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Abstract
This paper is concerned with shaping the time behavior of controls for generating transition trajectories. Parameterizing
controls with trigonometric series enables infinite differentiability with respect to time, which is very appealing in real
operations. In practice, one may desire the controls to have a specific distribution over time. However, to achieve this usually
relies on judicious selection of the cost function. To this end, this paper introduces a time-scaling transformation for the
trigonometric series. It yields an intuitive and flexible way to design the controls tailored to the desired shape of a transition
maneuver. The process does not rely on additional design effort for the cost function. The proposed method is applied to
generating a transition trajectory that converges to the desired condition earlier in comparison to the unscaled formulation.
Numerical results demonstrate the effectiveness of the proposed method.

Keywords Trajectory generation · Control parameterization · Trigonometric series · Time scaling

1 Introduction

Trajectory generation is an essential practice in aerospace
operations [2,7,19]. While discontinuous controls are com-
mon and possibly welcome in some applications [4,16],
smoothness is very often considered to be an important
feature of a reliable reference trajectory, especially in aero-
nautical operations [6,17,18]. For this purpose, there are
dedicated trajectory generation approaches using fundamen-
tal geometric elements, such as lines, arcs, and clothoids,
capable of generating trajectories with only discontinuities
in high-order derivatives at the connecting points [3,20,21].
When dynamics are taken into consideration, trajectories
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are generated using numerical optimization. For aerospace
applications, one can refer to [1,5]. However, many existing
methods nowadays based on numerical approaches may not
be able to guarantee the continuity in higher-order deriva-
tives. This is because the controls at every discrete point are
set to be independent decision variables.

A trigonometric series-based trajectorygeneration approach
is developed in [10] and has been applied in various applica-
tions [11–13]. It parameterizes the controls as trigonometric
series and uses numerical optimization methods including
convex optimization to determine the unknown series coeffi-
cients. The controls being a time-dependent trigonometric
series are of C∞, i.e., infinitely differentiable. Therefore,
smoothness of trajectories can be achieved. By imposing
equality constraints, the boundary time behavior, namely, the
continuity to the adjacent flight segments can be ensured as
required. However, except for the boundaries, to acquire cer-
tain time behavior of controls relies on a judicious choice
of the cost function. In fact, the cost function traditionally
plays the sole role in deciding the control behavior in trajec-
tory optimization [19]. Therefore, we seek for an innovative
means to approach the goal within the trigonometric series-
based trajectory generation.

In this paper, we develop a simple but effective way
to shape the time behavior of controls parameterized by
trigonometric series through time-scaling. A user-defined
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time scaling function is introduced to replace the original
argument of the series basis function, namely, time, with a
new independent variable. This variable is designed to have
the desired time behavior and will pass the characteristic to
the parameterized controls. Hence, having a specific time
behavior of controls is decoupled from the design process
of the cost function. Still, the cost function may affect the
control behavior. However, the proposed method shapes the
behavior in an externalmannerwithoutmodifying on the cost
function. This philosophy is a unique advancement to previ-
ous works on the trigonometric series and thus a contribution
to the literature.

The implementation of the newly proposed method is
demonstrated in the convex-optimization framework devel-
oped in [8]. In this paper, it is shown that the proposed
method only requires minimal modification of the optimiza-
tion framework in its original form in [10], leading to a direct
port. We show an application of transition trajectory gen-
eration, where a transition trajectory connects two steady
flight conditions. A smooth connection is desired, which cor-
responds well to the capability of the trigonometric series
parameterization method. For the transition maneuver, the
application in this paper demands the aircraft to be more
stable, i.e., having slow-varying control commands, in the
later phase of the transition. This time behavior will better
prepare the aircraft for the following flight segment. To this
end, a time-scaling function based on a logistic function is
selected to achieve this feature within the proposed method.
Numerical simulations are carried out to verify the design.

The rest of this paper is organized as follows: Section 2
introduces the trigonometric series parameterization and the
time scaling that shapes the time behavior of it prior to the
determination of the series coefficients. Section 3 shows the
details of the implementation of the proposed approach to a
convex optimization framework. Section 4 shows the simu-
lation results of the proposed method in combination with
the convex optimization being applied to a transition trajec-
tory generation task. Section 5 presents the conclusion of this
paper.

