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Abstract
The shift towards high-throughput technologies and automation in research and development in industrial biotechnology is 
highlighting the need for increased automation competence and specialized software solutions. Within bioprocess develop-
ment, the trends towards miniaturization and parallelization of bioreactor systems rely on full automation and digital process 
control. Thus, mL-scale, parallel bioreactor systems require integration into liquid handling stations to perform a range of 
tasks stretching from substrate addition to automated sampling and sample analysis. To orchestrate these tasks, the authors 
propose a scheduling software to fully leverage the advantages of a state-of-the-art liquid handling station (LHS) and to 
enable improved process control and resource allocation. Fixed sequential order execution, the norm in LHS software, results 
in imperfect timing of essential operations like feeding or Ph control and execution intervals thereof, that are unknown a 
priori. However, the duration and control of, e.g., the feeding task and their frequency are of great importance for bioprocess 
control and the design of experiments. Hence, a software solution is presented that allows the orchestration of the respective 
operations through dynamic scheduling by external LHS control. With the proposed scheduling software, it is possible to 
define a dynamic process control strategy based on data-driven real-time prioritization and transparent, user-defined con-
straints. Drivers for a commercial 48 parallel bioreactor system and the related sensor equipment were developed using the 
SiLA 2 standard greatly simplifying the integration effort. Furthermore, this paper describes the experimental hardware and 
software setup required for the application use case presented in the second part.
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Introduction

New challenges arise with the advances in high-throughput 
technologies and the parallelization and miniaturization of 
bioreactor systems. Miniaturization is the means to achieve 
high-throughput bioreactor systems by parallelizing mL-
scale bioreactors in liquid handling stations [1–6]. The 
miniaturization of bioprocesses supports the early stages 
of development by providing fast and cost-effective solu-
tions for scale-up and process optimization studies [6]. The 
authors have shown in previous work that these systems 
provide a powerful toolset for bioprocess optimization by 
conducting fast protein expression studies [4]. However, 
deviations in process behavior due to the change of scale 

must be minimized and accounted for to ensure scalability of 
the experimental results to L- or pilot-scale reactors [7–10]. 
A good overview of current parallel bioreactor technology 
is given by Achinas et al. and Junne et al. [11–13].

Automated bioreactor control in liquid handling stations 
poses several challenges, as there are multiple parallel tasks 
that need to be performed to provide the same process condi-
tions compared to the L-scale, such as pH-control and sub-
strate addition. Alternate approaches directly translate the 
techniques from the L-scale to the miniaturized mL-scale 
by incorporating microfluidic systems into small, often dis-
posable parallel reactor systems [14]. This leads to a labor-
intensive and expensive solution that does not leverage the 
flexibility and power of liquid handling stations [11, 15].

By integrating the bioreactor system on the deck of a 
liquid handling station (LHS), these tasks can be handled by 
the pipetting station, which also greatly increases the types 
of operations that can be performed during the fermenta-
tion such as sample preparation and analysis [16]. However, 
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this strategy can lead to differences regarding scalability in 
comparison to conventional L-scale benchtop bioreactors, 
because the execution of multiple tasks and their execution 
frequency is limited by the availability of the LHS pipetting 
channels. This results in a bottleneck problem that requires 
a scheduling solution.

Using an LHS for substrate addition limits the possible 
feeding strategies to intermittent feeding [4, 8, 17, 18]. As a 
result of the aforementioned bottleneck the minimum time 
interval at which feeding operations can be performed is 
restricted. This lower bound is defined by the speed of the 
liquid handling station, the number of parallel operations 
it can perform, the deck layout of the setup (i.e., distance 
to travel) and the number of tasks to be executed simul-
taneously. Other technical constraints of the LHS include 
the pipetting volume and modes, as well as the number of 
parallel channels. While many of those can be improved by 
upgrading the hardware or by a change of deck layout, a 
major contribution towards the mitigation of this problem 
depends on the execution order of the required tasks and the 
optimization thereof especially in bottleneck situations in 
which sampling and feeding tasks overlap.

