
Vol.:(0123456789)1 3

Bioprocess and Biosystems Engineering (2022) 45:1927–1937
https://doi.org/10.1007/s00449-022-02798-6

RESEARCH PAPER

Control of parallelized bioreactors I: dynamic scheduling software
for efficient bioprocess management in high‑throughput systems

Lukas Bromig1  · Nikolas von den Eichen1 · Dirk Weuster‑Botz1

Received: 20 June 2022 / Accepted: 3 October 2022 / Published online: 18 October 2022
© The Author(s) 2022

Abstract
The shift towards high-throughput technologies and automation in research and development in industrial biotechnology is
highlighting the need for increased automation competence and specialized software solutions. Within bioprocess develop-
ment, the trends towards miniaturization and parallelization of bioreactor systems rely on full automation and digital process
control. Thus, mL-scale, parallel bioreactor systems require integration into liquid handling stations to perform a range of
tasks stretching from substrate addition to automated sampling and sample analysis. To orchestrate these tasks, the authors
propose a scheduling software to fully leverage the advantages of a state-of-the-art liquid handling station (LHS) and to
enable improved process control and resource allocation. Fixed sequential order execution, the norm in LHS software, results
in imperfect timing of essential operations like feeding or Ph control and execution intervals thereof, that are unknown a
priori. However, the duration and control of, e.g., the feeding task and their frequency are of great importance for bioprocess
control and the design of experiments. Hence, a software solution is presented that allows the orchestration of the respective
operations through dynamic scheduling by external LHS control. With the proposed scheduling software, it is possible to
define a dynamic process control strategy based on data-driven real-time prioritization and transparent, user-defined con-
straints. Drivers for a commercial 48 parallel bioreactor system and the related sensor equipment were developed using the
SiLA 2 standard greatly simplifying the integration effort. Furthermore, this paper describes the experimental hardware and
software setup required for the application use case presented in the second part.

Keywords  Parallel bioreactors · Dynamic scheduling · High-throughput systems · Automation · Device integration

Introduction

New challenges arise with the advances in high-throughput
technologies and the parallelization and miniaturization of
bioreactor systems. Miniaturization is the means to achieve
high-throughput bioreactor systems by parallelizing mL-
scale bioreactors in liquid handling stations [1–6]. The
miniaturization of bioprocesses supports the early stages
of development by providing fast and cost-effective solu-
tions for scale-up and process optimization studies [6]. The
authors have shown in previous work that these systems
provide a powerful toolset for bioprocess optimization by
conducting fast protein expression studies [4]. However,
deviations in process behavior due to the change of scale

must be minimized and accounted for to ensure scalability of
the experimental results to L- or pilot-scale reactors [7–10].
A good overview of current parallel bioreactor technology
is given by Achinas et al. and Junne et al. [11–13].

Automated bioreactor control in liquid handling stations
poses several challenges, as there are multiple parallel tasks
that need to be performed to provide the same process condi-
tions compared to the L-scale, such as pH-control and sub-
strate addition. Alternate approaches directly translate the
techniques from the L-scale to the miniaturized mL-scale
by incorporating microfluidic systems into small, often dis-
posable parallel reactor systems [14]. This leads to a labor-
intensive and expensive solution that does not leverage the
flexibility and power of liquid handling stations [11, 15].

By integrating the bioreactor system on the deck of a
liquid handling station (LHS), these tasks can be handled by
the pipetting station, which also greatly increases the types
of operations that can be performed during the fermenta-
tion such as sample preparation and analysis [16]. However,

 *	 Dirk Weuster‑Botz
	 dirk.weuster-botz@tum.de

1	 Chair of Biochemical Engineering, Technical University
of Munich, Boltzmannstraße 15, 85748 Garching, Germany

http://orcid.org/0000-0003-3911-4622
http://crossmark.crossref.org/dialog/?doi=10.1007/s00449-022-02798-6&domain=pdf

1928	 Bioprocess and Biosystems Engineering (2022) 45:1927–1937

1 3

this strategy can lead to differences regarding scalability in
comparison to conventional L-scale benchtop bioreactors,
because the execution of multiple tasks and their execution
frequency is limited by the availability of the LHS pipetting
channels. This results in a bottleneck problem that requires
a scheduling solution.

Using an LHS for substrate addition limits the possible
feeding strategies to intermittent feeding [4, 8, 17, 18]. As a
result of the aforementioned bottleneck the minimum time
interval at which feeding operations can be performed is
restricted. This lower bound is defined by the speed of the
liquid handling station, the number of parallel operations
it can perform, the deck layout of the setup (i.e., distance
to travel) and the number of tasks to be executed simul-
taneously. Other technical constraints of the LHS include
the pipetting volume and modes, as well as the number of
parallel channels. While many of those can be improved by
upgrading the hardware or by a change of deck layout, a
major contribution towards the mitigation of this problem
depends on the execution order of the required tasks and the
optimization thereof especially in bottleneck situations in
which sampling and feeding tasks overlap.

Introducing dynamic scheduling algorithms into the pro-
prietary software of a LHS is a cumbersome task, as the
software has not been designed to handle such specific use
cases. Regular implementations usually consists of fixed
events or repeated, sequential execution of tasks. Thus, a
dedicated software is required that is either implemented
directly in the LHS software or implemented as an external
software that controls the LHS. The software fedbatchXP
(DASGIP, an Eppendorf SE company, Jülich) was aimed to
solve bioprocess control with dynamic task scheduling and
has been employed in past publications [1, 2, 7, 15, 19–21].
However, the software has been discontinued. Among oth-
ers, the main drawbacks of this software were its propri-
etary, compiled nature, which made it impossible to freely
customize and extend the software, as well as the intrans-
parent nature of the prioritization algorithm. Furthermore,
the software was designed for a specific device setup, a bio-
REACTOR48 integrated in a Tecan Freedom Evo, and was
not open for integration of more or other devices, or further
future development.

External control of liquid handling stations is gaining
importance as laboratory infrastructure is becoming more
digitized and processes more sophisticated. The authors
propose a data-driven, dynamic scheduling solution with
external LHS control. The software re-evaluates priorities of
user-defined tasks in real time and orchestrates their execu-
tion for bioprocess control of a miniaturized and parallelized
bioreactor system.

