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Abstract
In this contribution, a novel framework for simulating mixed-mode failure in rock is presented. Based on a hybrid phase-
field model for mixed-mode fracture, separate phase-field variables are introduced for tensile (mode I) and shear (mode 
II) fracture. The resulting three-field problem features separate length scale parameters for mode I and mode II cracks. In 
contrast to the classic two-field mixed-mode approaches, it can thus account for different tensile and shear strength of rock. 
The two phase-field equations are implicitly coupled through the degradation of the material in the elastic equation, and the 
three fields are solved using a staggered iteration scheme. For its validation, the three-field model is calibrated for two types 
of rock, Solnhofen Limestone and Pfraundorfer Dolostone. To this end, double-edge notched Brazilian disk (DNBD) tests 
are performed to determine the mode II fracture toughness. The numerical results demonstrate that the proposed phase-field 
model is able to reproduce the different crack patterns observed in the DNBD tests. A final example of a uniaxial compres-
sion test on a rare drill core demonstrates that the proposed model is able to capture complex, 3D mixed-mode crack patterns 
when calibrated with the correct mode I and mode II fracture toughness.

Keywords Mode II fracture toughness · Mixed-mode failure · Brittle fracture · Phase-field modeling · Finite cell method

List of symbols
a  Notch length
cw  Scaling parameter in the phase field
d  Space-tree partitioning depth
t  Thickness of the DNBD specimen
l  Ligament of the DNBD specimen
l0  Phase-field length scale
l0,I , l0,II  Mode I, mode II phase-field length scale
k  Refinement depth
p  Ansatz order
s  Phase-field parameter
sI , sII  Mode I, mode II phase-field parameter
u (ux, uy, uz)  Displacement field and components
w  Notch width of the DNBD specimen
w , qI , qII  Test functions
Gc  Critical energy release rate

GcI
 , GcII

  Mode I, mode II critical energy release rate
E  Young’s modulus
F  Force
KI , KII  Mode I and mode II stress intensity factor
K∗
I
 , K∗

II
  Normalized mode I and mode II stress 

intensity factor
R  Radius of the DNBD specimen
�  Angle of the DNBD specimen
�̃�  Numerical parameter for the FCM
�  Penalty parameter
�  Notch offset of the DNBD specimen
� (�x, �y, �z)  Strain field and components
�  Tolerance for the staggered scheme
�  Numerical parameter for the phase field
�, �  Lamé constants
�  Density
� (�x, �y, �z)  Stress field and components
Ψ  Elastic strain energy density
H  History variable
HI , HII  Mode I, mode II history variable
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1 Introduction

Accurate prediction of fracture in rock and rock-like mate-
rials is vital for a number of engineering applications, 
ranging from building processes to deep geothermal appli-
cations. In recent years, numerical methods have vastly 
complemented geo-mechanical testing, and can provide 
important insights into crack initiation and propagation 
processes. As an alternative to discrete approaches such 
as XFEM [40], and cohesive zone models [43], the phase-
field approach to fracture [18, 25] has gained more and 
more popularity. Due to its elegant way of representing 
the crack using a smooth and continuous scalar variable 
and its formulation as a minimization problem, the phase-
field approach facilitates the solution of complex frac-
ture scenarios. In contrast to the aforementioned discrete 
approaches, crack propagation follows directly from the 
solution of a partial differential equation without the need 
for complex remeshing procedures or ad-hoc criteria for 
crack initiation. A wide range of phase-field approaches 
have been proposed including models for ductile fracture 
[2, 55], heterogeneous [32] or anisotropic material [53], 
and specific materials such as fiber-reinforced concrete 
[1, 60] and poro-elastic media [61]. Consequently, the 
phase-field approach to fracture is continuously developed 
starting from adaptive formulations in the framework of 
isogeometric analysis [15], to stochastic phase-field mod-
eling [28] and recently also inspire the combination with 
deep neural networks [29, 30].

For the simulation of fracture in rock, it is important 
to account for the difference in mode I (tensile) and mode 
II (shear) fracture resistance, as the fracture toughness 
for mode II fracture is usually higher. The first and most 
intuitive phase-field approach to capture the mixed-mode 
behavior in rock was presented by Zhang [59]. Here, dif-
ferent critical energy release rates for mode I and mode 
II fracture are introduced and the crack driving force is 
split into two separate parts which correspond to the dif-
ferent crack modes [59]. Bryant and Sun [19] propose a 
modification of the mixed-mode approach with consistent 
kinematics based on the determination of the local crack 
propagation direction. The approach by Fan [23] extends 
the splitting method for masonry-like material [26] to 
account for mixed-mode behavior by introducing a split 
into mode I and mode II components based on the local 
crack direction similar to [19]. In contrast to the mixed-
mode model proposed in [59], the latter two methods do 
not suffer from an overestimation of the driving force 
under pure mode I loading [23]. However, they require 
the solution of a maximization problem to determine the 
local crack driving direction. A further drawback of the 
above-mentioned methods is related to the length scale 

parameter for the phase-field regularization. As the mate-
rial strength depends upon the choice of the length-scale 
parameter, Tanné [52] suggests to regard the length scale 
as a material property and calibrate it with the material’s 
tensile strength. However, this can only correctly describe 
the nucleation of mode I cracks, as the material’s shear 
strength is not accounted for. This can lead to an over-
estimation or underestimation of the actual failure force. 
To overcome this problem, [24] propose a length insensi-
tive multi-phase-field formulation for the simulation of 
mixed-mode fracture in quasi-brittle materials. Based on 
the ideas presented in [10], the approach uses two differ-
ent phase-fields, one for cohesive tensile fracture and one 
for frictional shear fracture. In the present contribution, 
we present an alternative approach that is able to account 
for different tensile and shear strengths of the material. 
The proposed three-field phase-field model uses two dif-
ferent length scales, one for mode I and one for mode II 
failure, which are calibrated using the respective tensile 
and shear strength of the material. The flexible setting is 
easy to implement and allows for different splits between 
mode I and mode II components. That way, the three-field 
model can be tailored for specific applications and to the 
available computational resources.