Introducing dynamic scheduling algorithms into the pro-
prietary software of a LHS is a cumbersome task, as the 
software has not been designed to handle such specific use 
cases. Regular implementations usually consists of fixed 
events or repeated, sequential execution of tasks. Thus, a 
dedicated software is required that is either implemented 
directly in the LHS software or implemented as an external 
software that controls the LHS. The software fedbatchXP 
(DASGIP, an Eppendorf SE company, Jülich) was aimed to 
solve bioprocess control with dynamic task scheduling and 
has been employed in past publications [1, 2, 7, 15, 19–21]. 
However, the software has been discontinued. Among oth-
ers, the main drawbacks of this software were its propri-
etary, compiled nature, which made it impossible to freely 
customize and extend the software, as well as the intrans-
parent nature of the prioritization algorithm. Furthermore, 
the software was designed for a specific device setup, a bio-
REACTOR48 integrated in a Tecan Freedom Evo, and was 
not open for integration of more or other devices, or further 
future development.

External control of liquid handling stations is gaining 
importance as laboratory infrastructure is becoming more 
digitized and processes more sophisticated. The authors 
propose a data-driven, dynamic scheduling solution with 
external LHS control. The software re-evaluates priorities of 
user-defined tasks in real time and orchestrates their execu-
tion for bioprocess control of a miniaturized and parallelized 
bioreactor system.

Use cases for the proposed dynamic scheduling software 
are manifold and software solutions that simplify the com-
plexity of automated miniaturized bioprocess systems are 

required not just in industry, but academia as well [22]. Due 
to the complex nature of biological experiments, it is dif-
ficult to predict the changes in pH or the effect of different 
feeding strategies in advance. Conventional LHS software is 
designed to build fixed, sequential process workflows. How-
ever, the knowledge required to design a suitable execution 
sequence is not available a priori and rather the outcome of 
successful process development. Furthermore, sequential 
execution can lead to severe problems when tasks cannot 
be performed on time. With a flexible execution order, such 
tasks are performed on demand and not just on schedule.

An example area is general process optimization and the 
research on population heterogeneity in the scale-up of fer-
mentation processes [23–25]. Deviations from ideal reactor 
behavior, such as changing levels of dissolved oxygen due 
to varying substrate availability resulting from intermittent 
feeding, have been linked to population heterogeneity [26, 
27]. Moving between scales, non-ideality may vary in kind 
and magnitude, resulting in differences in product, metabo-
lite, or inhibitor concentration or process variables like 
optimal harvesting time to achieve high space–time yield 
[28]. The proposed scheduling software enables researchers 
to further investigate and quantify these deviations by set-
ting defined feeding intervals. If sequential execution was 
applied, the interval would be undefined a priori. Further-
more, the investigation of multiple intervals during a sin-
gle run is enabled, while maintaining good process control 
of pH and the acquisition of frequent samples. Hence, the 
proposed software can speed up the screening process on a 
small scale.

Dynamic scheduling can improve process control as it 
remains flexible in regard to the execution order, but at the 
same time retains a stable and defined average execution 
interval. By re-evaluating sensor data and recalculating pri-
orities of the individual tasks, an improved resource alloca-
tion can be achieved. The authors propose a software solu-
tion that consist of multiple separate services: a dynamic 
scheduler (LHS Scheduler), a broker that enables external 
control over the Liquid handling station (LHS Server), a 
digital twin (LHS Simulator) that can be used to emulate 
the LHS for in silico tests, as well as SiLA 2 device drivers 
for the bioreactor system and the related sensor equipment.

Hardware and integration

The presented solution relies on the integration of multiple 
devices from different vendors. To overcome the barriers of 
varying proprietary device interfaces the standard Standardi-
zation in Laboratory Automation (SiLA 2) is used [29–31]. 
The SiLA standard is based on a server–client architecture 
and uses the remote procedure call protocol gRPC for com-
munication, which is based on the standards HTTP/2 and 
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protocol buffers. The developed software interfaces, i.e., 
SiLA Servers, for the parallel bioreactor system and the pH/
DO sensors are built according to this standard.