Use cases for the proposed dynamic scheduling software
are manifold and software solutions that simplify the com-
plexity of automated miniaturized bioprocess systems are

required not just in industry, but academia as well [22]. Due
to the complex nature of biological experiments, it is dif-
ficult to predict the changes in pH or the effect of different
feeding strategies in advance. Conventional LHS software is
designed to build fixed, sequential process workflows. How-
ever, the knowledge required to design a suitable execution
sequence is not available a priori and rather the outcome of
successful process development. Furthermore, sequential
execution can lead to severe problems when tasks cannot
be performed on time. With a flexible execution order, such
tasks are performed on demand and not just on schedule.

An example area is general process optimization and the
research on population heterogeneity in the scale-up of fer-
mentation processes [23–25]. Deviations from ideal reactor
behavior, such as changing levels of dissolved oxygen due
to varying substrate availability resulting from intermittent
feeding, have been linked to population heterogeneity [26,
27]. Moving between scales, non-ideality may vary in kind
and magnitude, resulting in differences in product, metabo-
lite, or inhibitor concentration or process variables like
optimal harvesting time to achieve high space–time yield
[28]. The proposed scheduling software enables researchers
to further investigate and quantify these deviations by set-
ting defined feeding intervals. If sequential execution was
applied, the interval would be undefined a priori. Further-
more, the investigation of multiple intervals during a sin-
gle run is enabled, while maintaining good process control
of pH and the acquisition of frequent samples. Hence, the
proposed software can speed up the screening process on a
small scale.

Dynamic scheduling can improve process control as it
remains flexible in regard to the execution order, but at the
same time retains a stable and defined average execution
interval. By re-evaluating sensor data and recalculating pri-
orities of the individual tasks, an improved resource alloca-
tion can be achieved. The authors propose a software solu-
tion that consist of multiple separate services: a dynamic
scheduler (LHS Scheduler), a broker that enables external
control over the Liquid handling station (LHS Server), a
digital twin (LHS Simulator) that can be used to emulate
the LHS for in silico tests, as well as SiLA 2 device drivers
for the bioreactor system and the related sensor equipment.

Hardware and integration

The presented solution relies on the integration of multiple
devices from different vendors. To overcome the barriers of
varying proprietary device interfaces the standard Standardi-
zation in Laboratory Automation (SiLA 2) is used [29–31].
The SiLA standard is based on a server–client architecture
and uses the remote procedure call protocol gRPC for com-
munication, which is based on the standards HTTP/2 and

1929Bioprocess and Biosystems Engineering (2022) 45:1927–1937	

1 3

protocol buffers. The developed software interfaces, i.e.,
SiLA Servers, for the parallel bioreactor system and the pH/
DO sensors are built according to this standard.

Parallel stirred‑tank bioreactor system

The 48 × parallel stirred-tank bioreactor system (bioREAC-
TOR 48, 2mag AG, Munich, Germany) is used for micro-
bial fermentations on the mL-scale. The parallel bioreactor
system was integrated into the software environment using
the SiLA 2 standard. A SiLA Server was developed to trans-
late the proprietary serial communication protocol (RS-232)
of the hardware to provide the digital interface in the local
network environment. The scheduler software controls the
parallel bioreactor system with this SiLA 2 interface by a
SiLA 2 client. Available functions include the starting and
stopping of the reactor agitation, changing of the applied
power, as well as the rotational speed settings. Furthermore,
the interface can be used to obtain status data of the in-built
Hall sensors, enabling the scheduler software to monitor
and react to individual stirrer malfunctions. A simulation
mode providing realistic data on, e.g., stirrer malfunctions
was integrated to allow for in silico testing of the scheduler
software. The SiLA 2 Server of the bioREACTOR48 was
created using the SiLA 2 Python reference implementation
[32] and is available as open-source project [33].

pH/DO sensor bars

Dissolved oxygen (DO) and pH of the 48 bioreactors is
measured in parallel by 6 fluorometric reader bars with 8
sensors each (MCR, PreSens GmbH, Regensburg, Ger-
many), which are placed in a compartment underneath the
mL-scale bioreactor vessels [5]. The developed PreSens
SiLA Server standardizes the proprietary serial communi-
cation protocol and allows automated data acquisition of
process parameters by the scheduler software via the local
network. The PreSens SiLA 2 Server includes a simulation
mode, which provides mock data for testing purposes. The
SiLA 2 Server of the PreSens sensor bars was implemented
using the SiLA 2 Python reference implementation [32] and
is available as open-source project [33].

Liquid handling station

A liquid handling station (Microlab® STARlet, Hamilton
Bonaduz AG, Bonaduz, Switzerland) with eight 1000 μL
pipetting channels is used to perform tasks on the 48 × par-
allel bioreactor system for the automated cultivation of
microorganisms. The LHS is equipped with a microtiter
plate (MTP) reader (Synergy HTX, BioTek, Winooski, USA)
and a MTP washer (405 LS, BioTek, Winooski, USA), which
are directly integrated into the hardware setup as periphery

devices accessible by the LHS plate handler tool (iSWAP®,
Hamitlon Bonaduz AG, Bonaduz, Switzerland).

A software package supplied by the vendor includes a
method editor and a runtime environment (Microlab® STAR
Software VENUS version 4.5, Hamilton Bonaduz AG, Bon-
aduz, Switzerland). Within the method editor, a user-friendly
environment with method libraries and drivers for periph-
ery devices is provided, which were used to integrate the
MTP washer and reader. However, more complex methods
or foreign device integrations require the use of the underly-
ing vendor-specific Hamilton Standard Language (HSL) or
custom support. Due to the number of external devices to
be integrated and the complexity of a dynamic prioritization
algorithm, a solution written in HSL was not an option and a
method had to be found to take control of the LHS externally
through the scheduling software. The device was integrated
using the COM-Interop interface of the vendor software and
a newly developed gRPC server. The gRPC server acts as a
broker and enables external control of the LHS via the local
network. A more detailed account of the external control is
explained in the LHS Server section.