Proper calibration of the three-field model for different 
rocks requires their specific and unique mechanical proper-
ties. Decisive parameters for the rock’s plastic behavior, its 
elastic properties and tensile strength, can easily be deter-
mined by standardized tests, such as the uniaxial compres-
sion test [22, 41] and indirect methods like the Brazilian 
disk test [5, 8, 51]. Mixed-mode phase-field models also 
require the critical energy release rates to properly assess 
mode I and II fracture initiation and propagation. A variety 
of different tests have been proposed for the determination 
of the mode I fracture toughness [36, 56] and numerous 
data have been collected for different types of rock. How-
ever, data on the mode II fracture toughness are limited. 
To obtain the true mode II fracture toughness, not only the 
loading of the test specimen has to be in mode II, but the 
crack initiation has to be driven by shear. Only a limited 
number of tests for the determination of the mode II frac-
ture toughness have been proposed, including the punch 
through shear test [6] and the shear box test [46]. Recently, 
a double-edge notched Brazilian disk (DNBD) test was 
suggested by Bahrami [7], which features a simple experi-
mental setup, enables the determination of the true mode 
II fracture toughness, and readily allows for the observa-
tion of fracture patterns using high-speed cameras. In the 
present contribution, we present a full workflow based on 
the experimental determination of the mode II fracture 
toughness using DNBD tests. To the authors’ knowledge, 
this is the first mixed-mode model which is calibrated and 
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successfully applied to reproduce both two- and three-
dimensional, mixed-mode fracture scenarios.

The paper is structured as follows. In Sect. 2, the three-
field model and its discretization with the Finite Cell Method 
are introduced. The DNBD experiments including the com-
putation of the mode II fracture toughness are presented in 
Sect. 3, followed by the numerical results in Sect. 4. Here, 
the proposed three-field is validated based on the DNBD 
tests and a complex application example of a uniaxial com-
pression test after ISRM SM 1979, with determined uni-
axial compressive strength and its stress–strain curve, is 
presented.

2  A three‑field phase‑field formulation

In this section, the theoretical and numerical background 
of the phase-field formulation is introduced. The proposed 
phase-field model is a three-field problem based on the 
ideas presented in [10] and [59] with two separate phase-
field variables associated with mode I and mode II fracture, 
respectively.

2.1  Mathematical formulation

Let Ω ⊂ R
d , d = 2, 3 be an open-bounded domain which is 

cut by a set of discrete cracks, as shown in Fig. 1, left. The set 
of discrete cracks Γc is split into a set of tensile cracks ΓcI

 asso-
ciated to mode I failure and a set of shear cracks ΓcII

 associated 
to mode II failure with Γc = ΓcI

∪ ΓcII
 and ΓcI

∩ ΓcII
= � . The 

domain boundary �Ω consists of two non-overlapping parts ΓD 
and ΓN on which Dirichlet and Neumann boundary conditions 
are prescribed. A point in Ω is denoted by x and u(x), �(x) 
and �(x) ∈ R

d are the displacement, strain, and stress fields, 
respectively. An isotropic and linear elastic material with small 

deformations and quasi-static conditions is assumed. In this 
case, the strain tensor is given as � =

1

2
(∇u + ∇�u) and the 

elastic strain density as Ψ(�) = 1

2
� tr2(�) + � tr(�2) , where � 

and � are the Lamé constants.

2.1.1  Background

The phase-field approach to fracture is based on the vari-
ational formulation by Francfort [25] and its subsequent 
regularization by Bourdin [16, 17]. Here, the discrete crack 
is approximated using a scalar variable s, the so-called 
phase-field, which smears the crack over a regularization 
width l0 . The phase-field parameter attains a value of zero 
on the crack and is one if the material is undamaged. Crack 
propagation is considered as a minimization problem of the 
associated functional

Here, Gc is the critical fracture energy, g(s) is the degrada-
tion function which models the loss of stiffness in the mate-
rial due to damage, w(s) is the energy dissipation function, 
and cw is a scaling parameter. Formulation (1) suffers from 
interpenetration of crack surfaces and non-physical crack 
patterns in compression. Thus, commonly, an additive split 
of the elastic strain energy density Ψ(�) = Ψ+(�) + Ψ−(�) is 
used. Based on the spectral split proposed in [39], a hybrid 
formulation was introduced in [3]. Here, the split is only 
accounted for in the phase-field equation, which results in 
a linear elastic problem. This reduces the computational 
effort while providing comparable results [3]. Following 
variational theory, the Euler–Lagrange equations of the 

(1)
El0

(�, s) = ∫Ω

g(s) Ψ(�) d�

+
Gc

cw ∫Ω

(
1

2 l0
w(s) + 2 l0|∇s|2

)
d�.

Fig. 1  Sharp crack topology (left) and phase-field crack surface 
(right) adapted from [27]. The discrete cracks Γ

c
I

 and Γ
c
II

 are repre-
sented by two distinct phase-field variables s

I
 and s

II
 ranging from 0 

to 1. For visualization purposes, these are summarized in a variable 
s ∈ [−1, 1] , which takes a value of 0 in the undamaged region, 1 on a 
tensile crack, and −1 on a shear crack
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functional equation [Eq. (1)] can be derived, which yields 
the following coupled system of equations for the hybrid 
formulation: 

 Here, the AT-2 model with w(s) = 1 − s2 and cw = 1∕2 
[52] is used. A quadratic degradation function 
g(s) = (1 − �) s2 + � is chosen, where � is a small numerical 
parameter which prevents full degradation of the material. 
The coupled system (2) is subject to the boundary conditions

The history variable H , as introduced by Miehe [39], ensures 
irreversibility of the phase-field and facilitates the use of a 
staggered solution scheme. It is defined as

where ⟨ ⋅ ⟩ denotes the Macaulay brackets with 
⟨ ⋅ ⟩+ =

1

2
(x − � x �) and �+ is the positive part of the strain ten-

sor resulting from a spectral split. In the coupled system (2), the 
ratio H∕Gc drives the evolution of the phase-field. Although 
the critical fracture energies for mode I and mode II fracture 
can vary considerably, this is not accounted for in the formula-
tion above. To overcome this limitation, Zhang [59] proposed 
a mixed-mode modification of (2), where two critical frac-
ture energies GcI

 and GcII
 are introduced. The driving force is 

replaced with a weighted average of mode I and mode II driving 
forces weighted by their respective critical fracture energies. 
The phase-field equation (2a) is modified according to

where the mode I and mode II driving forces HI and HII are 
defined as

(2a)div(�) + � b = 0, where � = g(s)
�Ψ(�)

��
,

(2b)−4 l2
0
Δs + 4 l0 (1 − �)

H

Gc

= 1 .

(3)� = �̄n on ΓD,

(4)� ⋅ � = �̄n on ΓN ,

(5)∇d ⋅ � = 0 on ΓD ∪ ΓN .

(6)
H(�, t)∶=max

t∈[0,T]
Ψ+(�(�, t))

= max
t∈[0,T]

1

2
� ⟨tr(�(�, t))⟩2

+
+ � tr(�2

+
(�, t)) ,

(7)−4 l2
0
Δs + 4 l0 (1 − �)

(
HI

GcI

+
HII

GcII

)
= 1 ,

(8)HI(�, t) = max
t∈[0,T]

1

2
� ⟨tr(�(�, t))⟩2

+
,

The mixed-mode formulation by Zhang [59] uses a single 
length-scale parameter for both tensile and shear fracture, 
and thus, is not able to account for different tensile and shear 
strength of the material. To overcome this limitation, we 
extend the formulation above to a three-field problem, which 
will be introduced in the next section.

