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Abstract
It is well-known that using arithmetic averages of yearly return observations leads to 
downward biased discount rates estimations. Well-known corrections, however, lead 
to upward biased results under the presence of negative serial correlation. Using a 
simulation analysis, we first show that a specific variant of the Cooper estimator, 
labelled as C4 in this paper, leads to robust estimations even under the presence of 
both serial correlation and heteroscedasticity. We also show that among the sim-
ple estimators, i.e. the arithmetic (AM)  or geometric mean  (GM) or the mean of 
both (MoM), the first one tends to perform best unless there is a high degree of neg-
ative serial correlation. In that case using the so-called mean of means rule would 
be better. Secondly, using data from Jordà et al. (Q J Econ 134(3):1225–1298, 2019) 
we find negative serial correlation and heteroscedasticity in market risk premia to be 
a widely spread phenomenon. Finally, we use this data to derive presumably least 
biased market risk premia estimations based on the C4 estimator. For the majority of 
the countries we find that these estimations are somewhere between the arithmetic 
and geometric average. When comparing these simple estimators among each other 
based on the empirical data, we find the arithmetic mean and mean of means to per-
form almost equally well, while the geometric mean clearly underperforms. Moreo-
ver, we found some evidence that the MoM is slightly outperforming the AM under 
a local CAPM perspective, while the opposite tends to be true under a global CAPM 
perspective. This leads us the cautious conclusion that the mean of means rule used 
by practitioners has some empirical rationale when there is evidence for substantial 
negative serial correlation.
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1  Introduction

When estimating the cost of capital based on the CAPM the market risk premium 
is a necessary and pivotal input parameter. In the so-called historical method a long 
record of historical observations, in developed countries in some cases more than 
100 years, is used. Typically, the market risk premium is then extracted as the arith-
metic average of these observations.

However, starting with Blume (1974) there is an ongoing debate on how an unbi-
ased estimation for the market risk premium has to be derived. Interestingly, he 
showed that even under ideal conditions, i.e. iid-returns, the unbiased estimator for 
a long-run compounding rate is an appropriately weighted average of the arithmetic 
and geometric mean return derived from historical return observations. Hereby, the 
weight on the arithmetic mean is the larger the longer the observation period rela-
tive to the compounding period is. A derivation and detailed analysis of an unbiased 
compounding estimator under the iid lognormal assumption can be found in Jacquier 
et al. (2003) and Jacquier et al. (2005). One compelling feature of the Blume estima-
tor consists in the fact that the weights are always between 0 and 100%. Hence, by 
applying this estimator to the market risk premium the estimation used in the com-
pounding problem is never larger than its arithmetic mean and never smaller than its 
geometric mean.

Unfortunately, this result does not hold anymore if applied to discounting prob-
lems, as it is the case in any valuation problem. Actually, Cooper (1996) shows that 
under the iid assumption the arithmetic mean is downward biased, i.e. valuations are 
upward biased.1 Again, he shows that the unbiased estimator can be represented as a 
weighted average of the arithmetic and the geometric mean. However, the weight on 
the arithmetic mean is larger than 100%. Given that the geometric mean is smaller 
than the arithmetic mean, the unbiased estimation for the market risk premium must 
always be larger than the arithmetic mean of the historical observations, except for 
the one period discount rate estimation. And this distance is increasing in the length 
of the discounting period.

Since then a small number of papers dealing with these biases in discount rate 
estimations have been published. Elsner and Krumholz (2013) give a comprehensive 
overview and derive a specific version of the Cooper estimator under the assump-
tion of lognormally distributed returns. Breuer et al. (2014) and Breuer et al. (2017) 
analyze the performance of a specific version of the Cooper estimator relative to 
their own “truncated” arithmetic mean estimator based on bootstrapped empirical 
data. While they find biases in present values to be significant overall, only for low 
growth firms the Cooper estimator does a reasonable job. When looking at high 
growth firms, using the arithmetic average but ignoring cash flows beyond year 30 

1  In an earlier paper Butler and Schachter (1989) already show the downward bias in discounting rates 
and how it can be overcome under specific distributional assumptions.
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or 50, i.e. “truncating” the estimation, leads to the least biased results.2 Moreover, it 
seems that the estimator of Elsner/Krumholz performs relatively well, if the cost of 
equity is estimated on the basis of a total return approach (cf. Breuer et al. 2017, p. 
738).

While this work is closely related to our paper, there is also an important dif-
ference. Breuer et  al. (2014, 2017) are interested in the valuation bias created at 
the single firm level. This is, of course, the ultimate question in the context of a 
valuation problem. Therefore, the bias finally not only depends on a flawed market 
risk premium estimation, but it is also determined by the level of the risk-free rate, 
the systematic risk of the company as well as the time pattern of a company’s cash 
flows. In this respect their work is very insightful, as they show that the bias is most 
important for firms with high growth rates.

Nevertheless, in this paper we want to focus on the bias at the level of the market 
risk premium estimation. Therefore, we ignore any additional effects stemming from 
firm and cash flow characteristics as well as the risk-free term structure. Neverthe-
less, our results might give some guidance on how to mitigate estimation problems 
at the level of the market risk premium. This, however, does not rule out that estima-
tion problems might be amplified when applied to specific valuation problems.

Practitioners rarely apply the Cooper estimator when deriving the discount 
rates or the underlying market risk premium. From a German perspective, one rea-
son might be that there is no official statement by competent institutions, like the 
FAUB, recommending the usage of the Cooper-estimator. Moreover, as Breuer et al. 
(2014, p. 592), point out, there are several unknowns when it comes to the practical 
application of this estimator. In Pratt and Grabowski (2014, p. 156), a well-known 
handbook for practitioners, it is argued that the bias caused by using the arithme-
tic average in practical valuation problems tends to be small as most of the value 
comes from cash flows in the first ten years. Koller et al. (2020), another well-known 
source for practical valuation, do even not mention the Cooper estimator at all, while 
they briefly explain the Blume estimator. However, there is no recommendation as to 
whether, and if so, under which circumstances, this estimator should be used.

While, to the best of our knowledge, there is no survey giving a picture of how 
practitioners are handling this estimation problem, it seems that they are using sim-
ple estimators as the arithmetic or geometric mean. Moreover, it might well be that 
some of them are using a simplified version of the Blume estimator, as it is the case 
in Germany with the so-called Mean of the Means, i.e. the simple average of the 
arithmetic and geometric average; cf. Wagner et al. (2006), or Stehle (2016). From 
an international perspective, recommendations for using such a rule of thumb are 
harder to find. However, a cautious indication in this direction can be found in Welch 
(2017, p. 199). Hence, one might conclude that most valuations are actually upward 
biased, as the discount rates tend to be downward biased.

This conclusion, however, might be premature. The estimators discussed so far 
have been derived under the condition of iid returns. In reality, we have to take into 
account that stock returns and, therefore, also market risk premia, over the long-run 
might display mean reverting behavior, making them negatively serially correlated; 

2  The bias created for young, high growth firms is more deeply analyzed in Breuer and Mark (2013).
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cf. among others Shiller (2014), Spierdijk et  al. (2012), Pástor and Stambaugh 
(2012), Campbell (2003, p. 803), Campbell and Shiller (1988), Poterba and Sum-
mers (1988), Shiller (1981). Intuitively it is not so hard to see that negative serial 
correlation tends to inflate the market risk premium estimation as long as it is based 
on the arithmetic mean; cf. Wenger (2005), Cooper (1996), and Indro and Lee 
(1997). Therefore, Cooper (1996) derived an estimator under the assumption of log-
normally distributed returns displaying negative serial correlation. This estimator, 
which in this paper will be labelled C4, leads to smaller discount rates the larger the 
degree of serial correlation is.3

It should be noted in this regard that when estimating market risk premia two 
opposite effects have to be taken into account. At the one side, extracting an unbi-
ased discount rate estimation for an N-year discounting period from T one-year his-
torical return observations leads to a correction which increases in N and yields esti-
mations higher than the arithmetic average. However, taking into account negative 
serial correlation at the other side, causes the unbiased discount rate to decrease in 
the degree of serial correlation. Therefore, under realistic conditions the net effect 
on the unbiased estimation is unclear and in general we cannot say whether the unbi-
ased estimation finally is larger or smaller than the arithmetic mean.

This is where this paper wants to make contribution. First, by running a simu-
lation analysis we are comparing different existing estimators, the arithmetic and 
the geometric mean, the mean of means, the Blume estimator, the Elsner/Krumholz 
estimator as well as four different variants of the Cooper estimator, including the 
above mentioned C4 estimator. Our results clearly indicate that under the presence 
of serial correlation and heteroscedasticity in the market risk premium, the C4 esti-
mator performs best. Interestingly, in this horse race the mean of means estimator 
arrives second in those cases where there is considerable negative serial correlation. 
In all other cases, however, it is clearly inferior to many of the other estimators. 
When taking an agnostic perspective with respect to the empirical properties of mar-
ket return behavior, i.e. by comparing the rankings of all estimators in 24 different 
baseline parameter combinations, we again find the C4 estimator to perform best. 
It is followed by the C2 and C3 estimator, the Blume estimator and the arithmetic 
mean.

Second, we then apply an empirical analysis to a broad set of countries and 
regions from a global CAPM perspective. For that purpose, we measure historical 
market risk premia realizations in three different base currencies. The results indi-
cate that negative serial correlation and heteroscedasticity is a wide-spread phe-
nomenon, even though in some cases we also find positive serial correlation. This is 
especially true, if we include pre-World War periods and use the Euro/Mark as the 
base currency.

