling packages. Pseudo-code for both implementations can be found in 
the “Appendix”. Results have also been reproduced with the SMT Python package 
(Bouhlel et al. 2019) by applying Eq. (4) to the output of the blackbox DoE code.

We investigate how both our sampling methods, isovolumetric LH (IVLH) and 
the isovolumetric transformed MC (IVMC), compare to their standard counterparts 
in the following. To show the potential of the methods, we additionally include 
OLH and its isovolumetric variation (OIVLH) into the comparisons. As optimiza-
tion algorithm we use simulated annealing (SA) [as suggested by Morris and Mitch-
ell (1995)] with an initial temperature T = 0.01ΦPE , cooling parameter � = 0.999 
and a maximum number of 50, 000 iterations. The optimization is performed with 
respect to the potential energy criterion ΦPE (see Table 1). We use SA here due to 
the simplicity of the approach. We also experimented with the enhanced stochas-
tic evolutionary (ESE) algorithm (Jin et al. 2005). It may show slight improvement 
in space-filling and can reduce computational costs compared to SA. However, all 
statements regarding comparison between our isovolumetric approach and standard 
methods are totally unaffected by the choice of optimization algorithm. We com-
pare 100 designs for each method in each setup. Overall three distance-based space-
filling criteria are displayed, with the focus on the potential energy criterion due to 
its simplicity. ΦmM (see Table 1) is calculated as it rewards samples closer together, 
which contradicts our approach. However, it is of limited practical usability due to 
very long computation times in medium to high dimensional problems. For the cal-
culation of ΦmM we use the Markov-Chain-MC estimation suggested in Pronzato 
(2017). We choose the parameters of the estimation according to the ones used in 
the original publication except for � = 0.1 for the sake of performance.

As an initial setup we use a five-dimensional design space where 100 samples 
are to be generated. Results for different space-filling criteria are shown in Fig. 3. 
For the Maximin criterion we see no change for MC between our approach and 
the standard. Both, modified LHS and OLH perform slightly worse in that crite-
rion compared to standard versions albeit showing lower variance. As expected, all 
our isovolumetric approaches also perform worse in the Minimax criterion with no 
significant difference between the different methods. For the potential energy crite-
rion, we see that OIVLH, IVMC and IVLH perform similarly to the three standard 
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approaches with slightly higher variances; this is especially true compared to (O)
LH. However, OIVLH reaches significantly better results. This makes sense, as we 
use this criterion as objective in the optimization algorithm of OLH.

This example was designed to showcase how our approach performs in a lower 
dimensional setup. Considering that it was designed for high dimensionality, the 
results are as expected.

In Table 2 the average creation time for each of the methods along with standard 
errors are listed. The table serves to compare the computational cost between the 
standard variants of the methods and our isovolumetric adaptations. As expected, 
our method does not change the computational cost for LH and OLH. For MC sam-
pling our adaptation seems to add a little time as it is applied as an a-posteriori 
transformation.

The second example we use is a 20-dimensional design space with 400 samples to 
be generated. Different space-filling criteria calculated for the same set of respective 

(a) Maximin criterion ΦMm, higher is
better

(b) Minimax criterion ΦmM , lower is
better

(c) Potential Energy ΦPE , lower is
better

Fig. 3   Criteria for the setup of drawing 100 samples from five-dimensional unit hypercube. 100 cases are 
simulated for each method. All criteria are calculated for the same samples
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samples are depicted in Fig. 4. For this case, the results in potential energy criterion 
are very clear. All our proposed methods achieve significantly better results than all 
classic methods. This is largely expected as our method is designed to put samples 
further apart and closer to design boundaries. Interestingly, this shows only partially 
for the Maximin criterion. While the majority of cases still shows an improvement 
over the respective classic methods, there is a non-negligible number of outliers, 

Table 2   100 samples from 
a five-dimensional unit 
hypercube: Comparison of 
creation times for different 
DoE methods between standard 
variant and isovolumetric 
adaptation.

