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1 Introduction

1.1 Background and studied objects

Given amatrix A ∈ R
n×n and a randomvector X ∈ R

n , theHanson–Wright inequality
provides a tail bound for the chaos XT AX −EXT AX . In the original work [1], X was
assumed to have independent subgaussian entries whose distributions are symmetric
about 0.

This result has been improved and adapted to various settings in a number of works,
for example [2] gives a versionwhichholds for vectorswith general subgaussian entries
without the symmetry assumption of the distribution:

Theorem 1 (Theorem 1.1 from [2]) Let A ∈ R
n×n. Let X ∈ R

n be a random vector
with independent entries such that EX = 0 and such that X has a subgaussian norm
of at most K . Then for every t ≥ 0,

P(|XT AX − EXT AX | > t) ≤ 2 exp

[
−cmin

{
t2

K 4‖A‖2F
,

t

K 2‖A‖2→2

}]

where ‖A‖F is the Frobenius and ‖A‖2→2 the spectral norm of A.

Today, the Hanson–Wright inequality is an important probabilistic tool and can be
found in various textbooks covering the basics of signal processing and probability
theory, such as [3, 4]. It has found numerous applications, in particular it has been a
key ingredient for the construction of fast Johnson–Lindenstrauss embeddings [5].

For subgaussian X ∈ R
n , linear expressions

∑n
k=1 ak Xk can be controlled by

Hoeffding’s inequality, while quadratic (order 2) expressions XT AX =∑n
j,k=1 A j,k X j Xk can be controlled by the Hanson–Wright inequality. Thus, it is

natural to wonder to what extent such control extends to a higher-order subgaussian
chaos of the form ∑

i1,...,id

Ai1,...,id Xi1 · · · Xid . (1)

Expressions of this type for subgaussian vectors have been considered in [6] where
they are controlled using specific tensor norms of the arrays of all expected partial
derivatives of certain degree with respect to the entries in X .

In contrast, for independent random vectors X (1), . . . , X (d), the decoupled chaos

n∑
i1,i2,...,id=1

Ai1,...,id X
(1)
i1

· · · X (d)
id

, (2)

can be controlled with simpler bounds and has been considered in multiple previous
works for numerous different distributions of the random vectors [7–9].

In the course of adapting fast Johnson–Lindenstrauss embeddings to data with Kro-
necker structure as introduced in [10] (see also [11, 12]), one encounters expressions of
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the form (X (1) ⊗· · ·⊗ X (d))T A(X (1) ⊗· · ·⊗ X (d)) which are somewhat intermediate
between (1) and (2), as they can be expanded as

n∑
i1,...,i2d=1

Ai1,...,id ,id+1,...,i2d X
(1)
i1

· · · X (d)
id

X (1)
id+1

· · · X (d)
i2d

. (3)

In the case that A is of the form BT B for a matrix B (suitably reindexed), this
expression can be rewritten as the square of

‖B(X (1) ⊗ · · · ⊗ X (d))‖2, (4)

a quantity of interest studied by Roman Vershynin in the context of random tensors
[13]. Hence, understanding (3) can also help understanding (4), see Sect. 3.4 below.

Even though (3) can be cast as a specific case of (1) for which [6] provides optimal
bounds, these bounds are not straightforward to use in this specific situation since they
are given in terms of partial derivatives and not in terms of the coefficients Ai1,...,i2d .

The main results of this paper provide moment estimates for the semi-decoupled
chaos process (3) that are easier to use as they are explicitly given in terms of the coeffi-
cients Ai1,...,i2d . Our bounds imply improved estimates for (4) and lay the foundations
for an order-optimal analysis of fast Kronecker-structured Johnson–Lindenstrauss
embeddings. We refer the reader to our companion paper [14] for a discussion of
the implications in this regard. We nevertheless expect that our results should find
broader use beyond these specific applications.

1.2 Previous work

For the casewhere X (1), . . . , X (d) are independentGaussian vectors, the concentration
of (2) has been studied in [7] which provides upper and lower moment bounds which
match up to a constant factor depending only on the order d. We will obtain our main
results for subgaussian vectors by careful reduction to the Gaussian bounds.

Higher order chaos expressions have also been studied for distributions beyond
Gaussian. Specifically, [15, Section 9], considers (1) for the case of Rademacher
vectors. However, the bounds are more intricate than in [7] and the coefficient array
A = (Ai1,...,id )

n
i1,...,id=1 must satisfy a symmetry condition and be diagonal-free, i.e.,

Ai1,...,id = 0 if any two of the indices i1, . . . , id coincide.
Upper and lower bounds on the moments of (2) are shown in [8, 9] for the case of

symmetric random variables with logarithmically concave and convex tails, meaning
that for a random variable X ∈ R, the function t �→ − logP(|X | ≥ t) is convex or
concave, respectively. However, for general subgaussian random variables, neither of
these has to be the case. In addition, these works only consider the decoupled chaos
(2) and provide a decoupling inequality to control (1) for diagonal-free A.

Uppermoment bounds for general polynomials of independent subgaussian random
variables are provided in [6]. Similar to our work, the authors utilize the decoupling
techniques of [16]. Since (3) is a polynomial in the entries of X (1), . . . , X (d), it can
also be controlled using the results from [6]. Because the aforementioned work also
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shows that these moment bounds are tight for the case of Gaussian vectors, one of the
main results (Theorem 3) of our work can also be shown using their results. However,
their result bounds the corresponding L p norms in terms of norms of the array of all
d ′ ≤ 2d expected partial derivatives, meaning that significant additional work would
be required to relate these derivatives to the expressions in Theorem 3. We believe,
that our approach is not much longer but more insightful. In addition, it provides the
decoupling result Theorem 4 which will be of independent interest.

More work on related topics include [17, 18] where upper and lower bounds for
the case of random variables satisfying the moment condition ‖X‖2p ≤ α‖X‖p are
considered for the case of positive variables of order 2. The recent work [19] provides
similar bounds to [6] for distributions of boundedψα norm forα ∈ (0, 1] (orα ∈ (0, 2]
for some fo their results), such as subexponential distributions. Like in [6], their bounds
are given in terms of partial derivatives, not directly in terms of the coefficients.

The decoupling technique used in many proofs of the standard Hanson–Wright
inequality relates XT AX to XT AX̄ where X̄ is an independent copy of X . This
approach was first introduced in [20], already in a general higher-dimensional form.
The general idea is to upper bound convex functions (e.g. moments) of (1) by the
corresponding expressions of (2), up to a constant. Beside independent, symmetrically
distributed entries of the random vectors, the result also requires the coefficient array
to be symmetric and diagonal free.

The subsequent work [21] has also shown the reverse decoupling bound, up to
constant factors, proving that through (2), one can also provide lower bounds on
the moments of (1) with the same assumptions on the coefficient array. However,
in some applications it can be interesting to consider non-diagonal-free coefficient
arrays. For example, in the scenario of ‖B(X (1) ⊗ · · · ⊗ X (d))‖22, the coefficient array
BT B cannot be expected to fulfill the diagonal-free condition in general. The work
in [16] lifts the restriction of a diagonal-free coefficient array and bounds the tails of
slight modifications of (2) and (1) by each other up to certain constants in the case of
Gaussian random variables.

The concentration of the norm (4) has recently been studied for the subgaussian
case in [13]. It is shown that

P

(∣∣∣‖B(X (1) ⊗ · · · ⊗ X (d))‖2 − ‖B‖F
∣∣∣ > t

)
≤ 2 exp

(
− ct2

dnd−1‖B‖22→2

)
(5)

for an absolute constant c and for 0 ≤ t ≤ 2n
d
2 ‖B‖2→2. This bound suggests that

techniques like the chaos moment bounds in [7] could be applied to this problem,
which is what we do in this work and leads to Theorem 6 below.

1.3 Overview of our contribution

The goal of this work is to provide upper and lower bounds for the moments of
the deviation of (3) from its expectation for vectors with independent subgaussian
entries (Theorem 3 below). Key steps of the proof include a decoupling inequality
for expressions of the form (3), Theorem 4, and a comparison to Gaussian random
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vectors. Finally, based on our results for (3), we provide a concentration inequality for
(4) as stated in Theorem 6 which extends previous results of [13].

Possible applications of such results include recent developments in norm-
preserving maps for vectors with tensor structure in the context of machine learning
methods using the kernel trick [10–12].

1.4 Notation

Our results on XT AX where X is a Kronecker product of d random vectors will
depend crucially on the structure of the coefficient matrix A rearranged as a higher-
order (specifically order 2d) array. As such, we must establish sophisticated notation
for such arrays and their indices.

Consider a vector of dimensions n = (n1, n2, . . . , nd) and a subset I ⊂ [d].We call
a function i : I → N a partial index of order d on I if for all l ∈ I , i l := i(l) ∈ [nl ].
Assume there is exactly one such function if I = ∅. If I = [d], then i is called an
index of order d. We denote the set of all partial indices of order d on I as Jn(I ); the
set of all indices of order d is denoted by Jn := Jn([d]). Jn can be identified with
[n1] × · · · × [nd ].

A function B : Jn → R is called an array of order d. Because of the aforementioned
identification, we also write B ∈ R

n1×···×nd =: Rn. For I ⊂ [d], we define Rn(I ) to
be the set of partial arrays B : Jn(I ) → R. For I = [d], this is just the aforementioned
array definition.

We denote

‖B‖2 :=
⎡
⎣ ∑
i∈Jn(I )

B2
i

⎤
⎦

1
2

for the Frobenius norm of the (partial) array where Bi := B(i) are its entries.
For disjoint sets I , J ⊂ [d] and corresponding partial indices i ∈ Jn(I ), j ∈

Jn(J ), define the partial index i×̇ j ∈ Jn(I ∪ J ) by

(i×̇ j)l =
{
i l if l ∈ I

j l if l ∈ J .
(6)

We will often work with arrays of order 2d whose dimensions along the first d
axes are the same as the dimensions along the remaining d ones. We use the notation
n×2 = (n1, . . . , nd , n1, . . . , nd) to denote such arrays.

For sets I ⊂ [2d], J ⊂ [d] such that I ∩ (J +d) = ∅ and for corresponding partial
indices i ∈ Jn(I ), j ∈ Jn(J ), define the partial index i+̇ j ∈ Jn×2

(I ∪ (J + d)) by

(i+̇ j)l =
{
i l if l ∈ I

j l−d if l ∈ J + d.
(7)

For i ∈ Jn(I ) and J ⊂ I , define i J ∈ Jn(J ) to be the restriction of i to J , i.e.,
(i J )l = i l for all l ∈ J .
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As suggested by the explanations above, our convention is to use bold letters for
higher order arrays (e.g., A) while their entries are denoted in non-bold letters (e.g.,
Ai ). For some of our results, we will convert matrices into higher-order arrays by
rearranging their entries. In these cases, we will denote the matrices in non-bold
letters and use the same letter in bold for the array, e.g., A and A. For the entries, it
will be clear from the indices which object is being referred to. Besides that, we will
also always use bold letters for array indices (e.g., i), for vectors of array dimensions
(e.g. n), and for the set Jn.