Parallel stirred‑tank bioreactor system

The 48 × parallel stirred-tank bioreactor system (bioREAC-
TOR 48, 2mag AG, Munich, Germany) is used for micro-
bial fermentations on the mL-scale. The parallel bioreactor 
system was integrated into the software environment using 
the SiLA 2 standard. A SiLA Server was developed to trans-
late the proprietary serial communication protocol (RS-232) 
of the hardware to provide the digital interface in the local 
network environment. The scheduler software controls the 
parallel bioreactor system with this SiLA 2 interface by a 
SiLA 2 client. Available functions include the starting and 
stopping of the reactor agitation, changing of the applied 
power, as well as the rotational speed settings. Furthermore, 
the interface can be used to obtain status data of the in-built 
Hall sensors, enabling the scheduler software to monitor 
and react to individual stirrer malfunctions. A simulation 
mode providing realistic data on, e.g., stirrer malfunctions 
was integrated to allow for in silico testing of the scheduler 
software. The SiLA 2 Server of the bioREACTOR48 was 
created using the SiLA 2 Python reference implementation 
[32] and is available as open-source project [33].

pH/DO sensor bars

Dissolved oxygen (DO) and pH of the 48 bioreactors is 
measured in parallel by 6 fluorometric reader bars with 8 
sensors each (MCR, PreSens GmbH, Regensburg, Ger-
many), which are placed in a compartment underneath the 
mL-scale bioreactor vessels [5]. The developed PreSens 
SiLA Server standardizes the proprietary serial communi-
cation protocol and allows automated data acquisition of 
process parameters by the scheduler software via the local 
network. The PreSens SiLA 2 Server includes a simulation 
mode, which provides mock data for testing purposes. The 
SiLA 2 Server of the PreSens sensor bars was implemented 
using the SiLA 2 Python reference implementation [32] and 
is available as open-source project [33].

Liquid handling station

A liquid handling station (Microlab® STARlet, Hamilton 
Bonaduz AG, Bonaduz, Switzerland) with eight 1000 μL 
pipetting channels is used to perform tasks on the 48 × par-
allel bioreactor system for the automated cultivation of 
microorganisms. The LHS is equipped with a microtiter 
plate (MTP) reader (Synergy HTX, BioTek, Winooski, USA) 
and a MTP washer (405 LS, BioTek, Winooski, USA), which 
are directly integrated into the hardware setup as periphery 

devices accessible by the LHS plate handler tool (iSWAP®, 
Hamitlon Bonaduz AG, Bonaduz, Switzerland).

A software package supplied by the vendor includes a 
method editor and a runtime environment (Microlab® STAR 
Software VENUS version 4.5, Hamilton Bonaduz AG, Bon-
aduz, Switzerland). Within the method editor, a user-friendly 
environment with method libraries and drivers for periph-
ery devices is provided, which were used to integrate the 
MTP washer and reader. However, more complex methods 
or foreign device integrations require the use of the underly-
ing vendor-specific Hamilton Standard Language (HSL) or 
custom support. Due to the number of external devices to 
be integrated and the complexity of a dynamic prioritization 
algorithm, a solution written in HSL was not an option and a 
method had to be found to take control of the LHS externally 
through the scheduling software. The device was integrated 
using the COM-Interop interface of the vendor software and 
a newly developed gRPC server. The gRPC server acts as a 
broker and enables external control of the LHS via the local 
network. A more detailed account of the external control is 
explained in the LHS Server section.

Example application setup

The target applications of the LHS Scheduler are microbial 
cultivations in the miniaturized bioreactor system BioRE-
ACTOR48 which is integrated into a liquid handling station. 
Figure 1 shows the setup for which the software has been 
developed and tested.