2 Time-scaled trigonometric series control
parameterization

In [10], a control parameterization method is introduced. A
time-varying control variable u is described as an N th-order
trigonometric series as

u (t) = a0 +
N∑

n=1

(
an cos

(
nπ

T f
t

)
+ bn sin

(
nπ

T f
t

))

= sN (t) cN ,

(1)

where

sN (t) =
[
1, cos

(
π

T f
t

)
, . . . , cos

(
Nπ

T f
t

)
,

sin

(
π

T f
t

)
, . . . , sin

(
Nπ

T f
t

) ] (2)

cN = [a0, . . . , aN , b1, . . . , bN ]
T . (3)

Here, sN (t) is a function of time t ∈ [
0, T f

]
. Natu-

rally, u (t) is of C∞ after the parameterization. Moreover,
the parameterization specifies u as a linear function of the
series coefficients cN . It is intuitive that for Eq. (1), the time
behavior of u over the entire horizon

[
0, T f

]
is solely decided

by cN which is to be determined by optimization. This is gen-
erally not a disadvantage because of its simple structure. To
achieve a particular time behavior of the control variable,
one often relies on designing the cost function which affects
the selection of cN . This is not always favorable as such an
indirect processmay lead to a Pareto objective and thus possi-
bly causes the cost function to lose advantageous properties,
e.g., convexity. In addition, it is not effortless to relate certain
behaviors to mathematical expressions in a cost function.

To mitigate this, we introduce a time-scaling transforma-
tion to Eq. (1). The time-scaling transformation originates
in [15] and yields a new optimization problem formulation
over a new horizon. Meanwhile in this paper, the proposed
time-scaling transformation only influences the trigonomet-
ric series parameterization in Eq. (1). It introduces a new
variable that monotonically increases with respect to time:

dp

dt
= v (t) , (4)

p (0) = 0, (5)

p
(
T f

) = P, (6)

where p ∈ [0, P]. Here, v (t) > 0, ∀t ∈ [
0, T f

]
and it is to

be designed by user in order to achieve desired behavior. It
shall be noted that P does not need to be specified because
the definite integral of v (t) over t ∈ [

0, T f
]
gives P .

Next, we reformulate the control parameterization in (1)
to be a function of p:

u (p) = sN (p) cN . (7)

The time behavior of the control u is no longer only affected
by cN but preserves characteristics of p (t)which are defined
already in the designing process of v (t). This can be inferred
using the chain rule as

du

dt
= du

dp

dp

dt
(8)
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It is a common measure for numerical optimization
approaches that a time grid is given over the entire time hori-
zon. The discrete time grid specifies the total number of the
discrete points. Provided that T f is fixed, the value of sN
at each discrete point is known a priori. That is to say, sN
does not change during the optimization algorithmexecution.
Therefore, it can be evaluated only once before executing the
optimization program. For some optimization approaches
including the one utilized in this paper, this feature saves
some computational effort and streamlines the formulation.

The only remaining issue is the design of v (t). Ideally,
it should be rather flexible. In Sect. 4, the design is shown
along with the actual need of the application. As a remark, p
must be smooth in order to ensure that u is smooth.

3 Implementation inmodel predictive
convex programming

In general, the proposed time-scaled trigonometric series
parameterizationworkswith various optimization approaches,
such as successive convex optimization
approaches [11,13], because it is only a linear constraint.
In this paper, to show the difference (or the similarity in a
positive sense) from the formulation in [10], we again con-
sider themodel predictive convex programming (MPCP) [8].
Only the most salient steps of the MPCP in [8] are presented
in this section.

First, we write the trigonometric series parameterization
in a discrete time form for the control vector

uk = [SN ]k c̄N , k = 1, 2, . . . , Nt − 1, (9)

where

[SN ]k =

⎡

⎢⎢⎢⎢⎢⎢⎣

[
s(1)N

]

k
0 . . . 0

0
[
s(2)N

]

k
. . . 0

...
...

. . .
...