We denote I dn ∈ R
n×n for the identity matrix, ‖A‖F for the Frobenius norm of a

matrix, and ‖A‖2→2 for the spectral norm of a matrix.
For a random variable Y ∈ R, we define ‖Y‖L p := (E|Y |p)1/p and we define the

subgaussian norm ‖Y‖ψ2 := supp≥1 ‖Y‖L p/
√
p. For a random vector X ∈ R

n , we
define the subgaussian norm ‖X‖ψ2 := supv∈Rn ,‖v‖2=1 ‖〈X , v〉‖ψ2 , and we call X
isotropic if EXXT = I dn .

1.5 Previous relevant results

Since our result is based on the bounds given by Latala in [7], we also consider the
following normswhich are also used in that result. In our notation, the norms of interest
are stated as follows.

Definition 1 For n ∈ N
d and an array A ∈ R

n, we define the following norms for any
partition I1, . . . , Iκ of [d].

‖A‖I1,...,Iκ := sup
α(1)∈Rn(I1),...,α(κ)∈Rn(Iκ ),

‖α(1)‖2=···=‖α(κ)‖2=1

∑
i∈Jn

Aiα
(1)
i I1

· · · α(κ)
i Iκ

.

For example, when d = 2, the array A is a matrix and ‖ · ‖{1,2} coincides with the
Frobenius and ‖ ·‖{1},{2} with the spectral norm. Latala [7] proved the following upper
and lower moment bounds for a decoupled Gaussian chaos of arbitrary order. Even
though it is only shown for p ≥ 2 in [7], it holds for all p ≥ 1 as explained in Remark 1
below.

Theorem 2 (Theorem 1 in [7]) Let n ∈ N
d , A ∈ R

n, p ≥ 1.
Let S(d, κ) denote the set of partitions of [d] into κ nonempty disjoint subsets.

Define

m p(A) :=
d∑

κ=1

pκ/2
∑

(I1,...,Iκ )∈S(d,κ)

‖A‖I1,...,Iκ . (8)

Consider independent Gaussian random vectors g(1) ∼ N (0, I dn1), . . . , g
(d) ∼

N (0, I dnd ). Then
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1

C(d)
mp(A) ≤

∥∥∥∥∥∥
∑
i∈Jn

Ai

∏
l∈[d]

g(l)
i l

∥∥∥∥∥∥
L p

≤ C(d)mp(A),

where C(d) > 0 is a constant that only depends on d.

Remark 1 Theorem 1 in [7] only shows this statement for p ≥ 2. However, by a small
adjustment, we can see that it also holds for 1 ≤ p ≤ 2 with a possibly differentC(d).
Let X :=∑i∈Jn Ai

∏
l∈[d] g

(l)
i l
. For the upper bound we have for 1 ≤ p ≤ 2,

‖X‖L p ≤ ‖X‖L2 ≤ C(d)m2(A) ≤ 2
d
2C(d)mp(A).

For the lower bound, we consider the recent work [22] about a generalizedGaussian
chaos with values in an arbitrary Banach space. Theorem 2.1 in their work states the
lower bound

1

C(d)

∑
J⊂[d]

∑
P∈P(J )

p|P |/2|||A|||P ≤ ‖X‖L p , (9)

for all p ≥ 1, where P(J ) is defined as the set of all partitions of J (into non-empty,
pairwise disjoint sets) and |||A|||P , defined in (2.2) of [22], is a non-negative expression
that coincides with our definition of ‖A‖I1,...,Iκ if P = (I1, . . . , Iκ ) is a partition of
the entire set [d]. Therefore we can restrict the sum over J in (9) to the term J = [d]
and obtain

1

C(d)
mp(A) = 1

C(d)

∑
P∈P([d])

p|P |/2|||A|||P ≤ ‖X‖L p .

2 Main results

The main contribution of our work is the following result which gives a generalization
of the Hanson–Wright inequality (Theorem 1) in terms of upper and lower moment
bounds. Note that the operators ×̇ and +̇ are defined in (6) and (7).

Theorem 3 For d ≥ 1, let n = (n1, . . . , nd) be a vector of dimensions, and let
N = n1 . . . nd .

Let A ∈ R
N×N and X (1) ∈ R

n1 , . . . , X (d) ∈ R
nd be random vectors with indepen-

dent, mean 0, variance 1 entries with subgaussian norms bounded by L ≥ 1. Define
X := X (1) ⊗· · ·⊗ X (d). There exists a constant C(d), depending only on d, such that
for all p ≥ 1,

∥∥∥XT AX − EXT AX
∥∥∥
L p

≤ C(d)mp.
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The numbers m p are defined as follows. By rearranging its entries, regard A as an

array A ∈ R
n×2

of order 2d such that

XT AX =
∑

i,i ′∈Jn
Ai+̇i ′

∏
l∈[d]

X (l)
i l
X (l)
i ′l

.

For any I ⊂ [d] and for I c = [d]\I , define A(I ) ∈ R
n×2

(I c ∪ (I c + d)) by

A(I )
i+̇i ′ =

∑
k∈Jn(I )

A(i×̇k)+̇(i ′×̇k) (10)

for all i, i ′ ∈ Jn(I c).
For T ⊂ [2d] and 1 ≤ κ ≤ 2d, denote by S(T , κ) the set of partitions of T into κ

sets. Then for any p ≥ 1, define

m p := L2d
2d∑

κ=1

p
κ
2
∑
I⊂[d]
I �=[d]

∑
(I1,...,Iκ )∈S((I c)∪(I c+d),κ)

‖A(I )‖I1,...,Iκ .

If in addition, X (1) ∼ N (0, I dn1), . . . , X
(d) ∼ N (0, I dnd ) are normally distributed

(i.e. L is constant), and A satisfies the symmetry condition that for all l ∈ [d] and any
i, i ′ ∈ Jn([d]\{l}), j , j ′ ∈ Jn({l}),

A(i×̇ j)+̇(i ′×̇ j ′) = A(i×̇ j ′)+̇(i ′×̇ j), (11)

then also the lower bound

C̃(d)mp ≤
∥∥∥XT AX − EXT AX

∥∥∥
L p

holds for all p ≥ 1. Here, C̃(d) > 0 only depends on d.

Note that these upper bounds can directly be converted to tail bounds in the style of
Theorems 1 or 6 using Lemma 13. After introducing the required tools, the proof of
Theorem 3 will be split up into two parts. We will prove the upper bound in Sect. 3.2.2
and then the lower bound in Sect. 3.3.2.

Remark 2 The symmetry condition required for the lower bound is not satisfied for all
matrices. However, for any matrix A, we can find a matrix Ã satisfying the symmetry
condition and such that XT AX = XT ÃX always holds. To do this, in the array
notation we can define Ã by transposing A along all possible sets of axes and then
taking the mean Ãi+̇i ′ = 1

2d
∑

I⊂[d] A(i I c ×̇i ′I )+̇(i I ×̇i ′I c ) for any i, i ′ ∈ Jn. This is a

generalization of taking Ã = 1
2 (A + AT ) for d = 1. Note however, that Ã might

have significantly smaller norms than A which is why the lower moment bounds in
Theorem 3 might not hold for A directly.
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A central part of our argument is the following specialized decoupling result for
expressions as in (3) which might be of independent interest.

Theorem 4 Let n = (n1, . . . , nd) ∈ N
d , A ∈ R

n×2
, X (1) ∈ R

n1 , . . . , X (d) ∈ R
nd

random vectors with independent mean 0, variance 1 entries and X̄ (1), . . . , X̄ (d) cor-
responding independent copies. Then for all p ≥ 1,

∥∥∥∥∥∥
∑

i,i ′∈Jn
Ai+̇i ′

∏
l∈[d]

X (l)
i l
X (l)
i ′l

− E

∑
i,i ′∈Jn

Ai+̇i ′
∏
l∈[d]

X (l)
i l
X (l)
i ′l

∥∥∥∥∥∥
L p

≤
∑

I ,J⊂[d]:
J⊂I , I\J �=[d]

4d−|I |

∥∥∥∥∥∥∥∥∥∥∥
∑

i∈Jn(J )
j∈Jn(I\J )

k,k′∈Jn(I c)

A (i×̇ j×̇k)
+̇(i×̇ j×̇k′)

∏
l∈J

[
(X (l)

i l
)2 − 1

] ∏
l∈I c

X (l)
kl
X̄ (l)
k′
l

∥∥∥∥∥∥∥∥∥∥∥
L p

Remark 3 Consider the special case inTheorem4of X (1), . . . , X (d) beingRademacher
vectors, i.e., having independent entries that are±1 with a probability of 1

2 each. Then

any squared entry is 1 almost surely. This implies that the factor
∏

l∈J

[
(X (l)

i l
)2 − 1

]
is 0 unless J = ∅. So on the right hand side of the inequality in Theorem 4, only the
terms with J = ∅ need to be considered.

Theorem 4 combines two aspects. On the one hand, there is the probabilistic aspect
that the factors X (l)

i l
X (l)
i ′l

are replaced by X (l)
kl
X̄ (l)
k′
l
, using the independent copy X̄ (l)

k′
l
.

On the other hand, there is the arithmetic one that the quadratic factors (X (l)
i l

)2 arising

on the left hand side for i l = i ′l are expressed by factors
[
(X (l)

i l
)2 − 1

]
, which have

mean 0. A crucial ingredient for the proof of Theorem 4 is the following theorem,
which summarizes the aforementioned arithmetic aspect. Note that it does not take
any randomness in the vectors into account.

Theorem 5 Let n ∈ N
d , A ∈ R

n, X (1) ∈ R
n1 , . . . , X (d) ∈ R

nd . Then

∑
i∈Jn

Ai

∏
l∈[d]

(X (l)
i l

)2 =
∑
I⊂[d]

∑
i∈Jn([d]\I )

A〈I 〉
i

∏
l∈[d]\I

[
(X (l)

i l
)2 − 1

]
,

where for any I ⊂ [d] and i ∈ Jn([d]\I ),

A〈I 〉
i =

∑
j∈Jn(I )

Ai×̇ j .