2.1.2  The three‑field phase‑field model

Based on the formulation by Zhang [59], we propose a 
three-field phase-field formulation which introduces dif-
ferent scalar variables for tensile and shear failure. The 
scalar variables sI , sII ∈ [0, 1] represent mode I and mode 
II fracture, respectively, with sI = 0 on a tensile crack and 
sII = 0 on a shear crack, as depicted in Fig. 1. The driv-
ing force is split up following 8. Here, it is assumed that 
the tensile phase-field sI is driven by HI , while the shear 
field sII is driven by HII . Adopting a phase-field evolution 
according to (2b) for each of the damage variables the 
three-field problem is obtained as 

 Here, a degradation function g(sI , sII) is defined as

which accounts for the damage of mode I and mode II cracks. 
Different length-scale parameters l0,I and l0,II for shear and 
tensile fracture, respectively, are introduced. In the case of 
pure mode I or pure mode II failure, the formulation falls back 
to the original mixed-mode formulation (7). It should be noted 
that the split of the elastic strain energy density in tensile and 
shear components as proposed by [59] suffers from an over-
estimation of the force response under pure mode I loading 
[59]. Alternatively, different approaches based on the split 
by Amor [4] or directional-dependent splits based on local 
crack coordinates as proposed by Strobl [50] or Steinke [48] 
can be integrated in the proposed three-field formulation. An 
overview of existing splitting methods can be found in [23].

(9)HII(�, t) = max
t∈[0,T]

� tr(�2
+
(�, t)) .

(10a)div(�) + � b = 0, where � = g(sI , sII)ℂ �

(10b)−4 l2
0,I

ΔsI + [4 l2
0,I

(1 − �)
HI

GcI

+ 1] sI = 1 ,

(10c)−4 l2
0,II

ΔsII + [4 l2
0,II

(1 − �)
HII

GcII

+ 1] sII = 1 .

(11)g(sI , sII) = (1 − �) (min(sI , sII))
2 + �,
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2.2  Discretization

The numerical framework is based on the approach 
presented in [33, 42], which combines the phase-field 
approach with an embedded domain technique, the finite 
cell method [44], and multi-level hp-adaptive refinement 
[58].

2.2.1  The finite cell method

The Finite Cell Method (FCM) is based on an implicit repre-
sentation of the geometry. Instead of generating a boundary 
conforming mesh, the actual geometry is recovered during 
integration with the help of an indicator function. As depicted 
in Fig. 2, the physical domain Ωphy is embedded into a larger 
domain of simple shape Ω∪ = Ωphy ∪ Ωfict which can easily 
be meshed. To account for the actual geometry, an indicator 
function �(x) is defined which takes a value close to zero in 
the surrounding, the so-called fictitious domain, and is equal 
to one in the physical region

Here, �̃� is a small numerical parameter greater than but 
unequal to zero to ensure stability [44]. The weak form is 
multiplied by �(x) eliminating contributions from the ficti-
tious domain. Advanced integration schemes such as quad- 
and octree-subdivision approaches are needed for a suffi-
ciently accurate integration of the cells cut by the domain 
boundary [21]. For further elaboration on the FCM and its 

(12)𝛼(x) =

{
1.0, ∀x ∈ Ωphy,

�̃�, ∀x ∈ Ωfict.

combination with multi-level hp-adaptive refinement, the 
reader is referred to [21] and [58].

2.2.2  Weak form

Let the trial spaces for the displacement solution Su , the mode 
I phase-field solution SsI

 , and the mode II phase-field solution 
SsII

 be defined as

where H1 refers to the Sobolev space of degree one. Fur-
thermore, let the spaces for the test functions be defined as

The weak formulation of the coupled three-field problem 
for the FCM states:

Find u ∈ Su , sI ∈ SsI
 and sII ∈ SsII

 , such that 

(13)Su = {u ∶ ui ∈ H1(Ω), ui|ΓD
= ūi} ,

(14)SsI
= {sI ∶ sI ∈ H1(Ω)} ,

(15)SsII
= {sII ∶ sII ∈ H1(Ω)} ,

(16)Vu = {w ∶ wi ∈ H1(Ω), wi|ΓD
= 0} ,

(17)VsI
= {qI ∶ qI ∈ H1(Ω)} ,

(18)VsII
= {qII ∶ qII ∈ H1(Ω)} .

(19a)

(�,∇w)Ωphy
+ (�̃� �,∇w)Ωfict

+ (𝛽 u,w)ΓD

= (𝜌 b,w)Ωphy
+ (h,w)ΓD

+ (𝛽 g,w)ΓD
, ∀w ∈ Vu

(19b)

([
4 l0,I(1 − 𝜂)

HI

GcI

+ 1

]
sI , qI

)

Ωphy

+

(
�̃�

[
4 l0,I(1 − 𝜂)

HI

GcI

+ 1

]
sI , qI

)

Ωfict

+
(
4 l2

0,I
∇sI ,∇qI

)

Ωphy

+
(
�̃� 4 l2

0,I
∇sI ,∇qI

)

Ωfict

= (1, qI)Ωphy
, ∀ qI ∈ VsI

(19c)

([
4 l0,II(1 − 𝜂)

HII

GcII

+ 1

]
sII , qII

)

Ωphy

+

(
�̃�

[
4 l0,II(1 − 𝜂)

HII

GcII

+ 1

]
sII , qII

)

Ωfict

+
(
4 l2

0,II
∇sII ,∇qII

)

Ωphy

+
(
�̃� 4 l2

0,II
∇sII ,∇qII

)

Ωfict

= (1, qII)Ωphy
, ∀ qII ∈ VsII

.
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 In (19a), the penalty method is used to apply Dirichlet 
boundary conditions for the elastic problem in a weak sense, 
where � is the penalty parameter.

2.2.3  Solution of the coupled three‑field problem

The system (19) is discretized in a finite-element setting 
using integrated Legendre polynomials as basis functions for 
the finite test and trial spaces as explained in [42]. In each 
displacement step of the quasi-static simulation, a staggered 
solution scheme is used to solve the discretized equations. 
First, Eq. (19b) is solved for the tensile field, then, Eq. (19c) 
is solved for the shear field, and finally, Eq. (19a) is solved 
for the displacements u , which are used to update the history 
variables HI and HII . In the next staggered step, the phase-field 
equations are solved using the updated history variables and 
the staggered iterative scheme continues until convergence. As 
a stopping criterion for the staggered procedure, the residua of 
the three solution fields are compared against a certain thresh-
old. The iterations are terminated after staggered step i if

where Ru,RsI
 , and RsII

 denote the residual of the elastic, 
mode I phase-field, or mode II phase-field problem, respec-
tively. In contrast to the classic two-field mixed-mode 
approaches and similar to Fei [24], the history variables 
HI and HII are updated depending on the dominating crack 
mode. If HI ≥ HII or sI(x) < 0.5 , we assume that a mode I 
is present and only perform an update HI . Accordingly, if 
HI < HII or sII(x) < 0.5 , we assume that a mode II crack is 
present and update HII.

