
Vol.:(0123456789)1 3

Structural and Multidisciplinary Optimization (2022) 65:198 
https://doi.org/10.1007/s00158-022-03279-w

RESEARCH PAPER

Latest developments in node‑based shape optimization using Vertex 
Morphing parameterization

Ihar Antonau1   · Suneth Warnakulasuriya1 · Kai‑Uwe Bletzinger1 · Fabio Michael Bluhm2 · Majid Hojjat3 · 
Roland Wüchner4

Received: 26 February 2022 / Revised: 12 May 2022 / Accepted: 16 May 2022 / Published online: 6 July 2022 
© The Author(s) 2022

Abstract
The latest updates on the Vertex Morphing technique for large optimization problems are shown in this work. Discussions 
about the challenges of node-based shape optimization in academic and industrial applications are included. The adaptive 
Vertex Morphing technique is demonstrated, which is easy to use in practice and allows the full exploitation of the potential 
of node-based shape optimization to find new designs in large-scale applications. We also show an efficient optimization 
method to handle different physical responses with many geometrical constraints. A state-of-the-art example of industrial 
importance supports the work.

Keywords  Gradient-based constrained optimization · Barzilai–Borwein method · Relaxed gradient projection method · 
Adaptive Vertex Morphing

1  Introduction

In many industrial applications, adjoint-based shape opti-
mization application with response functions, computed by 
computational fluid dynamics (CFD) analysis, has become 
an important analysis tool in the design process of the prod-
ucts (Papoutsis-Kiachagias and Giannakoglou 2014; Müller 
et al. 2021). In shape optimization, the aim is to find an 
optimal shape of the model regarding a physical quantity, 
for instance, drag force.

The choice of the design parameters (parameterization) 
plays a key role in successful results in realistic optimization 

problems. There are different methods and strategies to 
parameterize the design space of large problems. There are 
two major groups of parameterization techniques: CAD and 
CAD-free (or parameter-free) methods. CAD methods con-
trol the position of “many” surface points based on “few” 
CAD parameters(Xu et al. 2014; Agarwal et al. 2018). In 
contrast, CAD-free methods use the surface nodes directly as 
the design parameters (Firl and Bletzinger 2012; Stück and 
Rung 2013; Bletzinger 2017; L. A. G and Guillaume 2018). 
CAD-free methods have difficulties attaining the final shape 
without rough/noisy boundaries (Stück and Rung 2011). In 
this regard, several techniques are proposed to increase the 
regularity of the shape update (Stavropoulou et al. 2014; 
Kröger and Rung 2015).

Vertex Morphing is a successful CAD-free technique 
introduced by Hojjat et al. (2014) and Bletzinger (2014), 
Bletzinger (2017). The main characteristics of the technique 
are as follows: 

1.	 The method uses the filtering operation to generate 
smooth design updates and control the surface mesh 
quality.

2.	 No extra optimization model is needed. The Finite Ele-
ment (FE) model is used directly. The Vertex Morphing 
parameterization is easy to set up for complex models 
and geometries, and it is a good alternative to well-
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known parameterization strategies (Baumgärtner et al. 
2016);

3.	 The Vertex Morphing method can be successfully inte-
grated into the multi-disciplinary optimization frame-
work. An example of such implementation can be found 
in Ghantasala et al. (2021), Baumgärtner (2020);

4.	 Vertex Morphing parameterization provides a rich 
design space, allowing new solutions to be explored. 
(Bletzinger 2017);

5.	 Different design constraints, such as symmetry, axis-
symmetry, or damped (non-design) zones, can be 
consistently integrated into the parameterization. This 
ensures the satisfaction of the given requirements with-
out using advanced constrained optimization algorithms 
(Najian Asl 2019).

The main parameter to adjust Vertex Morphing is a fil-
ter radius (“filtering intensity”). It is an additional design 
parameter to modify generated shape update modes and 
define shape features of the initial geometry that will be 
preserved. In the work of Hojjat et al. (2014), it has been 
shown that the optimizer converges to different target local 
optimums by adjusting the filtering radius. The role of the 
filtering radius can be defined as follows: 

1.	 The optimizer is driven to a certain local minimum by 
choice of the filter radius;

2.	 The filter radius directly controls the final shape 
(smoothness, wavelength);

3.	 All the initial features of the geometry which are smaller 
than the filter radius are preserved;

4.	 A priori the “good” size of the filter radius is unknown;
5.	 During the optimization process, the large deformations 

of the design surface can change the surface mesh size 
dramatically. Therefore, the filter radius can become too 
small concerning surface mesh size, and it will cover 
only a few layers of the elements. As a result, the con-
sequential following shape updates are not smooth any-
more. In contrast, the filter radius may become too large 
if the model shrinks. Hence, the big parts of the model 
move as a rigid body.

The adaptive Vertex Morphing is proposed to address the 
challenges mentioned above. The adaptive Vertex Morphing 
method computes the smallest radius required for appropri-
ate filtering on each node. As a result, adaptive Vertex Mor-
phing can be used without any user’s input, or it can correct 
the given user’s input. Additionally, in contrast to the initial 
method, in adaptive Vertex Morphing, the user can provide 
not only “global” radius size but also “local” sizes. In this 
paper, CFD shape optimization problems are solved using 
the adaptive Vertex Morphing technique.