3  It should be noted that the same problem arises when estimating compounding rates, i.e. the terminal 
wealth is upward biased in the presence of negative serial correlation. Similar to the approach used in 
this paper, Indro and Lee (1997) run a simulation analysis in order to study this problem. They show that 
the Blume estimator even under the presence of negative serial correlation does a fairly good job, at least 
compared to the pure arithmetic or geometric average.
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Third, we use the C4 estimator in order to derive the presumably least biased 
market risk premia estimations for the countries or regions in our data set. Interest-
ingly, we find that in the majority of the cases this presumably least biased market 
risk premia estimation is somewhere in between the geometric and the arithmetic 
average. More precisely, when comparing the arithmetic mean and the mean of 
means on the basis of their estimation errors, we find that they perform on an almost 
equal footing, with the mean of means being better in situations of pronounced neg-
ative serial correlation. This leads us the cautious conclusion that the so-called mean 
of means rule proposed among others by Wagner et al. (2006) and Stehle (2016) and 
used by practitioners might have some empirical rationale.

The rest of paper proceeds as follows. Section  2 is laying down the problem 
of why arithmetic averages generate biased estimations in the context of a simple 
example. Section 3 reviews the literature and explains the different estimators that 
have been developed in the literature. In Sect. 4 the results of the simulation analysis 
are presented, while Sect. 5 describes the data used for the empirical analysis and 
discusses the results. Finally, Sect. 6 concludes.

2 � Sketching the problem

In order to illustrate the problem, we develop the following simple example. Assume 
a perfect capital market with one representative stock. The returns of this stock are 
binomially distributed with the upward return factor being u = 1.2 and the down-
ward return factor d = 0.9. The risk-free rate is assumed to be zero. Hence, it follows 
that the risk-neutral probability for an upward movement is qn = 1/3. Assuming the 
physical probability4 of an upward movement being q = 1/2, the expected return of 
the stock is 5%, which is equal to the arithmetic average of the returns.

Now, in this economy the value of a new project has to be determined. The 
expected cashflows evolve according to the binomial distribution given above start-
ing from a value of 50 for the last expired period. The distribution of these cash 
flows is resumed in Fig. 1. According to the fundamental asset pricing theorem the 
value of this project is equal to the expected present value of future cash flows where 
the expectation is calculated under the risk-neutral measure and the discount rate is 
equal to the risk-free rate.5 Hence, the value is [(1/3 × 60 + 2/3 × 45)/1 + (1/9 × 72 + 4
/9 × 54 + 4/9 × 40.5)/12] = 100.

Alternatively, the value of this project could be determined as the expected 
present value using the physical probability distribution and discounting with the 
expected return, i.e. the arithmetic average. At this point, because all distribu-
tional parameters are perfectly known, this leads to the same value. Noting that 
the expected cash flow in t = 1 is CF1 = 52.5 and in t = 2 is CF2 = 55.125, it follows: 
52.5/1.05 + 55.125/1.052 = 100. So, in this world without any estimation prob-
lems, valuation using physical probabilities for calculating expected cash flows and 

4  Physical probabilities sometimes are also labelled as real or objective probabilities.
5  Cf. e.g. Cochrane (2005, p. 51 n).
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arithmetic averages for determining the risk-adjusted discount rate would work well, 
i.e. would lead to unbiased results.

However, things change once we introduce estimation problems. Assume that the 
true distributional parameters are not known, and we can only observe random paths 
of two period return realizations. Hence, in this example we would either observe 
two upward steps (path A) with an arithmetic average of realized returns of 20%. For 
the case of one up- and one downward step (path B) the arithmetic average would be 
5% and for two downward steps (path C) –10%. The probability that path A or C is 
observed is 25% each, while for path B the probability is 50%.

Now, if by chance we would have observed path A the project would have been 
valued at 52.5/1.2 + 55.125/1.22 = 82.03, while if we would have observed path C 
the value would have been 52.5/0.9 + 55.125/0.92 = 126.39. Only in case of path B 
being realized we would have inferred the correct value of 100. Hence, the expected 
project value using the arithmetic average of realized returns as discount rates would 
be 82.03 × 0.25 + 100 × 0.5 + 126.39 × 0.25 = 102.11. As one can easily see, using the 
arithmetic average leads to an upward biased project value or, which is the same, to 
a downward biased discount rate estimation. And if we would have used the geomet-
ric average, which in this case would have been 3.92%, overvaluation would have 
even been worse.

The underlying reason for this result is the fact that present values are a con-
vex function in the discount factors making the absolute valuation error of an 

1

1.2
CFu=60

1.44
CFuu=72

0.9
CFd=45

0.81
CFd=40.5

1.08
CFud=54

A

B

C

q=1/
2

Fig. 1   Binomially distributed stock returns and project cash flows
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underestimation of the true discount rate not being symmetric to the absolute error 
caused by an overestimation of the same amount. In more formal terms this could be 
stated as follows. Assume D̂N is the unbiased discount factor over N periods and the 
expected annualized N-period return estimation is �N = E

[
1 + r̃N

]
 , e.g. the arithme-

tic mean. Then according to Jensen’s inequality Butler and Schachter (1989, p. 15), 
show that the following holds:

Hence, using the arithmetic average of observed yearly return realizations and 
plugging this into an N-period valuation problem causes an upward bias in the 
resulting value.

3 � Unbiased estimators

3.1 � The case of iid returns

The observation illustrated by the preceding example was the starting point of the 
paper of Blume (1974), who developed an unbiased estimator for the interest rate to 
be used in a compounding problem. He showed that under iid returns the unbiased 
compounding rate estimation is an appropriately weighted average of the arithme-
tic and the geometric mean. By extending this analysis to valuation problems, i.e. 
by analyzing how unbiased discount rates can be estimated, Butler and Schachter 
(1989) and Cooper (1996) were the first to come up with explicit solutions. Most 
importantly, under the assumption of iid returns Cooper (1996) derived the follow-
ing unbiased estimator for the N-period discount factor:

Here, N is the length of the discounting period expressed in years, while T ≥ N 
is the number of yearly return observations on which the discount rate estimation 
is based upon.6 Assuming return observations are expressed as return factors, i.e. 
1 + yearly return, A stands for the arithmetic mean and G for the geometric mean of 
these return factors. Expressing the yearly return observation as r̃t and having a total 
of T observations, these two means are defined as follows:

(1)D̂N = E

[(
1

1 + r̃N

)N
]
≥

[
1

E
[
1 + r̃N

]
]N

=

[
1

1 + �N

]N

(2)D̂C1,N = bA−N + (1 − b)G−Nwith b =
N + T

T − 1

(3)A =
1

T

T∑
t=1

(
1 + r̃t

)

6  It should be noted that for large N this estimator might become negative. This happened in a very few 
cases in our simulations causing non defined results.
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For expositional convenience the unbiased discount factor can be transformed 
into an unbiased yearly discount rate in the following way:

Two remarks have to be made here. First, as the weighting factor b is always 
larger than 1, it must hold that the unbiased yearly discount rate according to (5) is 
always larger than the arithmetic mean, i.e. �RC1,N > A − 1 , holds. However, in the 
special case of N = 1 and T being relatively large, the discount rate is almost equal 
to the arithmetic average. Second, the unbiased discount rate is a function of the 
length of the discounting period. This creates the somewhat counterintuitive result 
that even though returns are drawn from a stationary distribution, yearly discount 
rates used in valuation problems are not constant.

By adding the assumption that returns are lognormally distributed, i.e. 
ln
(
1 + r̃

)
∼ �(�, �) , Cooper (1996) is able to derive the following more specific 

unbiased estimators7:

Finally, under the assumption of lognormal returns the relationship A = Ge
1

2
�2

 
holds and this estimator can alternatively be written as:

This last equation again clearly points out that using the arithmetic average leads 
to an upward bias in valuations or to a downward bias in the discount rate.

Finally, it should be mentioned that (Elsner and Krumholz 2013), besides pro-
viding a comprehensive overview on different estimators, also analytically develop 
an unbiased estimator under conditions of iid distributed returns. Their approach is 
slightly different as they are interested in an unbiased estimation of the cost of capi-
tal. However, by assuming that all their assumptions apply to the market risk pre-
mium as well, their estimator, which we call EK, can be written as follows:

(4)G =

[
T∏
t=1

(
1 + r̃t

)]1∕T

(5)R̂C1,N =
[
bA−N + (1 − b)G−N

]− 1

N − 1

(6)D̂C2,N = G−Ne
−(T+N)

N�2

2T

(7)R̂C2,N = Ge(
T+N)

�2

2T − 1

(8)D̂C3,N = A−Ne
−

N2�2

2T

(9)R̂C3,N = Ae
N�2

2T − 1

7  Similar derivations can also be found in Jacquier et al. (2005) and Elsner and Krumholz (2013).
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Here, Φ is the standard normal cumulative distribution function. It should be 
noted that (Elsner and Krumholz 2013) have developed an unbiased cost of capi-
tal estimator for the terminal value calculation. Hence, their estimator gives a dis-
count rate for a perpetual cash flow stream. In our simulations we are interested in 
estimating discount rates for one-time cash flows accruing after N years. Therefore, 
comparing this estimator with the others presented above to some extend is unfair. 
We have decided to include the EK estimator for informational reasons nevertheless. 
Due to construction, we expect it to work better for longer discounting periods. As 
a drawback when it comes to simulations it should be mentioned that non existing 
values may arise for this estimator.