Example application setup

The target applications of the LHS Scheduler are microbial
cultivations in the miniaturized bioreactor system BioRE-
ACTOR48 which is integrated into a liquid handling station.
Figure 1 shows the setup for which the software has been
developed and tested.

Software architecture and implementation

General software architecture

The software solution consists of multiple services, which
are connected to the central scheduler application as shown
in Fig. 2. The reactor system and the pH/DO sensors are
connected to the LHS Scheduler by a standardized SiLA
2 server–client connection, whereas the integration of the
LHS is realized through a gRPC broker server, which evalu-
ates, processes, and forwards traffic between the scheduler
application and the LHS. Furthermore, the scheduler appli-
cation is connected to two databases to persist process and
application data.

InfluxDB

InfluxDB (InfluxDB v.1.7.11, InfluxData, San Francisco,
USA) is an open-source NoSQL time-series database [34,
35]. The scheduler application uses InfluxDB to store the
acquired process data that is received from the external
devices in real time. This includes data of the bioreactor

1930	 Bioprocess and Biosystems Engineering (2022) 45:1927–1937

1 3

system, the sensor bars, the LHS, as well as the evaluated
and processed data such as task priorities, task execution
times, and setpoints. The stored data are enriched with
timestamps and meta data such as experiment name, reac-
tor position, and operator to enable good data management
and data filtering for, e.g., real-data visualization or data

export for subsequent analyses. The LHS Scheduler uses
the python package influxdb to communicate with the data-
base server. If no dedicated InfluxDB server is provided to
the application, a fall-back database will be created using
the official InfluxDB image hosted on DockerHub (influxdb
v.1.7.11). Process data are visualized in real time using the

Fig. 1   A 3D visualization of the LHS deck layout showing the acces-
sible entities and their positions as shown by the control software
VENUS Run Control. From left to right, the setup consists of a MTP
washer (A), a MTP reader (B), a pipetting needle wash station (C),
several containers with aqueous EtOH (70% v/v) for pipetting needle
disinfection (D), a bioREACTOR48 (E), a MTP for sample de-aer-

ation, dilution and preparation (F), a container for substrate storage
(G), containers for pH-controlling (NaOH) and phosphate buffered
saline (H), and the socket of the pH/DO sensor bars (I, bars not
shown). The plate reader and plate washer are accessed by the inte-
grated plate gripper (iSWAP™)

Fig. 2   The proposed software solution consists of several elements:
The central scheduler application, the SiLA 2 device servers for the
parallel bioreactor system and the pH/DO sensor bars, the gRPC
server for LHS communication. Furthermore, it relies on three data-

bases for the storage of experiment process data (InfluxDB), the per-
sisting of application data (PostgreSQL) and for in-memory storage
and inter-thread and process communication (RedisDB)

1931Bioprocess and Biosystems Engineering (2022) 45:1927–1937	

1 3

complimentary web-service application Chronograf (Chron-
ograf v.1.8.5, InfluxData, San Francisco).

PostgreSQL

PostgreSQL (PostgreSQL v.6.0.9, PostgreSQL Global
Development Group) is a widely adopted SQL database.
The python package psycopg2 (v.2.8.6) is used to commu-
nicate with the database from within the LHS Scheduler
application. If no dedicated PostgreSQL server is available,
a fall-back database is created. This database is run in a
docker container using the official PostgreSQL docker image
available on dockerhub (postgres v.13). The complimentary
database management system pgAdmin4 (pgAdmin4 v.5,
pgAdmin Development Team) is used for data access and
visualization of the application data.

LHS server

Pipetting stations are common island solutions and inte-
gration into other third-party software can be difficult as
software interfaces are oftentimes missing, hidden, or unex-
posed. In most cases, external control is not required or not
intended. For the proposed scheduling software however,
enabling external control is a critical requirement. HSL,
deriving from C, supports the execution of code elements
that were registered on the operating system as Component
Object Model (COM). COM interop is a technology devel-
oped by Microsoft to enable interoperability between COM-
libraries and the Windows.NET Framework in the Common
Language Runtime (CLR) [36, 37]. This allows the registra-
tion of C# code to be registered as COM-Interop and sub-
sequently to be imported into the VENUS method editor
library. With this procedure, an interface was created based
on a C# gRPC client that was introduced into the VENUS
environment as shown in Fig. 3.

The information transmitted between the LHS Scheduler
and the LHS runtime environment via the LHS Server is
kept as simple as possible including only the essential infor-
mation required for execution. This encompasses the name
of the method, an ordered array containing the volumes to be
transferred, as well as the respective target and, if required,
source sequence. Target and source sequences are trans-
ferred as lists (Python) and arrays (C#) and are mapped to
the labware definition within Venus. This ensures that only
existing positions are addressed.

LHS simulator

To improve the development process and increase the soft-
ware quality, a digital twin of the LHS has been developed
to mimic the behavior for in silico software testing: The LHS
Simulator. The LHS simulator receives commands from the

LHS Server, interprets and checks their validity regarding
constraints and execution order, and simulates the execu-
tion time based on historical data. The LHS simulator loads
the user script at the start of a simulation run and evaluates
the specifications supplied by the user. During runtime, the
scheduler output is compared against the user input. Discrep-
ancies between the specifications in the user script and the
output regarding parameters like violated constraints, missed
executions, or miscalculated feeding volumes are stored are
detected and stored in a log file. The LHS Simulator is based
on a gRPC Client and uses the same interface description
as the C# client of the LHS. The source code is written in
python.