0 0 . . .
[
s(m)
N

]

k

⎤

⎥⎥⎥⎥⎥⎥⎦
, (10)

c̄N =
[(

c(1)N

)T
,
(
c(2)N

)T
, . . . ,

(
c(m)
N

)T]T
, (11)

and the superscript indicates the index of the components.
The total number of discrete points is denoted by Nt .

Because of the linearity, the incremental change of uk ,
denoted as duk can be expressed by

duk = [SN ]k d c̄N , (12)

where d c̄N is the incremental change of the coefficient vec-
tor cN . It is important to notice that, as mentioned in the

previous section, regardless of whether SN is a function of
t as in Eq. (1) or p as in Eq. (7), as long as v and T f are
specified, [SN ]k is fully defined for all k = 1, 2, . . . , Nt −1.
Hence, the time-scaling of the parameterization and the func-
tional dependency make no difference to Eq. (12) and thus
have no impact on the following derivations.

For introducing the MPCP, a discrete-time form of the
system dynamics is given as

xk+1 = Fk (xk, uk) , k = 1, 2, . . . , Nt − 1, (13)

where F is continuously differentiable, and x and u are the
state and the control vector, respectively. The MPCP is an
iterative approach that updates the state and control histories
as xk = x p

k +dxk and uk = up
k +duk , where the superscript

p denotes the variables in the previous iteration. Using a
Taylor series expansion and neglecting higher-order terms,
Eq. (13) can be expressed as

xk+1 = Fk
(
x p
k + dxk, u

p
k + duk

) ≈ x p
k+1 +

[
∂Fk
∂xk

]
dxk

+
[
∂Fk
∂uk

]
duk , (14)

which yields
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]
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∂Fk
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]
duk . (15)

Eq. (15) can be further expanded:
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(16)

where
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]
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,

for j = 1, 2, . . . , k − 2 (18)

Bk,k−1 =
[
∂Fk
∂xk

] [
∂Fk−1

∂uk−1

]
, (19)

Bk,k = ∂Fk
∂uk

. (20)
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Here, the initial condition x1 is considered to be fixed, i.e.,
dx1 = 0. Hence, Eq. (16) can be written as

dxk+1 =
k∑

j=1

Bk, j du j , (21)

where k = 1, 2, . . . , Nt − 1. This equality is derived in [14],
connecting the state increments dx to the control correc-
tions du. Using a static Lagrangian multiplier, Eq. (21) can
be used to solve a class of optimization problems and it is
referred to as the model predictive static programming. For
incorporating more constraints, especially path constraints,
a convex optimization problem can be formulated. Substitut-
ing Eq. (12) into Eq. (21) yields

dxk+1 =
k∑

j=1

Bk, j [SN ] j d c̄N

=
k∑

j=1

Dk, j d c̄N . (22)

While SN is different due to the time scaling, Eq. (22) is
identical to the one in [10]. This shows that the proposed
method is compatible with the previous works, and a very
intuitive port can be realized.

To formulate a convex optimization problem, we select
the cost function as

J = (d c̄)T (d c̄) . (23)

As onemight notice, this quadratic cost function simplymin-
imizes the incremental changes of the coefficients. It can be
interpreted as minimizing the change of controls between
iterations. It does not address the time behavior of the con-
trols.

Constraints can be reformulated in the following way

A
[
x
u

]
≤ b,

A
[
x p + dx
up + du

]
≤ b,

A
[
x p + Bdu
up + du

]
≤ b, (24)

where the elements of the lower triangular matrix B are Bk, j

in Eq. (21). Notice that du is the only unknown variable in
Eq. (24) and it can be related to d c̄ using Eq. (12). Therefore,
constraints are ultimately functions of d c̄. A convex opti-
mization problem can be formulated to iteratively search for
suitable d c̄ that satisfies all constraints. More details can be
found in [10].

With a dedicated solver, the order of the trigonomet-
ric series does not significantly influence the computational
efficiency for solving the convex optimization problems.
Moreover, for a maneuver that is not complex, a low order
suffices. In this work, we select N = 3. On the other hand,
the total number of the discrete points, Nt , does affect the
computational efficiency. However, this setting is decided by
the required accuracy of the trajectory rather than the pro-
posed control parameterization. Over a 20 s time horizon,
Nt = 101 is considered to give a sufficiently accurate result
for the application introduced in the next section.