All times are mean and standard error of 100 repetitions

Variant Method

MC [ms] LH [ms] OLH [s]

Standard 0.009 ± 0.000 0.191 ± 0.004 1.185 ± 0.001

Isovolumetric 0.034 ± 0.001 0.193 ± 0.003 1.147 ± 0.002

(a) Maximin criterion ΦMm, higher is
better

(b) Minimax criterion ΦmM , lower is
better

(c) Potential Energy ΦPE , lower is
better

Fig. 4   Criteria for the setup of drawing 400 samples from 20-dimensional unit hypercube. 100 cases are 
simulated for each method. All criteria are calculated for the same samples
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especially for IVMC and IVLH methods. The reason is that the Maximin criterion is 
highly sensitive to pairs of points being in close proximity of each other. Our trans-
formation adds another step in the DoE creation process that may end up creating 
this kind of point pair. In the Minimax criterion the ranges of values are similar 
for all methods (except for one outlier in IVLH). Our modified methods perform 
slightly worse here than in the 5D example.

Obviously, different results in different criteria are due to the definitions of the 
criteria. Minimax rewards pushing samples together while still covering the whole 
design space, while the other criteria improve when samples are as far apart as pos-
sible. This highlights that care should be taken when choosing a criterion to opti-
mize the sampling. As our method pushes samples towards boundaries it naturally 
favors Φp - type criteria (i.e., Maximin, potential energy, etc.).

Another interesting observation is how the isovolumetric transformation is far 
more effective than the optimization for potential energy and Maximin criterion 
while the computational cost is at the same time much less (e.g., compare IVLH 
to standard OLH in Table 3). Here, in contrast to the two-dimensional example the 
optimization mostly reduces the variance of the criteria (over several runs) with-
out largely improving the mean score (compare Fig. 4c). We suspect that the reason 
the isovolumetric transformation outperforms the optimization lies in the structural 
change it is based on. In the common LH the same width assumption forces the opti-
mizer to put samples in the middle of space while in higher dimensions a large part 
of the volume is around the boundaries. This does not mean that the isovolumetric 
approach can overcome the required number of samples in higher dimensions, it just 
tries to be resourceful and place the samples considering their number and density 
of the space. To confirm these conclusions, further work is necessary.

In Table 3, the average creation time for each of the methods along with standard 
errors are listed. The table serves to compare the computational cost between the 
standard variants of the methods and our isovolumetric adaptations. The observa-
tions here are the same as before for the five-dimensional example and completely 
match with expectations.

As previously mentioned, our adaptation was designed with high dimensions 
in mind. Hence, we performed another study looking into the number of dimen-
sions necessary for our approach to gain an advantage. The results are depicted in 
Fig. 5. We compare all six different approaches w.r.t. the ΦPE criterion. The num-
ber of design space dimensions d is shown on the abscissa. The number of samples 
for each calculation is defined as 50 ∗ d . The colored areas represent the range of 
results for 100 repetitions of the sampling in each number of dimensions.

Table 3   400 samples from a 
20-dimensional unit hypercube: 
Comparison of creation times 
for different DoE methods 
between standard variant and 
isovolumetric adaptation.

All times are mean and standard error of 100 repetitions

Variant Method

MC [ms] LH [ms] OLH [s]