Dynamic scheduling software

The scheduler core

The LHS Scheduler is based on a gRPC server. Once started,
the application is configured by an experiment-specific
user script. Within this user script, the information about
the experiment, the used time-series database, the involved

Fig. 3   External control of the LHS is realized by introducing a C#
gRPC client into the VENUS environment by registering it as COM-
Interop and including it into the VENUS method library. The dedi-
cated LHS gRPC Server acts as broker between the scheduling soft-
ware and the VENUS runtime. The scheduler incorporates a python
gRPC client to communicate with the gRPC server, hence controlling
the LHS by sending execution request and receiving the responses
transferred by the LHS Server. At the same time, the LHS Server is
aware of the LHS’s state and shares this information with the sched-
uler software through a gRPC stream. This leads to an event-based
execution with minimal delay and downtime

1932	 Bioprocess and Biosystems Engineering (2022) 45:1927–1937

1 3

devices, and the tasks and their respective configuration is
provided. This information is persisted in the PostgreSQL
database as application data via invocation of the corre-
sponding function of the application programming interface
(API). The API is a useful tool for testing and development
as it allows the interaction with the scheduler application
during runtime. However, this is not required nor intended
for the regular use case presented in Control of Parallelized
Bioreactors II.

A scheduler instance consists of three phases: initializa-
tion, run, and termination. During initialization, the infor-
mation on the experiment, the specified tasks, the required
devices and databases is loaded. At this stage a device ini-
tialization sequence is run that sets up a device connection
and configures them correctly for use by the application.
At the end of the initialization procedure, threads for data
acquisition and the initially scheduled tasks are started.

During a fermentation process, the scheduler application
continuously communicates with the task threads and keeps
track of their reported priorities and status. Furthermore,
the data acquisition threads are monitored and restarted if
needed. Within the run-loop, tasks can be added or removed
from the scheduler, which will spawn or kill the respective
task threads. Furthermore, the run-loop subscribes to a
stream provided by the LHS Server, to keep track of the sta-
tus of the LHS. The availability of the LHS is communicated
via this stream in real time. If available, the scheduler will
dispatch the task with the highest priority to the LHS Server
for execution. The scheduler instance and the task threads
all rely on the internal clock of the scheduler instance main
loop. For simulation purposes, the internal time can be
manipulated for fast run simulations. In this mode, the LHS
Simulator is used and the device drivers of the bioreactor
system and the sensor bars are set to simulation mode.

The termination sequence is a safety mechanism that is
executed in the following two scenarios: (1) The scheduler
shuts down in a controlled way either by invoking the respec-
tive API command or by the execution of a scheduled abort
task or (2) if the scheduler main loop exits unexpectedly.
The termination sequence stops all running task threads,
closes the stream channel with the LHS Server, stops the
device data acquisition, and executes a device termination
sequence. This is particularly important, if devices are used
that may take or cause damage in case of an unexpected loss
of control. The device termination sequence will break out
of the run-loop and resume in the LHS Scheduler main loop.

Data acquisition

The dynamic scheduling capability is dependent on the
availability of real-time data. Before entering the scheduler
run-loop, the LHS Scheduler starts a data acquisition thread
for each data source. The data sources are defined in the user

script and, thus, the API. A data source is defined by their
SiLA 2 connection details, the measurement intervals and,
similar to the scheduler run-loop, respective data acquisition
scripts for initialization, run, and termination. The data is
stored in the InfluxDB and accessible to the other threads
for processing and priority calculation.

The process data can be accessed either directly by using
an InfluxDB database client or the web-based visualization
tool Chronograf as shown in Fig. 4. The LHS Scheduler
application and its task and data acquisition threads write
their data into the InfluxDB database. Each data point con-
sists of a measurement name, tags like experiment name
and reactor positions, a timestamp, and fields containing the
values of the parameters that make up that measurement. A
data point is unique. Specific data points or subsets thereof
can be visualized or exported using the SQL-like query lan-
guage InfluxQL as shown in Fig. 4.

Apart from defining the database, the retention policy
and the measurement of interest, the query can be filtered
by tags, timestamps and a combination thereof. The queries
in Fig. 4 fetch and visualize the dissolved oxygen (top) and
pH (bottom) data of 48 reactor positions over the duration of
24 min of an E. coli fed-batch process described in Control
of Parallelized Bioreactors II. The operations executed by
the LHS at that time are displayed in Fig. 5.

Task threads

To run fermentation experiments in mL-scale bioreactors
that are integrated into LHS systems, several tasks must
be performed by the LHS. These tasks include, but are not
limited to, substrate addition, pH control, induction, and
a sampling task that can consist of multiple sub-steps (for
example: sampling, sample preparation, plate reader meas-
urement, cleaning of MTP). The LHS Scheduler executes
the task with the highest priority. Priorities are calculated by
the tasks threads themselves based on repeated evaluation of
the available real-time data, such as the current pH in every
reactor at the current time. A task for DO-control utilizing
the available real-time DO data and the access to the bio-
reactor stirrer was not implemented as DO-control was not
required by the application use case presented in the second
part (Control of parallelized bioreactors II).

Task threads and their specific implementation may vary
between use cases. To allow for the creation of new tasks
or enable adaptation of existing tasks, the task thread class
inherits from a base class that implements all functions that
are shared between tasks.

Running tasks threads communicate with the LHS Sched-
uler run-loop via queue objects to report their current prior-
ity. If the scheduler selects the task for execution, the task
thread is informed about the start- and end time of the event.
Task thread data such as the thread runtime, the time of the

1933Bioprocess and Biosystems Engineering (2022) 45:1927–1937	

1 3

Fig. 4   The browser-based graphical user interface Chronograf con-
nects to the InfluxDB and allows for real-time data visualization. In
this figure, the process parameters dissolved oxygen (top) and pH

(bottom) are shown for the same excerpt of an example process in
parallel stirred-tank bioreactors

1934	 Bioprocess and Biosystems Engineering (2022) 45:1927–1937

1 3

last execution, the priority as well as set points and present
values are written frequently to the influx database with the
respective experiment and task-specific tags.

Priority calculation

The execution of a task depends on external factors such
as physical limitations and the design of the experiment
like fixed execution times for an induction operation. These
constraints must be evaluated before any priority calcula-
tion. Constraints are very task specific and require the in-
depth knowledge of the process and the involved machines.
Pipetting robots may, for example, not be able to pipette
extremely small or large volumes due to physical limitations
of the pipetting channels. Furthermore, a process with a sub-
strate addition task must be performed on an interval that is
itself constrained by upper and lower time boundaries so that
the deviation from that interval remains minimal. Hence,
there are time and volume constraints. While some of these
constraints are soft and may be violated, such as an upper
time constraint of a substrate addition task, some are hard
constraints that prohibit execution, such as the minimum
volume that can be pipetted.