Software architecture and implementation

General software architecture

The software solution consists of multiple services, which 
are connected to the central scheduler application as shown 
in Fig. 2. The reactor system and the pH/DO sensors are 
connected to the LHS Scheduler by a standardized SiLA 
2 server–client connection, whereas the integration of the 
LHS is realized through a gRPC broker server, which evalu-
ates, processes, and forwards traffic between the scheduler 
application and the LHS. Furthermore, the scheduler appli-
cation is connected to two databases to persist process and 
application data.

InfluxDB

InfluxDB (InfluxDB v.1.7.11, InfluxData, San Francisco, 
USA) is an open-source NoSQL time-series database [34, 
35]. The scheduler application uses InfluxDB to store the 
acquired process data that is received from the external 
devices in real time. This includes data of the bioreactor 
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system, the sensor bars, the LHS, as well as the evaluated 
and processed data such as task priorities, task execution 
times, and setpoints. The stored data are enriched with 
timestamps and meta data such as experiment name, reac-
tor position, and operator to enable good data management 
and data filtering for, e.g., real-data visualization or data 

export for subsequent analyses. The LHS Scheduler uses 
the python package influxdb to communicate with the data-
base server. If no dedicated InfluxDB server is provided to 
the application, a fall-back database will be created using 
the official InfluxDB image hosted on DockerHub (influxdb 
v.1.7.11). Process data are visualized in real time using the 

Fig. 1   A 3D visualization of the LHS deck layout showing the acces-
sible entities and their positions as shown by the control software 
VENUS Run Control. From left to right, the setup consists of a MTP 
washer (A), a MTP reader (B), a pipetting needle wash station (C), 
several containers with aqueous EtOH (70% v/v) for pipetting needle 
disinfection (D), a bioREACTOR48 (E), a MTP for sample de-aer-

ation, dilution and preparation (F), a container for substrate storage 
(G), containers for pH-controlling (NaOH) and phosphate buffered 
saline (H), and the socket of the pH/DO sensor bars (I, bars not 
shown). The plate reader and plate washer are accessed by the inte-
grated plate gripper (iSWAP™)

Fig. 2   The proposed software solution consists of several elements: 
The central scheduler application, the SiLA 2 device servers for the 
parallel bioreactor system and the pH/DO sensor bars, the gRPC 
server for LHS communication. Furthermore, it relies on three data-

bases for the storage of experiment process data (InfluxDB), the per-
sisting of application data (PostgreSQL) and for in-memory storage 
and inter-thread and process communication (RedisDB)
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complimentary web-service application Chronograf (Chron-
ograf v.1.8.5, InfluxData, San Francisco).

PostgreSQL

PostgreSQL (PostgreSQL v.6.0.9, PostgreSQL Global 
Development Group) is a widely adopted SQL database. 
The python package psycopg2 (v.2.8.6) is used to commu-
nicate with the database from within the LHS Scheduler 
application. If no dedicated PostgreSQL server is available, 
a fall-back database is created. This database is run in a 
docker container using the official PostgreSQL docker image 
available on dockerhub (postgres v.13). The complimentary 
database management system pgAdmin4 (pgAdmin4 v.5, 
pgAdmin Development Team) is used for data access and 
visualization of the application data.

LHS server

Pipetting stations are common island solutions and inte-
gration into other third-party software can be difficult as 
software interfaces are oftentimes missing, hidden, or unex-
posed. In most cases, external control is not required or not 
intended. For the proposed scheduling software however, 
enabling external control is a critical requirement. HSL, 
deriving from C, supports the execution of code elements 
that were registered on the operating system as Component 
Object Model (COM). COM interop is a technology devel-
oped by Microsoft to enable interoperability between COM-
libraries and the Windows.NET Framework in the Common 
Language Runtime (CLR) [36, 37]. This allows the registra-
tion of C# code to be registered as COM-Interop and sub-
sequently to be imported into the VENUS method editor 
library. With this procedure, an interface was created based 
on a C# gRPC client that was introduced into the VENUS 
environment as shown in Fig. 3.