3.2 � The case of non‑iid returns

While the derivation of unbiased discount rate estimations in the case of iid-returns 
is clearly understood, it is still an open debate how to adjust these estimations, when 
it comes to take empirical distributions into account. Most importantly, two stylized 
facts have to be addressed in this regard. First, starting with Shiller (1981), Poterba 
and Summers (1988) and Campbell and Shiller (1988) there is plenty of literature 
pointing out that stock market returns display mean-reverting behavior, especially 
in the long-run.8 Moreover, in a more recent strand of literature it is shown that this 
empirical behavior of stock returns can be seen as an equilibrium outcome which 
goes along with time-varying market risk-premia (cf. Campbell and Cochrane 1999; 
Campbell 2003; Wachter 2006; Santos and Veronesi 2006; Lettau and Wachter 
2011; Berkman et al. 2011).

This literature raises fundamental questions on how market risk premia can be 
inferred from empirical data. Most importantly, if risk premia are time-varying a 
method based on historical observations might be conceptually flawed. This is why 
a new strand of literature has evolved trying to infer market risk premia either from 
analyst expectations (cf. Claus and Thomas 2001; Gebhardt et al. 2001; Fama and 
French 2002; Easton 2004; Ohlson and Juettner-Nauroth 2005),9 bond prices (cf. 
Campello et  al. 2008) or derivatives (cf. Berg and Kaserer 2013; van Binsbergen 
et al. 2013). However, this literature on the so-called implied market risk premium is 

(10)D̂EK,N =

⎧
⎪⎨⎪⎩
e

�
e

�
0.5(ln(1+A))2

T

�2

�√
2�

T

�2

�
1−Φ

�
0;−ln(1+A)

T

�2
;

√
T

�2

���−1⎫
⎪⎬⎪⎭

−N

(11)
R̂EK,N = e

�
e

�
0.5(ln(1+A))2

T

�2

�√
2�

T

�2

�
1−Φ

�
0;−ln(1+A)

T

�2
;

√
T

�2

���−1

− 1

8  An overview on this literature can be found in Campbell (2003, p. 830 n); see also the literature quote 
in Sect. 1.
9  For an overview on this method and an empirical application cf. Jäckel et al. (2013).
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beyond the scope of this paper. Therefore, it will not be considered here as an alter-
native to the historical method.

Coming back to the historical method, it is interesting to note that Cooper (1996) 
already analyzed the implications of serial correlation on the estimation of dis-
count factors. And in fact, by simply assuming that returns still follow a lognor-
mal distribution, even though with time-varying distributional parameters, i.e. 
ln
(
1 + r̃N

)
∼ �

(
�N , �N

)
 , he derived the following unbiased estimators10:

Note that these estimators are equivalent to the one in Eqs. (6) and (7) just with 
the adjustment that the annualized N-period variance �2

N
 is used instead of the con-

stant annualized variance �2.11 As this estimator will play an important role in this 
paper, we will label it as the C4 estimator.

As a second empirical phenomenon, heteroscedasticity, including fat-tailed dis-
tributions, has to be taken into account. However, in the literature so far no unbiased 
estimators controlling for heteroscedasticity have been developed. It is, therefore, an 
interesting question to see how sizeable the biases created by heteroscedasticity are.

4 � Simulation analysis

4.1 � Methods

In this section we run a simulation analysis in order to compare the biases caused by 
different estimators assuming specific characteristics in the stocks’ return generating 
process. It should be noted here that we focus on the bias created by the market risk 
premium estimation only. We ignore any additional problems stemming from the 
level or the curvature of the risk-free term structure.

Following Campbell et al. (1997, p. 483 n), the return generating process for the 
market risk premium, defined asr = ln

(
1 + r̃m

)
− ln

(
1 + rf

)
 , where rm is the market 

return and rf is the risk-free rate, is defined as follows:

(12)D̂C4,N = G−Ne
−(T+N)

N�2
N

2T

(13)R̂C4,N = Ge(
T+N)

�2
N

2T − 1

(14)rt = � + �
(
� − rt−1

)
+ �t�t

10  It should be noted that this is a very general distributional assumption used by Cooper (1996). As we 
will make clear in Sect. 4, the simulation is based on a GARCH(1,1) return process. There, the uncon-
ditional moments are constant. Nevertheless, there is serial correlation in the simulated return process 
implying variance ratios not being equal to one.
11  In the simulation we use independent N-period returns to derive annualized variance: 
�2

N
= Var

[̃
rN
]
∕N , where r̃N is the return over N periods.
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with −1 ≤ 𝛾 < 1 , 0 ≤ 𝛼 < 1 , 0 ≤ 𝛽 < 𝛼 , and �, � ∼ N(0, 1)

Note, this process captures all of the above-mentioned return characteristics. 
First, if γ= α= β= 0 we have an iid-distributed market risk premium with an expected 
continuously compounded return equal to μ and standard deviation ω. Return inno-
vations in this case are only temporary. Second, by setting 0 < γ  < 1 we get a weakly 
stationary mean-reverting process with a negative autocorrelation coefficient, i.e. 
ρt,t-1 = -γ.12 This captures the stylized empirical fact of variance ratios below 1, as 
will be shown in Sect. 5.3. In this case return innovations have a persistent compo-
nent. Third, by setting 0 ≤ β  < α < 1 we allow for heteroscedasticity leading to mar-
ket risk premia which display excess kurtosis and fat tails. In this case, also variance 
innovations have a persistent component. As a special case we will also run some 
simulations using -1 < γ < 0. In this case returns display positive serial correlation.

In every single run, i.e. for every combination of the parameters mentioned in 
Eqs. (14) and (15) we randomly draw a yearly return path over T = 100 years. This 
number is chosen for two reasons. First, it resembles typical historical records avail-
able for the estimation of market risk premia. Of course, for some countries, like 
the US, even longer periods are available, while for others, like emerging markets, 
periods are much shorter. However, for most industrial countries historical periods 
in this range are available. Second, for the unbiased as well as the C4 estimator we 
need return observations over non-overlapping periods. We choose these periods as 
integer fractions of the simulated historical period T = 100, i.e. we use all periods N 
for which T/N is an integer. Hence, we simulate discount rate estimations for periods 
N of 1, 2, 4, 5, 10, 20 and 25 years.13 The fact that 100 years could be split-up in 7 
such integer fractions is an additional reason for choosing this specific simulation 
period.

In each of these single runs we generate T = 100 random return drawings based 
on the return generating process defined in (14) and (15). Then, based on these 
simulated returns, we calculate the arithmetic (AM) and the geometric mean (GM) 
according to Eqs.  (3) and (4). Also, in each single run we calculate the N-period 
discount factors based on the estimators introduced in Sect.  3, i.e. the estimator 
according to Blume (1974), the mean of geometric and arithmetic average (MoM), 
the Cooper estimator according to Eq. (2) (C1), the Cooper estimator according to 
Eq. (6) (C2), the Cooper estimator according to Eq. (8) (C3), the Cooper estimator 
according to Eq. (12) (C4), and the EK estimator according to Eq. (10). Note that for 
the C4 estimator we estimate the annualized N-period variance �2

N
 by using in each 

single run non-overlapping intervals equal N.

(15)�2

t
= �2 + ��2

t−1
+ (� − �)�2

t−1

(
�2
t
− 1

)

12  This type of return generating process is called an AR(1) model. For a more detailed analysis cf. e.g. 
Tsay (2010, Sect. 2.4).
13  We could also have used 50 years. However, in this case, for one simulation run we would only have 
two independent observations, making the estimation outcome extremely noisy. Therefore, we ignore the 
case with N = 50.
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We then repeat each single run 200,000 times ending up with a total of 200,000 
estimates.14 Then, after having completed all runs, the average over all runs for each 
of these estimators for the N-period discount factors is calculated. And finally, for 
expositional reasons, each N-period discount factor estimate is then transformed into 
a yearly discount rate.

We then compare the average outcome of these yearly discount rate estimates 
over all simulations with the unbiased estimation also resulting from our simula-
tions. This unbiased estimation is calculated in the same way as the “simple esti-
mator” in Blume (1974). This approach has the advantage that we do not need any 
assumptions about the independence of the one-period returns. In each single run 
we compute the N-period compounding factor for each discounting period N. Each 
of these compounding factors is then averaged over all 200,000 runs and, finally, 
transformed into a yearly discount rate.

Finally, the different estimators have to be compared. Dittmann and Maug (2008) 
have shown that when it comes to compare valuation methods it makes a differ-
ence how error measurement is defined. As we are interested in the first place in the 
impact of the estimation error on the valuation error, we define the error as the fol-
lowing present value difference:

Here, u stands for the unbiased discount rate estimation, i.e. the average of the 
unbiased discount rate over all simulation runs, and x stands for the discount rate 
given by one specific estimator, again averaged over all simulation runs. Hence, 
assuming that the market risk premium could be directly used as a discount rate, 
Eq.  (16) gives the difference of the logarithm of the present value of a one-time 
one Euro cash flow accruing in N years calculated with one specific estimator to 
the unbiased present value. It should be noted that a positive sign indicates that the 
estimated market risk premium is higher than the unbiased one, leading to an under-
estimation of the present value.

Now, given that we are looking at estimates for different time horizons N, there 
might be a bias using this error definition. As we finally look at errors over different 
discounting periods, errors in the discount rate used for longer periods are amplified 
because of discounting. Hence, in some sense they are implicitly assigned a higher 
weight. Therefore, we use also a second error definition, where we basically normal-
ize the error per discounting year. Starting from Eq. (16), this error is defined as:

We will rank the estimators according to both error measures. For most estima-
tors, there are no striking differences in the ranking depending on which of the two 
error measures is used.