Constraints are reactor specific, vary from task to task
and must be specified by the user. A python class is provided
that fully defines a constraint. A task thread will use the
constraint evaluation function to assess each constraint and
whether and to what extent, each constraint is violated and
output a vector containing a boolean for each reactor. The
task thread will resume with the priority calculations only
if no hard constraints are violated.

All task thread objects use the same priority calcula-
tor class in which the priority calculation algorithms are

defined. A task thread contains an instance of the priority
manager and passes all relevant data to this object, such
as the algorithm to be used and the number of active reac-
tor positions. The number of tasks that require the shared
resource, the dispensing unit, is low. However, the issue lies
within the bottleneck situations in which multiple executions
are necessary at the same time. This requires the optimi-
zation of the execution order based on priorities that are
calculated based on real-time data. It was found that this
can be achieved with simple static and linear functions as
priority algorithms.

The priority calculator differentiates between no prior-
ity, a base priority and a critical priority. A task that either
violates a hard constraint or does not require execution has
a priority equal to zero. If the need for execution is evalu-
ated, the priority calculation has access to the parameters
pbase and pcrit . The priority of a single task cannot exceed
its critical priority:

The implemented priority calculation functions are:

Step

A static priority determination that depends on constraint
evaluation alone. If a task is within its constraint limits, it is
executable. As soon as it starts exceeding its soft boundaries,
the priority will be raised.

pmax = pcrit.

p =

⎧
⎪⎨⎪⎩

0, if hard constraint violated

pbase, if no constraint violated

pcrit, if soft constraint violated.

Fig. 5   The priority changes
of varying tasks are shown:
the feeding task (−, blue line),
stages 4 and 5 of the sampling
task (−, red line), and the pH-
control task (−, green line). The
execution times of these tasks
are marked by dashed lines in
the respective color with bars
representing the start and end
time. The relative process time
is identical to the example
excerpts of the process data
shown in Fig. 5. The substrate
solution contained 300 g L−1
glucose. Cultivation conditions
and process parameters are
described in detail in the second
part (Control of Parallelized
Bioreactors II)

1935Bioprocess and Biosystems Engineering (2022) 45:1927–1937	

1 3

Step specific

The priorities are broken down to the relative contributions of
the affected reactor positions that require action ( naff) respective
to the number of total active reactor positions ( nall).The num-
ber of total active reactors may vary as reactor positions with
malfunctions are automatically excluded by the LHS Scheduler.

Dynamic volume

The priority is a linear function of the volume and the number
of active positions and the contributions towards the priority are
weighted per reactor positions. This function is aimed at tasks
in which the execution depends on volume, such as the required
volume of substrate in a feeding task or the volume of base to
be added in a pH-control task. The vector v contains the feed or
base volumes of each reactor position that fulfills the constraints.
The vector vlim,lower contains the lower volume limit that can be
added for each position and Δvlim contains the allowed volume
space between the lower and upper volume limit of each position
( Δvlim = vlim,upper − vlim,lower).

Dynamic time

The priority is a linear function of the time and the number of
active positions. The contributions of each reactor position are
weighted. This function is aimed at tasks in which the execution
is time dependent, such as sampling or induction. The vector t
contains the time since the last execution of each reactor posi-
tion that fulfills the constraints. The remaining vector notation
is transferable from the previous method.

p
�
naff, nall

�
=

⎧
⎪⎪⎨⎪⎪⎩

0, if hard constraint violated

pbase
naff

nall
, if no constraint violated

pbase +
�
pcrit − pbase

�naff
nall

, if soft constraint violated.

p
(

nall, naff, v
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, if hard constraint violated

pbase +
pcrit − pbase

nall

naff
∑

i=1

vi − vi,lim,lower

Δvi,lim
,

if no constraint violated

.

p
(

nall, naff, t
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, if hard constraint violated

pbase +
pcrit − pbase

nall

naff
∑

i=1

ti − ti,lim,lower

Δti,lim
,

quad if no constraint violated.

Figure 5 displays the behavior in a bottleneck situa-
tion in which multiple tasks require access to the LHS. In
this example, a simple linear dynamic priority calculation
dependent on time (dynamic time: sampling) or volume
(dynamic volume: feeding and pH control) was applied. As
a result, the feeding task was executed with the minimal pos-
sible feeding interval. Furthermore, the last sampling step

could be executed swiftly as pH regulation was not required
urgently, with a, at times, even decreasing priority (also see
pH visualization in Fig. 4). The decreasing priority of pH
can be explained by a switch of metabolism in the E. coli
cultures from overflow metabolism to glycogen metabolism
[38]. The first substrate addition (Fig. 5) leads to overflow
metabolism and acetate production, lowering the pH con-
tinuously (Fig. 4). Surpassing the threshold of the pH con-
trol, the lower volume constraint of base, the priority rises.
The switch to glycogen metabolism and the corresponding
consumption of acetate increases the pH and, thus, lowers
the priority of the pH-control task.

Conclusion and outlook

The proposed software enables the dynamic scheduling of
LHS operations required for bioprocess control in parallel
bioreactor systems, leading to an improved task execution
order compared to conventional proprietary vendor software.
The user can create tasks with pre-defined execution inter-
vals allowing experiments in which these parameters are
of utmost importance, like studies on scalability regarding
protein expression or population heterogeneity, while rely-
ing on simple, transparent and editable priority calculation
algorithms.

The acquisition of all process data by the LHS Scheduler
software in a central database reduces the risk of information
loss or error and enables real-time visualization of the data.
Storing data of multiple sources in a central database makes
the data readily available during the process and afterwards,
simplifying data processing and analysis. The data gener-
ated in regular optimization processes is time-series data.
However, if data sources such as chromatography data or
data stemming from image analyses are to be acquired, time-
series databases would not be well suited, as they are not

1936	 Bioprocess and Biosystems Engineering (2022) 45:1927–1937

1 3

optimized for such data types. In such cases, the setup of a
data lake should be considered in future work.