Theorem 3 also leads to the following new tail bound for ‖A(X (1) ⊗· · ·⊗ X (d))‖2.
Note that it contains the deviation of the non-squared norm. This improves upon the
previous result by Vershynin [13] as described in (5), up to the constant C(d). By
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comparison, our result provides a strictly stronger bound for matrices with smaller
Frobenius norm and holds for all t ≥ 0.

Theorem 6 Let B ∈ R
n0×nd be a matrix, X (1), . . . , X (d) ∈ R

n independent random
vectors with independent, mean 0, variance 1 entries with subgaussian norm bounded
by L ≥ 1, and let X := X (1) ⊗· · ·⊗ X (d) ∈ R

nd . Then for a constant C(d) depending
only on d and for any t > 0,

P (|‖BX‖2 − ‖B‖F | > t)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e2 exp

(
−C(d) t2

nd−1‖B‖22→2

)
if t ≤ n

d
2 ‖B‖2→2

e2 exp

(
−C(d)

(
t

‖B‖2→2

) 2
d
)

if t ≥ n
d
2 ‖B‖2→2

e2 exp

(
−C(d) t2

n
d−1
2 ‖B‖2F

)
if n

d−1
4 ‖B‖2→2 ≤ t ≤ n

d−1
4 ‖B‖F .

Note that the third interval intersects the first two intervals. In any interval of
intersection, both bounds hold. For slightly more complicated but provably optimal
moment bounds, we refer the reader to Corollary 22.

Remark 4 In addition to extending the previous result in (5) from [13] to all t ≥ 0,
our result provides a strict improvement of that result for matrices with stable rank

(‖B‖F/‖B‖2→2)
2 ∈ (1, n

d−1
2 ).

As an example, consider a square matrix B ∈ R
nd×nd with mildly exponentially

decreasing singular values σ j = e− 1
2 n

− d
4 ( j−1) for 1 ≤ j ≤ r . Then by direct calcula-

tions, one can check that ‖B‖2→2 = σ1 = 1 and

‖B‖2F = 1 − e−n− d
4 r

1 − e−n− d
4

∈
[
1

2
n

d
4 , 2n

d
4

]

So the stable rank is ∈ [ 12n
d
4 , 2n

d
4 ]. Indeed, for at least the (for large enough n

non-empty) interval n
1
4 d− 1

4 ≤ t ≤ 1
2n

3
8 d− 1

4 , the third line in Theorem 6 provides

a probability bound ≤ e2 exp

(
−C(d) t2

2n
3
4 d− 1

2

)
while the first line only provides a

bound of e2 exp
(
−C(d) t2

nd−1

)
, i.e., there is an improvement for d ≥ 3.

3 Main proofs

3.1 Preliminaries

The classical symmetrization theorem for normed spaces, such as Lemma 6.4.2 in
[23], can be extended to increasing convex functions of norms as the following result
from [24] shows.
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Lemma 7 (Special case of LemmaA1 in [24]) Let X1, . . . , Xn be independent, mean 0
real-valued random variables and p ≥ 1. Let ξ1, . . . , ξn be independent Rademacher
variables that are independent of X1, . . . , Xn. Then

1

2p
E

∣∣∣∣∣
n∑

k=1

ξk Xk

∣∣∣∣∣
p

≤ E

∣∣∣∣∣
n∑

k=1

Xk

∣∣∣∣∣
p

≤ 2pE

∣∣∣∣∣
n∑

k=1

ξk Xk

∣∣∣∣∣
p

Decoupling theorems for quadratic forms relate double sums
∑n

j,k=1 A j,k X j Xk

over random variables (X j ) j∈[n] to a “decoupled” expression
∑n

j,k=1 A j,k X j X̄k

where the X̄k are independent copies of the Xk . Different versions have been used in
probability theory for a long time and we refer to Section 3.6 in [25] for an overview
of their history. The following version for convex functions, Theorem 8.11 in the
textbook [3], is an adaptation of Proposition 1.9 in [26].

Theorem 8 Let A ∈ R
n×n be a matrix, X ∈ R

n a vector with independent mean 0
entries, and X̄ and independent copy of X. Let F : R → R be a convex function. Then

EF

⎛
⎜⎜⎝

n∑
j,k=1
j �=k

A jk X j Xk

⎞
⎟⎟⎠ ≤ EF

⎛
⎝4 n∑

j,k=1

A jk X j X̄k

⎞
⎠

Also the following elementary result will be used.

Lemma 9 Let T be a finite set. Then

∑
S⊂T

(−1)|S| =
{
1 if T = ∅
0 otherwise.

Proof By grouping all S ⊂ T of the same size and applying the binomial theorem,

∑
S⊂T

(−1)|S| =
|T |∑
k=0

∑
S⊂T|S|=k

(−1)|S| =
|T |∑
k=0

(|T |
k

)
(−1)k · 1|T |−k = (−1 + 1)|T |

=
{
1 if T = ∅
0 otherwise.

��
Although this is a very elementary statement and consequence of the binomial

theorem, we are not aware of any previous usages of precisely this identity. One
somewhat similar tool is given byMazur-Orlicz formula ((11) in [27]), which has also
been used in a problem related to decoupling inequalities in [28]. It is stated as
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(−1)k
1∑

ε1,...,εk=0

(−1)−(ε1+···+εk )ε
v1
1 · · · εvk

k = (1 − 0v1) · · · (1 − 0vk ).

With v1 = · · · = vk = 0, this becomes

(−1)k
1∑

ε1,...,εk=0

(−1)−(ε1+···+εk ) = 0k .

For k = |T | > 0, the {0, 1}-tuples (ε1, . . . , εk) can be identified with the subsets
S ⊂ T such that |S| = ε1 + · · · + εk and then this identity implies Lemma 9 for
T �= ∅.

For the norms in Definition 1, we need the following property about restricting
arrays to some diagonal entries. This can be obtained directly from a repeated appli-
cation of Lemma 5.2 in [6] (where K = {l, l + d} for each l ∈ I ). Here again, we use
the notation of ×̇ and +̇ from (6) and (7).

Lemma 10 Let A ∈ R
n×2

, I ⊂ [d] and define A[I ] ∈ R
n×2

by

A[I ]
i+̇i ′ :=

{
Ai+̇i ′ if ∀l ∈ I : i l = i ′l
0 otherwise.

for all i, i ′ ∈ Jn. Then for any partition I1, . . . , Iκ of [2d], we have

‖A[I ]‖I1,...,Iκ ≤ ‖A‖I1,...,Iκ .

For comparisons between functions of subgaussian and of Gaussian variables, we
will use the concept of strong domination of random variables. See, e.g., [29] for the
following definition and further explanations.

Definition 2 (Definition 3.2.1 in[29]) Let X ,Y ∈ R be randomvariables and κ, λ > 0.
We say that X is (κ, λ)-strongly dominated by Y (X ≺(κ,λ) Y ) if for every t > 0,

P(|X | > t) ≤ κP(λ|Y | > t).

It can be shown that linear combinations of independent, strongly dominated ran-
dom variables are again strongly dominated which in turn implies the following
statement about expectations of convex functions of these linear combinations.

Theorem 11 (Corollary 3.2.1 in [29]) Let X1, . . . , Xn,Y1, . . . ,Yn ∈ R be indepen-
dent symmetric random variables and a1, . . . , an ∈ R fixed coefficients such that
Xi ≺(κ,λ) Yi . Then for any nondecreasing ϕ : R+ → R

+,

Eϕ

(∣∣∣∣∣
n∑

i=1

ai Xi

∣∣∣∣∣
)

≤ 2�κ�Eϕ

(
�κ�λ

∣∣∣∣∣
n∑

i=1

aiYi

∣∣∣∣∣
)

.
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Statements similar to the following lemma have been used in multiple works to
establish a relation between |‖Ax‖2 − a| and ∣∣‖Ax‖22 − a2

∣∣, for example in the proof
of Lemma 5.36 in [30]. For completeness, we state it as a separate result with its proof
here.

Lemma 12 For real numbers a, b ≥ 0, b �= 0, it holds that

1

3
min

{ |a2 − b2|
b

,
√

|a2 − b2|
}

≤ |a − b| ≤ min

{ |a2 − b2|
b

,
√

|a2 − b2|
}

.

Proof We obtain

|a − b| = |a2 − b2|
|a + b| ≤ |a2 − b2|

b
,

and since a, b ≥ 0, i.e., |a − b| ≤ |a| + |b| = |a + b|, it follows that |a − b|2 ≤
|a − b||a + b| = |a2 − b2|, proving the second inequality.

For the first inequality, first assume the case a ≤ 2b. Then a + b ≤ 3b such that

1

3

|a2 − b2|
b

≤ |a2 − b2|
a + b

= |a − b|.

In the case that a ≥ 2b, i.e., a − b ≥ b ≥ 0, we obtain

1

3

√
|a2 − b2| ≤ 1

3

√|a + b||a − b| ≤ 1

3

√
(|a − b| + 2b)|a − b|

≤ 1

3

√
(|a − b| + 2|a − b|)|a − b| = 1√

3
|a − b| ≤ |a − b|.

��
Relations between moments and tail bounds have also been well-known in the

field. For an overview see, e.g., Chapter 7.3 in [3]. In this spirit, we state and prove
the following small tool for the case of mixed tails which we encounter in this work.

Lemma 13 (Moments and tail bounds) Let T be a finite set and X anR valued random
variable such that for all p ≥ p0 ≥ 0,

‖X‖L p ≤
d∑

k=1

min
l∈T pek,lγk,l

for values γk,l > 0, ek,l > 0.
Then for all t > 0,

P(|X | > t) ≤ ep0 exp

(
− min

k∈[d]max
l∈T

(
t

edγk,l

) 1
ek,l

)
.
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Proof Fix any u > 0. For any k ∈ [d], define l ′(k) := argmaxl∈T
(

u
γk,l

) 1
ek,l , then

choose k′ := argmink∈[d]
(

u
γk,l′(k)

) 1
ek,l′(k) , and p :=

(
u

γk′,l′(k′)

) 1
ek′,l′(k′) , such that p =

mink∈[d] maxl∈T
(

u
γk,l

) 1
ek,l .

If p < p0, then P(|X | > edu) ≤ 1 = ep0 exp(−p0) ≤ ep0 exp(−p).
If p ≥ p0, then by the choice of p,

‖X‖L p ≤
d∑

k=1

min
l∈T pek,lγk,l ≤

d∑
k=1

min
l∈T

[(
u

γk′,l ′(k′)

) 1
ek′,l′(k′)

]ek,l
γk,l

≤
d∑

k=1

[(
u

γk′,l ′(k′)

) 1
ek′,l′(k′)

]ek,l′(k)
γk,l ′(k)

≤
d∑

k=1

[(
u

γk,l ′(k)

) 1
ek,l′(k)

]ek,l′(k)
γk,l ′(k) ≤

d∑
k=1

u = du.