(16)Δ = ln

[
(1 + u)−N

(1 + x)−N

]
= N[ln(1 + x) − ln(1 + u)]

(17)Δ = ln(1 + x) − ln(1 + u)

14  We use Python for doing these simulations.
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4.2 � Results

Baseline simulation results are presented in Tables 1 and 2 of this paper. The follow-
ing parameters were chosen. First, the arithmetic average of the market risk premium 
is set to 5% in continuous compounding. Empirical numbers calculated in Table 5 in 
Sect. 5.3 display a median of 5.67% over all cases considered. But of course, there 
is substantial cross-country variation. Hence, we take a somehow intermediate num-
ber. For the structural results of our simulations this should be of minor importance.

Second, long-term return volatility ω is set at 15 or 20%, respectively. In this way, 
a low and high volatility environment is captured. As can be seen from Table 5 in 
Sect. 5.3, volatilities calculated in USD or GBP are rarely above 20%, while those 
calculated in Euro/Mark in almost all cases are above this number. The median over 
all cases considered in Table 5 is 16%, with 90% of all observations being in the 
range of 16−25%. By taking into account that realized volatilities in our simulations 
are in the range of 10−40%, we think that we cover a large spectrum of observed 
volatility ranges.

Third, the mean reverting coefficient γ is set to be equal −0.2, 0, 0.2, and 0.5. By 
using these values in our simulation, we get variance ratios, i.e. ratios of one year 
to N-period annualized volatility, in the range of 35−148% with smaller discounting 
periods being associated with a smaller range. This is exactly what we would have 
expected based on Eq. (22) in Sect. 5.3, where the structural relationship between the 
mean reverting coefficient, the length of the discounting period and the variance ratio 
is more deeply analyzed.

When comparing this simulation-based range according to Eq.  (22) with the 
empirical range of variance ratios, it can be seen that almost all country/discounting 
period observations fall into this range. The specific ratios are reported in Table 6. 
Therefore, we think that with the simulation parameters described above we cover 
most of the empirically relevant range of mean reverting behavior.

Fourth, the heteroscedasticity parameter α is set to be equal 0 or 0.6 in combina-
tion with β = 0.5α. In the latter case this leads to an excess kurtosis in the range 
of 0.44−0.65. This is in line with the excess kurtosis found for Germany for one 
specific case in the after-World War II period in Table  5 in Sect.  5.3. However, 
compared to other countries this number seems to be relatively low. Therefore, we 
also run a robustness simulation producing a quite higher kurtosis of 0.83−1.50. It 
should be noted that the median kurtosis in Table 5 is 2.2; however, when only con-
sidering the after-World War II periods, the median is 1.5.

Structurally, the following results can be observed. First, in the case of iid-dis-
tributed returns all estimators except the geometric average and the mean of means 
work very well. Of course, by construction the Cooper estimators 1 to 3 generate 
the best results. This is true independently of whether there is a high or low volatil-
ity environment. For the EK estimator we can see that errors are small as well and, 
due to construction, decreasing in the length of the discounting period. The arithme-
tic mean and the Blume estimator behave oppositely. They work well for short dis-
counting periods, but errors increase with the length of the discounting period. For 
the arithmetic mean this is the well-known bias already discussed in the introduc-
tion. As the Blume estimator is based on a weighted average of the arithmetic and 
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the geometric mean with weights on the second increasing in the length of the dis-
counting period, it follows from the behavior of the arithmetic mean that this estima-
tor deteriorates with longer discounting periods. For a similar reason also the MoM 
estimator generates errors increasing in the discounting period.

Second, once we add negative serial correlation estimation errors increase signifi-
cantly for all estimators except the C4 estimator and, to some extent, also the Blume 
and MoM estimator. This, by itself, is not surprising given the construction of these 
estimators. However, it might be interesting to see how stable the C4 estimator per-
forms over different degrees of negative serial correlation and simulated volatility 
ranges. This, in principle, is also true for positive serial correlation, even though 
the error produced by the C4 estimator in the high volatility environment becomes 
somewhat larger.

Third, by adding heteroscedasticity to independently distributed returns, we see 
that all estimators belonging to the family of Cooper estimators continue to pro-
duce small errors as long as simulated volatility is not too high. While this statement 
also applies to the arithmetic average, it does not apply to the GM as well as MoM 
estimator.

Fourth, if we combine negative serial correlation with heteroscedasticity errors 
in most of the cases increase. Only the C4 estimator continues to produce relatively 
low errors as long as volatility is not too high. Moreover, while the AM estimator 
deteriorates with an increasing degree of negative serial correlation, the GM estima-
tor improves. As a consequence, also the MoM estimator is positively affected by an 
increasing degree of negative serial correlation. In fact, for a high degree of nega-
tive serial correlation the MoM estimator performs very well and comes close to the 
C4 estimator. Compared to that the Blume estimator achieves its best results for a 
medium degree of negative serial correlation and outperforms the MoM estimator in 
these cases.15

Fifth, if we combine positive serial correlation with heteroscedasticity errors 
become very large for all estimators. But again, in this case the C4 estimators clearly 
outperforms all the others; and also the EK estimator is doing remarkably well in 
these cases.

In order to get a better structural picture of the different estimators a ranking 
based on the error measurement according to Eq. (17), i.e. the error in present value 
terms over one year discounting periods, is summarized in Table  3. In this rank-
ing we simply order the estimators form the best to the worst result and then look 
at their ranks. Moreover, when we look at the ranking of estimators over different 
parameter combinations, we calculate their rank sum and rank them accordingly. 
Corroborating to what we have said before, it can be seen that under an iid environ-
ment the C2 estimator generates the best results independently of the volatility level. 
However, once we introduce serial correlation without any heteroscedasticity, the 
C4 estimator under all circumstances produces the best results. Interestingly, this 
also holds true if we allow for heteroscedasticity. In fact, when looking at the rank 

15  The sensitivity of the Blume estimator with respect to return volatility has also been emphasized by 
Antonczyk and Mark (2010).
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sum over all 16 parameter combinations we have analyzed here, the C4 estimator is 
clearly the winner.

Moreover, as an additional remark it should be pointed out that in all 16 differ-
ent parameter combinations used for compiling Table 3, one estimator belonging to 
the Cooper family occupied the first place. This corroborates the statement that this 
family of estimators performs very well.

According to this overall ranking the GM estimator produces the worst estimates. 
While the GM estimator produces bad results under most parameter combinations, 

Fig. 2   Biases of different estimators under high or low volatility, negative serial correlation and hetero-
scedasticity. This figure is based on a simulation of 200,000 random yearly return realizations according 
to Eqs. (14) and (15) as described in Sect. 4. Parameters σ, γ and α are varied according to the values 
given below. The long-term return volatility ω is set at 15 or 20%, for the long-term return we define 
μ = 0.05–0.5ω2. Moreover, we set β = 0.5α. The errors according to Eq.  (17) for the N-period discount 
rate estimations are show. The estimators are: Δ_AM: arithmetic mean; Δ_GM: geometric mean; Δ_
MoM: mean of geometric and arithmetic average; Δ_C4: Cooper estimator according to Eq. (12). A Low 
risk, high negative serial correlation, no heteroscedasticity (σ = 0.15, γ = 0.5, α  = 0). B Low risk, no neg-
ative serial correlation, high heteroscedasticity (σ = 0.15, γ = 0, α  = 0.6). C Low risk, high negative serial 
correlation, high heteroscedasticity (σ = 0.15, γ = 0.5, α = 0.6). D High risk, high negative serial correla-
tion, high heteroscedasticity (σ = 0.20, γ = 0.5, α  = 0.6). E High risk, high negative serial correlation, no 
heteroscedasticity (σ = 0.20, γ = 0.5, α  = 0). F High risk, no negative serial correlation, high heterosce-
dasticity (σ = 0.20, γ = 0, α  = 0.6)
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the Blume estimator works relatively well as long as there is negative serial correla-
tion. However, for none or positive serial correlation it performs badly.

For the MoM estimator it can be said that it produces good results in the case of 
high negative serial correlation independently of the heteroscedasticity and variance 
level. However, for all other cases, i.e. low negative or positive serial correlation, the 
estimator generates flawed results.

Interestingly, these rankings do not change much, if instead of an error term nor-
malized by the length of the discounting period we look at the error in present value 
terms. In fact, the grey shaded area in Table 3 gives the aggregated rankings based 
on Eq. (16). There are no striking differences.

Finally, a graphical resume of these results, especially with respect to the C4 and 
MoM estimator, is given in Fig. 2. Again, it can be seen there that the C4 estimator 
works remarkably well under all circumstances, while the MoM estimator only does 
a somehow acceptable job in the case of high negative serial correlation. The AM 
estimator comes close to the C4 estimator in case of no negative serial correlation.

From a practitioners’ perspective, these results can be summarized as follows. 
Under conditions of ambiguity, i.e. it is unclear to what extent market returns are 
subject to serial correlation and heteroscedasticity, it would be best to work with the 
C4 estimator, as it outperforms the other estimators over a large range of different 
parameter combinations. Based on the analysis in the next section, where we show 
that negative serial correlation is a somewhat pervasive phenomenon, using the C4 
estimator is clearly supported. If serial correlation could be ruled out, using the C2 
estimator would be recommendable, while if heteroscedasticity could be ruled, the 
C4 estimator should again be preferred.