The increasing degree of complexity of automated fer-
mentation setups results in an increasing number of points
of failure. As this is not desirable, testing of software and
experimental plans is important. While software malfunc-
tions can be prevented by unit, integration, and end-to-end
tests, the actual simulation of experimental runs remains
complicated when dealing with biological systems. As pro-
posed, the execution of in silico experiments prior to the
experimental run can be achieved by simulating experimen-
tal conditions with digital twins of the devices involved.
Thus, future work should aim towards improving code qual-
ity by extending the existing testing infrastructure but also
by improving the digital twin implementations of the biore-
actor system, the sensor bars and the LHS to achieve more
realistic in silico experiment simulations by, e.g., the inte-
gration of mechanistic models or the use of empirical data.

The LHS Server opens a backdoor to take external con-
trol of a Hamilton STARlet LHS and thus the integration
of such systems into greater automation workflows. Other
approaches aim towards full external control, thus transfer-
ring LHS responsibilities like tracking of lab ware positions
to the user [39, 40]. This approach is error prone and com-
plex because it requires intrinsic knowledge of the LHS as it
circumvents the method editor supplied by the vendor. The
proposed solution is a good compromise between the two,
as it leverages the benefits of external control as well as the
proprietary method editor.

The presented software consists of the LHS Scheduler,
Server, and Simulator as well as the SiLA 2 device serv-
ers. They are written in Python, making them easily read-
able and adjustable to changing requirements. The general
structure of the LHS Scheduler enables the expansion with
new tasks or priority calculation algorithms. Future work
should include the development of a graphical user interface
to increase usability and enable human intervention in the
running scheduling process, like adjusting task definitions
during runtime.

The following software components are provided on
request by the authors: LHS Scheduler, LHS Server, LHS
Simulator. The SiLA 2 device drivers for the BioREAC-
TOR48 and the Presens sensor bars are publicly available
in the following GitLab repository: https://​gitlab.​com/​biovt/​
sila2​lib_​imple​menta​tions

Acknowledgements  The authors thank the German Ministry of Edu-
cation and Research (BMBF) for funding within the national joint
research project Digitalization in Industrial Biotechnology (DigInBio).
Grant number: FKZ 031B0463B. Nikolas von den Eichen and Lukas
Bromig thank for the support provided by the TUM Graduate School
(Technical University of Munich, Germany).

Author contributions  Lukas Bromig, Nikolas von den Eichen, and Dirk
Weuster-Botz contributed to the conception and design of the study;

Supervision and funding acquisition by Dirk Weuster-Botz; Lukas Bro-
mig and Nikolas von den Eichen designed, realized and validated the
software; Lukas Bromig provided the figures and the original draft of
the manuscript. All the authors contributed to the critical revision and
final approval of the manuscript.

Funding  Open Access funding enabled and organized by Projekt
DEAL. This work was funded by the German Ministry of Educa-
tion and Research (BMBF) within the national joint research project
Digitalization in Industrial Biotechnology (DigInBio, grant number
031B0463B). Open Access funding enabled and organized by Project
DEAL.

Code availability  The SiLA 2 device drivers are publicly available in
the following GitLab repository: https://​gitlab.​com/​biovt/​sila2​lib_​imple​
menta​tions

Declarations 

Conflict of interest  Dirk Weuster-Botz is Editor-in-Chief of Bio-
process and Biosystems Engineering. One of the Associate Editors of
the journal was assigned to assume responsibility for overseeing peer
review.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Kusterer A, Krause C, Kaufmann K, Arnold M, Weuster-Botz D
(2008) Fully automated single-use stirred-tank bioreactors for par-
allel microbial cultivations. Bioprocess Biosyst Eng 31(3):207–
215. https://​doi.​org/​10.​1007/​s00449-​007-​0195-z

	 2.	 Schmideder A, Hensler S, Lang M, Stratmann A, Giesecke U,
Weuster-Botz D (2016) High-cell-density cultivation and recom-
binant protein production with Komagataella pastoris in stirred-
tank bioreactors from milliliter to cubic meter scale. Process Bio-
chem 51(2):177–184. https://​doi.​org/​10.​1016/j.​procb​io.​2015.​11.​
024

	 3.	 Lattermann C, Büchs J (2015) Microscale and miniscale fermenta-
tion and screening. Curr Opin Biotechnol 35:1–6. https://​doi.​org/​
10.​1016/j.​copbio.​2014.​12.​005

	 4.	 Von den Eichen N, Bromig L, Sidarava V, Marienberg H, Weuster-
Botz D (2021) Automated multi-scale cascade of parallel stirred-
tank bioreactors for fast protein expression studies. J Biotechnol
332:103–113. https://​doi.​org/​10.​1016/j.​jbiot​ec.​2021.​03.​021

	 5.	 H. Chmiel and D. Weuster-Botz, ‘Bioreaktoren’, in Bioprozesstech-
nik, Springer, 2018, 157–229.

	 6.	 Marques MP, Szita N (2017) Bioprocess microfluidics: apply-
ing microfluidic devices for bioprocessing. Curr Opin Chem Eng
18:61–68. https://​doi.​org/​10.​1016/j.​coche.​2017.​09.​004

	 7.	 Weuster-Botz D, Puskeiler R, Kusterer A, Kaufmann K, John
GT, Arnold M (2005) Methods and milliliter scale devices for

https://gitlab.com/biovt/sila2lib_implementations
https://gitlab.com/biovt/sila2lib_implementations
https://gitlab.com/biovt/sila2lib_implementations
https://gitlab.com/biovt/sila2lib_implementations
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00449-007-0195-z
https://doi.org/10.1016/j.procbio.2015.11.024
https://doi.org/10.1016/j.procbio.2015.11.024
https://doi.org/10.1016/j.copbio.2014.12.005
https://doi.org/10.1016/j.copbio.2014.12.005
https://doi.org/10.1016/j.jbiotec.2021.03.021
https://doi.org/10.1016/j.coche.2017.09.004

1937Bioprocess and Biosystems Engineering (2022) 45:1927–1937	

1 3

high-throughput bioprocess design. Bioprocess Biosyst Eng
28(2):109–119. https://​doi.​org/​10.​1007/​s00449-​005-​0011-6