The information transmitted between the LHS Scheduler 
and the LHS runtime environment via the LHS Server is 
kept as simple as possible including only the essential infor-
mation required for execution. This encompasses the name 
of the method, an ordered array containing the volumes to be 
transferred, as well as the respective target and, if required, 
source sequence. Target and source sequences are trans-
ferred as lists (Python) and arrays (C#) and are mapped to 
the labware definition within Venus. This ensures that only 
existing positions are addressed.

LHS simulator

To improve the development process and increase the soft-
ware quality, a digital twin of the LHS has been developed 
to mimic the behavior for in silico software testing: The LHS 
Simulator. The LHS simulator receives commands from the 

LHS Server, interprets and checks their validity regarding 
constraints and execution order, and simulates the execu-
tion time based on historical data. The LHS simulator loads 
the user script at the start of a simulation run and evaluates 
the specifications supplied by the user. During runtime, the 
scheduler output is compared against the user input. Discrep-
ancies between the specifications in the user script and the 
output regarding parameters like violated constraints, missed 
executions, or miscalculated feeding volumes are stored are 
detected and stored in a log file. The LHS Simulator is based 
on a gRPC Client and uses the same interface description 
as the C# client of the LHS. The source code is written in 
python.

Dynamic scheduling software

The scheduler core

The LHS Scheduler is based on a gRPC server. Once started, 
the application is configured by an experiment-specific 
user script. Within this user script, the information about 
the experiment, the used time-series database, the involved 

Fig. 3   External control of the LHS is realized by introducing a C# 
gRPC client into the VENUS environment by registering it as COM-
Interop and including it into the VENUS method library. The dedi-
cated LHS gRPC Server acts as broker between the scheduling soft-
ware and the VENUS runtime. The scheduler incorporates a python 
gRPC client to communicate with the gRPC server, hence controlling 
the LHS by sending execution request and receiving the responses 
transferred by the LHS Server. At the same time, the LHS Server is 
aware of the LHS’s state and shares this information with the sched-
uler software through a gRPC stream. This leads to an event-based 
execution with minimal delay and downtime
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devices, and the tasks and their respective configuration is 
provided. This information is persisted in the PostgreSQL 
database as application data via invocation of the corre-
sponding function of the application programming interface 
(API). The API is a useful tool for testing and development 
as it allows the interaction with the scheduler application 
during runtime. However, this is not required nor intended 
for the regular use case presented in Control of Parallelized 
Bioreactors II.

A scheduler instance consists of three phases: initializa-
tion, run, and termination. During initialization, the infor-
mation on the experiment, the specified tasks, the required 
devices and databases is loaded. At this stage a device ini-
tialization sequence is run that sets up a device connection 
and configures them correctly for use by the application. 
At the end of the initialization procedure, threads for data 
acquisition and the initially scheduled tasks are started.

During a fermentation process, the scheduler application 
continuously communicates with the task threads and keeps 
track of their reported priorities and status. Furthermore, 
the data acquisition threads are monitored and restarted if 
needed. Within the run-loop, tasks can be added or removed 
from the scheduler, which will spawn or kill the respective 
task threads. Furthermore, the run-loop subscribes to a 
stream provided by the LHS Server, to keep track of the sta-
tus of the LHS. The availability of the LHS is communicated 
via this stream in real time. If available, the scheduler will 
dispatch the task with the highest priority to the LHS Server 
for execution. The scheduler instance and the task threads 
all rely on the internal clock of the scheduler instance main 
loop. For simulation purposes, the internal time can be 
manipulated for fast run simulations. In this mode, the LHS 
Simulator is used and the device drivers of the bioreactor 
system and the sensor bars are set to simulation mode.

The termination sequence is a safety mechanism that is 
executed in the following two scenarios: (1) The scheduler 
shuts down in a controlled way either by invoking the respec-
tive API command or by the execution of a scheduled abort 
task or (2) if the scheduler main loop exits unexpectedly. 
The termination sequence stops all running task threads, 
closes the stream channel with the LHS Server, stops the 
device data acquisition, and executes a device termination 
sequence. This is particularly important, if devices are used 
that may take or cause damage in case of an unexpected loss 
of control. The device termination sequence will break out 
of the run-loop and resume in the LHS Scheduler main loop.