However, it has been argued that practitioners prefer to use simple estimators, like 
the AM, GM or MoM. Of course, this analysis has shown that none of these estima-
tors constitutes a perfect solution, as each of them comes with a risk. In fact, the 
GM estimator performs badly unless there is a very high degree of negative serial 
correlation. In the 16 baseline parameter combinations analyzed here, it was always 
outperformed either by the AM or the MoM estimator.

Results are clearly better for the AM estimator, as it outperforms the GM and 
MoM estimator in all those circumstances where negative serial correlation is not 
too high. Hence, using the mean of means―as some practitioners seem to be 
doing―can only be justified on the basis of empirical evidence pointing to a sub-
stantial degree of negative serial correlation. It will be shown in the next section that 
negative serial correlation is a widely spread, even though not ubiquitous, phenom-
enon. However, it seems that the empirically measured degree of negative serial cor-
relation is not sufficiently high in order to give the MoM estimator a clear preference 
over the AM estimator.

Finally, as an additional robustness test we have re-run the simulation by setting 
the parameters in a way that much higher heteroscedasticity is produced, i.e. we use 
α = 0.4, β = 0 and α = 0.5, β = 0. In fact, kurtosis in these simulations is in a range of 
0.81 to 1.50. Results are reported in Table 4. It can be seen that they are qualitatively 
unchanged. Again, the C4 estimator overall performs better than any other estimator 
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under consideration.16 Moreover, it might be worth to mention that the performance 
of the Blume as well as the AM estimator slightly improve with respect to the base 
case were kurtosis was clearly lower.

As a final disclaimer it should be mentioned that we have not done an exten-
sive analysis of all possible return generating processes. It might well be that pro-
cesses can be found where also the C4 estimator leads to significantly biased results. 
Answering this question must be left to future research.

5 � International evidence

5.1 � Background

In the preceding section it has been shown that under many circumstances the 
C4 estimator works best. If we are restricted to use a simple estimator, the choice 
depends most importantly on whether there exists significant negative serial correla-
tion. In that case the MoM estimator outperforms the AM and GM, while in most 
other cases the AM estimator seems to work best among these three alternatives. 
Hence, it is an empirical question which of these estimators are more suitable for a 
practical valuation problem.

Therefore, in this section we focus on the simultaneous impact of correcting the 
discount rate estimation for biases stemming from observational problems and serial 
correlation. The question we are interested in is to empirically infer the relationship 
between the unbiased market risk premium estimation in the context of valuation 
problems with its geometric and arithmetic average as well as the mean of means. 
Of course, in an empirical application we do not know the true unbiased estimation. 
However, according to our results presented in Sect. 4 we assume that the C4 esti-
mator produces estimations close to the unobserved unbiased estimation.

For our analysis we use an international sample of long historical records on 
stock- and bond-market returns as provided by Jordà et al. (2019). Because of the 
international nature of these data we use the global CAPM as an analytical starting 
point for the analysis. Following the work of Solnik (1974), Grauer et  al. (1976), 
Stulz (1981), Solnik (1982), Adler and Dumas (1983), Dumas and Solnik (1995), 
and others, we write the securities market line equation in an international context 
as follows:

Here, c is the currency indicator making clear that all components of the securi-
ties market line equation have to be measured in one single currency, i.e. the base 
currency. This has an important implication: as there is only one risk-free asset in 
each currency, the risk-free rate rc

f
 refers to the domestic government bond issued in 

(18)rc
i
= rc

f
+ �c

i,w

(
rc
w
− rc

f

)
= rc

f
+ �c

i,w
mrpc

w

16  It should be noted that we had to leave out the EK estimator in this robustness test. The reason is that 
because of high heteroscedasticity the estimator in several cases generates numerically invalid results.



1400	 C. Kaserer 

1 3

the country with the currency c as the legal tender. Hence, depending on the home 
country of the respective investor, the market risk premium mrpc

w
 is measured as the 

difference of the return of a worldwide equity portfolio expressed in the domestic 
currency c minus the domestic risk-free rate. The realized market risk premium from 
the perspective of a German investor reflects the premium he was able to earn by 
holding the world stock market portfolio above the German government bond. As a 
consequence, from the perspective of a German investor the historically realized 
world market risk premium is different than from the perspective of a US-investor or 
any other investor with a different home currency.

It should be noted that the global CAPM according to Eq. (18) is a simplified version 
of the international CAPM as developed by the authors given above. In principle, these 
models show that the covariance risk of exchange rates with asset returns are priced 
adding an additional factor to the pricing equation given above. However, under spe-
cific conditions this risk factor can be ignored, for instance if exchange rates reflect pur-
chasing power parity (cf. Stulz 1981; Dumas and Solnik 1995). Empirically it seems, 
however, that exchange rate risk might be a priced factor (cf. Dumas and Solnik 1995). 
We nevertheless stick to the simplified version of a global CAPM given in Eq. (18) as 
even under a truly international CAPM the world market risk premium is a pricing fac-
tor (cf. Adler and Dumas 1983), making its empirical estimation a relevant issue.

Finally, the question whether a global or local CAPM is more appropriate 
depends on the degree of market integration on an international level. While some 
markets might be highly integrated, others probably are not. And independently of 
market integration behavioral restrictions, such as the well-known home bias, might 
prevent investors from fully exploiting international diversification opportunities. 
While in reality this might cause the appropriate asset pricing model to some kind of 
mixture between a global and local CAPM,17 we use a simpler approach by paying 
attention either to the global or to the local CAPM perspective. Therefore, we also 
measure the market risk premium of single countries or regions.

5.2 � Data

As our base case we use the data provided by Jordà et al. (2019),18 which we will refer 
to as the JST data. This is one of the few databases with a very long historical record 
of stock- and bond-market returns, exchange rates and also real GDP. In fact, this data 
set covers the 146 year period from 1870 to 2015. Over this period, we have stock 
and bond market returns for 16 countries with some years with missing entries.19 
However, for the sake of clarity we conduct our analysis from the perspective of a 

17  A more detailed analysis of such a possible relationship can be found in Lau et al. (2010).
18  For more details on this database see https://​www.​macro​histo​ry.​net/​datab​ase/. License terms can also 
be found there. Data has been downloaded on May 7, 2021.
19  Countries are: Australia, Belgium, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, 
Norway, Portugal, Spain, Sweden, Switzerland, UK, and US. It should be noted that the JST data also 
includes Canada and Ireland. However, because of the large number of missing observations these two 
countries were dropped from our dataset. We group the European countries in a separate European 
region (EUR).

https://www.macrohistory.net/database/
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US, UK, or German investor. Hence, we use the US-Dollar, the British Pound or a 
combination of Euro/Deutsche Mark/Reichsmark as base currencies. Moreover, we 
calculated average real GDP weighted returns in order to come up with estimates for 
the domestic as well as a European and a World market risk premium.20 For all coun-
tries and regions we calculate up to 145 yearly market risk premium realizations in 
three different base currencies according to the following equation:

Here, c stands for one of the following three currencies: US-Dollar, British Pound 
or a combination of Euro, Deutsche Mark and its predecessors; i stands for one of 
the five regions/countries mentioned above. Sc

i,t
 gives the value of a broad stock mar-

ket portfolio in country/region i in year t expressed in currency c. Bc,t gives the value 
of a portfolio of long-term government bonds at the end of year t issued in the coun-
try where c is the domestic currency. Hence, it represents the return of an investment 
in a portfolio of risk-free bonds issued by the country where the currency c is the 
legal tender. Because of the global or local CAPM perspective, we do not use all 
possible currency/country combinations, as this would lead, for instance, to calcu-
late the US market risk premium from the perspective of a German investor. Hence, 
we combine each currency with the world stock market as well as with those domes-
tic markets, where this currency is the legal tender. The British Pound and the Euro/
Mark currency are also combined with the European stock market portfolio.

Because of the special situation during the two World War periods―and also 
because of a missing data issue―we do all the calculations also for the post-war 
period from 1957 to 2015 separately. For Germany we also use the online data pro-
vided by Richard Stehle.21 The data, which will be called the FTS-data, provides 
yearly total returns of a broadly diversified German stock market portfolio and covers 
the period 1953 to 2013. We use the data over the period 1957 to 2015 by extending 
the data for the last remaining three years with the returns of the CDAX. The return 
on the long-term German government portfolio is proxied by the REXP index.22 How-
ever, this index is only available starting from the year 1968. For the missing years 
we approximate this return by using the yield on German government bonds reported 
by the Bundesbank and assuming that this represents the yield of a 10-year German 
government bond and the bond is quoted at par.23 As this data is only available starting 
from 1956, we have to restrict the whole FTS data to start from that year.

(19)mrpc
it
= ln

(
Sc
i,t

Sc
i,t−1

)
− ln

(
Bc,t

Bc,t−1

)

20  We label all the countries mentioned in the preceding footnote as representing the world (WD) capi-
tal market. The European capital market is represented by the subset of European (EUROPE) countries 
mentioned there.
21  We have downloaded the data from https://​www.​wiwi.​hu-​berlin.​de/​de/​profe​ssuren/​bwl/​bb/​daten/​data-​
libra​ry. For further description cf. Stehle and Schmidt (2015).
22  This is a large portfolio of German government bonds with an average maturity of 5.49  years (cf. 
Deutsche Bundesbank Kapitalmarktstatistik, January 2020, p. 81).
23  Specifically, we use the time series BBK01.WU004 reported by the Bundesbank.

https://www.wiwi.hu-berlin.de/de/professuren/bwl/bb/daten/data-library
https://www.wiwi.hu-berlin.de/de/professuren/bwl/bb/daten/data-library
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5.3 � Results

The first set of results can be found in Table 5. There we report the statistical distri-
bution of the continuously compounded market risk premium according to Eq. (19) 
for different combinations of currencies and countries/regions. Not surprisingly, the 
average returns are clearly impacted by the currency in which they are defined. It 
should be noted that this might be due to long-term trends in exchange rates as well 
as persistent differences in the level of the risk-free interest rates.