Structural optimization problems with Vertex Morphing 
parameterization require robust and efficient optimization 
methods to handle many design variables and different phys-
ical and geometric constraints. Also, the efficient line search 
strategy can improve the computation of descent improve-
ment of the objective function and keep the design feasible. 
Typically, a structural optimization problem with Vertex 
Morphing has the following properties: 

1.	 A large number of design variables. The “usual” number 
is 1e4 − 1e6 . Therefore, the sensitivities of the response 
functions have to be computed using adjoint sensitivity 
analysis (Najian Asl 2019);

2.	 For typical engineering optimization tasks, comput-
ing the response values of the objective and constraint 
functions requires numerically expensive CFD (or struc-
tural) analysis. Therefore, optimization methods must be 
robust and efficient to reduce the number of evaluations 
of response values as much as possible;

3.	 The objective and constraints functions are typically 
highly non-linear (Firl and Bletzinger 2012);

4.	 The sensitivities of the response functions have to be 
scaled due to the different physical units (m, kg, N, etc.). 
Therefore the information regarding the magnitude of 
the raw sensitivities can be lost;

5.	 Due to a large number of design variables, geometric 
constraints and design bounds lead to a large number 
of constraints. An efficient aggregation method may be 
required (Geiser et al. 2021);

6.	 Line search techniques can be numerically expensive or 
non-accurate for highly non-linear functions. In practical 
application, a constant step size may be preferred.

Generally, a constraint shape optimization problem is for-
mulated as follows:

where x represents design parameters that define the design 
surface, ng and nh are numbers of inequality ( g(x) ≤ 0 ) and 
equality ( h(x) = 0 ) constraints.

The algorithms that have been successfully used with 
Vertex Morphing parameterization are gradient projection 
(Najian Asl et al. 2017; Ertl 2020), the relaxed gradient pro-
jection (RGP) method (Antonau et al. 2021), and the modi-
fied search direction method (Chen et al. 2019; Chen 2021). 
All methods are first-order direct optimization methods that 

(1)

�������� ∶ f (x)

design variables ∶ x

subject to ∶

gj(x) ≤ 0, where j = 1..ng

hk(x) = 0, where k = 1..nh
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can find good search directions to improve the objective 
functions and handle constraints.

In the mentioned works, a constant step size has been 
used. However, the good step size is an unknown a priori 
and may lead to poor performance or higher computational 
cost. There are various methods to calculate the exact or 
approximate step length to find a minimum of the objec-
tive function or sufficient reduction along the descent search 
direction. For instance, Cauchy methods may require cal-
culating the Hessian matrix, which is not always available 
or very expensive to compute (Zhou et al. 2006). Besides, 
Armijo’s backtracking schemes try several step sizes until 
the acceptance criteria are satisfied (Ahookhosh and Ghaderi 
2017). In large CFD optimization problems, additional func-
tional evaluation may excessively increase the computational 
cost of each optimization iteration.

On the other hand, the Barzilai–Borwein (BB) method 
(Barzilai and Borwein 1988) attracts many research groups 
because of its simplicity and surprising efficiency in uncon-
strained optimization problems. The method’s main advan-
tage is that it does not require any costly computational 
operations to approximate the step size. There are various 
modifications of the technique: Projected Barzilai–Borwein 
method (Dai and Fletcher 2005), Adaptive Barzilai–Borwein 
method (Zhou et al. 2006), Stabilized Barzilai–Borwein 
method (Oleg Burdakov and Dai 2019), and accelerated 
Barzilai–Borwein method (Huang et al. 2022).

The Quasi-Newton Barzilai–Borwein (QN–BB) method 
is introduced in this work. In contrast to the original and 
modified versions, the QN–BB method computes each 
design variable’s step size independently. Therefore, each 
design parameter has its step size based on the local sensitiv-
ity information. The QN–BB method has been coupled with 
the relaxed gradient projection method (QN–BB–RGP). The 
QN–BB–RGP algorithm uses a linear approximation of the 
constraints to compute feasible design updates. It allows for 
solving efficiently large optimization problems with local-
ized constraints. Additionally, in this work, the maximum-
value aggregation technique is introduced. It combines a 
large number of nodal constraints into one, where each node 
has an individual correction based on the nodal constraint 
value. The QN–BB method was first time shown at Eccomas 
Congress 2020 & 14th WCCM; the record of the presenta-
tion talk can be found under the link (https://​slide​slive.​com/​
38944​933).

The paper is structured as follows: First, the Vertex Mor-
phing method is reviewed, and the proposed adaptive Vertex 
Morphing is introduced. Then the QN–BB–RGP method is 
described with all its components: QN–BB, RGP, and the 
max-value aggregation technique. The following sections 
describe the academic and industrial optimization problems 

and show a detailed analysis of the performance of the pro-
posed methods. Finally, conclusions are drawn from the 
work.

2 � Vertex Morphing

Without appropriate regularization measures, node-based 
shape optimization produces high-frequency, noisy geom-
etries. Therefore, one means of choice is to subject the raw 
geometry to smoothing using filters. In the context of Ver-
tex Morphing, thus, the structural geometry x is indirectly 
controlled by a control field s and a kernel or filter function 
A, for example, on the surface �  with surface coordinates 
( �, �, �):

Vertex Morphing belongs to the direct filtering techniques 
as opposed to the indirect ones, such as Sobolev smoothing 
(Jameson 1988, 1995; Pironneau 1974), where the filter is 
applied to the actual geometry x . There is great freedom 
to choose kernel functions. For the choice of simple poly-
nomials on compact support (including a piecewise linear 
hat function and splines), it is shown that Vertex Morphing 
is identical to a generalized CAD-based approach with 
indirectly defined spline base functions (Bletzinger 2017). 
When taking the Gauss bell-shaped distribution function, the 
technique has additional equivalent properties compared to 
indirect smoothing (Stück and Rung 2011).