So by Markov’s inequality,

P(|X | > edu) ≤ P(|X |p > (edu)p) ≤ E|X |p
(edu)p

=
(‖X‖L p

edu

)p

≤ e−p.

In all cases, we obtain

P(|X | > edu) ≤ ep0e−p = ep0 exp

(
− min

k∈[d]max
l∈T

(
u

γk,l

) 1
ek,l

)
.

The result follows by taking u := t
ed . ��

3.2 Proof of the upper bound

3.2.1 Required tools

Lemma 14 There is an absolute constant C such that the following holds. Let X ∈ R
n

be random with mean 0 and ‖X‖ψ2 ≤ L. Take a Gaussian vector g ∼ N (0, I dn) and
a ∈ R

n. Then for all p ≥ 1,

E

∣∣∣∣∣
n∑

k=1

ak Xk

∣∣∣∣∣
p

≤ (CL)pE

∣∣∣∣∣
n∑

k=1

akgk

∣∣∣∣∣
p

.
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Proof By the assumption on X ,
∑n

k=1 ak Xk = 〈a, X〉 is mean 0 with ‖〈a, X〉‖ψ2 ≤
L‖a‖2, implying that for any p ≥ 1,

E|〈a, X〉|p ≤ (C1L‖a‖2)p p p
2 .

On the other hand, 〈a, g〉 ∼ N (0, ‖a‖22), so by the known absolute moments of the
normal distribution and Stirling’s approximation,

E|〈a, g〉|p = ‖a‖p
2 · 2

p
2√
π

�

(
p + 1

2

)
≥ ‖a‖p

2
2

p
2√
π

√
2π

(
p + 1

2

) p
2

exp

(
− p + 1

2

)

≥ 2
p
2 ‖a‖p

2

√
2

e

( p

2e

) p
2 ≥

√
2

e

(
1

e

) p
2 ‖a‖p

2 p
p
2 ≥

(
2

e2

) p
2 ‖a‖p

2 p
p
2 ,

implying that E|〈a, X〉|p ≤
(
C1e√
2
L
)p

E|〈a, g〉|p. ��

In order to control arbitrary chaoses, wewill derive a similar result as Lemma 14 for
squared subgaussian and Gaussian variables. To achieve this, we make use of strong
domination. The following theorem states that this can be used to compare squared
subgaussian and Gaussian variables.

Lemma 15 There exist absolute constants κ, λ > 0 such that the following holds. Let
X be a random variable with EX2 = 1 and ‖X‖ψ2 ≤ L, L ≥ 1 and g ∼ N (0, 1).
Let ξ, ξ ′ ∈ {±1} be Rademacher variables that are independent of X and g. Then
ξ(X2 − 1) ≺(κ,λL2) ξ ′(g2 − 1) in the sense of Definition 2.

Proof For any t > 0,

P

(
|ξ(X2 − 1)| > t

)
= P

(
X2 − 1 > t

)
+ P

(
−(X2 − 1) > t

)

For a constant c ≥ 1, the first term can be bounded by

P

(
X2 − 1 > t

)
= P

(
|X | >

√
1 + t

)
≤ exp

(
1 − 1 + t

c2L2

)
≤ e · e− t

c2L2 .

The second term is 0 if t ≥ 1 since −(X2 − 1) ≤ 1. For t ≤ 1, e− t
c2L2 ≥ e

− 1
c2L2 ≥

e−1. Then it holds that P(−(X2 − 1) > t) ≤ 1 ≤ e · e− t
c2L2 , and altogether we obtain

P

(
|ξ(X2 − 1)| > t

)
≤ 2e · e− t

c2L2 .
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On the other hand, for any λ > 0,

P

(
λL2|ξ ′(g2 − 1)| > t

)
≥ P

(
g2 − 1 >

t

λL2

)
= P

(
|g| >

√
1 + t

λL2

)

= P

(
|g| ≥

√
1 + t

λL2

)
.

To bound this, we use the following properties of the normal distribution: (see
Proposition 7.5 in [3])

P(|g| ≥ u) ≥
√

2

π

1

u

(
1 − 1

u2

)
e− u2

2 , P(|g| ≥ u) ≥
(
1 −

√
2

π
u

)
e− u2

2 . (12)

For 0 < u ≤ 1
4 , the second inequality in (12) yields

P

(
|g| ≥ √

1 + u
)

≥ 1

10
e− 1+u

2 ≥ 1

10
e− 1

2 · e−u ≥ 1

17
e−u .

For u ≥ 1
4 , the first inequality in (12) gives P

(|g| ≥ √
1 + u

) ≥ 1
5

√
2
π

1√
1+u

e− 1+u
2 .

Using that 1√
1+u

≥ e− 1
2 u for all u > 0, we obtain for u ≥ 1

4 ,

P

(
|g| ≥ √

1 + u
)

≥ 1

5

√
2

π
e− 1

2 u exp

(
−1 + u

2

)
= 1

5

√
2

π
exp

(
−1

2
− u

)
≥ 1

11
e−u .

So for any u > 0, P(|g| >
√
1 + u) ≥ 1

17e
−u . By choosing λ = c2 and combining,

P

(
|ξ(X2 − 1)| > t

)
≤ 2e · e− t

λL2 ≤ 93 · 1

17
e− t

λL2 ≤ 93P
(
λL2|ξ ′(g2 − 1)| > t

)
.

��

Theorem 16 There is an absolute constant C > 0 such that the following holds. Let
X ∈ R

n have independent entries that havemean0andvariance1andare subgaussian
with ψ2 norm ≤ L for an L ≥ 1. Take a Gaussian vector g ∼ N (0, I dn) and a ∈ R

n.
Then

E

∣∣∣∣∣
n∑

k=1

ak(X
2
k − 1)

∣∣∣∣∣
p

≤ (CL2)pE

∣∣∣∣∣
n∑

k=1

ak(g
2
k − 1)

∣∣∣∣∣
p

.
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Proof Consider independent Rademacher variables ξ1, . . . , ξn, ξ̄1, . . . , ξ̄n ∈ {±1}n
that are also independent of X and g. By the symmetrization Lemma 7, it holds that

E

∣∣∣∣∣
n∑

k=1

ak(X
2
k − 1)

∣∣∣∣∣
p

≤ 2pE

∣∣∣∣∣
n∑

k=1

akξk(X
2
k − 1)

∣∣∣∣∣
p

E

∣∣∣∣∣
n∑

k=1

ak ξ̄k(g
2
k − 1)

∣∣∣∣∣
p

≤ 2pE

∣∣∣∣∣
n∑

k=1

ak(g
2
k − 1)

∣∣∣∣∣
p

. (13)

Using that ξk(X2 − 1) ≺(κ,λL2) ξ̄k(g2 − 1) by Lemma 15 and that |·|p is a convex
nondecreasing functionR+ → R

+, Theorem 11 implies that there is a constant C̃ > 0
such that

E

∣∣∣∣∣
n∑

k=1

akξk(X
2
k − 1)

∣∣∣∣∣
p

≤ (C̃ L2)pE

∣∣∣∣∣
n∑

k=1

ak ξ̄k(g
2
k − 1)

∣∣∣∣∣
p

.

��

Theorem 5 is an important tool for the proof of our decoupling result (Theorem 4).
Its purpose is to rearrange a chaos in such a way that—under some changes—the
quadratic factors that occur (here (X (l)

i l
)2) are replaced by corresponding mean 0

factors of the type
[
(X (l)

i l
)2 − 1

]
, which also occur in Theorem 4.

Rearranging the terms with this theorem enables an iterative application of the
standard decoupling Theorem 8 in the proof of Theorem 4. Furthermore, the factors[
(X (l)

i l
)2 − 1

]
are 0 in the Rademacher case (Remark 3). In the general case, after the

comparison with Gaussians, they will be turned into a product of two independent
factors with the subsequent Lemma 17 in the proof of Theorem 3.

As the next step, we prove this Theorem 5.

Proof of Theorem 5 Observing that for any I ⊂ [d], i ∈ Jn(I ),

∏
l∈[d]\I

[
(X (l)

i l
)2 − 1

]
=

∑
I ′⊂[d]\I

(−1)|[d]\(I∪I ′)|∏
l∈I ′

(X (l)
i l

)2,

we obtain

∑
I⊂[d]

i∈Jn([d]\I )

A〈I 〉
i

∏
l∈[d]\I

[
(X (l)

i l
)2 − 1

]

=
∑
I⊂[d]

i∈Jn([d]\I )
j∈Jn(I )

Ai×̇ j

∑
I ′⊂[d]\I

(−1)|[d]\(I∪I ′)|∏
l∈I ′

(X (l)
i l

)2
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=
∑
I⊂[d]

I ′⊂[d]\I

(−1)|[d]\(I∪I ′)| ∑
i∈Jn([d]\I )
j∈Jn(I )

Ai×̇ j

∏
l∈I ′

(X (l)
i l

)2

=
∑
I ′⊂[d]

I⊂[d]\I ′

(−1)|[d]\(I∪I ′)| ∑
i∈Jn

Ai

∏
l∈I ′

(X (l)
i l

)2

=
∑
I ′⊂[d]

⎡
⎣
⎛
⎝ ∑

I⊂[d]\I ′
(−1)|([d]\I ′)\I |

⎞
⎠ ·
⎛
⎝∑

i∈Jn
Ai

∏
l∈I ′

(X (l)
i l

)2

⎞
⎠
⎤
⎦ .

This implies the claim using Lemma 9. ��
A key to the proof of the upper moment bound in our main result (Theorem 3) is

the decoupling technique of Theorem 4. With the above auxiliary results, we can give
the proof of it here.

Proof of Theorem 4

b :=
∑

i,i ′∈Jn
Ai+̇i ′

∏
l∈[d]

X (l)
i l
X (l)
i ′l

=
∑
I⊂[d]

∑
i∈Jn(I )

j , j ′∈Jn(I c)
∀l∈I c: j l �= j ′l

A(i×̇ j)+̇(i×̇ j ′)
∏
l∈I

(X (l)
i l

)2
∏
l∈I c

X (l)
j l
X (l)

j ′l

since each summand i, i ′ is precisely considered in the sum for I = {l ∈ [d] : i l = i ′l}
and no other I .