3  Determination of the mode II fracture 
toughness

In this section, the mode II fracture toughness is determined 
for two types of rock, namely Solnhofen Limestone (SPK) 
and Pfraundorfer Dolostone (PFD). The expected crack path 
is shown in Fig. 3b), and consists of a straight shear crack 

(20)stol,i < 𝜀, where stol,i = max(Ru,RsI
,RsII

),

Fig. 3  Schematic setup for determination of the mode II fracture thoughness (left) and expected crack pattern (right) following [7]

Fig. 2  Embedding concept of the FCM following [44]
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connecting the two external notches. The two investigated 
rocks are analog geothermal carbonate reservoir rocks. 
The Solnhofer limestone is very homgenous and very fine 
grained (0.1 mm - 0.055 mm), and the Pfraundorfer Dolos-
tone consists of 99% dolomite with small vugs [54]. The 
experimental setup is based on the double-edge notched 
Brazilian disk (DNBD) tests presented in [7]. In contrast to 
conventional mode II tests, the DNBD test features not only 
shear-based crack tip loading, but also the material failure 
is shear-induced.

3.1  Double‑edge notched Brazilian disk (DNBD) 
tests

The experimental setup is schematically depicted in Fig. 3a. 
A Brazilian disk specimen containing two external notches 
of length a and thickness w is diametrically compressed at an 
angle � . Wooden plates are attached to the top and bottom of 
the specimen to induce the load. The use of flexible materi-
als allows for an even distribution of the load and prevents 
local concentration of the stress, which can lead to fracturing 
at the loading points. At the same time, it introduces an addi-
tional non-linear displacement. Increasing the load angle 
� , the mode I intensity factor KI increases, which results in 
smaller shear stresses and, consequently, a higher failure 
load. Bahrami [7] suggests to use an angle � in the range 
of 10◦ to 20◦ to prevent failure at the loading points, which 
can occur for very small as well as too large loading angles. 
Moreover, they state that the size of the ligament, which 
defines the distance between the two notches (cf. Figure 3), 

should be chosen depending upon the disk radius, such that 
0.65 < a∕R < 0.8 ( 0.2 < l∕R < 0.35).

3.2  Experimental results

Brazilian disk samples of SPK and PFD with a radius of 
47 mm and a thickness of 20 mm were prepared by cutting 
two external notches of length 37 mm. This results in a liga-
ment of 20 mm and a ligament-to-radius ratio of a∕R = 0.79 
(l∕R = 0.21) , which lies within the suggested optimal range 
[7]. Two different geometries were tested. The first geom-
etry was prepared using a hand saw with notches of width 
2.2 mm, and the second geometry was cut with a water jet 
cutter and has notches of width 1.1 mm. While the water 
jet cutter resulted in perfectly aligned notches, the samples 
prepared by hand showed small deviations in the geometry 
including slightly misaligned notches and small variations 
in the notch length. For all experiments, a loading angle of 
� = 15◦ is chosen. The specimen is loaded until fracture with 
displacement-controlled steps of 0.5 mm/min. The fracture 
process is recorded using a Photron Mini UX100 high-speed 
10,000 fps camera with a resolution of 1280 × 480 pixels. A 
spray pattern is applied to the specimen to perform a digi-
tal image correlation (DIC) analysis using the open-source 
2D-DIC software Ncorr [9].

3.2.1  Crack pattern

In addition to the simple shear crack between the two 
notches as observed in Bahrami [7], two additional crack 

Type SPK PFD

A 9 7

B 1 1

C 0 3

Fig. 4  Different crack patterns observed in the experiments: mixed 
tensile-shear crack (A), circular mixed tensile-shear crack (B) and 
pure shear crack (C) (left), and frequency of occurrence for both 

types of rock (right). Only Type A and Type C are considered for the 
calculation of the mode II fracture toughness
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patterns are obtained during the DNBD tests on SPK and 
PFD. As shown in Fig. 4, two mixed-mode patterns are 
observed. Type A features two tensile wing cracks which 
initiate at the top and bottom notch, and emerge symmetri-
cally. Further displacement contributes to the formation of 
a shear band connecting the notches, which leads to abrupt 
rupture of the specimen. Type B features similar tensile 
cracks. However, small deviations in the geometry lead to 
shear cracks emerging from the tips of the tensile cracks 
connecting to the notches. Type C is the pure shear crack 
observed by Bahrami [7]. In Fig. 4, right, the number of 
crack types observed for SPK and PFD are listed. Crack 
Type B is observed once for each type of rock. This crack 
pattern does not feature a shear crack connecting the two 
notches and consequently is excluded from the computa-
tion of the mode II fracture toughness. On the contrary, 
the values obtained from experiments yielding a Type A 
pattern give the true mode II fracture toughness despite 
the development of the tensile cracks. This is based on 
the assumption that an arrested tensile crack does not sig-
nificantly influence the stress field along the crack plane. 
This yields nine admissible experiments for SPK and ten 

admissible experiments for PFD, which are used to com-
pute the mode II fracture toughness in Sect. 3.2.2.

3.2.2  Calculation of fracture toughness

The mode II fracture toughness is defined as the critical 
mode II stress intensity factor at failure. Following Bah-
rami [7], the mode II fracture toughness can be computed 
based on the failure load F, the geometrical dimensions of 
the specimen, and the mode II stress intensity factor K∗

II
 as 

follows:

where t is the thickness of the disk, a is the notch length, 
and R is the radius of the disk. Bahrami [7] performed finite-
element analyses to determine the normalized mode I and 
mode II stress intensity factors for different DNBD geome-
tries. The relevant values for the selected geometry are sum-
marized in Table 1. Following Eq. 21, the mode II fracture 
toughness is calculated and the average of all admissible 
experiments is taken. The experimental results including the 
observed failure loads and the computed mode II fracture 
toughness for both types of rock are summarized in Table 2. 
The average failure load of all admissible experiments for 
SPK is 16.74 kN. For PFD, we observe lower failure loads 
which yield an average load of 14.3 kN. A mode II fracture 
toughness of 4.79 is calculated for SPK, while a lower KII of 