After discretization of the structural geome-
try x = [xx

1
, x

y

1
, xz

1
, ..., xx

n
, x

y
n, x
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n
] and control function 

s = [sx
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, s
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1
, sz

1
, ..., sx

m
, s

y
m, s

z
m
] by standard techniques as the 

finite element method, Vertex Morphing appears as follows:

where x is the vector of coordinates of nodes where the spa-
tial coordinates in x− , y− , and z− direction of a node are 
arranged sequentially. A is the filter operator matrix, and 
s is the vector of discrete control field parameters, again 
arranged sequentially. The most straightforward approach 
is to add control parameters to every node, i.e., vertex, of 
the finite element model, which motivates the term “Vertex 
Morphing.”

The entries Aij of A reflect the filter effect as the interac-
tion between two different nodes i and j, their spatial position 
vectors xi and xj , and their Euclidean distance |||xi − xj

||| . For 
the case of the Gauss distribution as kernel and approximat-
ing integration by summation it holds:

(2)x(�0, �0, �0) = ∫
�

A(� − �0, � − �0, � − �0)s(�, �, �)d� .

(3)x = As,

https://slideslive.com/38944933
https://slideslive.com/38944933
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where

and r is the filter radius. Different from the initial version of 
Vertex Morphing (Hojjat et al. 2014), the same filter opera-
tions are applied of any item assigned to a discrete node, 
which are in particular each component of the spatial coor-
dinates. As a consequence, the entries Aij appear as scalar 
matrices in A:

where I is an identity matrix 3 by 3. This technique is equiv-
alent to the finite element method interpolating every nodal 
coordinate by the same shape function assigned to the indi-
vidual node. Consequently, Vertex Morphing simultaneously 
controls the shape growth in normal surface direction and 
the mesh adaptation tangential to the surface without further 
considerations.

3 � Adaptive Vertex Morphing

This section introduces the AVM technique and its proper-
ties: computation of radius field, smoothing process, and 
radius control by the user.

(4)
Aij =

F(xi, xj)

sum

sum =
∑
j

F(xi, xj)
,

(5)F(xi, xj) =

⎧
⎪⎨⎪⎩

exp
����(−

���xi − xj
���
2

∕2r2)
����
���xi − xj

��� < r

0.0
���xi − xj

��� ≥ r

(6)

Aij = Aij ∗ I

A =

⎡⎢⎢⎣

A11 … An1

⋮ ⋱ ⋮

A1m … Anm

⎤⎥⎥⎦
,

3.1 � Radius field computation

The size of the radius plays a crucial role in the filtering 
process. If the radius does not cover enough elements, the 
final design may not be smooth and have kinks and poor 
quality surface mesh. Even if we choose a suitable radius 
size for the initial model, after n optimization iterations, 
the model can be deformed dramatically, and the radius 
size becomes inappropriate. Therefore, it is essential to 
check if the radius has a proper size during optimization. 
The adaptive Vertex Morphing computes the minimum 
required radius for every node during the optimization 
process. Consequently, it can adapt the radius size for each 
node to keep the filtering property. The required radius for 
node k is computed based on the distances to the neighbor-
ing nodes j as follows:

where dj =
‖‖‖xk − xj

‖‖‖ is a distance between node k and j. The 
constant C can be understood as a number of element layers 
the filtering includes. From various numerical experiments, 
the good values for C are in the range [4, 10] (Firl et al. 
2012; Hojjat et al. 2014; Stavropoulou et al. 2014).

Firl et al. (2012) show that any filtering introduces the 
filtering error: the gap between the optimal shape and the 
“true” optimum. The error disappears, when r → 0 . The 
adaptive Vertex Morphing method allows finding the solu-
tion with the smallest possible radius for the given mesh. 
Hence, it generates the smallest filtering error. Figure 1 
shows the computed radii (radius field) by eq. (7) with C = 7 
as a field, where the value refers to the filter radius at the 
node.

(7)rk = C ⋅max
j
(dj),

Fig. 1   Individual radii for each 
node of the mesh, orange—
radius of the big element, 
blue—radius of the small 
element
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3.2 � Radius field smoothing process

In the above-computed radius field, the radii size at neigh-
boring nodes varies a lot because the plate has an unstruc-
tured mesh. As it is shown in Geiser (2017), the Vertex 
Morphing generates a gap in the shape update on the bor-
der between two different radii. The proposed solution is to 

have a smooth transition in space from one radius size to 
another. The adaptive Vertex Morphing method smoothens 
the computed radius field from eq. 7 so that the radii at the 
neighboring nodes have similar radii (smooth transition). In 
this work, an adaptive Vertex Morphing mapping operator 
A with linear kernel function and local radius size has been 
applied to smooth the radius field, Algorithm 1.

