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Abstract
Non-destructive testing is widely applied for the detection and identification of defects in turbine blades of modern aircraft
engines. Cracks in turbine blades can affect the turbine performance and pose a risk to safety and service life. For Original
Equipment Manufacturers it is, therefore, essential to be able to identify all defects. Heat flow thermography offers, compared
to the often used penetrant testing, the potential to improve the detection of defects in turbine blades and is contact-free,
reproducible, quick to apply, and can be automated. With induction (heat flow) thermography, it is even possible to detect
cracks that lie below the surface and therefore are not externally visible. However, manual inspection of thermography images
is very time-consuming. By automating the image classification procedure with a deep learning technique, the speed and
accuracy of the classification can be improved over a manually performed classification. The development objective of this AI
application is expected to support and assist the highly skilled and experienced inspection specialists in the medium term. Our
solution is based on convolutional neural networks. Several challenges of the AI training process, including data imbalance,
a small dataset, and extremely small cracks in large images are addressed.

Keywords Artifical neural networks · Deep learning · Convolutional neural networks · Turbine blade cracks · Crack/defect
classification · Infrared thermal imaging · Non-destructive testing · Data imbalance

1 Introduction

Non-destructive testing (NDT) techniques are of high impor-
tance for aircraft engines manufacturers, to ensure an aircraft
engine’s safety and optimal operational performance [1,2].
Of particular interest are the turbine blades, as those complex
and very thin components are exposed to high loads, extreme
conditions [3] and are chemically highly impure [2]. Elevated
requirements imposed on these high performance compo-
nents make it increasingly necessary to introduce new and
improved NDT techniques into the process of turbine blade
production [3]. Especially at the trailing edge of a turbine
blade, which is significantly thinner than the leading edge, a
possible incipient crack can lead to a faster crack propaga-
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tion. Inspection specialists further showed that conventional
eddy current testing sometimes leads to incorrect test results
due to lift-off signals at that particular turbine blade area.

The MTU Aero Engines AG already performs, supple-
mentary to the standard (fluorescent) penetrant inspection,
an additional examination based on the manual analysis of
infrared induction thermography images for an extended
identification of cracks after production and before assembly.
Besides the potential of improving the detection of cracks
overall, a key advantage of induction thermography over
penetrant testing is that, in addition to surface cracks, also
sub-surface cracks can be detected [4,5].

However, as the manual identification of cracks in the
images is time-consuming and requires skilled and expe-
rienced specialists, this work presents an approach for an
automated solution to significantly increase the efficiency
of the operational classification. Induction thermography is
further also very well suited for a process-integrated qual-
ity control of series production, making its application even
more desirable [6]. The major advances in the field of deep
learning made in recent years, especially in the area of image
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recognition, offer great potential when used in combination
with NDT techniques.

In this work, a ResNet-18 convolutional neural network
(CNN) is used in the two models developed, which are either
trained on large images (Large ImageModel—LIM) or small
image patches (Small Image Model—SIM) to classify tur-
bine blade images either crack or crack-free. The application
of deep learning for turbine blade defect identification is still
an area of research. To our best knowledge, this is the first
time where deep learning is utilized to classify defects in
thermographic images of aircraft engine turbine blades. The
main challenges can be summarized in the following points:

– Image dimensions are quite large (512 × 640 pixels)
– Cracks in the turbine blade trailing edges are extremely
small (approx. between 8× 6 to 8× 34 pixels), resulting
in the number of pixels representing a crack being signif-
icantly less than 0.1% (max.: 0.08%; min.: 0.01%) of the
total number of pixels of an image (512 × 640 pixels).

– Cracks are difficult or not even possible to identify for
untrained people.

– The necessity of converting the 16-bit grayscale images
into a false-color representation to make the cracks visi-
ble and analyzable before model development. However,
the actual models were trained on the 16-bit grayscale
images.

– Only a relatively small dataset, according to deep learn-
ing standards is available.Due to the protection ofOEMs’
(original equipment manufacturer) intellectual property,
no publicly available datasets are available, regarding
cracks in turbine blades.

– The dataset is characterized by a data imbalance of 11.5.
In combination with the particularly low amount of crack
samples, this property negatively affects the model train-
ing.

– Of the total crack images, the number of cracks and their
positions is only known for 40% of the images. This
is particularly disadvantageous when cropping smaller
partial image patches from the original 512 × 640 pixel
images.