	 8.	 Anane E, Sawatzki A, Neubauer P, Cruz-Bournazou MN (2019)
Modelling concentration gradients in fed-batch cultivations of
E. coli - towards the flexible design of scale-down experiments:
Modelling concentration gradients in fed-batch. J Chem Technol
Biotechnol 94(2):516–526. https://​doi.​org/​10.​1002/​jctb.​5798

	 9.	 Puskeiler R, Kusterer A, John GT, Weuster-Botz D (2005) Minia-
ture bioreactors for automated high-throughput bioprocess design
(HTBD): reproducibility of parallel fed-batch cultivations with
Escherichia coli. Biotechnol Appl Biochem 42(3):227–235. https://​
doi.​org/​10.​1042/​BA200​40197

	10.	 Tajsoleiman T, Mears L, Krühne U, Gernaey KV, Cornelissen S
(2019) An industrial perspective on scale-down challenges using
miniaturized bioreactors. Trends Biotechnol 37(7):697–706. https://​
doi.​org/​10.​1016/j.​tibte​ch.​2019.​01.​002

	11.	 Bareither R, Pollard D (2011) A review of advanced small-scale
parallel bioreactor technology for accelerated process development:
Current state and future need. Biotechnol Prog 27(1):2–14. https://​
doi.​org/​10.​1002/​btpr.​522

	12.	 Junne S, Neubauer P (2018) How scalable and suitable are single-
use bioreactors? Curr Opin Biotechnol 53:240–247. https://​doi.​org/​
10.​1016/j.​copbio.​2018.​04.​003

	13.	 Achinas S, Heins J-I, Krooneman J, Euverink GJW (2020) Min-
iaturization and 3D printing of bioreactors: a technological mini
review. Micromachines. https://​doi.​org/​10.​3390/​mi110​90853

	14.	 Ladner T, Grünberger A, Probst C, Kohlheyer D, Büchs J, Delvi-
gne F (2017) 15—application of mini- and micro-bioreactors for
microbial bioprocesses. Curr Develop Biotechnol Bioeng. https://​
doi.​org/​10.​1016/​B978-0-​444-​63663-8.​00015-X

	15.	 Gebhardt G, Hortsch R, Kaufmann K, Arnold M, Weuster-Botz D
(2011) A new microfluidic concept for parallel operated milliliter-
scale stirred tank bioreactors. Biotechnol Prog 27(3):684–690.
https://​doi.​org/​10.​1002/​btpr.​570

	16.	 Morschett H et al (2021) Robotic integration enables autonomous
operation of laboratory scale stirred tank bioreactors with model-
driven process analysis. Biotechnol Bioeng 118(7):2759–2769.
https://​doi.​org/​10.​1002/​bit.​27795

	17.	 Faust G, Janzen NH, Bendig C, Römer L, Kaufmann K, Weuster-
Botz D (2014) Feeding strategies enhance high cell density cultiva-
tion and protein expression in milliliter scale bioreactors. Biotech-
nol J 9(10):1293–1303. https://​doi.​org/​10.​1002/​biot.​20140​0346

	18.	 Haby B et al (2019) Integrated robotic mini bioreactor platform
for automated, parallel microbial cultivation with online data han-
dling and process control. SLAS Technol Transl Life Sci Innov
24(6):569–582. https://​doi.​org/​10.​1177/​24726​30319​860775

	19.	 Nickel DB, Cruz-Bournazou MN, Wilms T, Neubauer P, Knepper
A (2017) Online bioprocess data generation, analysis, and optimiza-
tion for parallel fed-batch fermentations in milliliter scale. Eng Life
Sci 17(11):1195–1201. https://​doi.​org/​10.​1002/​elsc.​20160​0035

	20.	 Schmideder A, Cremer JH, Weuster-Botz D (2016) Parallel steady
state studies on a milliliter scale accelerate fed-batch bioprocess
design for recombinant protein production with Escherichia coli.
Biotechnol Prog 32(6):1426–1435

	21.	 Meo A, Priebe XL, Weuster-Botz D (2017) Lipid production with
Trichosporon oleaginosus in a membrane bioreactor using micro-
algae hydrolysate. J Biotechnol 241:1–10

	22.	 Teworte S, Malcı K, Walls LE, Halim M, Rios-Solis L (2022)
Recent advances in fed-batch microscale bioreactor design. Bio-
technol Adv 55:107888. https://​doi.​org/​10.​1016/j.​biote​chadv.​2021.​
107888

	23.	 Lemoine A, Delvigne F, Bockisch A, Neubauer P, Junne S (2017)
Tools for the determination of population heterogeneity caused by
inhomogeneous cultivation conditions. J Biotechnol 251:84–93

	24.	 Fernandes RL et al (2011) Experimental methods and modeling
techniques for description of cell population heterogeneity. Bio-
technol Adv 29(6):575–599

	25.	 Heins A-L, Weuster-Botz D (2018) Population heterogeneity in
microbial bioprocesses: origin, analysis, mechanisms, and future
perspectives. Bioprocess Biosyst Eng 41(7):889–916. https://​doi.​
org/​10.​1007/​s00449-​018-​1922-3

	26.	 de Jonge LP et al (2011) Scale-down of penicillin production in
Penicillium chrysogenum. Biotechnol J 6(8):944–958

	27.	 Lemoine A, Maya Martίnez-Iturralde N, Spann R, Neubauer P,
Junne S (2015) Response of Corynebacterium glutamicum exposed
to oscillating cultivation conditions in a two- and a novel three-com-
partment scale-down bioreactor. Biotechnol Bioeng 112(6):1220–
1231. https://​doi.​org/​10.​1002/​bit.​25543

	28.	 Puskeiler R, Kaufmann K, Weuster-Botz D (2005) Development,
parallelization, and automation of a gas-inducing milliliter-scale
bioreactor for high-throughput bioprocess design (HTBD). Biotech-
nol Bioeng 89(5):512–523. https://​doi.​org/​10.​1002/​bit.​20352

	29.	 SiLA 2, ‘SiLA 2 Part (A)—overview, concepts and core specifica-
tion’. Dec 21, 2020, [Online]. https://​docs.​google.​com/​docum​ent/d/​
1nGGE​wbx45​ZpKeK​YH18V​nNysR​Ebr1E​XH6Fq​lCo03​yASM/​
edit (accessed Jan 18, 2021).