Now applying Theorem 5 yields

b =
∑
I⊂[d]

∑
i∈Jn(I )

⎛
⎜⎜⎜⎝

∑
j , j ′∈Jn(I c)
∀l∈I c: j l �= j ′l

A(i×̇ j)+̇(i×̇ j ′)
∏
l∈I c

X (l)
j l
X (l)

j ′l

⎞
⎟⎟⎟⎠
∏
l∈I

(X (l)
i l

)2

=
∑

I ,J⊂[d]:
J⊂I

∑
i∈Jn(J )

k∈Jn(I\J )

⎛
⎜⎜⎜⎝

∑
j , j ′∈Jn(I c)
∀l∈I c: j l �= j ′l

A (i×̇ j×̇k)
+̇(i×̇ j ′×̇k)

∏
l∈I c

X (l)
j l
X (l)

j ′l

⎞
⎟⎟⎟⎠
∏
l∈J

[
(X (l)

i l
)2 − 1

]

=
∑

I ,J⊂[d]:
J⊂I

∑
i∈Jn(J )

k∈Jn(I\J )

j , j ′∈Jn(I c)
∀l∈I c: j l �= j ′l

A (i×̇ j×̇k)
+̇(i×̇ j ′×̇k)

∏
l∈I c

X (l)
j l
X (l)

j ′l

∏
l∈J

[
(X (l)

i l
)2 − 1

]

=:
∑

I ,J⊂[d]:
J⊂I

SI ,J .
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Because of

S[d],∅ =
∑
k∈Jn

Ak+̇k = E

∑
i,i ′∈Jn

Ai+̇i ′
∏
l∈[d]

X (l)
i l
X (l)
i ′l

and the triangle inequality, we obtain

‖b − Eb‖L p ≤
∑

I ,J⊂[d]:
J⊂I ,I\J �=∅

‖SI ,J‖L p . (14)

For any fixed l0 ∈ I c, we obtain that ‖SI ,J‖L p =
∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∑
j̄ , j̄ ′∈Jn({l0})

j̄ l0 �= j̄ ′l0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i∈Jn(J )

k∈Jn(I\J )

j , j ′∈Jn(I c\{l0})
∀l∈I c : j l �= j ′l

A
(i×̇ j×̇ j̄×̇k)

+̇(i×̇ j ′×̇ j̄ ′×̇k)

∏
l∈I c

X (l)
j l
X (l)

j ′l

∏
l∈J

[
(X (l)

i l
)2 − 1

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

X
(l0)
j̄ l0

X
(l0)

j̄ ′l0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
L p

.

We can apply the decoupling Theorem 8 to this for the convex function |·|p and the
expectation conditioned on all variables except X (l0). This leads to ‖SI ,J‖L p ≤

4

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∑
j̄ , j̄ ′∈Jn({l0})

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i∈Jn(J )

k∈Jn(I\J )

j , j ′∈Jn(I c\{l0})
∀l∈I c : j l �= j ′l

A
(i×̇ j×̇ j̄×̇k)

+̇(i×̇ j ′×̇ j̄ ′×̇k)

∏
l∈I c

X (l)
j l
X (l)

j ′l

∏
l∈J

[
(X (l)

i l
)2 − 1

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

X
(l0)
j̄ l0

X̄
(l0)

j̄ ′l0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
L p

.

Repeating this procedure iteratively for all other l ∈ I c, we obtain

‖SI ,J‖L p ≤ 4d−|I |

∥∥∥∥∥∥∥∥∥∥∥
∑

i∈Jn(J )
k∈Jn(I\J )

j , j ′∈Jn(I c)

A(i×̇ j×̇k)+̇(i×̇ j ′×̇k)

∏
l∈I c

X (l)
j l
X̄ (l)

j ′l

∏
l∈J

[
(X (l)

i l
)2 − 1

]
∥∥∥∥∥∥∥∥∥∥∥
L p

.

Substituting this into (14) completes the proof. ��
Theworks in [16, 21] have investigated polynomialswith higher powers ofGaussian

variables. Since in our scenario, we only have two occurrences of every vector, thus we
can repeatedly apply their result for the case of two coinciding indices. Considering
that H2(x) = x2 − 1 is the Hermite polynomial of degree 2 and leading coefficient 1,
equation (2.9) in [16] in our setup can be written as follows. Note that as suggested
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there, the case p ≥ 1 can also be shown using Jensen’s inequality which can be used
to show this inequality with coefficient 2.

Lemma 17 Let a ∈ R
n, g, ḡ ∼ N (0, I dn), p ≥ 1. Then

∥∥∥∥∥
n∑

k=1

ak(g
2
k − 1)

∥∥∥∥∥
L p

≤ 2

∥∥∥∥∥
n∑

k=1

akgk ḡk

∥∥∥∥∥
L p

.

Combining the previous lemmas, now we can prove the upper bound in the main
Theorem 3.

3.2.2 Proof of Theorem 3, upper bound

Step 1: Decoupling
Let α := ‖XT AX − EXT AX‖L p . By Theorem 4, α ≤

∑
J⊂I⊂[d]
I\J �=[d]

4d−|I |

∥∥∥∥∥∥∥∥∥∥∥
∑

i∈Jn(J )
k∈Jn(I\J )

j , j ′∈Jn(I c)

A(i×̇ j×̇k)+̇(i×̇ j ′×̇k)

∏
l∈I c

X (l)
j l
X̄ (l)

j ′l

∏
l∈J

[
(X (l)

i l
)2 − 1

]
∥∥∥∥∥∥∥∥∥∥∥
L p

.(15)

Step 2: Replacing the subgaussian factors by Gaussians
In (15), we can repeatedly apply Lemma 14 to replace all the linear subgaussian

factors by Gaussian ones. Afterwards, Theorem 16 allows the same for the quadratic
terms. Together, this yields that α ≤

∑
J⊂I⊂[d]
I\�=[d]

(CL)|I c|+|J |

∥∥∥∥∥∥∥∥∥∥∥
∑

i∈Jn(J )
k∈Jn(I\J )

j , j ′∈Jn(I c)

A (i×̇ j×̇k)
+̇(i×̇ j ′×̇k)

∏
l∈I c

g(l)
j l
ḡ(l)
j ′l

∏
l∈J

[
(g(l)

i l
)2 − 1

]
∥∥∥∥∥∥∥∥∥∥∥
L p

. (16)

Step 3: Decoupling of squared Gaussians In an analogous fashion as in step 2, we

can successively replace all the factors
[
(g(l)

i l
)2 − 1

]
in (16) by g(l)

i l
ḡ(l)
i l

using Lemma

17. This leads to

α ≤
∑

J⊂I⊂[d]
I\J �=[d]

(CL)|I c|+|J |

∥∥∥∥∥∥∥∥∥∥∥
∑

i∈Jn(J )
k∈Jn(I\J )

j , j ′∈Jn(I c)

A (i×̇ j×̇k)
+̇(i×̇ j ′×̇k)

∏
l∈I c

g(l)
j l
ḡ(l)
j ′l

∏
l∈J

g(l)
i l
ḡ(l)
i l

∥∥∥∥∥∥∥∥∥∥∥
L p
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=
∑

J⊂I⊂[d]
I\J �=[d]

(CL)|I c|+|J |
∥∥∥∥∥∥

∑
i,i ′∈Jn(I c∪J )

A(I ,J )

i+̇i ′
∏

l∈I c∪J

g(l)
j l
ḡ(l)
j ′l

∥∥∥∥∥∥
L p

.

where for all i, i ′ ∈ Jn(J ∪ I c),

A(I ,J )

i+̇i ′ =
{∑

k∈Jn(I\J ) A(i×̇k)+̇(i ′×̇k) if ∀l ∈ J : i l = i ′l
0 otherwise.

(17)

Step 4: Completing the proof Then Theorem 2 yields that

∥∥∥∥∥∥
∑

i,i ′∈Jn(J∪I c)

A(I ,J )

i+̇i ′
∏

l∈I c∪J

g(l)
i l
ḡ(l)
i ′l

∥∥∥∥∥∥
L p

≤ m̃(I ,J )
p

where for S((J ∪ I c) ∪ ((J ∪ I c) + d), κ) being the set of all partitions of (J ∪ I c) ∪
((J ∪ I c) + d) into κ sets,

m̃(I ,J )
p :=

d∑
κ=1

pκ/2
∑

(I1,...,Iκ )∈S((J∪I c)∪((J∪I c)+d),κ)

‖A(I ,J )‖I1,...,Iκ .

By Lemma 10, ‖A(I ,J )‖I1,...,Iκ ≤ ‖A(I )‖I1,...,Iκ where A(I ) = A(I ,∅) as given in
the statement of Theorem 3. Together with this, the upper bound in Theorem 3 follows.

3.3 Proof of the lower bound

3.3.1 Required tools

In this section,wewill prove the lower bound inTheorem3.Unlike the upper bound,we
will only prove this for the case of Gaussian vectors. Indeed, for arbitrary subgaussian
distributions, the lower bound fails to hold as the following simple example for the case
d = 1 shows: Consider the identity matrix I dn and a Rademacher vector ξ ∈ {±1}n .
Then the object of interest in Theorem 3 is ξ T Idnξ − E[ξ T Idnξ ] = 0 even though
the moment bounds mp would be > 0.

We follow the approach of reversing all steps in the proof of the upper bound,
without the Gaussian comparison steps. This is why also the two decoupling steps
before and after the Gaussian comparison can be performed together.

As mentioned before, Gaussian decoupling, with upper as well as lower bounds,
has been studied in [16] where central ideas of [21] have been used. [16] provides
a decoupling inequality for Gaussian chaos with an arbitrary number of coinciding
indices. Similarly to Lemma 17, we can adapt the result of Equation (2.9) in [16] to
our situation as follows.
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Lemma 18 Let A ∈ R
n×n be a symmetric matrix, g, ḡ ∼ N (0, I dn) be independent,

and p ≥ 1.

∥∥∥∥∥∥
∑

j,k∈[n]
A j,kg j ḡk

∥∥∥∥∥∥
L p

≤
∥∥∥∥∥∥
∑

j,k∈[n]
A j,k(g j gk − 1 j=k)

∥∥∥∥∥∥
L p

.

To generalize this to cases ofmultiple axes, we iteratively apply Lemma 18 to obtain
the following corollary.

Corollary 19 Let n ∈ N
d , A ∈ R

n×2
such that A satisfies the symmetry condition that

for all l ∈ [d] and any i, i ′ ∈ Jn([d]\{l}), j , j ′ ∈ Jn({l}),

A(i×̇ j)+̇(i ′×̇ j ′) = A(i×̇ j ′)+̇(i ′×̇ j) (18)

Let g(1), ḡ(1) ∼ N (0, I dn1), . . . , g
(d), ḡ(d) ∼ N (0, I dnd ) be independent. Then

for any set I ⊂ [d], p ≥ 1,

∥∥∥∥∥∥∥∥
∑

i,i ′∈Jn(I )
j∈Jn(I c)

A(i×̇ j)+̇(i ′×̇ j)

∏
l∈I

g(l)
i l
ḡ(l)
i ′l

∥∥∥∥∥∥∥∥
L p

≤

∥∥∥∥∥∥∥∥
∑

i,i ′∈Jn(I )
j∈Jn(I c)

A(i×̇ j)+̇(i ′×̇ j)

∏
l∈I

[
g(l)
i l
g(l)
i ′l

− 1i l=i ′l

]
∥∥∥∥∥∥∥∥
L p

Independently of the Gaussian decoupling approach, the following two lemmas
provide a tool to reverse the application of the rearrangement result Theorem 5 in the
proof of the upper bound.