Data acquisition

The dynamic scheduling capability is dependent on the 
availability of real-time data. Before entering the scheduler 
run-loop, the LHS Scheduler starts a data acquisition thread 
for each data source. The data sources are defined in the user 

script and, thus, the API. A data source is defined by their 
SiLA 2 connection details, the measurement intervals and, 
similar to the scheduler run-loop, respective data acquisition 
scripts for initialization, run, and termination. The data is 
stored in the InfluxDB and accessible to the other threads 
for processing and priority calculation.

The process data can be accessed either directly by using 
an InfluxDB database client or the web-based visualization 
tool Chronograf as shown in Fig. 4. The LHS Scheduler 
application and its task and data acquisition threads write 
their data into the InfluxDB database. Each data point con-
sists of a measurement name, tags like experiment name 
and reactor positions, a timestamp, and fields containing the 
values of the parameters that make up that measurement. A 
data point is unique. Specific data points or subsets thereof 
can be visualized or exported using the SQL-like query lan-
guage InfluxQL as shown in Fig. 4.

Apart from defining the database, the retention policy 
and the measurement of interest, the query can be filtered 
by tags, timestamps and a combination thereof. The queries 
in Fig. 4 fetch and visualize the dissolved oxygen (top) and 
pH (bottom) data of 48 reactor positions over the duration of 
24 min of an E. coli fed-batch process described in Control 
of Parallelized Bioreactors II. The operations executed by 
the LHS at that time are displayed in Fig. 5.

Task threads

To run fermentation experiments in mL-scale bioreactors 
that are integrated into LHS systems, several tasks must 
be performed by the LHS. These tasks include, but are not 
limited to, substrate addition, pH control, induction, and 
a sampling task that can consist of multiple sub-steps (for 
example: sampling, sample preparation, plate reader meas-
urement, cleaning of MTP). The LHS Scheduler executes 
the task with the highest priority. Priorities are calculated by 
the tasks threads themselves based on repeated evaluation of 
the available real-time data, such as the current pH in every 
reactor at the current time. A task for DO-control utilizing 
the available real-time DO data and the access to the bio-
reactor stirrer was not implemented as DO-control was not 
required by the application use case presented in the second 
part (Control of parallelized bioreactors II).

Task threads and their specific implementation may vary 
between use cases. To allow for the creation of new tasks 
or enable adaptation of existing tasks, the task thread class 
inherits from a base class that implements all functions that 
are shared between tasks.

Running tasks threads communicate with the LHS Sched-
uler run-loop via queue objects to report their current prior-
ity. If the scheduler selects the task for execution, the task 
thread is informed about the start- and end time of the event. 
Task thread data such as the thread runtime, the time of the 
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Fig. 4   The browser-based graphical user interface Chronograf con-
nects to the InfluxDB and allows for real-time data visualization. In 
this figure, the process parameters dissolved oxygen (top) and pH 

(bottom) are shown for the same excerpt of an example process in 
parallel stirred-tank bioreactors
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last execution, the priority as well as set points and present 
values are written frequently to the influx database with the 
respective experiment and task-specific tags.

Priority calculation

The execution of a task depends on external factors such 
as physical limitations and the design of the experiment 
like fixed execution times for an induction operation. These 
constraints must be evaluated before any priority calcula-
tion. Constraints are very task specific and require the in-
depth knowledge of the process and the involved machines. 
Pipetting robots may, for example, not be able to pipette 
extremely small or large volumes due to physical limitations 
of the pipetting channels. Furthermore, a process with a sub-
strate addition task must be performed on an interval that is 
itself constrained by upper and lower time boundaries so that 
the deviation from that interval remains minimal. Hence, 
there are time and volume constraints. While some of these 
constraints are soft and may be violated, such as an upper 
time constraint of a substrate addition task, some are hard 
constraints that prohibit execution, such as the minimum 
volume that can be pipetted.