In general, it could be said that the differences in average market risk premia are 
not too pronounced. In fact, leaving two cases aside, namely the World and Euro-
pean market risk premium calculated based on the EUR/Mark, the (arithmetic) 
average after-World War II risk premia are in a range of 4.63–5.73%.24 However, 
the World or European market risk premium in EUR/Mar is significantly lower at 
3.82%. This might be caused by the huge appreciation of the Deutsche Mark.

When calculating long-term realized market risk premia dispersion is a bit higher, 
with UK being at the one (4.63%) and Germany (6.86%) at the other end of the 
range. It should be noted here that for Germany we do not have data for the hyperin-
flation period 1992–1923 as well as for the World War II collapse period from 1944 
to 1948. Moreover, while in most of the cases the volatility of the market risk pre-
mium is in the range of 15–20%, it gets somewhat higher (about 22%) for Germany.

As a side remark, it should be pointed out that a direct comparison of the results 
presented in Table 5 with other sources presenting market risk premia estimations 
has to be done carefully. As explained in the preceding section, we apply a global 
CAPM, which means that stock market returns are converted into one base currency 
(i.e. USD, EUR or GBP); from this return the return on the government bond in that 
base currency is deducted.25 Only for the market risk premia of Germany, US and 
UK a direct comparison with other studies is possible, as for these countries stock 
returns measured in local currency are compared with local risk-free rates.

What is more interesting for our purposes is the fact that regardless of the coun-
try, region or base currency we have excess kurtosis, which seems to be more 

24  As our base observations are continuously compounded market risk premia according to Eq.  (19), 
arithmetic average in our context is expressed in continuous compounding as well; if AM is the arithme-
tic average of the yearly market risk premia observations calculated as (emrp − 1) , the arithmetic average 
given in Table 5 is expressed as ln(1 + AM) . The geometric average in the table refers to the arithmetic 
average of the continuously compounded market risk premia according to Eq. (19).
25  The reader interested in the German market might nevertheless wonder why the German market 
risk premium based on FTS data and measured in Euro in Table 5 is only 3.12%, given that Stehle and 
Schmidt (2015, p. 39), mention a geometric average for the market risk premium of 6.08%. The stock 
market data is the same in both cases. However, there is a twofold reason for this deviation. First, in the 
Stehle and Schmidt (2015) paper the risk premium is measured against a money market rate, while we 
use the long-term Government bond return as measured by the REXP data. As this bond data is only 
available since 1956, we couldn’t start our analysis earlier. And this is the second reason for the differ-
ence mentioned above. As the year 1954 generated a stock market return of about 85%, it makes a differ-
ence whether this year is included in the analysis, as in the Stehle and Schmidt (2015) paper, or excluded, 
as in our analysis.
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Table 5   Distribution of the market risk premium relative to different base currencies

The table reports descriptive statistics of the continuously compounded market risk premium according 
to Eq.  (19) with respect to one base currency according to Sect. 5 for the US, Germany (DE), United 

Panel A: EUR/Mark

Region DE DE (short) DE (FTS) WD WD (short) EUROPE

Geom. Mean 4.32% 2.74% 3.12% 4.98% 2.44% 4.24%
Arith. Mean 6.86% 5.17% 5.52% 10.05% 3.82% 8.47%
Mean of Means 5.59% 3.95% 4.32% 7.52% 3.13% 6.36%
St.dev. 22.23% 22.79% 22.48% 26.07% 17.18% 24.52%
Max 81.90% 51.08% 54.28% 204.33% 37.09% 189.14%
Min −65.14% −65.14% −59.68% −88.45% −52.47% −67.74%
Excess kurtosis 2.8 1.1 0.6 27.4 1.8 24.5
Skew 0.4 −0.7 −0.5 3.4 −0.9 3.1
+2sigma fat tail 1.35% −0.58% −0.58% −0.10% −0.58% −0.83%
−2sigma fat tail 0.62% 2.81% 2.81% −0.83% 2.81% −0.83%
N 138 59 59 138 59 138

Panel B: USD

Region US US (short) WD WD (short)

Geom. Mean 4.13% 3.23% 4.70% 3.89%
Arith. Mean 5.75% 5.03% 6.05% 5.73%
Mean of Means 4.94% 4.13% 5.37% 4.81%
St.dev. 18.38% 19.61% 16.67% 19.92%
Max 42.70% 42.04% 60.51% 40.56%
Min −71.09% −71.09% −70.48% −70.48%
Excess kurtosis 1.4 2.5 3.0 2.1
Skew −0.6 −0.9 −0.5 −0.9
+2sigma fat tail −0.89% −2.28% 0.48% −2.28%
−2sigma fat tail 0.50% 1.11% 0.48% −0.58%
N 144 59 145 59

Panel C: GBP

Region GB GB   (short) WD WD  (short) EUROPE EUROPE (short)

Geom. Mean 3.56% 3.64% 5.28% 3.49% 4.45% 3.06%
Arith. Mean 4.63% 5.60% 6.70% 4.98% 6.58% 5.02%
Mean of Means 4.09% 4.62% 5.99% 4.23% 5.51% 4.04%
St.dev. 14.70% 20.07% 16.80% 17.71% 19.82% 20.39%
Max 60.63% 60.63% 73.35% 37.42% 99.75% 38.15%
Min −52.55% −52.55% −42.95% −42.95% −46.72% −46.72%
Excess kurtosis 3.5 1.5 2.3 0.2 5.7 −0.3
Skew −0.3 −0.2 0.2 −0.7 1.0 −0.6
+2sigma fat tail 0.48% −0.58% −0.21% −2.28% −0.90% −2.28%
−2sigma fat tail −0.21% 1.11% 2.55% 1.11% 0.48% 1.11%
N 145 59 145 59 145 59
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pronounced for pre-war period returns. We also find in 12 out of 15 cases negative 
skew. This is in line with downside fat tails.

Coming back to the focus of the paper we next investigate the existence of nega-
tive serial correlation. For that purpose we calculate the variance ratios of the mar-
ket risk premium following the approach of Campbell et al. (1997, p. 48 n). It should 
be noted that under the null hypothesis, i.e. iid returns, variance ratios are not differ-
ent from 1. In fact, it should not make a difference whether the variance is calculated 
on the basis of yearly or, let’s say, bi-annual returns. The bi-annual variance should 
simply be twice the annual variance. However, under the presence of serial correla-
tion this is not true anymore. Therefore, in the presence of negative (positive) serial 
correlation the variance ratio VR(q), intuitively expressed as the ratio of the annual-
ized variance of q-yearly return observations to the variance of yearly return obser-
vations, should be the lower (higher) the higher the degree of negative (positive) 
serial correlation.

In general, the variance ratio can be approximated by a linear combination of 
the first q−1 autocorrelation coefficients with arithmetically declining weights (cf. 
Campbell et al. 1997, p. 54), i.e. for q ≥ 2.

In case q = 2 this simplifies to:

Hence, having in mind that VR(2) is the variance ratio of the annualized bi-
annual return variance to the yearly return variance, a variance ratio of 0.8 would 
imply an empirical coefficient of autocorrelation close to −0.2.

Moreover, under an AR(1) process with a one-period autocorrelation coefficient 
γ, the variance ratio can be written as (cf. Campbell et al. 1997, p. 49):

We have already discussed in Sect.  4.2 that for our simulations this implies 
a range of variance ratios from 35 to 148%. Now we can compare this with the 

(20)VR(q) ≈ 1 + 2

q−1∑
k=1

(
1 −

k

q

)
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)
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(
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)

(21)VR(2) = 1 + �(1)

(22)VR(q) = 1 +
2
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[
� −

�q

q
−

� − �q

q(1 − �)

]

Kingdom (GB), the World (WD) and EUROPE, from the perspective of a German (Panel A), US (Panel 
B) and British (Panel C) investor. Each Panel uses a different base currency. All means are based on 
continuous compounding; for the definition of the arithmetic average see footnote 24; Std.dev. is annual-
ized. ± 2sigma fat tail is the percentage of return realizations above (below) + (−) two standard deviations 
minus the probability of such realizations under the normal distribution assumption. Raw data is from 
Jordà et al. (2019) and covers the period 1871 to 2015. For all results in EUR/Mark, estimations for the 
years 1922, 1923, and 1944 to 1948 are either not available or have been excluded. Columns labeled 
(short) use return data from 1957 to 2015. The column D (FTS) is based on the FTS series as described 
in Sect. 5.2 covering the period 1957 to 2015. The return of the long-term government portfolio is based 
on the REXP-data, which has been extended to the period 1956 using our own estimations

Table 5   (continued)
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Table 6   Variance ratios of the global and local market risk premium