Lemma 20 Let A ∈ R
n×2

be an array of order 2d and X (1) ∈ R
n1 , . . . X (d) ∈ R

nd

vectors. Then

∑
I⊂[d]

∑
i,i ′∈Jn(I )

∑
j∈Jn(I c)

A(i×̇ j)+̇(i ′×̇ j)

∏
l∈I

[
X (l)
i l
X (l)
i ′l

− 1i l=i ′l

]

=
∑

i,i ′∈Jn
Ai+̇i ′

∏
l∈[d]

X (l)
i l
X (l)
i ′l

.

Proof Note that∏
l∈I

[
X (l)
i l
X (l)
i ′l

− 1i l=i ′l

]
=
∑
J⊂I

(−1i l=i ′l )
|I\J |∏

l∈J

X (l)
i l
X (l)
i ′l

.
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Using this, we obtain

α :=
∑
I⊂[d]

∑
i,i ′∈Jn(I )

∑
j∈Jn(I c)

A(i×̇ j)+̇(i ′×̇ j)

∏
l∈I

[
X (l)
i l
X (l)
i ′l

− 1i l=i ′l

]

=
∑
I⊂[d]

∑
i,i ′∈Jn(I )

∑
j∈Jn(I c)

A(i×̇ j)+̇(i ′×̇ j)

∑
J⊂I

∏
l∈I\J

(−1i l=i ′l )
∏
l∈J

X (l)
i l
X (l)
i ′l

Observing that

∏
l∈I\J

(−1i l=i ′l ) =
{

(−1)|I\J | if ∀ j ∈ I\J : i l = i ′l
0 otherwise,

we can conclude

α =
∑
I⊂[d]

∑
J⊂I

∑
i,i ′∈Jn(J )
k∈Jn(I\J )

∑
j∈Jn(I c)

A(i×̇ j×̇k)+̇(i ′×̇ j×̇k)(−1)|I\J |∏
l∈J

X (l)
i l
X (l)
i ′l

=
∑
J⊂[d]

∑
I⊃J

(−1)|I\J | ∑
i,i ′∈Jn(J )

∑
j∈Jn(J c)

A(i×̇ j)+̇(i ′×̇ j)

∏
l∈J

X (l)
i l
X (l)
i ′l

Lemma 9 yields

∑
I⊃J

(−1)|I\J | =
∑

I ′⊂[d]\J
(−1)|I ′| =

{
1 if J = [d]
0 otherwise,

such that

α =
∑

i,i ′∈Jn
Ai+̇i ′

∏
l∈[d]

X (l)
i l
X (l)
i ′l

.

��
Lemma 21 Let A ∈ R

n×2
be an array of order 2d and X (1) ∈ R

n1 , . . . X (d) ∈ R
nd

independent random vectors with mean 0, variance 1 entries. Then for any subset
∅ �= I ⊂ [d], p ≥ 1,∥∥∥∥∥∥

∑
i,i ′∈Jn(I )

∑
j∈Jn(I c)

A(i×̇ j)×̇(i ′×̇ j)

∏
l∈I

[
X (l)
i l
X (l)
i ′l

− 1i l=i ′l

]∥∥∥∥∥∥
L p

≤ C(|I |)
∥∥∥∥∥∥
∑

i,i ′∈Jn
Ai+̇i ′

∏
l∈[d]

X (l)
i l
X (l)
i ′l

− E

∑
i,i ′∈Jn

Ai+̇i ′
∏
l∈[d]

X (l)
i l
X (l)
i ′l

∥∥∥∥∥∥
L p

, (19)

where C(|I |) is a constant only depending on |I |.
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Proof By the assumptions on the vectors X (l),

E := E

∑
i,i ′∈Jn

Ai+̇i ′
∏
l∈[d]

X (l)
i l
X (l)
i ′l

=
∑
i∈Jn

Ai+̇i .

Since this is exactly the term for I = ∅ in Lemma 20, we obtain for the term on
the right hand side of (19),

b :=
∑

i,i ′∈Jn
Ai+̇i ′

∏
l∈[d]

X (l)
i l
X (l)
i ′l

− E

=
∑

∅�=J⊂[d]
i,i ′∈Jn(J )
j∈Jn(J c)

A(i×̇ j)+̇(i ′×̇ j)

∏
l∈J

[
X (l)
i l
X (l)
i ′l

− 1i l=i ′l

]
=:

∑
J⊂[d]
J �=∅

SJ .

Using these terms, we need to show that ‖SI ‖L p ≤ C(|I |)‖b‖L p for all ∅ �= I ⊂
[d].

Now we prove this by induction over |I |. First assume I = {l0}. For any J �= ∅, I ,
there exists an l ∈ J\I and then

E

[∏
l∈J

[
X (l)
i l
X (l)
i ′l

− 1i l=i ′l

] ∣∣∣∣X (l0)

]
= 0

since there is at least one factor whose conditional expectation is 0.
We conclude

E |SI |p = E

∣∣∣∣∣∣SI + E

⎡
⎣ ∑

J⊂[d]:J �=∅,I

SJ

∣∣∣∣ X (l0)

⎤
⎦
∣∣∣∣∣∣
p

= E

∣∣∣∣∣∣E
⎡
⎣ ∑

J⊂[d]:J �=∅
SJ

∣∣∣∣ X (l0)

⎤
⎦
∣∣∣∣∣∣
p

≤ E|b|p,

where we used Jensen’s inequality on the conditional expectation in the last step.
Now assume that we have already shown (19) for all ∅ �= I ′ ⊂ [d] with |I ′| < |I |.
For all J ⊂ [d] such that J �= ∅, I , one of the following holds.

• J\I = ∅, i.e., J ⊂ I : Because J �= I , |J | < |I |, so by induction

‖SJ‖L p ≤ C(|J |)‖b‖L p . (20)

• J\I �= ∅. Since there is an l ′ ∈ J\I ,

E

[∏
l∈J

[
X (l)
i l
X (l)
i ′l

− 1i l=i ′l

] ∣∣∣∣ (X (l))l∈I

]
= 0. (21)
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The triangle inequality yields together with (20), that ‖SI ‖L p ≤
∥∥∥∥∥∥∥∥
SI +

∑
J⊂I
J �=∅,I

SJ

∥∥∥∥∥∥∥∥
L p

+
∑
J⊂I
J �=∅,I

‖SJ‖L p ≤

∥∥∥∥∥∥∥∥
SI +

∑
J⊂I
J �=∅,I

SJ

∥∥∥∥∥∥∥∥
L p

+
⎡
⎣ ∑

J⊂I ,J �=∅,I

C(|J |)
⎤
⎦ ‖b‖L p .

The first term on the right hand side can be controlled with (21) and Jensen’s
inequality,

E

∣∣∣∣∣∣SI +
∑

J⊂I :J �=∅,I

SJ

∣∣∣∣∣∣
p

= E

∣∣∣∣∣∣SI +
∑

J⊂I :J �=∅,I

SJ + E

⎡
⎣ ∑

J⊂[d]:J\I �=∅
SJ

∣∣∣∣ (X (l))l∈I

⎤
⎦
∣∣∣∣∣∣
p

= E

∣∣∣∣∣∣E
⎡
⎣ ∑

J⊂[d]:J �=∅
SJ

∣∣∣∣ (X (l))l∈I

⎤
⎦
∣∣∣∣∣∣
p

≤ E|b|p.

So altogether ‖SI ‖L p ≤ C(|I |)‖b‖L p where C(|I |) := ∑
J⊂I :J �=∅,I C(|J |) + 1

depends only on |I |. ��
Now we introduced all the necessary tools and can prove the lower bound of the

main result, Theorem 3.

3.3.2 Proof of Theorem 3, lower bound

For any J ⊂ I ⊂ [d], define the array A(I ,J ) as in the proof of the upper bound (17)
and

α(I ,J ) :=
∥∥∥∥∥∥

∑
i,i ′∈Jn(J∪I c)

A(I ,J )

i+̇i ′
∏

l∈I c∪J

g(l)
i l
ḡ(l)
i ′l

∥∥∥∥∥∥
L p

(22)

Step 1: Adding off-diagonal terms
Define independent Rademacher vectors (ξ (l))l∈J which are also independent of

the g(1), . . . g(d), ḡ(1), . . . , ḡ(d).
Noting that Eξ [ξ (l)

i l
ξ

(l)
i ′l

] = 1i l=i ′l , we obtain

Eξ

⎡
⎢⎢⎢⎢⎢⎣

∑
i,i ′∈Jn(J )
k∈Jn(I\J )

j , j ′∈Jn(I c)

A(i×̇ j×̇k)+̇(i ′×̇ j ′×̇k)

∏
l∈I c

g(l)
j l
ḡ(l)
j ′l

∏
l∈J

(ξ
(l)
i l
g(l)
i l

)(ξ
(l)
i ′l
ḡ(l)
i ′l

)

⎤
⎥⎥⎥⎥⎥⎦

=
∑

i,i ′∈Jn(J∪I c)

A(I ,J )

i+̇i ′
∏

l∈I c∪J

g(l)
i l
ḡ(l)
i ′l
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Substituting into (22) and applying Jensen’s inequality and Fubini’s theorem yields

(α(I ,J ))p

= Eg,ḡ

∣∣∣∣∣∣∣∣∣
Eξ

∑
i,i ′∈Jn(J )

j , j ′∈Jn(I c)

∑
k∈Jn(I\J )

A(i×̇ j×̇k)+̇(i ′×̇ j ′×̇k)

∏
l∈I c

g(l)
j l
ḡ(l)
j ′l

∏
l∈J

(ξ
(l)
i l

g(l)
i l

)(ξ
(l)
i ′l

ḡ(l)
i ′l

)

∣∣∣∣∣∣∣∣∣

p

≤ EξEg,ḡ

∣∣∣∣∣∣∣∣∣
∑

i,i ′∈Jn(J )

j , j ′∈Jn(I c)

∑
k∈Jn(I\J )

A(i×̇ j×̇k)+̇(i ′×̇ j ′×̇k)

∏
l∈I c

g(l)
j l
ḡ(l)
j ′l

∏
l∈J

(ξ
(l)
i l

g(l)
i l

)(ξ
(l)
i ′l

ḡ(l)
i ′l

)

∣∣∣∣∣∣∣∣∣

p

By the symmetry of the normal distribution, conditioned on (ξ (l))l∈J , (ξ
(l)
i l
g(l)
i l

, ξ
(l)
i ′l

ḡ(l)
i ′l

) and (g(l)
i l

, ḡ(l)
i ′l

) have the same distribution. So we can conclude

α(I ,J ) ≤
∥∥∥∥∥∥

∑
i,i ′∈Jn(J∪I c)

∑
k∈Jn(I\J )

A(i×̇k)+̇(i ′×̇k)

∏
l∈J∪I c

g(l)
i l
ḡ(l)
i ′l

∥∥∥∥∥∥
L p

.