In the smoothing process, it is required to do multiple 
filtering iterations because the initial radius field is discrete. 
The number of smoothing iterations can vary for different 
examples. Figure 2 compares the raw and smoothed radii 
for different Niter numbers. The results can be summarized 
as follows: 

1.	 In case Niter = 0 , there is no smoothing of the radius 
field, Fig. 2a, b;

2.	 In case Niter = 1 , the radius field is non-smooth in the 
region with higher radius values, Fig. 2c;

3.	 In case Niter = [2, 10] , the radius field is smooth. If the 
Niter number increases, the high radius values diffuse 
into the regions with low radius values, Fig. 2d, e;

4.	 In case Niter = 100 , the radius field has very small 
changes in the values [0.54, 0.6], almost a constant field, 
Fig. 2f. If Niter → inf , the radius fields converges to a 
constant field.

3.3 � Local and global radius control

In the initial and adaptive Vertex Morphing methods, the 
filtering radius size is considered as an additional design 
parameter that strongly affects the final shape. Minimal 
required radii computed by the adaptive Vertex Morphing 
method are not always the best choice. Due to manufactur-
ing limitations, weak performance, or unaesthetic design, 
one may need to change the radius size to find a new design 
in the next optimization process. The adaptive Vertex Mor-
phing technique allows setting a global or local minimum 
radius. Hence, equation 7 is modified as follows:

where the rmin,k is a given minimal radius for a node k. Fig-
ure 3 shows how the “minimum radius” ( rmin,k = 0.3 ) modi-
fies the resulting radius field.

The modification in equation (8) extends the design fea-
tures of the adaptive Vertex Morphing method. On one side, 
the adaptive Vertex Morphing method is straightforward to 
use, and on the other side, it is very powerful and flexible 
parameterization. The workflow with adaptive Vertex Mor-
phing parameterization with a new unknown model is as 
follows: 

1.	 Run the first cycle of the optimization using only the 
computed radius field without any additional input for 
the filter radius.

2.	 Based on the outcoming results from the first run, adjust 
the sizes of the filtering radius in the regions where the 
final shape modes are not suitable or lead to bad per-
forming design.

The adaptive Vertex Morphing method increases the mesh 
dependency of the parameterization because if the finite ele-
ment model is discretized with a new mesh, the minimum 
required radii will also change (see eq. 7). If the optimization 
problem is convex, the final shape will always converge to 
an unique solution, independent of the filter radius constant 
or variable sizes. In contrast, if the optimization problem 
is non-convex, the choice of the filter radius will guide the 
optimizer to the different local optima; hence, the adaptive 
Vertex Morphing method may find different local minima 

(8)rk = max(C ⋅max
j
(dj), rmin,k),
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for different discretizations. The interested reader is referred 
to Firl et al. (2012), Hojjat et al. (2014) to peruse mesh-
independency in FE-based parameterizations.

3.4 � Simple 3D plate example

The 3D plate example is prepared to demonstrate the influ-
ence of the computed radius field on the design surface’s 
quality. The discrete sensitivity field has been computed and 
used as a sensitivity field on the plate geometry (Fig. 1). 
10 optimization iterations of the steepest descent algo-
rithm with constant step size have been applied to find the 
deformed plate. The sensitivity field is defined as follows:

where ni and Ai are the nodal normal and area, respectively. 
The steepest descent shape update is computed as follows:

where A is an adaptive Vertex Morphing filtering matrix, 
which is computed using the smoothed radius field.

In Figs.  4 and 5, the deformed plate is shown with 
respect to different values of C and Niter . If Niter = [0, 1] , 
the radius field is non-smooth and the deformed plate has 

(9)∇f (xi) = niAi,

(10)�x = A

(
�

||s| | s
)
,

Fig. 2   Radius field comparison 
with respect to N

iter
 smoothing 

iterations

(a) Raw radius field (b) Smoothed radius field,Niter = 0

(c) Smoothed radius field,Niter = 1 (d) Smoothed radius field, Niter = 2

(e) Smoothed radius field, Niter = 10 (f) Smoothed radius field, Niter = 100
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rough surface with kinks. In contrast, if Niter ≥ 2 , the radius 
field is smooth, and the deformed plate has a smooth sur-
face. These results correlate with the statements from Geiser 
(2017). Similarly, if C < 4 , the filter radius size covers only 
a few elements; hence the adaptive Vertex Morphing does 
not compute smooth shape change.

4 � Quasi‑Newton relaxed gradient projection 
method

This section introduces the Quasi-Newton Barzilai–Borwein 
and Quasi-Newton relaxed gradient projection methods and 
max-value aggregation techniques.

4.1 � Relaxed gradient projection method

The relaxed gradient projection method (RGP method) is a 
modification of a well-known Rosen’s gradient projection 

method (Rosen 1960, 1961). The main idea of the RGP 
algorithm is to use information regarding the values of the 
constraints from previous optimization iterations to compute 
a buffer (critical) zone around the constraint boundary and 
keep the constraint active if the value is inside the buffer 
zone. For convenience, the basic formulas are presented 
below. For more details, the reader should refer to Antonau 
et al. (2021).