(21)KII = K∗
II

F
√
� a

� R t
,

Table 1  Normalized crack tip 
parameters from Bahrami [7] 
and interpolation for the present 
geometries

a/R � [ ◦ ] K
∗
I
 [ - ] K

∗
II
 [ - ]

0.75 15 − 0.94 − 2.38

0.78 15 − 0.90 −2.46

0.79 15 − 0.89 − 2.49

0.80 15 − 0.88 −2.52

Table 2  Summary of 
experimental results for crack 
types A and C for both types 
of rock

SPK

Crack type a/R [ - ] t [mm] F [ kN ] Favg [ kN ] KII [ MPa
√
m ] KI∕KII [ - ]

A 0.79 19.7 12.6 16.74 4.79 4.74

A 0.80 19.9 15.8
A 0.80 19.6 13.1
A 0.80 19.9 15.1
A 0.80 21.9 17.6
A 0.78 19.6 18.8
A 0.78 21.1 21.3
A 0.79 18.9 16.1
A 0.78 21.6 20.3

PFD A 0.79 19.6 9.8 14.30 3.99 2.78
C 0.78 19.8 13.3
A 0.79 19.6 11.1
C 0.79 19.6 8.16
C 0.78 22.1 14.2
A 0.79 21.7 17.6
A 0.79 20.6 17.4
A 0.78 20.4 15.6
A 0.78 19.6 18.8
A 0.79 21.6 17.2
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3.99 is obtained for PFD. The mode I fracture toughness of 
SPK is taken from [47]. For PFD, it is calculated based on an 
empirical relationship stated in [57] and the material param-
eters determined in [49]. As stated in Table 2, this yields a 
KI∕KII ratio of 2.78 for PFD, and a ratio of 4.74 for SPK.

4  Numerical results

The phase-field model presented in Sect. 2 is calibrated 
for each type of rock using the computed mode II fracture 
toughness. In Sect. 4.1, the DNBD tests are analyzed. A first 
study (Sect. 4.1.1) shows that the proposed model can repro-
duce the three crack patterns observed experimentally. To 
prove the correctness of the computed material parameters, 
specific geometries of the DNBD tests are simulated and 
compared with the experimental results in Sect. 4.1.2. As 
an outlook, a uniaxial compression test on a rare drill core 
is presented in Sect. 4.2.

4.1  DNBD experiments

The 2D setup for the mixed-mode simulation is shown in Fig.  
5, and the simulation parameters for the different crack types 
are listed in Table 3. The computational domain with dimen-
sions 94 mm × 94 mm is initially discretized with 25 × 25 
elements with polynomial degree p = 3 . It is refined towards 
boundary of the specimen with a refinement depth of k = 1 , 
and additionally towards the notches with a refinement depth 
of k = 3 . An adaptive refinement strategy based on the value 
of the phase-field is used, which refines the mesh in each 

staggered step based on the criterion s < 0.7 up to a depth of 
k = 4 for SPK, and up to a depth of k = 3 for PFD. This results 
in elements of size 0.235 mm on the crack for the SPK setup, 
and elements of size 0.47 mm for the PFD setup. To resolve 
the geometry, a quad-tree subdivision approach with a parti-
tioning depth of d = 3 is used. Higher or Dirichlet boundary 
conditions are applied on two circular arcs of length 10 mm 
representing the contact zone between the wood and the sam-
ple on the top and, respectively, the bottom of the specimen 
(see Fig.  5). While the displacements on the lower arc are 
fixed, negative displacements in the y-direction are applied 
on the top arc. The reaction force on the embedded boundary 
surface is computed as proposed in [20]. An adaptive load 
stepping scheme is used based on the ideas presented in [31]. 
Here, we use a step-size controller relating the step-size change 
to the ratio of tolerance � and current error �i which computes 
the load step-size in iteration i + 1 based on

Fig. 5  Setup of the computa-
tional domain (left), and mesh 
with initial refinement and 
boundary conditions (right)

Table 3  Choice of simulation parameters for the DNBD tests with two different geometries: awater jet cutter and bhand saw

w [mm] � [mm] n
x

n
y

a [mm] R [mm] � [ ◦] p � � uinit [mm] umin [mm]

1.1a (2.2b) 0.0a (1.0b) 25 25 37.5 47 15 3 10−5 106 5 ⋅ 10−3 5 ⋅ 10−4

Table 4  Material parameters for Solnhofen Limestone and Pfraundor-
fer Dolostone from ∗ [49], † [47]

SPK PFD

E [GPa] 45.8∗ 52.5∗

� [-] 0.31∗ 0.27∗

�
t
 [Mpa] 14.4∗ 10.9∗

� [Mpa] 40.92 33.51
G

c
I

 [kN/mm] 1.97 ⋅ 10−5 † 3.928 ⋅ 10−5

G
c
II

 [kN/mm] 4.98 ⋅ 10−4 3.0366 ⋅ 10−4

l0,I [mm] 0.259 0.916
l0,II [mm] 0.722 0.749
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where � = 1.1 , uinit = 5 ⋅ 10−3 and umin = 1 ⋅ 10−4 . A plane 
stress state is assumed. The material parameters for both 
types of rock are listed in Table 4. While GcI

 is obtained 
directly from literature in the case of Solnhofen Limestone 
[47], for Pfraundorfer Dolostone, it is computed from KI 
using the relation

[37]. The mode II fracture energy GcII
 is obtained for both 

rocks by inserting the experimentally determined KII into 
the analog expression

Following the argumentation in [52], l0 is treated as a mate-
rial parameter. The length scale l0,I associated with mode 
I failure is determined using the tensile strength �t of the 
material, while the length scale l0,II is computed based on 
the shear strength � , following:

Here, we compute the shear strength � based on the failure 
loads measured in the DNBD experiments, as the averaged 
force Favg (cf. Table 2) in the direction of the shear plane 
divided by the area of the shear plane, that is

This yields a shear strength �SPK = 40.92 MPa for SPK and 
�PFD = 33.51 MPa for PFD. Using the above stated relations, 
we obtain different length-scale parameters for tensile and 
shear failure, namely l0,I SPK = 0.259 and l0,IISPK = 0.722 for 
SPK, and l0,I PFD = 0.916 and l0,IIPFD = 0.749 for PFD.

4.1.1  Crack patterns

As explained in Sect. 3.2.1, three different crack patterns 
could be observed in the DNBD tests: the mixed tensile-
shear crack (A), the circular mixed tensile-shear crack (B), 
and the pure shear crack (C). To assess the possibilities of 
the proposed model, geometrical and material parameters 
are varied to see if all crack types can be reproduced. For 

(22)Δui+1 = max

(
Δui

(
�

�i

)�

, umin

)
,

(23)GcI
=

K2
I

E

(24)GcII
=

K2
II

E
.

(25)l0,I =
27GcI

E

512 �2
t

,

(26)l0,II =
27GcII

E

512 �2
.