Constraints are reactor specific, vary from task to task 
and must be specified by the user. A python class is provided 
that fully defines a constraint. A task thread will use the 
constraint evaluation function to assess each constraint and 
whether and to what extent, each constraint is violated and 
output a vector containing a boolean for each reactor. The 
task thread will resume with the priority calculations only 
if no hard constraints are violated.

All task thread objects use the same priority calcula-
tor class in which the priority calculation algorithms are 

defined. A task thread contains an instance of the priority 
manager and passes all relevant data to this object, such 
as the algorithm to be used and the number of active reac-
tor positions. The number of tasks that require the shared 
resource, the dispensing unit, is low. However, the issue lies 
within the bottleneck situations in which multiple executions 
are necessary at the same time. This requires the optimi-
zation of the execution order based on priorities that are 
calculated based on real-time data. It was found that this 
can be achieved with simple static and linear functions as 
priority algorithms.

The priority calculator differentiates between no prior-
ity, a base priority and a critical priority. A task that either 
violates a hard constraint or does not require execution has 
a priority equal to zero. If the need for execution is evalu-
ated, the priority calculation has access to the parameters 
pbase and pcrit . The priority of a single task cannot exceed 
its critical priority:

The implemented priority calculation functions are:

Step

A static priority determination that depends on constraint 
evaluation alone. If a task is within its constraint limits, it is 
executable. As soon as it starts exceeding its soft boundaries, 
the priority will be raised.

pmax = pcrit.

p =

⎧
⎪⎨⎪⎩

0, if hard constraint violated

pbase, if no constraint violated

pcrit, if soft constraint violated.

Fig. 5   The priority changes 
of varying tasks are shown: 
the feeding task (−, blue line), 
stages 4 and 5 of the sampling 
task (−, red line), and the pH-
control task (−, green line). The 
execution times of these tasks 
are marked by dashed lines in 
the respective color with bars 
representing the start and end 
time. The relative process time 
is identical to the example 
excerpts of the process data 
shown in Fig. 5. The substrate 
solution contained 300 g L−1 
glucose. Cultivation conditions 
and process parameters are 
described in detail in the second 
part (Control of Parallelized 
Bioreactors II)
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Step specific

The priorities are broken down to the relative contributions of 
the affected reactor positions that require action ( naff ) respective 
to the number of total active reactor positions ( nall).The num-
ber of total active reactors may vary as reactor positions with 
malfunctions are automatically excluded by the LHS Scheduler.

Dynamic volume

The priority is a linear function of the volume and the number 
of active positions and the contributions towards the priority are 
weighted per reactor positions. This function is aimed at tasks 
in which the execution depends on volume, such as the required 
volume of substrate in a feeding task or the volume of base to 
be added in a pH-control task. The vector v contains the feed or 
base volumes of each reactor position that fulfills the constraints. 
The vector vlim,lower contains the lower volume limit that can be 
added for each position and Δvlim contains the allowed volume 
space between the lower and upper volume limit of each position 
( Δvlim = vlim,upper − vlim,lower).

Dynamic time

The priority is a linear function of the time and the number of 
active positions. The contributions of each reactor position are 
weighted. This function is aimed at tasks in which the execution 
is time dependent, such as sampling or induction. The vector t 
contains the time since the last execution of each reactor posi-
tion that fulfills the constraints. The remaining vector notation 
is transferable from the previous method.

p
�
naff, nall

�
=

⎧
⎪⎪⎨⎪⎪⎩

0, if hard constraint violated

pbase
naff

nall
, if no constraint violated

pbase +
�
pcrit − pbase

�naff
nall

, if soft constraint violated.

p
(

nall, naff, v
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, if hard constraint violated

pbase +
pcrit − pbase

nall

naff
∑

i=1

vi − vi,lim,lower

Δvi,lim
,

if no constraint violated

.

p
(

nall, naff, t
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, if hard constraint violated

pbase +
pcrit − pbase

nall

naff
∑

i=1

ti − ti,lim,lower

Δti,lim
,

quad if no constraint violated.