The buffer coefficient �(i)

j
 can be computed based on the 

constraint value gj(x(i)) and the buffer size BS(i)
j

:

or for equality constraints ( hj(xi) = 0):

(11)
�
(i)

j
=

gj(x
(i)) − LBV

(i)

j

BS
(i)

j

LBV
(i)

j
= CBV

(i)

j
− BS

(i)

j

Fig. 3   Comparison of radius 
fields: left—original, right—
with minimum required radius, 
( r

min,k = 0.3,N
iter

= 10,C = 7)

(a) Raw radius field

(b) Smoothed radius field
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Fig. 4   Deformed plate with 
respect to different N

iter
 num-

bers

Fig. 5   Deformed plate with 
respect to different C constant
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where LBV (i)

j
 (“lower buffer value”) is a lower boundary of 

the buffer zone, BS(i)
j

 (“buffer size”) is a size of the buffer 
zone, CBV (i)

j
 (“central buffer value”) is a value of buffer 

zone’s center, and LVj is a constraint limit value. The buffer 
size BS is based on constraints values from previous 
iterations:

where BSF(i) can be adjusted by the buffer adaptation func-
tions (Antonau et al. 2021). The buffer coefficient can be 
separated into two components: “relaxation” and “correc-
tion” coefficient. The first part, “relaxation,” is calculated 
as follows:

If the constraint is equality, the relaxation coefficient is 
always equal to one, �r,(i)

j
= 1.0 . The second component, 

“correction,” �c,(i)

j
 is

where the factor BSF(0) = 2 is the initial buffer size factor, 
and �max is the maximum correction coefficient. If the prob-
lem starts from an infeasible domain, the correction coef-
ficient can be very high and may cause numerical issues. 
The �max = 2 limits the correction coefficient to the values 
inside the buffer zone and works in most cases. The search 
direction can be defined as follows:

The last equation scales the search direction using the max 
norm and can be skipped if the line search method works 
with an unscaled search direction. However, max scaling 
is required in the practical optimization application, where 
the shape can be changed by a certain amount (constant or 
limited).

(12)�
(i)

j
= 1 +

abs[gj(x
(i)) − LVj]

BS
(i)

j

,

(13)
BS

(i)

j
= BSF(i)

⋅max
k

(�gj(x
(k)))

�g
(i)

j
= abs(gj(x

(i)) − gj(x
(i−1)))

,

(14)𝜔
r,(i)

j
=

{
𝜔
(i)

j
, if 𝜔

(i)

j
≤ 1.0

1, if 𝜔
(i)

j
> 1.0

(15)𝜔
c,(i)

j
=

⎧⎪⎨⎪⎩

BSF(0)(𝜔
(i)

j
− 1), if 1.0 < 𝜔

(i)

j
< 𝜔max

0, if 𝜔
(i)

j
≤ 1.0

BSF(0)(𝜔max − 1), if 𝜔
(i)

j
≥ 𝜔max

,

(16)

p(i) = −[I − N�r,(i)(NTN)−1NT ]∇f (i)

ŝ(i) = p(i) − N�c,(i)

s(i) =
ŝ(i)

||ŝ(i)||max

4.2 � Barzilai–Borwein method

The Barzilai–Borwein method (BB method) suggests a step 
size approximation using current and previous sensitivity 
information. The Barzilai–Borwein method computes a new 
step size as follows:

or

where y(i) = ∇f (x(i)) − ∇f (x(i−1)) is a change in the sensitivi-
ties of the objective function and d(i−1) = x(i) − x(i−1) is the 
previous update of the design variables. Therefore, if s(i) is a 
search direction at iteration i, the design update is

A modification to the original Barzilai–Borwein method is 
introduced in this work, the Quasi-Newton Barzilai–Bor-
wein method (QN–BB). The main idea of our modification 
is to compute the step size for each design variable instead of 
one step size for the full search direction vector. The design 
update can be found as follows:

where s(i) is a search direction computed by the relaxed gra-
dient projection method at iteration i and �(i)

k,max
 is a maxi-

mum allowed step size at node k. If s(i) is normalized by 
equation (16), �(i)

k,max
= r

(i)

k
∕5.

4.3 � Quasi‑Newton relaxed gradient projection 
method

The Quasi-Newton relaxed gradient projection method com-
bines the Quasi-Newton Barzilai–Borwein method and the 
relaxed gradient projection method. Linear approximation of 
the constraints is used to improve the constraint handling. 
In Fig. 6, the Quasi-Newton relaxed gradient projection 
method is shown. The QN–BB–RGP method is performed 
as follows: 

(17)�(i) =
y(i),Td(i−1)

y(i),Ty(i)

(18)�(i) =
d(i−1),Td(i−1)

d(i−1),Ty(i)
,

(19)�x(i) = �(i)
⋅ s(i)

(20)H(i) = [�
(i)

k
]

(21)�
(i)

k
= min

(
abs

[
y
(i),T

k
d
(i−1)

k

y
(i),T

k
y
(i)

k

]
, �

(i)

k,max

)

(22)y
(i)

k
= s

(i−1)

k
− s

(i)

k

(23)�x(i) = H
(i)
⋅ s

(i)
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1.	 Compute response values at the current design state: 
f (x(i)) , g(x(i));

2.	 Compute gradients of the objective function and active 
constraints: ∇f (x(i)) , ∇g(x(i));

3.	 Find shape update �x(i) : 

(a)	 Compute search direction s(i) , eq. (16);
(b)	 Compute shape update �x(i) , eq. (23);
(c)	 Compute linear approximation to response func-

tion for the computed shape update: g̃(x(i+1)) , 
h̃(x(i+1));

(d)	 If g̃(x(i+1)) <= 0 and h̃(x(i+1)) = 0 , then the feasi-
ble shape update is found. The inner loop is con-
verged;

(e)	 If g̃(x(i+1)) > 0 and h̃(x(i+1))! = 0 , then the feasible 
shape update is not found. Update the buffer coef-
ficients �(i)

j
+ = 0.02 and repeat the inner loop 

process;

4.	 Save current �x(i) , s(i);
5.	 Check if the optimization algorithm has converged. If 

not, go to Step 1.