Step 2: Inverse Gaussian decoupling
For every J ⊂ I ⊂ [d], we obtain then by the symmetry of A and Corollary 19,

α(I ,J ) ≤
∥∥∥∥∥∥

∑
i,i ′∈Jn(J∪I c)

∑
k∈Jn(I\J )

A(i×̇k)+̇(i ′×̇k)

∏
l∈J∪I c

[
g(l)
i l
g(l)
i ′l

− 1i l=i ′l

]∥∥∥∥∥∥
L p

.

Step 3: Removing the mean subtractions in every factor
Since I\J �= [d], J ∪ I c �= ∅ and Lemma 21 provides that α(I ,J ) ≤

C1(|J ∪ I c|)
∥∥∥∥∥∥
∑

i,i ′∈Jn
Ai+̇i ′

∏
l∈[d]

g(l)
i l
g(l)
i ′l

− E

∑
i,i ′∈Jn

Ai+̇i ′
∏
l∈[d]

g(l)
i l
g(l)
i ′l

∥∥∥∥∥∥
L p

.

Adding this up over all J ⊂ I ⊂ [d], I\J �= [d] yields
∑

J⊂I⊂[d]
I\J �=[d]

α(I ,J )

≤ C(d)

∥∥∥∥∥∥
∑

i,i ′∈Jn
Ai+̇i ′

∏
l∈[d]

g(l)
i l
g(l)
i ′l

− E

∑
i,i ′∈Jn

Ai+̇i ′
∏
l∈[d]

g(l)
i l
g(l)
i ′l

∥∥∥∥∥∥
L p

(23)

where C(d) :=∑J⊂I⊂[d]:I\J �=[d] C1(|J ∪ I c|) depends only on d.
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Step 4: Completing the proof
Restricting the left hand side in (23) to the terms in which J = ∅. The remaining

terms α(I ,∅) only contain the arrays A(I ,∅) which are equal to the A(I ) from the
theoremstatement. Subsequently,we canbound theα(I ,∅) frombelowusingTheorem2
(similarly to the upper bound) to obtain the lower bound in Theorem 3.

3.4 Concentration of ‖BX‖2
In this section, we apply our main results to the concentration of ‖BX‖2 where
X = X (1) ⊗ · · · ⊗ X (d) is a Kronecker product of independent vectors with sub-
gaussian entries. The following statement is a direct consequence from Theorem 3
and Lemma 12.

Corollary 22 Let B ∈ R
n0×N be a matrix where N = n1 · · · nd and X := X (1) ⊗· · ·⊗

X (d) ∈ R
N a random vector as in Theorem 3.

Let A ∈ R
n×2

be the rearrangement of the matrix A = B∗B as an array with 2d
axes. For any I ⊂ [d], define the array A(I ) as in (10).

For T ⊂ [2d], 1 ≤ κ ≤ 2d, denote S(T , κ) for the set of partitions of T into κ sets
and I c = [d]\I . Define for any p ≥ 1 and any κ ∈ [2d],

m p,κ :=
∑
I⊂[d]
I �=[d]

∑
(I1,...,Iκ )∈S((I c)∪(I c+d),κ)

‖A(I )‖I1,...,Iκ

mp := L2d
2d∑

κ=1

min

{
p

κ
2
mp,κ

‖B‖F , p
κ
4
√
mp,κ

}

Then there is a constant C(d) > 0, depending only on d, such that for all p ≥ 1,

‖‖BX‖2 − ‖B‖F‖L p
≤ C(d)mp.

If in addition, X (1) ∼ N (0, I dn1), . . . , X
(d) ∼ N (0, I dnd ) are normally distributed

(i.e., L is constant) and A satisfies the symmetry condition (11), then also the lower
bound

C̃(d)mp ≤ ‖‖BX‖2 − ‖B‖F‖L p

holds for all p ≥ 1. Above, C̃(d) > 0 that depends only on d.

Lemma 23 Let B ∈ R
n1×···×nd . Assume that I1, . . . , Iκ is a partition of [d]. Let

Īκ ∪ Īκ+1 = Iκ be a partition into two subsets. Then

‖B‖I1,...,Iκ−1, Īκ , Īκ+1
≤ ‖B‖I1,...,Iκ

≤

√√√√√min

⎧⎨
⎩
∏
l∈ Īκ

nl ,
∏

l∈ Īκ+1

nl

⎫⎬
⎭‖B‖I1,...,Iκ−1, Īκ , Īκ+1

.
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Proof Take arrays α(1) ∈ R
n(I1), . . . ,α(κ−1) ∈ R

n(Iκ−1), ᾱ
(κ) ∈ R

n( Īκ), ᾱ(κ+1) ∈
R
n( Īκ+1),withFrobenius norm1each, such that‖B‖I1,...,Iκ−1, Īκ , Īκ+1

=∑i∈Jn Biα
(1)
i I1

· · ·α(κ−1)
i Iκ−1

ᾱ
(κ)
i Īκ

ᾱ
(κ+1)
i Īκ+1

. Now define α(κ) ∈ R
n(Iκ) by α

(κ)
i = ᾱ

(κ)
i Īκ

ᾱ
(κ+1)
i Īκ+1

for every

i ∈ Jn(Iκ). Then ‖α(κ)‖2 = 1 and by the definition of ‖ · ‖I1,...,Iκ as the supremum
over α(1), . . . ,α(κ), we obtain

‖B‖I1,...,Iκ−1, Īκ , Īκ+1
=
∑
i∈Jn

Biα
(1)
i I1

· · · α(κ)
i Iκ

≤ ‖B‖I1,...,Iκ ,

which proves the first inequality.
To prove the second inequality, take arrays α(1) ∈ R

n(I1), . . . ,α(κ) ∈ R
n(Iκ) such

that

‖B‖I1,...,Iκ =
∑
i∈Jn

Biα
(1)
i I1

· · ·α(κ)
i Iκ

.

Now define B̃ ∈ R
n(Iκ) such that for all i ∈ Jn( Īκ), j ∈ Jn( Īκ+1),

B̃i×̇ j =
∑

k∈Jn([d]\Iκ )

Bi×̇ j×̇kα
(1)
k I1

· · · α(κ−1)
k Iκ−1

.

For N1 := ∏
l∈ Īκ nl and N2 := ∏

l∈ Īκ+1
nl , we can interpret B̃ as a matrix B̃ ∈

R
N1×N2 with rows indexed by i ∈ Jn( Īκ) and columns indexed by j ∈ Jn( Īκ+1).
Then

‖B̃‖F = sup
β∈Rn(Iκ ),‖β‖2=1

∑
i∈Jn(Iκ )

B̃iβi ,

‖B̃‖2→2 = sup
β(1)∈Rn( Īκ ),β(2)∈Rn( Īκ+1),

‖β(1)‖2=‖β(2)‖2=1

∑
i∈Jn( Īκ )

j∈Jn( Īκ+1)

B̃i×̇ jβ
(1)
i β

(2)
j ,

such that

‖B̃‖F = sup
β∈Rn(Iκ ),‖β‖2=1

∑
i∈Jn(Iκ )

∑
k∈Jn([d]\Iκ )

Bi×̇kα
(1)
k I1

. . . α
(κ−1)
k Iκ−1

βi

= sup
β∈Rn(Iκ ),‖β‖2=1

∑
i∈Jn

Biα
(1)
i I1

· · · α(κ−1)
i Iκ−1

βi Iκ ,

where by definition the maximum is attained at β = α(κ), implying

‖B̃‖F = ‖B‖I1,...,Iκ . (24)
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For the spectral norm, we obtain from the definition of ‖ · ‖I1,...,Iκ−1, Īκ , Īκ+1
,

‖B̃‖2→2

= sup
β(1)∈Rn( Īκ ),β(2)∈Rn( Īκ+1),

‖β(1)‖2=‖β(2)‖2=1

∑
i∈Jn( Īκ )

j∈Jn( Īκ+1)

∑
k∈Jn([d]\Iκ )

Bi×̇ j×̇kα
(1)
k I1

. . . α
(κ−1)
k Iκ−1

β
(1)
i β

(2)
j

= sup
β(1)∈Rn( Īκ ),β(2)∈Rn( Īκ+1),

‖β(1)‖2=‖β(2)‖2=1

∑
i∈Jn

Biα
(1)
i . . . α

(κ−1)
i Iκ−1

β
(1)
i Īκ

β
(2)
j īκ+1

≤ ‖B‖I1,...,Iκ−1, Īκ , Īκ+1
. (25)

The second inequality now follows from (24), (25) and the general property ofmatrices
that

‖B̃‖F ≤
√
rank(B̃)‖B̃‖2→2 ≤ √min{N1, N2}‖B̃‖2→2.

��
Lemma 24 Let A ∈ R

n×2
, I ⊂ [d]. Define A(I ) as in (10).