4 Transition flight trajectory generation

In this section, we adopt the application considered in [9] to
demonstrate the effectiveness of the proposed method and in
Sect. 3, while also comparing the results to the original form
in [10].

The scenario is to generate a transition flight trajectory
connecting two steady flight conditions. The objective is to
make the maneuver relatively milder at the later phase of
the transition, which prepares the aircraft for the next flight
segment.

4.1 Problem formulation

A fixed-wing unmanned aerial vehicle point-mass model is
considered:

ẋ (t) = V (t) cosχ (t) cos γ (t) ,

ẏ (t) = V (t) sin χ (t) cos γ (t) ,

ḣ (t) = V (t) sin γ (t) ,

χ̇ (t) = L (t) sinμ (t)

mV (t) cos γ (t)
,

γ̇ (t) = L (t) cosμ (t) − mg cos γ (t)

mV (t)
,

V̇ (t) = T (t) − D (t)

m
− g sin γ (t) ,

(25)

where x , y, h are coordinates of the aerial vehicle, and χ , γ ,
and V are the flight path course angle, the flight path climb
angle, and the speed, respectively. μ is the bank angle. m is
the mass of aerial vehicle. g is the gravitational acceleration.
The thrust and aerodynamic forces in Eq. (25) are expressed
by

T (t) = TmaxδT (t) , (26)

L (t) = 1

2
ρ (V (t))2 SCL (t) , (27)

D (t) = 1

2
ρ (V (t))2 S

(
CD0 + ki (CL (t))2

)
, (28)
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where Tmax is the maximum thrust, δT is the thrust lever
position, ρ is the air density, S is the reference area, and ki is
the induceddrag factor.CL andCD0 are the lift coefficient and
the zero-lift drag coefficient, respectively. The state, control,
and output vectors of the dynamics in Eq. (25) are given as

x (t) = [
x (t) , y (t) , h (t) , χ (t) , γ (t) , V (t)

]T
, (29)

u (t) = [CL (t) , μ (t) , δT (t)]T , (30)

y (t) = [
y (t) , h (t) , χ (t) , γ (t) , V (t)

]T
. (31)

The simulation scenario is to generate a transition trajectory
connecting a coordinated turn with a steady descent. The
equality constraints are given as

x (0) = x0,

y
(
T f

) = y f ,

u (0) = u0,

u
(
T f

) = u f ,

u̇ (0) = 0,

u̇
(
T f

) = 0.

(32)

On the right-hand side of the equality constraints in Eq. (32)
are all constants.

The path constraints are specified by

umin ≤ u ≤ umax,

u̇min ≤ u̇ ≤ u̇max.
(33)

4.2 Time-scaling function

The goal of designing the time-scaling function is to properly
distribute the control authority for the transitionmaneuver. In
accordance with the need of flying more stably control-wise
in the later phase of the transition, we select the following
function:

v (t) = 1

1 + e(t−10)/8
. (34)

It is a logistic function and p can be obtained using Eqs. (4)
and (5). The time histories of v and p are shown in Fig. 1.
Because the problem at hand is a fixed-final-time trajectory
optimization problem, the variable p and the series basis
functions are fully known and they do not change with the
optimization runs.

As can be seen from Fig. 1, v is monotonically decreas-
ing as time evolves, where v|t=0 = 0.77 and v|t=20 = 0.22.
Here, the slope is gentle, as an aggressive maneuver dur-
ing the earlier stage, or technically any stage, is not desired.
Referring to Eq. (8), the control derivatives are relatively
more slowly varying during the later phase of the transition.
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Fig. 1 Time-scaling functions

Fig. 2 Transition trajectories

4.3 Simulation results

The simulation results are presented in this section. The
quadratic programming problems are solvedwith a dedicated
solver—OSQP [22]. The formulation in [10] is referred to
as the original method, while the time-scaled trigonometric
series is called the proposed method.