(27)� =
F

A
=

cos(15◦)Favg

2 l t
.

crack types A and C, a notch width of 1.1 mm is used, which 
corresponds to the geometry prepared by a water jet cutter. 
For Type B, a notch width of 2.2 mm is used and the notches 
are shifted perpendicular to their connecting line using an 
offset � of size 1.0 mm. The latter corresponds to the geom-
etry prepared using a hand saw.

The results of the phase-field simulations for both types 
of rock, SPK and PFD, are shown in Fig. 6. Here, for visu-
alization purposes, a combined scale with a value of s = 1 
on a tensile crack, and a value of s = −1 on a shear crack is 
chosen. As can be seen, the proposed model is able to cor-
rectly capture all three crack types. The mixed tensile-shear 
crack (A) features two tensile wing cracks emerging from 
the tips of the notches followed by a shear crack connecting 

Fig. 6  Comparison of experimental and simulated crack paths for the 
three crack types obtained for SPK and PFD: the mixed tensile-shear 
crack (A), the circular mixed tensile-shear crack (B), and the pure 
shear crack (C)
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the notch tips. This crack pattern can be reproduced for 
both SPK and PFD using the geometric parameters of the 
specimens prepared by a water jet cutter. Due to the higher 
KI∕KII ratio of SPK, the tensile wing cracks propagate fur-
ther before shear failure occurs compared to PFD. The cir-
cular mixed tensile-shear crack (B) exhibits similar tensile 
wing cracks; however, shear cracks develop between the tips 
of the tensile cracks and the respective, closest notch tips. 
Similar to Type A, it can be obtained using both SPK and 
PFD material parameters. Interestingly, the numerical results 
confirm that Type B occurs due to the imperfectly captured 
geometry when cutting the notches by hand saw. Due to the 
misaligned notches, the shear cracks start to initiate from 
the tips of the tensile wing cracks and evolve towards the 
notch tips, instead of the shear band forming in the center 
of the specimen as in the case of crack Type A. Here, the 
proposed model gives valuable insights concerning the for-
mation and type of cracks, while experimental determination 
would require advanced experimental techniques and expen-
sive equipment. The pure shear crack (C) shows a shear band 
connecting the two notches. In contrast to Type A, no or 
only minor tensile wing cracks have formed before shear 
failure occurs. Whereas crack types A and B are triggered by 
geometric differences in the specimen, the pure shear crack 
is obtained numerically by decreasing the KI∕KII ratio and 
occurs for both geometries. For SPK, a KI∕KII ratio of 2.23 
is chosen, while for PFD, a ratio of 2.12 yields a pure shear 
crack. Whereas the numerical result for PFD represents a 
pure shear crack, the result obtained for SPK shows small 
tensile cracks which initiate before shear failure occurs.

In summary, the proposed model can reproduce all three 
experimentally observed crack patterns. A detailed study on 
the influence of both material and geometrical parameters 
on the resulting crack pattern, including stochastic analysis, 
might generate new valuable insights and is part of future 
research.

4.1.2  Validation

In this section, a detailed analysis of the mixed tensile-shear 
crack (Type A) is presented. To this end, only experiments 
yielding this specific crack pattern are considered. This cor-
responds to 5 SPK and 5 PFD experiments of the geometry 
prepared using a water jet cutter, which yielded mostly Type 
A crack patterns. In Fig. 7, left, experimental and numerical 
crack patterns are compared for both types of rock. On the 
left, five different phases of crack propagation are evaluated 
for the experiments based on the high-speed camera record-
ings and compared with the simulation results. Here, the first 
column shows the displacement in the x-direction computed 
with DIC, while the second column shows the correspond-
ing crack path. The computed phase-field crack paths are 
depicted in the third column (SPK) and the fourth column 

(PFD). In phase 1  , a wing crack starts to initiate at the 
notch where the displacement is applied. This behavior can 
be observed both in the experiments and in the numerical 
simulation. However, in the phase-field analysis, the second 
tensile crack initiates much earlier and not only after the first 
tensile crack has almost fully developed. This difference in 
behavior likely stems from the different boundary conditions 
applied in experiments and simulations. In the experiment, 
the disk can compress and sink into the soft wood, resulting 
in a change of the contact area over time. This behavior is 
not captured by the boundary conditions set for the numeri-
cal simulation. In phase 2  , the propagation of the tensile 
cracks continues with increasing displacement. The growth 
of the tensile wing cracks steadily decelerates as soon as 
the wing cracks propagate up to the height of the opposite 
notch tip (phase 3  ). Next, a shear band starts to develop in 
the center of the disk. In contrast to the tensile cracks, which 
initiate locally and grow from the crack tip with increasing 
load, the shear failure follows a different pattern. As can 
be seen, the shear crack initiates at the center of the disk 
and the associated damage covers a wider area. The damage 
increases gradually along the connection line between the 
notches (phase 4  ) until failure occurs abruptly in phase 5 .

In summary, the numerical behavior, including the locali-
zation of the shear band in the center of the specimen, agrees 
very well with the experimental observations. The fully 
developed crack patterns for SPK and PFD are shown in 
Fig. 7, right. A direct comparison of the crack patterns of the 
two types of rock shows that the tensile wing cracks propa-
gate further in the case of SPK. Due to the higher KI∕KII 
ratio, the initiation of shear cracks occurs later, which ena-
bles the wing cracks to propagate beyond the notch tip of the 
opposite notch. This difference is also visible in the experi-
mental crack paths. The computed load–displacement curves 
obtained with the three-field model are shown in Fig. 8 for 
SPK, top, and PFD, bottom. The experimentally measured 
failure loads for the chosen geometry are indicated by dotted 
lines, and the averaged failure load as well as the standard 
deviation are presented for each type of rock. Due to the 
different boundary conditions in the experiment, no direct 
comparison of experimental and simulated load–displace-
ment curves is presented here. The plastic deformations of 
the wooden jaws, which are used to transfer the load to the 
specimen, cannot be captured by the numerical model. Con-
sequently, absolute values of the computed failure loads are 
compared against the averaged experimental failure load. 
For both types of rock, the crack phases 1  - 5  are marked. 
First, the force increases linearly until the tensile wing 
cracks start to initiate (phase  1  ). This results in a sudden 
drop in force which occurs at 9.1 kN in the case of SPK and 
at 15.7 kN in the case of PFD. Due to the different length 
scales for tensile cracks ( l0,I SPK = 0.259 and l0,I PFD = 0.916 ), 
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Fig. 7  Comparison of experimental and numerical results for crack 
type A. From left to right: displacement in x-direction obtained by 
DIC, experimental crack pattern, computed phase-field for SPK, and 

computed phase-field for PFD (left). Computational domain with 
mesh refinement for the fully cracked specimen for SPK (i) and PFD 
(ii) (right)
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the loss in force is higher for PFD. The tensile wing cracks 
are not yet fully developed, when the force starts increasing 
again. The slope is almost linear until 3  , when the shear 
band starts to develop. Failure occurs at the maximum bear-
able force of Fmax, SPK = 19.63 kN and Fmax, PFD = 17.5 kN, 
respectively. At this point ( 4  ), the shear damage is already 
clearly visible. Once the shear band has fully developed 
( 5  ), the force drops to zero. As can be seen, the computed 

failure loads are in very good agreement with the experimen-
tal values. For both types of rock, the computed failure loads 
lie within the range of values observed experimentally. The 
failure loads show a relative deviation of 4.4% for SPK and 
of 1.2% for PFD from the respective averaged experimental 
failure loads. For a comparison with a standard two-field 
approach, the same setup is computed using the mixed-mode 
approach by Zhang [59]. Here, the length-scale parameter 