Figure 5 displays the behavior in a bottleneck situa-
tion in which multiple tasks require access to the LHS. In 
this example, a simple linear dynamic priority calculation 
dependent on time (dynamic time: sampling) or volume 
(dynamic volume: feeding and pH control) was applied. As 
a result, the feeding task was executed with the minimal pos-
sible feeding interval. Furthermore, the last sampling step 

could be executed swiftly as pH regulation was not required 
urgently, with a, at times, even decreasing priority (also see 
pH visualization in Fig. 4). The decreasing priority of pH 
can be explained by a switch of metabolism in the E. coli 
cultures from overflow metabolism to glycogen metabolism 
[38]. The first substrate addition (Fig. 5) leads to overflow 
metabolism and acetate production, lowering the pH con-
tinuously (Fig. 4). Surpassing the threshold of the pH con-
trol, the lower volume constraint of base, the priority rises. 
The switch to glycogen metabolism and the corresponding 
consumption of acetate increases the pH and, thus, lowers 
the priority of the pH-control task.

Conclusion and outlook

The proposed software enables the dynamic scheduling of 
LHS operations required for bioprocess control in parallel 
bioreactor systems, leading to an improved task execution 
order compared to conventional proprietary vendor software. 
The user can create tasks with pre-defined execution inter-
vals allowing experiments in which these parameters are 
of utmost importance, like studies on scalability regarding 
protein expression or population heterogeneity, while rely-
ing on simple, transparent and editable priority calculation 
algorithms.

The acquisition of all process data by the LHS Scheduler 
software in a central database reduces the risk of information 
loss or error and enables real-time visualization of the data. 
Storing data of multiple sources in a central database makes 
the data readily available during the process and afterwards, 
simplifying data processing and analysis. The data gener-
ated in regular optimization processes is time-series data. 
However, if data sources such as chromatography data or 
data stemming from image analyses are to be acquired, time-
series databases would not be well suited, as they are not 
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optimized for such data types. In such cases, the setup of a 
data lake should be considered in future work.

The increasing degree of complexity of automated fer-
mentation setups results in an increasing number of points 
of failure. As this is not desirable, testing of software and 
experimental plans is important. While software malfunc-
tions can be prevented by unit, integration, and end-to-end 
tests, the actual simulation of experimental runs remains 
complicated when dealing with biological systems. As pro-
posed, the execution of in silico experiments prior to the 
experimental run can be achieved by simulating experimen-
tal conditions with digital twins of the devices involved. 
Thus, future work should aim towards improving code qual-
ity by extending the existing testing infrastructure but also 
by improving the digital twin implementations of the biore-
actor system, the sensor bars and the LHS to achieve more 
realistic in silico experiment simulations by, e.g., the inte-
gration of mechanistic models or the use of empirical data.

The LHS Server opens a backdoor to take external con-
trol of a Hamilton STARlet LHS and thus the integration 
of such systems into greater automation workflows. Other 
approaches aim towards full external control, thus transfer-
ring LHS responsibilities like tracking of lab ware positions 
to the user [39, 40]. This approach is error prone and com-
plex because it requires intrinsic knowledge of the LHS as it 
circumvents the method editor supplied by the vendor. The 
proposed solution is a good compromise between the two, 
as it leverages the benefits of external control as well as the 
proprietary method editor.

The presented software consists of the LHS Scheduler, 
Server, and Simulator as well as the SiLA 2 device serv-
ers. They are written in Python, making them easily read-
able and adjustable to changing requirements. The general 
structure of the LHS Scheduler enables the expansion with 
new tasks or priority calculation algorithms. Future work 
should include the development of a graphical user interface 
to increase usability and enable human intervention in the 
running scheduling process, like adjusting task definitions 
during runtime.

The following software components are provided on 
request by the authors: LHS Scheduler, LHS Server, LHS 
Simulator. The SiLA 2 device drivers for the BioREAC-
TOR48 and the Presens sensor bars are publicly available 
in the following GitLab repository: https://​gitlab.​com/​biovt/​
sila2​lib_​imple​menta​tions
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