The flight trajectories generated by the original method
and the proposed method are shown in Fig. 2. The trajec-
tories are similar but the maneuver is less aggressive for the
proposedmethod in the later phase. This can be confirmed by
the state histories given in Fig. 3. The trajectories generated
by both methods lead the aircraft to zero course angle and
−5 deg climb angle. The speed is maintained at 50 m/s as
desired. The main occurrence of the state variations has been
shifted to the earlier part of themaneuver. It is also visible that
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Fig. 3 Time histories of the states

the aircraft enters a quasi-steady condition relatively earlier,
while the excursions of the states remain similar. This cor-
responds to the objective of implementing the time-scaling
function. Although the proposed method parameterizes the
controls, the state trajectories are the real system responses
to be manipulated.

Speaking of the controls, their histories can be seen in
Fig. 4. The state histories are all smooth and satisfy every con-
straint. It is worth noting that boundary conditions, i.e., the
trim conditions, can be easily enforced for both the original
and the proposed methods. These are important conditions
that ensure continuous connections to the steady flights. For
the proposed method, slightly more control authorities are
used in the earlier phase of the transition maneuver. The
maximum utilization increases by 6.6%, 5.0%, and 0%, for
CL , μ, and δT , respectively. On the other hand, the controls
approach faster to being steady-state and the desired terminal
conditions in the later phase. This means that the aircraft at
a relatively earlier time flies practically at a trim condition
using the proposed method. Inspecting the time histories of
the control derivatives in Fig. 5 reveals more details. The
trade-off for getting steadier controls at the later phase is
committing marginal but still higher change rate of the con-
trols in the earlier phase. The incremental changes of the
maximum absolute control rates are 0.01 s−1, −0.05 deg/s,
and 0.02 s−1, for ĊL , μ̇, and δ̇T , respectively. Neverthe-
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Fig. 4 Time histories of the controls
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Fig. 5 Time histories of the control derivatives
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Fig. 6 Time histories of the normalized cumulative sums of the control
derivatives

less, the control derivatives are smooth and well within the
bounds. In fact, the mathematical property of the trigono-
metric functions guarantees the existence and continuity of
arbitrary derivatives. The derivatives are set to be zero at both
ends of the transition trajectory, which is achieved by both
methods.

Next, we introduce an indicator to quantify completeness
of the transition over time. This gives a very intuitive view
of the shifted distribution of the control derivatives using the
proposed method. The indicator is expressed by

wk =
k∑

j=1

(
u̇ j

)2
/

Nt−1∑

j=1

(
u̇ j

)2
, k = 1, 2, . . . , Nt − 1. (35)

The indicator stands for the normalized cumulative sumof the
control derivative over time, which is depicted in Fig. 6. The
vertical lines identify where the indicator reaches 95%. The
indicators of the proposed method approach the condition
earlier than those of the original method. Specifically for
CL , the indicator reaches 95% 2.6 s earlier for the proposed
method, which is already 13% of the 20 s time horizon for the
transitionmaneuver. The differences ofμ and δT are found to
be 4% and 8%, respectively. As the new independent variable
v has been designed to be of a slow-varying nature, the results
of the proposedmethod and the originalmethod are not vastly
different, and yet we can observe the effectiveness of the

proposed method. In fact, the difference can be more visible
if a very aggressive time-scaling function had been selected.
However, it is beyond the purpose of this application that
requires an overall smooth transition.

It is to be noted that there can be different ways of
designing the time-scaling function and the time-scaled
trigonometric series. The shown application only represents
one specific concern that has been satisfactorily addressed.

5 Conclusions

For shaping the time behavior of the controls in generating
trajectories, this paper develops a new time-scaled trigono-
metric series control parameterizationmethod. The proposed
method can incorporate a user-defined time-scaling function
that alters the fundamental time behavior of the basis func-
tions such that the controls inherit the desired characteristic.
It has been shown that in the model predictive convex opti-
mization framework, the modification required for using the
newly developed method is minor. For the transition maneu-
ver scenario in this paper, the aircraft is required to maneuver
more gently in the later stage of the transition trajectory, for
which the proposed method introduces a smooth, decreasing
time-scaling function. Simulations are carried out to show
the effectiveness of the proposed method and the compari-
son to the original method demonstrates that the proposed
method accomplished the task well.
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