The constant to increase the �(i)

j
 is based on the numerical 

experiments, and it shows a good compromise between accu-
racy and cost. It has no effect on �(i+1)

j
.

4.4 � Maximum‑value constraint aggregation 
technique

The RGP and QN–BB–RGP methods compute the buffer 
coefficient based on the constraint value and buffer size 
using equation (11). For the nodal constraints, the buffer 
coefficients are computed for each node. For constraint 
gj(x

(i)

k
) of node k at the optimization iteration i, the buffer 

coefficient is computed as follows:

If ∇gj(x
(i)

k
) is a gradient vector of the constraint for node k, 

the aggregated constraint can be formulated as follows:

Linear approximation to a constraint function at the new 
design point x(i+1)

k
 is

If the approximated value g̃(x(i+1)
k

) > 0 , the QN–BB–RGP 
method increases the w(i)

j,k
 to modify the computed search 

direction s(i) , equation (16).

(24)w
(i)

j,k
=

gj(x
(i)

k
) − LBV

(i)

j

BS
(i)

j

(25)

gj(x
(i)) = max

k
(gj(x

(i)

k
))

∇g(x(i)) =
∑
k

w
(i)

j,k
⋅ ∇gj(x

(i)

k
)

w
(i)

j
= max

k
(w

(i)

j,k
)

.

(26)g̃(x
(i+1)

k
) = g(x

(i)

k
) + ∇gj(x

(i)

k
𝛥x(i)).

Fig. 6   Flowchart of the Quasi-Newton relaxed gradient projection method



Latest developments in node‑based shape optimization using Vertex Morphing parameterization﻿	

1 3

Page 11 of 19  198

5 � Academic experiment

This numerical investigation is designed to illustrate 
the applicability of the methods above in a highly non-
linear shape optimization problem. Reynolds-averaged 
Navier–Stokes (RANS) equations are used to solve for flow 
variables in the fluid domain utilizing the k − � − sst two-
equation turbulence model. The reader is referred to War-
nakulasuriya (2021) for more information on the specific 
implementations of the two-equations turbulence model in 
a Finite Element (FE) context.

5.1 � Experimental set‑up

The fluid domain 𝛺 = (−24.5D, 24.5D) × (−16D, 16D) ⊂ R2 
chosen after a domain size study is illustrated in Fig. 7, 
where D = 0.1m . The inlet (i.e., �inlet ) is applied with a 
constant velocity (i.e., uinlet ), and turbulence quantities 
are determined using a turbulence intensity of 5% and a 
turbulent mixing length of 45D. The Reynolds number is 
Re = 10e5 . The outlet (i.e., �outlet ) is applied with a 0Pa 
Dirichlet boundary condition for P, zero gradient boundary 
conditions for variables u, k, �,� . The slip condition (i.e., 
�far ) is applied on the top and bottom slip boundary for 
variable u, and all other variables are applied with a zero 
gradient boundary condition. Linear-log law wall functions 
developed by Launder and Spalding (1983) are used on the 
aerofoil boundary (i.e., �s ) to accommodate a wide range of 

meshes with y+ ∈ [0, 300] in the first element near the wall 
boundary.

Figure 8 illustrates the overall mesh (refer to Fig. 8a) 
and enlarged view of the same mesh near the initial aero-
foil geometry (refer fig. 8b) consisting of 20, 183 triangle 
elements.

5.2 � Optimization procedure

Drag and lift forces are the interested scalar QOI in this 
numerical experiment because the aerofoil’s usefulness 
depends on having maximum lift with minimum drag force. 
Equation (26) describes the optimization problem of interest.

where Jlift
(
w(sinitial), sinitial

)
= 0.89 in all experiments.

Gcentroid is computed by averaging all nodal coordinates 
along the aerofoil boundary as illustrated in equation (27) 
where N represents the number of nodes in �s . It is applied 
to constrain aerofoil geometry to be present at the center of 
� for all design iterations. AVM is used to smooth the noisy 
sensitivity field on the aerofoil boundary, and QN–BB–RGP 

(27)

min
s

Jdrag(w(s), s)

subjected to

R� = 0 ∀� ∈ {u, v,w, p, k,�}

Gcentroid(s) = 0

Jlift(w(s), s) − Jlift
(
w(sinitial), sinitial

) ≥ 0.0

,

Fig. 7   Aerofoil problem con-
figuration used in RANS in 2D

Fig. 8   Initial mesh for a 2D 
aerofoil optimization problem
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is used to obtain the next aerofoil boundary for the optimiza-
tion problem

where x�center
 is the center of �.

5.3 � Results

The results of the academic experiment are presented here-
after. The academic experiment is carried out with adaptive 
Vertex Morphing (AVM) and different radius set-ups: adap-
tive radius ( C = 7 ), 20mm and 50mm . The QN–BB–RGP 
algorithm is used in all experiments to solve the optimization 
problems. The focus of this experiment is to show the impor-
tance of the filtering radius. All experiments have done 500 
optimization iterations without further convergence criteria.