Fig. 8  Computed load–dis-
placement curves for the SPK 
specimen (top) and PFD speci-
men (bottom) for the three-field 
model and the classic mixed-
mode approach by Zhang [59]. 
The points 1 - 5  correspond 
to the crack phases in Fig. 7. 
The experimental failure loads 
with standard deviation and the 
average failure loads are shown 
for both types of rock. The 
computed failure loads obtained 
with the three-field model yield 
a deviation of 4.4% for SPK 
and a deviation of 1.2% for PFD 
from the respective averaged 
experimental failure loads



5576 Engineering with Computers (2022) 38:5563–5581

1 3

is calibrated using the tensile strength of the material, i.e., 
l0SPK = l0,I SPK and l0PFD = l0,I PFD . The respective force–displace-
ment curves are shown in Fig. 8. As expected, the standard 
mixed-mode approach is able to reproduce the tensile wing 
cracks and the subsequent shear failure. For both types of 
rock, the tensile wing cracks initiate earlier. This is due to 
the fact that there is no clear distinction between mode I 
and mode II cracks in the classic mixed-mode approach. 
Both modes in terms of the weighted average of their crack 
driving forces contribute to the damage that forms the wing 
cracks. In the case of SPK, shear failure occurs at a force of 
29.1 kN. This is to be expected, as mode I cracks are now 
governed by l0SPK

= 0.259 instead of l0,II SPK = 0.722 . Follow-
ing Eq. 25, a smaller length scale corresponds to a higher 
material strength and thus a higher failure load. A reverse 
effect is observed for PFD, where we obtain a lower failure 
load of 13.8 kN compared to the three-field approach. It is 
clear that, with a relative error in failure loads of 26.8% in 
the case of PFD and 54.8% in the case of SPK, the standard 
mixed-mode approach fails to reproduce the experimental 
observations.

4.2  Rare drill core

In this section, the proposed three-field model is applied 
to a complex, three-dimensional crack scenario. Within the 
framework of the Geothermal-Alliance Bavaria, various lab-
oratory experiments could be carried out on rare drill cores 
of the exploration well Moosburg SC 4 (MSC-4) [13, 14, 
45]. Drilled in 1990 to a total vertical depth of 1585 m, the 

MSC-4 well is unique for being fully cored over the entire 
reservoir section of the Upper Jurassic carbonates (Malm 
aquifer) with a thickness of 453 m [11, 12, 38]. In the fol-
lowing, a uniaxial compression test on a rare drill core from 
a dolomitic part of the reservoir is presented. The low-poros-
ity dolostone sample shows crystalline sizes of 0.25 mm to 
1.0 mm as well as small and large vugs. To obtain the drill 
core’s exact geometry, the cylindrical sample with a height 
of 98.3 mm and a diameter of 49.7 mm was CT-scanned 
with a resolution of 0.11mm × 0.11mm × 0.11mm . A uni-
axial compression test was performed using a displacement-
controlled test speed using a displacement rate of 0.06 mm/
min. To be able to analyze the experimental crack pattern, 
the compression test was recorded using a Phantom Flex4K 
high-speed camera with 2000 fps in full HD resolution.

The experimental setup and observed crack pattern is 
shown in Fig. 9, left. Upon loading, a vertical crack initi-
ates on the upper side of the large, central pore on the front 
side of the specimen (Fig. 9, 1  ). In addition, cracks emerge 
which connect to the smaller pore on the right side of the 
specimen as well as the lower side of the specimen (Fig. 9, 
2  ). The vertical crack continues to grow upwards until it 

reaches the top side of the drill core. The premature damage 
on the left side of the large pore leads to the development of 
smaller cracks which will connect to a pore on the back of 
the core sample, as seen in Fig. 9, 3  . Here, failure occurs 
and the right half of the specimen is blasted off. The failure 
pattern is dominated by the pores inside the rock, which 
trigger the initiation of the cracks.

Table 5  Choice of simulation 
parameters for the drill core

n
x

n
y

n
z

p � � ularge umed usmall

44 92 44 3 1 ⋅ 10−5 106 2 ⋅ 10−2 4 ⋅ 10−3 3 ⋅ 10−3

Fig. 9  Experimental setup and recorded crack pattern (left), and simulation setup (right) based on the CT-scanned drill core
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4.2.1  Simulation setup

The geometry and boundary conditions for the numerical 
simulation are depicted in Fig. 9, right, and the simulation 
parameters are listed in Table 5. The boundary conditions are 
set as follows: y-displacements are fixed on the top surface, 
while a positive displacement is applied in y-direction. Steps 
of size 0.02 mm are applied until a total displacement of 0.2 
mm, at which the step-size is decreased to 0.005 mm. The 
geometry is represented using FCM. To this end, the core 
sample is embedded into a Cartesian mesh with 44 × 92 × 44 
elements and integration is performed using an octree subdi-
vision approach with partitioning depth d = 3 . This results 
in a total number of 2 168 105 DOFs for the three-field sys-
tem. Due to the limited access to the material of the rare 
drill core, the parameters for this dolostone could not be 
determined experimentally. Consequently, it is assumed that 
the MSC-4 dolostone behaves similar to the PFD and mate-
rial parameters are taken from Table 4. However, the mode 
II fracture toughness needs to be chosen differently, as the 
value determined for PFD results in premature cracking and 

a crack pattern which does not relate to the one observed 
experimentally. Based on a parameter study, we choose 
GcII

= 5 ⋅ 10−3 kN/mm, for which we obtain good agreement 
in both the failure load as well as the observed crack pat-
tern. The higher value of GcII

 can be attributed to the three-
dimensional setting, in which not only mode I and mode II, 
but also mode III cracks occur. However, the extension of the 
proposed two-field problem to account for mode III cracks is 
the subject of future research and is beyond the scope of this 
work. The simulation is performed on the SuperMUC-NG 
cluster at the Leibniz Supercomputing Centre using 24 nodes 
with 48 cores and 96 GB memory per node. The hybrid MPI 
and OpenMP parallelization of the three-field phase-field 
problem is based on the framework presented in [34, 35].