Standard 0.060 ± 0.001 1.273 ± 0.005 15.63 ± 0.018

Isovolumetric 0.221 ± 0.002 1.317 ± 0.004 15.70 ± 0.020
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The overall value of ΦPE grows as the dimension increases. For a dimensional-
ity below five, the variability in all methods increases significantly (see Fig. 5). 
As the available design space shrinks, the probability for samples being very 
close together increases. In this range, our method shows no real advantage com-
pared to the respective standard approaches. Interestingly also around five dimen-
sions the volume of a unit hypersphere becomes maximal (Verleysen 2003). As 
the number of dimensions increases beyond five it can be seen that for our adap-
tations the slope of the curve is lower than for the standard methods. It can also 
be seen that in our case beyond around five (or ten if isovolumetric transforma-
tion is applied) dimensions O(IV)LH offers no real improvement compared to 
(IV)LH and (IV)MC, neither in the mean value nor in the range of results. Hence, 
in higher dimensional applications, it may be feasible to simply create a number 
of LH or MC designs and choose the best instead of employing an optimization 
algorithm. Here, a significantly better optimizer in higher dimensions, the num-
ber of the created samples, and a proper criterion are decisive.

The results of a similar study investigating the influence of the number of 
samples are depicted in Fig.  6. Here, the number of samples is shown on the 
abscissa and the number of dimensions is kept constant at 20. The potential 

Fig. 5   Potential energy criterion for different sampling methods is plotted over the number of dimen-
sions. The respective number of samples is chosen to be fifty times the number of dimensions. The 
shaded areas represent ranges of values for 100 repetitions. Grey curves from dark to bright depict MC, 
LHS and OLHD. Blue curves represent the respective isovolumetric version
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energy criterion is used for the comparison. Again, 100 repetitions are performed 
for each method with the depicted colored areas representing the ranges of the 
results. The potential energy criterion generally increases as the number of sam-
ples increases. This is not surprising as more samples actually have to be closer 
together. For our isovolumetric methods the order of the increase appears to be 
lower, i.e. the more samples we have the better they perform compared to their 
standard counterpart. The improvement seems legitimate as our isovolumetric 
method allows samples to better utilize areas close to design space boundaries 
which may increase distances between samples.

Projection to lower dimensions, especially to two dimensions, is one of the 
aspects that is considered in uniform space filling literature [see for example Dam-
blin et  al. (2013)]. Having space-filling two-dimensional projections is considered 
desirable; we have to show that, by eliminating other dimensions, the design is still 
space-filling. The question is however, if having uniform two-dimensional projec-
tions implies that the actual d-dimensional design is also always the better space-fill-
ing design. We question here the assumption that uniformity of projections in lower 
dimensions always translates into better higher dimensional space-filling properties, 
especially for significantly higher dimensions. One reason to raise such doubt is 
based on observing how LHS behaves. LHS is indeed uniform in one dimension but, 
this can get easily less and less in higher dimensions, while at least it also does not 
follow the space density.

Having a space-filling design is normally not the final goal itself, but it addresses 
for example, the efficient usage of an optimization algorithm. It remains to be inves-
tigated if improving space-filling criteria translates to increased performances in 
follow-up applications. In addition, not all dimensions may have the same effect 
on the output and the amount of effective dimensions and the order of interaction 
terms between inputs can vary. In some studies, these changes are taken into account 

(a) Monte Carlo sampling. (b) Latin hypercube sampling.

Fig. 6   Potential energy criterion for different sampling methods is plotted over the number of samples. A 
20-dimensional design space is considered. The shaded areas represent ranges of values for 100 repeti-
tions. Dark grey and dark blue curves depict MC and LH respectively. Light grey and blue curves repre-
sent the respective isovolumetric version



1283

1 3

Isovolumetric adaptations to space‑filling design of…

when comparing LHS and (Q)MC, see Kucherenko et al. (2015) for example. We 
discussed the results for a couple of designs. However, a big enough number of sam-
ples can have a larger impact than different designs (Liu 2005).