Let I1, . . . , Iκ be a partition of ([d]\I )∪ (d + ([d]\I )). Let Iκ+1, . . . , Iκ+|I | be the
sets { j, j + d} for every j ∈ I . Then I1, . . . , Iκ+|I | is a partition of [2d] and

‖A(I )‖I1,...,Iκ ≤
√∏

l∈I
nl‖A‖I1,...,Iκ+|I |

Proof Take α(1) ∈ R
n×2

(I1), . . . ,α(κ) ∈ R
n×2

(Iκ), all having a Frobenius norm of 1,
such that

‖A(I )‖I1,...,Iκ =
∑

i∈Jn
×2

(I c∪(I c+d))

A(I )
i α

(1)
i I1

. . . α
(κ)
i Iκ

=
∑

i∈Jn
×2

(I c∪(I c+d))

∑
k∈Jn(I )

Ai×̇(k+̇k)α
(1)
i I1

· · · α(κ)
i Iκ

=
∑

i∈Jn
×2

Aiα
(1)
i I1

· · · α(κ)
i Iκ

1∀l∈I :i l=i l+d . (26)

Now define α(κ+1) ∈ R
n×2

({ j1, j1 + d}), . . . ,α(κ+|I |) ∈ R
n×2

({ j|I |, j|I | + d})
(where I = { j1, . . . , j|I |}) such that for all r ∈ [|I |] and i ∈ Jn×2

({ jr , jr + d}),

α
(κ+r)
i =

{
1√
n jr

if i jr = i jr+d

0 otherwise.
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Then for i ∈ Jn×2
(I ∪ (I + d))

α
(κ+1)
i Iκ+1

· · ·α(κ+|I |)
i Iκ+|I |

= 1√∏
l∈I nl

1∀l∈I :i l=i l+d

Substituting this into (26) yields

‖A(I )‖I1,...,Iκ =
√∏

l∈I
nl
∑

i∈Jn
×2

Aiα
(1)
i I1

· · ·α(κ)
i Iκ

α
(κ+1)
i Iκ+1

· · ·α(κ+|I |)
i Iκ+|I |

≤
√∏

l∈I
nl‖A‖I1,...,Iκ+|I |

��
Using the aforementioned results, we can give the proof of Theorem 6 about

‖B(X (1) ⊗ · · · ⊗ X (d))‖2 in which we find suitable bounds for all the tensor norms of
B∗B in terms of ‖B‖2→2 and ‖B‖F .
Proof of Theorem 6 Let A := B∗B ∈ R

nd×nd and A ∈ R
n×2

be the corresponding
array of order 2d obtained by rearranging A for n = (n, . . . , n). Note that here the
dimensions along all axes are equal. For I ⊂ [2d], define A(I ) as in Corollary 22.

Step 1: Showing the norm inequalities

‖A(I )‖I1,...,Iκ ≤ n
|I |
2 ‖A‖F ‖A(I )‖I1,...,Iκ ≤ nd− κ

2 ‖A‖2→2. (27)

In both cases, we start by extending I1, . . . , Iκ to I1, . . . , Iκ+|I | as in Lemma 24,
obtaining

‖A(I )‖I1,...,Iκ ≤ n
|I |
2 ‖A‖I1,...,Iκ+|I | (28)

Then the first inequality of (27) follows by repeatedly joining all the sets I1, . . . , Iκ+|I |
in the sense of Lemma23 (first inequality) yielding ‖A‖I1,...,Iκ+|I | ≤ ‖A‖[2d] = ‖A‖F .

For the second inequality in (27), we distinguish two cases. First assume that κ ≤
d − |I |. Then |I | ≤ d − κ . Since A is a matrix in R

nd×nd , ‖A‖2→2 ≤ n
d
2 ‖A‖F and

with the first inequality in (27), we obtain

‖A(I )‖I1,...,Iκ ≤ n
|I |
2 n

d
2 ‖A‖2→2 ≤ n

d−κ
2 n

d
2 ‖A‖2→2 = nd− κ

2 ‖A‖2→2.

In the other case that κ > d−|I |, denote κ ′ for the number of sets among I1, . . . , Iκ
that only contain one element. Since each of the other sets must contain at least two
elements, this leads to the inequality

κ ′ + 2(κ − κ ′) ≤ |I1 ∪ · · · ∪ Iκ | ⇒ 2κ − κ ′ ≤ 2(d − |I |) ⇒ κ ′ ≥ 2(κ − d + |I |).
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This implies that among I1, . . . , Iκ , there must be at least κ − d + |I | sets with
exactly one element that are all contained in [d] or all contained in [2d]\[d]. Without
loss of generality, we can assume that these are I1, . . . , Iκ−d+|I |. Now take the unions
Ī1 := I1 ∪ · · · ∪ Iκ−d+|I | and Ī2 := Iκ−d+|I |+1 ∪ · · · ∪ Iκ+|I |. With (28) and the first
inequality of Lemma 23, we obtain

‖A(I )‖I1,...,Iκ ≤ n
|I |
2 ‖A‖ Ī1, Ī2 .

Now split up Ī2 into Ī2,1 := Ī2 ∩ [d] and Ī2,2 := Ī2 ∩ ([2d]\[d]). If neither Ī2,1 nor
Ī2,2 is empty, then with the second inequality of Lemma 23, we obtain

‖A(I )‖I1,...,Iκ ≤n
|I |
2 n

1
2 min{| Ī2,1|,| Ī2,2|}‖A‖ Ī1, Ī2,1, Ī2,2

≤n
|I |
2 + 1

2 min{| Ī2,1|,| Ī2,2|}‖A‖[d],([2d]\[d]),

where in the last step we used the first inequality in Lemma 23 with the fact that
Ī1 ∪ Ī2,1 ∪ Ī2,2 = [2d] and each of these three sets is contained in either [d] or
[2d]\[d]. Note that the inequality between the first and the third term still holds in the
case that Ī2,1 or Ī2,2 is empty and thus Lemma 8.4 cannot be applied in the first step.

Now assume Ī1 ⊂ [d] (otherwise Ī1 ⊂ [2d]\[d] and the proof works analogously).
Then Ī1 ∪ Ī2,1 = [d] and Ī2,1 = [2d]\[d]. So min{| Ī2,1|, | Ī2,2|} = | Ī2,1| = d −| Ī1| =
d − (κ − d + |I |) = 2d − κ − |I |. This implies

‖A(I )‖I1,...,Iκ ≤ n
|I |
2 + 1

2 (2d−κ−|I |)‖A‖[d],([2d]\[d]) = nd− κ
2 ‖A‖2→2.

This completes the proof of (27).
Step 2: Moment and tail bounds
Now, use Corollary 22 and its notation ofmp,κ andmp. The number of terms in the

sum of the definition of mp,κ only depends on d. This fact together with (27) leads to

mp,κ ≤C1(d) max
I⊂[d],I �=[d] n

|I |
2 ‖A‖F = C1(d)n

d−1
2 ‖A‖F ≤ C1(d)n

d−1
2 ‖B‖2‖B‖F .

mp,κ ≤C1(d)nd− κ
2 ‖A‖2→2 = C1(d)nd− κ

2 ‖B‖22→2,

where C1(d) is a constant depending only on d. Furthermore, we obtain

mp ≤ C1(d)L2d

·
2d∑

κ=1

min

{
p

κ
2 n

d−1
2 ‖B‖2→2, p

κ
2 nd− κ

2
‖B‖22→2

‖B‖F ,

p
κ
4 n

d−1
4
√‖B‖2→2‖B‖F , p

κ
4 n

d
2 − κ

4 ‖B‖2→2

}
.
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Since this is an upper bound on the L p norm of ‖BX‖2−‖B‖F , Lemma 13 implies

P (|‖BX‖2 − ‖B‖F | > t) ≤ e2 exp

(
−C2(d) min

κ∈[2d] βκ

)

where

βκ := max

{(
t

n
d−1
2 ‖B‖2→2

) 2
κ

,

(
t‖B‖F

nd− κ
2 ‖B‖22→2

) 2
κ

,

(
t

n
d−1
4

√‖B‖2→2‖B‖F

) 4
κ

,

(
t

n
d
2 − κ

4 ‖B‖2→2

) 4
κ }

. (29)

Now, for each of multiple different ranges of t , we select one of the four terms in
(29).

Step 3: Bound for t ≤ n
d
2 ‖B‖2→2

For κ = 1, we obtain using the first term in (29), β1 ≥
(
t/(n

d−1
2 ‖B‖2→2)

)2
.

For κ ≥ 2, we can use the fourth term in (29) to show the same bound because

βκ ≥
(

t

n
d
2 − κ

4 ‖B‖2→2

) 4
κ

= n

(
t

n
d
2 ‖B‖2→2

) 4
κ

≥n

(
t

n
d
2 ‖B‖2→2

)2

= t2

nd−1‖B‖22→2

.

This implies that

P (|‖BX‖2 − ‖B‖F | > t) ≤ e2 exp

(
−C2(d)

t2

nd−1‖B‖22→2

)
.

Step 5: Bound for t ≥ n
d
2 ‖B‖2→2

For all κ ∈ [2d], using the fourth term in (29) yields

βκ ≥
(

t

n
d
2 − κ

4 ‖B‖2→2

) 4
κ

= n

(
t

n
d
2 ‖B‖2→2

) 4
κ

≥n

(
t

n
d
2 ‖B‖2→2

) 4
2d

=
(

t

‖B‖2→2

) 2
d

,
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such that

P (|‖BX‖2 − ‖B‖F | > t) ≤ e2 exp

(
−C2(d)

(
t

‖B‖2→2

) 2
d
)

.

Step 6: Bound for n
d−1
4 ‖B‖2→2 ≤ t ≤ n

d−1
4 ‖B‖F

Using the third term in (29), we obtain that

βκ ≥
(

t2

n
d−1
2 ‖B‖2→2‖B‖F

) 2
κ

≥
(

tn
d−1
4 ‖B‖2→2

n
d−1
2 ‖B‖2→2‖B‖F

) 2
κ

=
(

t

n
d−1
4 ‖B‖F

) 2
κ

≥ t2

n
d−1
2 ‖B‖2F

,

implying

P (|‖BX‖2 − ‖B‖F | > t) ≤ e2 exp

(
−C2(d)

t2

n
d−1
2 ‖B‖2F

)
.

��

4 Discussion

In total, for a chaos of the type

n∑
i1,...,i2d=1

Ai1,...,id ,id+1,...,i2d X
(1)
i1

· · · X (d)
id

X (1)
id+1

· · · X (d)
i2d

,

we have shownmoment bounds that are tight (up to dependence on d) for the Gaussian
case.Alongwith this,wehave also showna specific decoupling inequality for the above
expression and improved moment and tail bounds for ‖B(X (1) ⊗ · · · ⊗ X (d))‖2.

The application [14] generalizes the result in [5] on constructing Johnson–
Lindenstrauss embeddings frommatrices satisfying the restricted isometry property to
Johnson–Lindenstrauss embeddings with a fast transformation of Kronecker products.
This leads to expressions of the type ‖�Dξ x‖22, where� ∈ R

m×N is a matrix, x ∈ R
N

a vector, and Dξ ∈ R
N×N is a diagonal matrix with entries from ξ = ξ (1) ⊗· · ·⊗ξ (d),

where ξ (1), . . . , ξ (d) are independent Rademacher vectors. Then ‖�Dξ x‖22 can be
rewritten as a chaos of the above type with the Rademacher vectors ξ (l) as X (l). This
chaos is controlled with the decoupling statement of Theorem 4, more specifically the
Rademacher case (Remark 3), in which the terms significantly simplify. After some
necessary intermediate steps, the upper moment bounds of Theorem 3 are applied to
the resulting decoupled chaos.
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