Figure 9 illustrates drag force variation with each design 
iteration. The experiment with constant Vertex Morphing 
radii of 50mm shows oscillations and does not depict an 
overall improvement in the drag force reduction. How-
ever, the experiments with adaptive and 20mm radii show 
improvement over the design iterations where 20mm radius 
set-up finds the best performing design.

Geometric constraint variations with respect to optimi-
zation iterations are illustrated in Fig. 10. It depicts that all 
the proposed designs satisfy the geometric constraint, which 
enforces keeping the aerofoil design in the center of the fluid 
domain.

However, the lift constraint as depicted in Fig. 11 shows 
oscillating behavior, thus with constraint violations. The 
QN–BB–RGP method cannot precisely predict the constraint 
value of the non-linear constraints such as lift by using a 
linear approximation. However, the QN–BB–RGP can cor-
rect the violated constraint values in all experiments. Hence, 

(28)Gcentroid =

‖‖‖‖‖‖
1

N

N∑
i=1

(xcurrent,i − x�center
)

‖‖‖‖‖‖

2

2

,

there are improved feasible designs during the optimization 
process. Table 1 summarizes the results of the experiments 
and shows the performance of the last and the best-feasible 
designs. Table 2 summarizes the computational time.

To further investigate the final design from each experi-
ment, Fig. 12 illustrates the velocity and pressure distribu-
tions of the optimized designs. It can be observed that the 
experiments with adaptive and constant Vertex Morphing 
radii of 20mm try to reduce the frontal area to reduce 
drag force acting upon the aerofoil. The optimized design 
obtained by the experiment with radii of 50mm does not 
significantly reduce the frontal area, and it is due to restrict-
ing sensitivity information by having higher constant Vertex 
Morphing radii. In all experiments, the final designs have 
smooth boundaries. In the case of adaptive radius, the final 
design has smaller local changes on the lower surface and 
the trailing edge, see Fig. 12.

Figure 13 illustrates the effect of the filtering radii on the 
generated shape update. At iteration 1, in all experiments, 

Fig. 9   Drag force variation with optimization design iterations

Fig. 10   Geometric constraint variation with optimization design iter-
ations

Fig. 11   Lift constraint variation with optimization design iterations
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the raw drag sensitivities are identical, as well as the steepest 
descent step ( �x(1) = −�(1) ⋅ ∇f (1) ). It can be observed that 
the radius of 20mm smoothens the non-accurate sensitivity 
on the trailing edge (flow separation point) better than a 
smaller (adaptive) radius ( 7mm at the point). Therefore, the 
large filter helps to reduce the local error of the sensitivities 
and generates shape update changes that modify the aerofoil 
profile more “globally.” As a result, the optimizer finds a 
better-performing design with a 20mm radius. In contrast, 

Table 1   Optimization results 
of the aerofoil, in red—best-
feasible designs

Radius setting Drag force Improvement [%] Lift force Violation [%] Iteration

Adaptive radius 2.007 −31.1% +0.964 +8.31% 500
Radius 20mm 1.407 −51.87% 0.849 −4.61% 500
Radius 20mm 1.416 −51.55% 0.894 +0.45% 491
Radius 50mm 3.09 +6.16% 0.726 −18.43% 500
Radius 50mm 2.809 −3.53% 0.982 +10.34% 176

Table 2   Computation time

Computation time
Aver. primal analysis 792.6 s
Aver adjoint analysis per response 30.3 s
Aver. time per optimization iteration 827 s
Aver. time to find �x 4.1 s
Overall optimization time 413526 s
CPU hours 1380

Fig. 12   Optimized aerofoil 
design, on left—velocity [ms−1] 
and on right—pressure [Pa] 
distributions



	 I. Antonau et al.

1 3

198  Page 14 of 19

the optimizer finds a weak design with a radius of 50mm due 
to high filtering error. As it is discussed in Firl et al. (2012), 
the filtering intensity is always a compromise between filter-
ing error and smoothing of sensitivity error.

6 � Large industrial example

An industrial CFD optimization problem is solved to demon-
strate the full potential and flexibility of the adaptive Vertex 
Morphing technique and the robustness of the QN–BB–RGP 
algorithm. The goal of the optimization is to reduce the drag 
force of the BMW M4 GT4 car, while the downforce has to 
be equal to or larger than an initial value. The example has 
been prepared in cooperation with BMW Group, Motorsport 
division. All methods above are implemented in the optimi-
zation framework “ShapeModule” (BMW Group). Siemens 
STAR-CCM+TM software (Version 2020.2) is used to do 
primal and sensitivity analysis of the numerical model.

6.1 � Problem description

Table 3 summarizes the properties of the CFD model/analy-
sis, optimization problem, and parameterization. All geo-
metrical constraints are aggregated into one, as shown in 

Fig. 13   Drag sensitivities and 
shape updates at the wing’s tip, 
iteration 1

Table 3   Optimization problem description

Primal & Adjoint Analysis
Time integration Steady
Turbulence model K-Omega SST (Menter)
Adjoint Model Adjoint Frozen Turbulence
Mesh & Domain
Domain size 80 × 40 × 30 [m]
Number of cells 114,681,935
Smallest element size 4 [mm]
Element type hex dominant
Optimization Problem
Design variables position of the surface nodes: 

[x, y, z]
Number of design Variables 1,950,141
Objective function drag force
Physical constraint type downforce
Number of physical constraints 1
Geometrical constraint type max shape update at node
Number of geometrical constraints 115,830
Parameterization
Part’s name Radius size [mm]
Overall Design Surface 30
Rear wing 50
Trunk lid 200
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Section 4.4. The details of the turbulence models, solvers, 
and adjoint analysis can be found in the documentation of 
the Siemens STAR-CCM+TM.