	30.	 SiLA 2, ‘SiLA 2 Part (B)—mapping specification’, Google Docs.
https://​docs.​google.​com/​docum​ent/d/​1-​shgqd​YW4sg​YIb5v​WZ8xT​
wCUO_​bqE13​oBEX8​rYY_​SJA/​edit?​usp=​embed_​faceb​ook
(accessed Jan 24, 2022).

	31.	 SiLA, ‘SiLA2/sila_base’, GitLab, 2018. https://gitlab.com/SiLA2/
sila_base (accessed Dec 21, 2020).

	32.	 ‘SiLA2 / sila_python’, GitLab. https://​gitlab.​com/​SiLA2/​sila_​
python (accessed Jan 24, 2022).

	33.	 L. Bromig, F. Moorhof, and N. von den Eichen, ‘SiLA 2 Service
Implementations’, GitLab. https://​gitlab.​com/​biovt/​sila2​lib_​imple​
menta​tions/-/​tree/​master (accessed Mar. 03, 2022).

	34.	 J. Shahid, InfluxDB Documentation. Release, 2019.
	35.	 S. N. Zehra, ‘Time Series Databases and InfluxDB’, p. 45.
	36.	 Barnaby T (2002) Understanding COM Interop. In: Barnaby T (ed)

Distributed .NET Programming in VB .NET. Apress, Berkeley, CA,
pp 273–288

	37.	 Microsoft Corporation, .‘NET Framework documentation on
MSDN - COM Interop’. https://​docs.​micro​soft.​com/​en-​us/​dotnet/​
visual-​basic/​progr​amming-​guide/​com-​inter​op/ (accessed Jan. 25,
2022).

	38.	 Nyström T (1994) The glucose-starvation stimulon of Escherichia
coli: induced and repressed synthesis of enzymes of central meta-
bolic pathways and role of acetyl phosphate in gene expression and
starvation survival. Mol Microbiol 12(5):833–843. https://​doi.​org/​
10.​1111/j.​1365-​2958.​1994.​tb010​69.x

	39.	 Chory EJ, Gretton DW, DeBenedictis EA, Esvelt KM (2021) Ena-
bling high-throughput biology with flexible open-source automa-
tion. Mol Syst Biol 17(3):e9942. https://​doi.​org/​10.​15252/​msb.​
20209​942

	40.	 E. J. Chory, D. W. Gretton, E. A. De Benedictis, K. M. Esvelt,
‘Flexible open-source automation for robotic bioengineering’, 2020.
doi: https://​doi.​org/​10.​1101/​2020.​04.​14.​041368.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00449-005-0011-6
https://doi.org/10.1002/jctb.5798
https://doi.org/10.1042/BA20040197
https://doi.org/10.1042/BA20040197
https://doi.org/10.1016/j.tibtech.2019.01.002
https://doi.org/10.1016/j.tibtech.2019.01.002
https://doi.org/10.1002/btpr.522
https://doi.org/10.1002/btpr.522
https://doi.org/10.1016/j.copbio.2018.04.003
https://doi.org/10.1016/j.copbio.2018.04.003
https://doi.org/10.3390/mi11090853
https://doi.org/10.1016/B978-0-444-63663-8.00015-X
https://doi.org/10.1016/B978-0-444-63663-8.00015-X
https://doi.org/10.1002/btpr.570
https://doi.org/10.1002/bit.27795
https://doi.org/10.1002/biot.201400346
https://doi.org/10.1177/2472630319860775
https://doi.org/10.1002/elsc.201600035
https://doi.org/10.1016/j.biotechadv.2021.107888
https://doi.org/10.1016/j.biotechadv.2021.107888
https://doi.org/10.1007/s00449-018-1922-3
https://doi.org/10.1007/s00449-018-1922-3
https://doi.org/10.1002/bit.25543
https://doi.org/10.1002/bit.20352
https://docs.google.com/document/d/1nGGEwbx45ZpKeKYH18VnNysREbr1EXH6FqlCo03yASM/edit
https://docs.google.com/document/d/1nGGEwbx45ZpKeKYH18VnNysREbr1EXH6FqlCo03yASM/edit
https://docs.google.com/document/d/1nGGEwbx45ZpKeKYH18VnNysREbr1EXH6FqlCo03yASM/edit
https://docs.google.com/document/d/1-shgqdYW4sgYIb5vWZ8xTwCUO_bqE13oBEX8rYY_SJA/edit?usp=embed_facebook
https://docs.google.com/document/d/1-shgqdYW4sgYIb5vWZ8xTwCUO_bqE13oBEX8rYY_SJA/edit?usp=embed_facebook
https://gitlab.com/SiLA2/sila_python
https://gitlab.com/SiLA2/sila_python
https://gitlab.com/biovt/sila2lib_implementations/-/tree/master
https://gitlab.com/biovt/sila2lib_implementations/-/tree/master
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/com-interop/
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/com-interop/
https://doi.org/10.1111/j.1365-2958.1994.tb01069.x
https://doi.org/10.1111/j.1365-2958.1994.tb01069.x
https://doi.org/10.15252/msb.20209942
https://doi.org/10.15252/msb.20209942
https://doi.org/10.1101/2020.04.14.041368

	Control of parallelized bioreactors I: dynamic scheduling software for efficient bioprocess management in high-throughput systems
	Abstract
	Introduction
	Hardware and integration
	Parallel stirred-tank bioreactor system
	pHDO sensor bars
	Liquid handling station
	Example application setup

	Software architecture and implementation
	General software architecture
	InfluxDB
	PostgreSQL
	LHS server
	LHS simulator

	Dynamic scheduling software
	The scheduler core
	Data acquisition
	Task threads
	Priority calculation
	Step
	Step specific
	Dynamic volume
	Dynamic time

	Conclusion and outlook
	Acknowledgements
	References