Panel A: EUR/Mark

q \  Region DE (short) DE (FTS) WD (short) EUROPE (short) Mean ratio

2 102% 100% 106% 100% 109%
3 90% 86% 99% 92% 102%
4 78% 72% 95% 91% 96%
5 61% 58% 89% 82% 87%
6 45% 45% 85% 72% 77%
7 40% 40% 83% 70% 75%
8 35% 33% 78% 68% 71%
9 36% 35% 82% 71% 78%
10 38% 35% 81% 70% 82%

Panel B: USD

q \  Region US US   (short) WD WD   (short) Mean  ratio Mean 
ratio 
(short)

2 97% 82% 103% 85% 103% 90%
3 85% 65% 96% 67% 96% 73%
4 85% 64% 94% 62% 95% 72%
5 83% 64% 88% 55% 92% 71%
6 75% 57% 81% 40% 85% 60%
7 70% 53% 78% 36% 82% 57%
8 69% 49% 77% 33% 82% 54%
9 69% 50% 77% 33% 83% 58%
10 70% 48% 78% 32% 85% 58%
12 76% 88% 97%
15 74% 93% 104%
20 67% 92% 107%

Panel C: GBP

q \  Region GB GB   (short) WD WD   
(short)

EUROPE EUROPE 
(short)

Mean   ratio Mean 
ratio 
(short)

2 93% 86% 94% 87% 92% 96% 96% 96%
3 77% 66% 90% 73% 86% 81% 88% 81%
4 73% 56% 93% 68% 84% 76% 88% 77%
5 73% 54% 96% 59% 80% 63% 89% 70%
6 70% 47% 99% 52% 78% 50% 90% 62%
7 67% 42% 102% 52% 77% 46% 90% 60%
8 64% 37% 104% 48% 77% 40% 92% 56%
9 67% 39% 107% 48% 75% 35% 94% 57%
10 71% 41% 110% 47% 72% 29% 97% 56%
12 80% 121% 77% 110%
15 91% 137% 84% 129%
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empirical results, which are given in Table 6. Note that the variance ratio depends on 
the length of the time period over which the return is measured. The length of this 
period measured in years is labelled as q. It should be noted that when using Euro 
or the Deutsche Mark (and its predecessors) as a base currency, we are restricted to 
post-World War II periods as we have missing observations in the pre-World War II 
period.

Overall, it could be said that the picture in Table 6 is quite consistent. In about 7% 
of all region/frequency-observations we derive variance ratios above one. Almost all 
of these cases arise when using the British Pound as a base currency and calculat-
ing world-wide market risk premia. Maybe this could be related to the World War 
experience. In that case it might well be that we would observe similar results, if we 
were able to calculate Euro/Mark-based variance ratios for periods including the two 
World Wars. As a side remark, however, it should be noted that having serial corre-
lation in the long run might give way to some serious questions about the rationality 
of the market equilibrium.26

As a final remark it should be said that we do not report any statistical test for 
the variance ratios. As has been shown by Campbell et al. (1997, p. 57 n.), there are 
serious difficulties in making long-horizon inferences based on these variance ratios. 
If the ratio q/T is not close to zero these tests will have little power. And, moreover, 
even under the null hypothesis variance ratios tend to be below one. In fact, Richard-
son and Stock (1989) and Campbell et al. (1997, p. 58), show that expected variance 
ratios under the null hypothesis converge to

The table reports the variance ratios calculated according to Campbell et al. (1997, p. 48 n), for differ-
ent time lengths q of the continuously compounded market risk premium for Germany (DE), EUROPE, 
Great Britain (GB), the US, and the World (WD), from the perspective of a German (Panel A), US 
(Panel B) and British (Panel C) investor. Raw data is from Jordà et  al. (2019) and covers the period 
1871 to 2015; the period labelled (short) covers 1957 to 2016. For more details cf. Sect. 5. Moreover, 
the column DE (FTS) is based on the FTS series as described in Sect. 5.2 covering the period 1957 to 
2016. Each Panel uses a different base currency. For returns in EUR/Mark only the short period could be 
used because of missing data. In the before last column, the ratio of those columns is given, which have 
a variance ratio lower than 100%. The last column the ratio of the mean observed variance ratio to the 
expected variance ratio according to Eq. (23) is given

Table 6   (continued)

Panel C: GBP

q \  Region GB GB   (short) WD WD   
(short)

EUROPE EUROPE 
(short)

Mean   ratio Mean 
ratio 
(short)

20 93% 148% 92% 149%

26  In fact, in such cases stock prices might become predictable over the long run. An extensive discus-
sion of the implications caused by long-run negative serial correlation can be found in Shiller (2014, p. 
1496 n).
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Therefore, having q/T-ratios of up to 1/6 the fact that most of the empirical vari-
ance ratios are below one should not be overinterpreted. In order to cope with this 
issue an additional statistic is presented in Table 6. It is called the Mean Ratio and 
it gives the ratio of the average empirical variance ratio over the respective regions 
to the expected variance ratio according to Eq. (23). In case of negative serial cor-
relation this ratio should be lower than 1. It can be seen that only in a few cases, i.e. 
8 out of 51, this does not hold and ratios are above one. It is interesting to note that 
most of these cases happen for very long frequencies, i.e. for frequencies beyond 
10 years.

To sum up, despite the poor statistical robustness the evidence presented here is 
broadly in line with the notion that negative serial correlation tends to be an ubiqui-
tous phenomenon.

5.4 � Practical implications

The evidence presented so far should not be ignored when it comes to the estimation 
of discount rates. Starting from this observation we now ask the question whether 
there is any practical guidance that can be drawn from our results. In this respect, 
two remarks emerge from our analysis.

First, because serial correlation seems to be a pervasive phenomenon ideally the 
C4 estimator according to Eq. (12) should be used for estimating discount rates in 
valuation problems. This is true even in the presence of heteroscedasticity, as we 
have shown. However, by using this estimator the valuation problem is enlarged by 
new degrees of freedom, as one needs to have an information about the extent of 
serial correlation over many different lags. This is not easy to implement, especially 
also because the analysis presented in this section showed that due to the relatively 
small number of return observations results are not very robust.

Therefore, as a second remark we address the question whether our analysis 
would allow for any kind of heuristic rule in order to simplify the problem. For 
that purpose, we run an additional analysis, where we estimate the presumably 
least biased market risk premium according to the C4 estimator in Eq.  (12). The 
period specific variance �2

N
 is estimated using the variance ratio results presented 

in Table 6. We then compare these presumably least biased estimates with the well-
known AM, GM, and MoM estimators.

Some first graphical results are presented in Figs. 3 and 4. In the majority of the 
cases the least biased discount rate estimation is between the geometric and the 
arithmetic average. This corroborates the intuition that because of negative serial 
correlation the unbiased discount rate estimators have to be corrected downward. 
Interestingly, based on the empirical distributions found here, this correction in 
many cases leads to unbiased estimators below the arithmetic average. At the same 
time, it can be seen that the unbiased estimator is rarely below the MoM. Hence, 
form graphical inspection it is unclear, whether the AM or MoM estimator perform 

(23)E
[
VR(q, T)

]
=
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q
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better. Of course, both are clearly biased, but which of the two tends to be less biased 
cannot simply be inferred from graphical inspection.

Therefore, we perform a more precise analysis by computing the estimation 
biases based on the measures introduced in Eqs. (16) and (17) in Sect. 4.1. A similar 
approach has already been used when evaluating the simulation results in Sect. 4.2. 
By using the currency/region combinations presented in Table 6 and assuming that 
the C4 estimator according to Eq. (9) produces the least biased results, we can calcu-
late for every discounting period q a weighted or unweighted estimation error based 

Fig. 3   Unbiased local market risk premia based on the C4-estimator for Germany, US, and UK. This 
figure draws the discretely compounded unbiased market risk premia estimated on the basis of the C4 
estimator according to Eq. (12); for more details cf. Sect. 3.2. Raw data is from JST or FTS as described 
in Sect. 5.2 covering the period 1871 to 2015 or 1957 to 2015. GM, AM, and MoM indicate the dis-
cretely compounded geometric or arithmetic mean or the mean of both. A Germany (short JST data) with 
Deutsche Mark (and its predecessors) and Euro as base currency. B Germany (FTS data) with Deutsche 
Mark and Euro as base currency. C US (JST data) with US-Dollar as base currency. D US (short JST 
data)) with US-Dollar as base currency. E UK (JST data) with British Pound as base currency. F UK 
(short JST data) with British Pound as base currency
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on Eqs.  (16) and (17). Further distributional data needed for this exercise is taken 
from Table 5. Results are reported in Table 7.