Figure 14 shows the CFD model of the full car, where 
the design surface is highlighted in blue. The car’s exterior 
surface is chosen as a design surface: front flaps, front split-
ter, and rear wing. All these features have different physical 
and mesh sizes. Hence, they require different radius sizes. 
Figure 15 shows the radius field over the design surface and 
Table 3 gives the radius sizes.

The CFD model is highly detailed, and it contains a lot 
of non-design parts on the exterior surface and inside the 
car as well. For instance, non-design parts are the door han-
dles, radiator, mirrors, lights, engine, suspension, gearbox, 
etc. Therefore, the geometrical constraints are needed to 
avoid the penetration between design and non-design parts. 

Figure 16 shows the design surface, where the geometrical 
constraints are applied.

6.2 � Results and discussions

The QN–BB–RGP method solves this problem successfully 
without any parameter tuning of the optimization algorithm. 
It is an important point because finding suitable parameters 
is a very expensive and time-consuming process. The simu-
lation is run on a 12-node HPC cluster, where each node 
has 2 x AMD 24-Core EPYC 7402 with 252 GB RAM. In 
total, simulation takes 210 hours or 120960 CPUh. Figure 17 
shows the response values change during the optimization 
process. The optimization process is stopped by a maximum 
number of iterations due to the time limit. From the results 
given in Table 4, the most consuming operation is primal 
and adjoint CFD analysis. Finding the search direction takes 

Fig. 14   Geometry of the CFD 
model: design surface—blue, 
non-design parts—light gray

Fig. 15   Radius field over the 
design surface

Fig. 16   Geometrical constraint: 
constrained zone—red, free 
design surface—blue, non-
design parts—light gray



	 I. Antonau et al.

1 3

198  Page 16 of 19

around 1 hour, which is less than other operations: mesh 
motion, file saving, etc. One inner iteration takes approxi-
mately 3 min, where computing the search direction takes 
around 0.2 s, the shape update – 4.3 s, and mapping the 
shape update takes the rest. Figure 17e shows the number 

of iterations required to converge the inner loop. The most 
needed number of iterations is at optimization iterations 3 
when the geometric constraint gets active.

Figure 17b shows that the lift constraint is not active at 
the final design. However, if the downforce constraint is not 
included, the optimizer chooses another local optimum and 
dramatically reduces the downforce. Figure 17c shows the 
performance of the optimization algorithm to hold the geo-
metric constraint. As described in Section 4.3 and 4.4, the 
geometric constraints are aggregated and accurately handled 
during optimization. The design stays just in 0.04 mm dis-
tance from the limit value (limit value: 5 mm, max design 
value: 4.96 mm), while the design update in the whole model 
is up to 10 mm (see Fig. 19d).

The optimization results are shown in Figs. 18 and 19. 
One can see that the most shape changes happened on 
the rear wing, trunk lid, front flaps, and front splitter. The 

Fig. 17   Optimization results: 
response function evaluations & 
size of shape updates

Table 4   Computation time [hour]

Computation time [hour]
Aver. primal analysis 10
Aver adjoint analysis per response 2.5
Aver. time per optimization iteration 14.95
Aver. time to find �x 0.85
Other operations 1.6
Overall optimization time 210
CPU hours 120960
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middle section of the rear wing, trunk lid, and frontal flaps 
has been deformed to generate less drag. In contrast, side 
sections of the rear wing and front splitter generate more lift, 
this explains why our final design has improved both aero-
dynamic characteristics. Suppose the design surface is not 
so large and includes only the rear wing and front splitter, 
in that case, the final results will not be so impressive, just 
4% drag reduction (the results have been shown at ISSMO-
14th World Congress of Structural and Multidisciplinary 

Optimization, “Quasi-Newton Relaxed Gradient Projection 
method in large constrained node-based shape optimization 
problems”).

In Figure 19d, one can see the difference on the final 
shape update with different radii. The rear wing has a radius 
of 5 mm, while the trunk lid is – 20 mm. The final shape of 
the trunk lid is very smooth, and the wavelength of shape 
change is large. In contrast, the shape change of the rear 
wing is locally detailed, but it is smooth. Due to manufac-
turing limitations or unaesthetic design, one can change the 
radii to find a new design in the next optimization process.

7 � Conclusions

Adaptive Vertex Morphing extends Vertex Morphing 
parameterization to solve large-scale optimization problems 
with local control on the final shape. It allows reasonable 
control of the final form and finds various solutions. The 
QN–BB–RGP method shows good potential as an accelera-
tion and stabilization technique for gradient descent methods 
with many design variables and expensive response func-
tions. The proposed QN–BB–RGP method, in combination 
with the maximum value aggregation technique, solves large 
optimization problems with a huge amount of geometric 
constraints. Linear approximation is not accurate for highly 
non-linear constraints, but still, the method can handle such 
constraints and find feasible solutions. In future work, modi-
fications of the Barzilai–Borwein method can be studied to 
improve the QN–BB method, and adaptive Vertex Morphing 
can be extended to solve multi-disciplinary optimization 
problems with non-matching meshes.
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