7 � Conclusions

Design of experiments is an important step in many areas of applications from 
physical experiment over optimization to uncertainty quantification. Especially in 
computational applications, a common objective is to distribute samples as evenly 
as possible across the design space. In this work we move away from this uniform-
ity objective by pushing samples to design space boundaries thus creating a kind 
of importance sampling. We propose adaptations to both (quasi) Monte Carlo and 
Latin hypercube sampling which increase the space-filling properties according to 
the popular potential energy criterion of the samples in higher dimensional applica-
tions. Our adaptation does not increase the computational requirements of LHS and 
does not require any empirical parameters. It can also be applied to other sampling 
methods as an a-posteriori transformation. We compare our adapted approach to the 
respective standard sampling methods in different distance-based space-filling crite-
ria. We investigate the number of design space dimensions from which our approach 
gains an advantage over standard LHS or (Q)MC sampling. Additionally, we study 
how potential energy develops for a different number of samples at fixed number of 
dimensions. In both studies, the proposed isovolumetric methods get much better 
potential energy scores than their standard counterparts for dimensions larger than 
five and an affordable amount of samples. Our proposed method provides a comple-
mentary result to both standard LHS and optimal LHS by preferring boundaries of 
space as opposed to more uniform designs. As mentioned earlier, the term space-
filling in higher dimensions is not clear and in practice we do not need a unique 
definition either. Space-filling design is rather part of a procedure with the aim of 
approximating an underlying function, either for fitting a response surface or for an 
optimization. We are interested to realize these procedures in the most efficient way. 
Based on the promising results presented above we list here some questions that 
require further investigation and may be the subject of future studies in the context 
of DoE or optimization:

•	 When there are more than five inputs, does the isovolumetric transformation 
perform better than the available LHS, (Q)MC in surrogate model construction? 
Will the rate of success be higher for surrogate models that change faster around 
the boundaries?

•	 Since the proposed method puts samples differently than the original LHS, how 
about combining both? Can the concept of isovolumetric sampling be used to 
create bins with samples partly in the center and partly close to the boundaries? 
Does this lead to a decent method on average?

•	 What if sample uniformity is also introduced within the proposed isovolumetric 
hypershells? Does this turn out to be universally decent from low to high dimen-
sions? How would it compete with a QMC method like Sobol?
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•	 Does applying the isovolumetric transformation at higher dimensions (above 
five) help with more efficient sensitivity analysis [see e.g., Kucherenko et  al. 
(2015)]? How does it improve efficiency in uncertainty analysis, in comparison 
to QMC methods [see e.g., Hou et al. (2019)]?

Appendix

Algorithm 1 Variation on LHS bin creation

Require:
N : Number of samples to be created (required to be even)
d: Number of design space dimensions

Ensure:
x: Array of LHS samples (size N x d)

1: Nv ← N/2
2: sb ← array(N + 1)
3: i ← 1
4: while i <= N + 1 do � Create strata boundaries using Equation (2)
5: if i <= Nv then
6: sb[i] ← 0.5

(
1− ((Nv + 1− i)/Nv)

1/d
)

7: else if i > Nv then
8: sb[i] ← 0.5

(
1 + ((i−Nv − 1)/Nv)

1/d
)

9: end if
10: i ← i+ 1
11: end while
12: ss ← diff(sb) � Strata sizes as defined in Equation (3)
13: refpts ← sb[1 : N ] + ss
14: j ← 1
15: while j <= d do
16: order ← random.permutation(range(N))
17: x[:, j] ← refpts[order, j]
18: end while
19: return x



1285

1 3

Isovolumetric adaptations to space‑filling design of…

Algorithm 2 A-posteriori transformation of blackbox DoE samples

Require:
x̃: Samples created by a blackbox DoE code
d: Number of design space dimensions

1: x ← array(size(x̃))
2: for x̃

(j)
k , x(j)

k in x̃, x do � Transformation as defined in Equation (4)
3: if x̃

(j)
k < 0.5 then

4: xj
k ← 0.5

(
1−

(
1− 2x̃(j)

k

)(1/d)
)

5: else if x̃
(j)
k >= 0.5 then

6: xj
k ← 0.5

(
1 +

(
2x̃(j)

k − 1
)(1/d)

)

7: end if
8: end for
9: return x
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