Several results emerge from this exercise. First, it can be seen that in practically 
all cases the GM produces the most biased results. Secondly, AM and MoM gener-
ate significantly smaller biases. Third, the MoM is more likely to outperform the 
AM, if there is more pronounced negative serial correlation. In fact, those cases 
were MoM is ranked on the first place are the cases where the variance ratios are 
strongly declining over time. However, as long as variance ratios stay relatively 
high, i.e. they are not clearly going below 70–80%, the AM performs better. It is 
important to emphasize that this result to some extent might also be driven by the 
length of the time series. In fact, in Panel B and C the MoM estimator outperforms 

Fig. 4   Unbiased global market risk premia based on the C4-estimator. This figure draws the discretely 
compounded unbiased market risk premia estimated on the basis of the C4 estimator according to 
Eq.  (12). Raw data is from JST as described in Sect. 5.2 covering the period 1871 to 2015 or 1957 to 
2015. GM, AM, and MoM indicate the discretely compounded geometric or arithmetic mean or the mean 
of both. A World (short) with Deutsche Mark and Euro as base currency, B Europe (short) with Deutsche 
Mark and Euro as base currency. C World with US-Dollar as base currency, D Europe (short) with Brit-
ish Pound as base currency. E World with British Pound as base currency, F Europe with British Pound 
as base currency
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Table 7   Estimation errors and rankings of simple estimators

Panel A: EUR/Mark

Region DE    (short) DE   (FTS) WD   (short) EUROPE 
(short)

Avg. 
Rank 
(local)

Avg. 
Rank 
(global)

GM Eq. (16) MAD 8% 7% 8% 9%
Eq. (16) Rank 3 3 3 3 3.0 3.0
Eq. (17) MAD 2% 2% 1% 2%
Eq. (17) Rank 3 3 3 3 3.0 3.0

AM Eq. (16) MAD 6% 6% 0% 1%
Eq. (16) Rank 2 2 1 1 2.0 1.0
Eq. (17) MAD 1% 1% 0% 0%
Eq. (17) Rank 2 2 1 1 2.0 1.0

MoM Eq. (16) MAD 1% 1% 4% 4%
Eq. (16) Rank 1 1 2 2 1.0 2.0
Eq. (17) MAD 1% 0% 1% 1%
Eq. (17) Rank 1 1 2 2 1.0 2.0

GM avg. Rank 3 3 3 3 3.0 3.0
AM avg. Rank 2 2 1 1 2.0 1.0
MoM avg. Rank 1 1 2 2 1.0 2.0

Panel B: USD

Region US US   (short) WD WD   
(short)

Avg. 
Rank 
(local)

Avg. 
Rank 
(global)

GM Eq. (16) MAD 10% 7% 10% 5%
Eq. (16) Rank 3 3 3 3 3.0 3.0
Eq. (17) MAD 1% 1% 1% 1%
Eq. (17) Rank 3 3 3 3 3.0 3.0

AM Eq. (16) MAD 2% 3% 0% 5%
Eq. (16) Rank 1 2 1 2 1.5 1.5
Eq. (17) MAD 0% 0% 0% 1%
Eq. (17) Rank 1 2 1 2 1.5 1.5

MoM Eq. (16) MAD 4% 2% 5% 0%
Eq. (16) Rank 2 1 2 1 1.5 1.5
Eq. (17) MAD 1% 0% 1% 0%
Eq. (17) Rank 2 1 2 1 1.5 1.5

GM avg. Rank 3 3 3 3 3.0 3.0
AM avg. Rank 1 2 1 2 1.5 1.5
MoM avg. Rank 2 1 2 1 1.5 1.5
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the AM estimator in (almost) all those cases where short time series are used, while 
in the cases with the long time series the opposite is true.

Fourth, from graphical inspection one gets the impression that the MoM tends 
to perform better than the AM in those cases where the local CAPM is applied, i.e. 
Figure 3, while in the global CAPM cases, i.e. Fig. 4, the opposite tends to be true. 
This might be driven by the different degrees of negative serial correlation we have 
found in local vs. international markets. For this reason, we have calculated average 
ranks in Table 7 for the local and global CAPM cases separately. Actually, it can be 
said that in the local CAPM cases the MoM ranks slightly better than the AM. The 
average rank over all three Panels in Table 7 is 1.2 as compared to 1.8 for the AM. 
However, the opposite happens, if the global CAPM is applied. Here the average 
rank of the MoM is 1.8 as compared to 1.2 for the AM. This result also implies that 

The table reports average estimation errors of the simple estimators geometric mean (GM), arithmetic 
mean (AM), and the mean of both (MoM) relative to the C4 estimator according to Eq.  (9) and their 
relative ranking. Errors are calculated based on (16) and (17) and averaged over all discount periods q 
given in Table 6. The mean absolute difference (MAD) is the absolute value of the sum of the errors over 
all discounting periods divided by number of observations. Avg. Rank (local) (global) indicates the rank 
for those cases where the local (global) CAPM has been applied, For calculating the C4 estimator vari-
ance ratios reported in Table 6 as well as the AM and GM reported in Table 5 are used. Raw data is from 
Jordà et al. (2019) and covers the period 1870 to 2015; the period labelled (short) covers 1957 to 2015. 
For more details cf. Sect. 5. Moreover, the column DE (FTS) is based on the FTS series as described in 
Sect. 5.2 covering the period 1957 to 2015. Panel A uses the Euro/Mark as a base currency, while Panel 
B the US-Dolar and Panel C the British Pound

Table 7   (continued)

Panel C: GBP

Region GB GB   
(short)

WD WD  
(short)

EUROPE EUROPE 
(short)

Avg. 
Rank 
(local)

Avg. 
Rank 
(global)

GM Eq. (16) MAD 7% 3% 14% 5% 14% 14%
Eq. (16) Rank 3 2 3 3 3 3 3.0 3.0
Eq. (17) MAD 1% 1% 2% 1% 2% 6%
Eq. (17) Rank 3 2 3 3 3 3 3.0 3.0

AM Eq. (16) MAD 1% 8% 3% 3% 3% 3%
Eq. (16) Rank 1 3 1 2 1 1 2.0 1.0
Eq. (17) MAD 0% 1% 0% 0% 0% 5%
Eq. (17) Rank 1 3 1 2 1 2 2.0 1.0

MoM Eq. (16) MAD 3% 2% 9% 1% 5% 5%
Eq. (16) Rank 2 1 2 1 2 2 1.0 2.0
Eq. (17) MAD 0% 0% 1% 0% 1% 1%
Eq. (17) Rank 2 1 2 1 2 1 1.0 2.0

GM avg. Rank 3 2 3 3 3 3 3.0 3.0
AM avg. Rank 1 3 1 2 1 2 2.0 1.0
MoM avg. Rank 2 1 2 1 2 2 1.0 2.0
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when doing a ranking over all cases considered in Table 7 the average rank of both 
estimators is equal. And the question whether the ranking is based on Eq.  (16) or 
(17) is almost irrelevant.

Fifth, as a final remark it should also be said that at least in some cases shown in 
Figs. 3 and 4 it seems that the MoM gets the better the longer the discounting period 
is. This is not totally surprising as we have seen that variance ratios tend to decline 
in the length of the return measurement period. However, it cannot be taken as a 
general rule. Moreover, when it comes to the practical implementation of these esti-
mators it might not be viable to switch among MoM and AM estimators depending 
on the length of the discounting period.

To summarize, based on the reasoning presented in this section we should be 
careful in making any unconditional statement regarding the relative performance 
of the two estimators. The analysis presented here, however, corroborates the per-
ception that in those cases where we have a noteworthy degree of negative serial 
correlation the ranking would be tilted towards the MoM. And if variance ratios are 
decreasing in the length of the time periods, the usage of the MoM estimator would 
be even more important in cases a company with substantially growing cash flows 
has to be valued.

6 � Conclusion

In this paper we have done a twofold analysis. First, we started from the well-known 
result of Cooper (1996) that estimating unbiased discount rates in a perfect capi-
tal market setting implies to use discount rates that display an increasing premium 
above the arithmetic average the longer the discounting period is. At the same time, 
however, it has been shown that a downward correction of these discount rates is 
warranted in the presence of negative serial correlation. The appropriate estimator 
has also been developed by Cooper (1996) and was labelled as the C4 estimator in 
this paper.

Taking into account that besides negative serial correlation also heteroscedas-
ticity is a well-documented phenomenon in capital markets, we were interested in 
detecting the potential bias of the C4 estimator in the presence of both phenomena. 
Based on a simulation analysis we have presented some evidence that this estimator 
seems to work pretty well even under both serially correlated and heteroscedastic 
stock market returns. In any case, it clearly outperforms all other estimators ana-
lyzed in this paper under a wide range of different parameter combinations for the 
return generating process.

In the second part of the paper we then presented evidence of serial correlation 
and heteroscedasticity in a worldwide sample of realized market risk premia. By 
applying the global and local CAPM we provided evidence that negative serial cor-
relation is a wide-spread phenomenon, even though we also found a few currency/
region combinations displaying positive serial correlation. However, this only hap-
pened when taking the pre-World War II period into account. We have also shown 
that heteroscedasticity is a wide-spread phenomenon.
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Finally, we applied these results to the so called C4 estimator, i.e. an estimator 
accounting for serial correlation, and found that in the majority of the cases the pre-
sumably least biased market risk premia delivered by this estimator is somewhere in 
between the MoM and the AM, with the AM performing the better the less prevalent 
negative serial correlation is, the shorter the discounting periods are, and the longer 
the historical return series are. Hence, using the MoM tends to produce better results 
for cases with a noteworthy degree of negative serial correlation and for longer dis-
counting periods. However, by comparing the two estimators based on the empiri-
cal data collected for this paper we cannot give a clear indication which of the two 
likely produces less biased results. If ever, we found some evidence that the MoM is 
slightly outperforming the AM under a local CAPM perspective, while the opposite 
tends to be true under a global CAPM perspective. Overall, even though there is 
some rationale for the so-called mean of means rule used by practitioners any rec-
ommendation strongly depends on the distributional parameters of the market risk 
premium.

Of course, the results presented in this paper need further investigation. For 
instance, in our simulation analysis we restricted ourselves to a relatively small 
range of return generating processes. Also, we did not account for any firm specific 
characteristics or different time patterns of cash flows. In order to better understand 
the robustness of the C4 estimator it should be challenged by a much broader range 
of different processes and firm specific characteristics. Also, bringing the empirical 
analysis to a wider range of datasets with higher frequency should be helpful.
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