2 RelatedWork

Especially from civil engineering, quite a few deep learning
solutions and approaches for detecting cracks in concrete tun-
nels, pavements, or other concrete structures are available
[7–11]. However, these cracks are fundamentally different
from cracks in turbine blades. Cracks in construction mate-
rials, such as concrete and asphalt, are usually significantly
longer and wider. Asphalt cracks normally range in lengths
of up to several meters and widths in the range of a few mil-
limeters up to a few centimeters [10]. Compared to asphalt

cracks, concrete cracks are generally shorter and less wide
but still much longer and wider than turbine blade cracks.
The concrete cracks range from thin hairline cracks to large
cracking of partial building and tunnel structures in ranges
of several meters [7,9]. Turbine blade cracks that occur dur-
ing production (like those in the present image dataset) have
smaller aspect ratios and spatial expansions than cracks in
concrete and asphalt.

Panizza et al. [1] deployed a RetinaNet for object detec-
tion of drilling defects in cooling holes of high-pressure gas
turbine blades. The dataset consists of 560 defect-free and
134 defective high-resolution X-ray images including large
uninformative background. The RetinaNet was pre-trained
on the MS COCO dataset and further utilized data augmen-
tation. The initial approach of cropping the original images
(8496×6960 pixels) to the aerofoil (1900×1500 pixels) did
not provide a good result, as the defects are extremely small
compared to the aerofoil. In a further step, the aerofoil image
was split up into 5×5 overlapping image patches of 500×600
pixels. By down-sampling the over-represented class the data
imbalance was reduced to 1.1. Since the image patches partly
overlap, patches of each image are either assigned to the train-
ing or validation set. During training, the image patches are
further scaled up by a factor of 2 in height and width as the
defectswere smaller than the smallest bounding box (anchor)
of the detection algorithm. With further anchor optimization
finally a mAP (mean average precision) of 0.90 is reached.

In Khani et al. [12] a surface crack detection approach
for gas turbine structures (e.g. turbine housing) is presented.
For automated visual crack detection, various conventional
digital image processing techniques were used with differ-
ing success. Therefore, Khani et al. [12] proposed a novel
(surface) crack detection architecture that is especially char-
acterized by the combination of digital image processing
(median and bilateral filtering) and deep learning. The dataset
consisted of 250.000 labeled image patches (40× 40 pixels)
from700 gas turbine surface images [12]. The results showed
that, by applying filters to the image data before training
the model, the classification performance of the CNN model
could be significantly improved. The final model yielded an
accuracyof 96.26%on the cracked surface dataset [12].How-
ever, the cracks detected and classified in [12] are muchmore
comparable to fine medium-length concrete cracks than to
the characteristics of the cracks in turbine blades presented
in this work.

Yang et al. [13] investigated cracks in steel plates using
induction thermography and a deep learning approach. The
crack characteristics in [13] are only to a very small extent
comparable with the cracks analyzed in this work. However,
themethod of infrared thermography is used for image acqui-
sition, and it is shown that this particular NDT technique, in
combination with a CNN, is suitable for crack detection. The
input to the proposed Faster R-CNN architecture was 3000
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inductive thermographic images for training and 125 for test-
ing. The model was trained to detect and classify into three
different crack classes (penetrating cracks, non-penetrating
cracks, and shallow surface scratches) while achieving an
accuracy of 95.54%. For feature extraction, a VGG-16 archi-
tecture, pre-trained on the ImageNet dataset, was used [13].

In Soukup & Huber-Moerk [14] a CNN model for classi-
fying cracks of rail surface images is presented. The approach
outperforms the currently used model-based approach with
handcrafted parameter adjustment. The cracks considered
are, to some extent, comparable to those in turbine blades.
The photometric stereo image dataset includes a total of 2532
cavity and non-cavity images. Image patches with a size of
16 × 16 pixels were cropped out from the color images.
It could be shown that a CNN model with unsupervised
layer-wise pre-trained initialization (auto-encoder as a reg-
ularization method) resulted in a better performance than a
CNN model with (standard) random initialization. With fur-
ther applied data augmentation the error rate could be reduced
from 0.67 to 0.556%. The CNN architecture used consisted
of three convolutional layers, three max-pooling layers, and
a final fully-connected layer.

In Xian et al. [15] a two-stage automatic detection of
defects on metallic surfaces of industrial products is pre-
sented. The model accurately localizes and classifies defects
in three-channel color images with a size of 2720 × 2040
pixels. A novel cascaded autoencoder (CASAE) module is
first used to segment defective regions with semantic seg-
mentation. Each defect in the resulted segmented image is
further localized via a defect region detector and is cropped.
The cropped defect patches are converted to grayscale images
and are used as the input for the classification module. The
patches are resized to 227 × 227 pixels and trained on a
CNN architecture with five convolutional layers, three max-
pooling layers, two batch normalization layers (after the first
two convolutional layers), two fully connected layers, and
a softmax layer at the end. The softmax layer converts the
output values into probabilities for the three output classes
(damage spot, glue mark, and dust/fiber). The developed
model achieves an IoU (Intersection over Union) score of
89.60% using the industrial dataset DAGM 2007.