4.2.2  Results

In Fig. 10, the computed fracture pattern is shown for differ-
ent displacement steps. The tensile cracks and shear cracks 
are visualized as iso-volumes of their respective phase-field 
based on a choice of sI ≤ 0.03 for the tensile cracks shown 

Fig. 10  Simulated crack pattern for different displacement steps. For 
visualization purposes. the cracks are shown as iso-volumes of the 
phase-field, i.e. s

I
≤ 0.03 for the tensile cracks depicted in blue, and 

sII ≤ 0.03 for the shear cracks depicted in red. Two different views are 

shown: a front view corresponding to the viewing angle of the camera 
in the experiments (top row), and a side view (bottom row). The blue 
and orange lines in the first column illustrate the orientation of the 
different views
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in blue, and sII ≤ 0.03 for the shear cracks shown in red. At 
a displacement of uy1 = −0.22 mm, cracks initiate around 
the large central pore. Due to the lower Gc value for mode I 
fracture, most cracks are of tensile nature. Only a few shear 
cracks emerge from the left and right sides of the central 
pore directed towards the smaller pores. A tensile crack 
starts to initiate on an internal pore, which is highlighted 
with a black arrow. With further displacement, the crack 
propagates upwards, connecting the large, central pore with 
the longitudinal pore on the back of the drill core (step uy2 ). 
Additionally, a shear crack occurs, which initiates on the 
right side of the central pore and propagates towards the 
specimen’s back, where it connects to the bottom end of 
the longitudinal pore. At displacement step uy3 , the vertical 
tensile crack has propagated further towards the top plate of 
the drill core, while shear damage accumulates at the back of 
the central pore (step uy3 ). At a displacement of uy4 = −0.268 
mm, a large shear crack has emerged from the back of the 
central pore leading to complete failure of the sample.

For a detailed comparison of the final crack pattern, the 
experimental cracks are highlighted in Fig. 11 and contrasted 
with the numerical result. A common feature is the vertical 
tensile crack which initiates on top of the internal pore and 
propagates upwards. In contrast to the experiment, where a 
nearly straight vertical crack is observed, the computed crack 
tends to lean towards the outer surface of the specimen. This 
behavior is related to the boundary conditions. First, as can 
be seen in the experimental setup (cf. Figure 9), the top and 
bottom surfaces of the drill core are not completely parallel. 
This results in a real displacement which differs from the pure 
in-axis displacement applied in the simulation. Moreover, as 
a consequence of the phase-field formulation, the crack is not 
able to penetrate the Dirichlet boundary. Instead, it isrepelled 

from the top and bottom surface of the core sample. There-
fore, the part on the right side of the core sample that falls off 
in Fig. 9, 3  , is smaller in the simulation than in the experi-
ment and shaped differently. The vertical cracks connecting 
the larger pores to the bottom side of the specimen cannot 
be reproduced in the simulation. Similar to the experiment, 
shear and combined tensile-shear cracks connecting the differ-
ent pores are visible outside the specimen. Since the fracture 

Fig. 11  Comparison of the 
experimental crack pattern with 
manually highlighted cracks 
(left), and computed tensile and 
shear cracks obtained with the 
three-field model (right)

Fig. 12  Comparison of the experimental and computed load displace-
ment curves. While the experimentally measured fracture force is 
147.0 kN, the numerical simulation predicts failure at 142.31 kN with 
corresponds to a deviation of 3.2%
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pattern could only be recorded from one side, it is difficult 
to judge if the final failure occurred due to a shear crack. 
However, the visible experimental crack pattern is captured 
remarkably well, and the numerical simulation generates 
interesting insights, including the fact that the vertical tensile 
crack initiates on top of the internal pore, as highlighted in 
Fig. 9, step uy1 . In Fig. 12, the experimental load–displacement 
curve is shown and compared with the computed result. The 
experimental curve clearly shows a brittle fracture behavior 
predicting failure of the sample at a force of 147.0 kN and a 
displacement of 0.24 mm. The computed curve closely follows 
the slope of the experimental curve until a displacement of 
0.224 mm when the maximum load of 142.31 kN is reached. 
At this point, the tensile crack starts to develop which results 
in a drop in force. Once the tensile crack has stabilized, the 
curve slowly starts to ascend again. Shear damage accumulates 
which results in complete failure at a displacement of 0.256 
mm. The deviation of the computed failure load corresponds 
to 3.2% of the force measured experimentally.

5  Conclusion

In this contribution, a three-field phase-field model for the 
simulation of mixed-mode fracture in rock is presented. 
Separate scalar phase-field variables associated with mode 
I and mode II failure are introduced, and the two phase-field 
equations are implicitly coupled through the degradation of 
the material in the elastic equation. By introducing separate 
length scales for the mode I and the mode II problems simi-
lar to [24], the major strength of the model lies in its ability 
to account for different tensile and shear strengths of the 
material. The framework is easy to implement and flexible, 
as it allows the choice of different splits and degradation 
functions. By clearly distinguishing between tensile and 
shear cracks, it facilitates the analysis of complex fracture 
patterns.

To validate the three-field approach, the model was 
calibrated for two types of rock, Solnhofen Limestone and 
Pfraundorfer Dolostone. The mode II fracture toughness 
for each type of rock was determined experimentally using 
double-edge notched Brazilian disk tests. The simulations 
of the DNBD tests demonstrate that the proposed model 
can reproduce the three crack patterns observed experi-
mentally: a mixed tensile-shear crack, a circular mixed 
tensile-shear crack, and a pure shear crack. Moreover, the 
computed failure loads agree very well with the averaged 
experimental results with a deviation of 11.48% for SPK 
and a deviation of 2.98% for PFD. To test the applicability 
of the model for realistic 3D fractures of complex shaped 
specimen, the three-field model was applied to a uniaxial 
compression test on a rare drill core. For a detailed analysis 
of the crack patterns, the experiment was recorded using a 

high-speed camera. The exact geometry of the dolostone 
sample was extracted from a CT-scan. The computed crack 
pattern captures the most characteristic fractures observed 
experimentally. The recorded load–displacement curve can 
be reproduced with good agreement showing a deviation in 
the failure load of 3.2% . The deviations can be explained 
by uncertainties in the boundary conditions as well as the 
diverging material parameters of the rare drill core. The 
example demonstrates the ability of the model to reproduce 
complex, three-dimensional crack patterns in rock and its 
potential to generate valuable insights in the field of mixed-
mode fracture.
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