3 Approach for Capturing and Classification
of the Thermographic Images

In this section, we first discuss in Sect. 3.1 the image acqui-
sition process and its pre-processing, followed in Sect. 3.2
by the used neural network architecture including the inves-
tigated hyperparameters. The metrics to over-watch and
evaluate the training process are described in Sect. 3.3, fol-
lowed by the applied loss functions in Sect. 3.4. Finally, in
Sect. 3.5 the dataset is discussed.

3.1 Infrared Induction Thermography Acquisition
Setup

The images for the crack classification were acquired
semi-automatically, using an experimental setup utilizing
pulsed induction infrared thermography. Figure 1 shows the
schematic test setup. Each turbine blade was first manually
placed in a mounting bracket. Three images are sequentially
captured along the trailing edge of the turbine blade. Each
image, therefore, represents one third of a turbine blade trail-
ing edge.

First, the turbine blade is heated by a pulse-shaped volt-
age induction through an induction wire positioned near the
trailing edge. The heating duration for turbine blades typi-
cally ranges between 50 and 100ms depending on the blade
type (e.g. compressor blade, turbine blade, turbine vane,…),
blade geometry, and the area inspected. Induction frequen-
cies ranging from 200 to 500kHz have proven to enable the
detection of surface and sub-surface cracks in modern tur-
bine blades, which are mainly made out of nickel-based or
titanium-based alloys. The induction frequency f was pro-
vided by anHuettinger Axio high-frequency generator with a
capacity of 10kW and is themain control variable of the pen-
etration depth δ of the material induced eddy currents [16].
The higher the induction frequency, the lower the penetration
depth into the material [16]:

δ = √
(
2 ∗ ρ

ω ∗ μ
) (1)

whereas μ is the permeability, ρ the specific resistance and
ω the angular frequency with:

ω = 2 ∗ π ∗ f (2)

An industrial robot, equipped with an infrared camera
(thermographic camera Radiance HS InSb, Ti=2ms) at the

1
2

3

x
y

z

Fig. 1 Experimental induction thermography setup with an industrial
robot arm equipped with an infrared camera. From each turbine blade
trailing edge three images along the longitudinal blade z-axis are cap-
tured. The image acquisition plane corresponds to the y–z plane
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end-effector, then detects and records a time series of the
surface temperature distribution over the focused area of the
turbine blade trailing edge. With a phase algorithm based
on fast Fourier transformation (FFT), described in detail in
[16], then, a phase image from each stack of thermal images,
is calculated. For the calculation of each phase image only
the most interesting part, i.e. a finite window of the function
holding all relevant information, is considered. The resulting
phase images are further normalized and exported as TIFF-
images [16].

The use of phase images, compared to amplitude images,
is particularly beneficial, as it also offers the possibility to
visualize only weakly detectable cracks by reducing disturb-
ing influences [17,18].

3.2 Neural Network Architecture and
Hyperparameters

In this work, the deep learning library fastai was used. It
provides a layered API (application programming interface)
based on Python and the PyTorch library [19]. Two differ-
ent models were trained using small and large images sizes
(see Sect. 4). For the choice of the CNN architecture, dif-
ferent ImageNet pre-trained networks were compared in a
two-staged evaluation process in Sect. 4. The results are
listed in Tables 3 (first stage) and 4 (second stage). It was
found that the ResNet-18 neural network architecture works
best for the classification task at hand and is used in the fur-
ther. For the stochastic gradient-based optimization, in all
experiments, the Adam optimizer is utilized. Major hyperpa-
rameters chosen in this work are the learning rate, batch size,
and weight decay (L2-regularization). For choosing a rea-
sonable learning rate, the library fastai provides a so-called
learning rate finder based on [20] and [21]. In addition, fastai
uses the concept of a one-cycle policy, enabling a model
to be trained on a learning rate range instead of a fixed
or decreasing value [22,23]. To prevent overfitting the L2-
regularization is introduced in both models. To determine a
reasonable weight decay, a grid-search with different values
is performed. As the batch size heavily depends on the strate-
gies used to address the data imbalance and the fact that only
very few samples, representing the class crack, are available,
the choice of the batch size is discussed model-dependently
inmore detail in Sect. 4. To reduce the time needed for model
training and to reduce the GPU memory usage, the concept
of mixed precision training, introduced by [24], was further
also implemented in both models. Hardware-wise a NVIDIA
GeForce RTX 2080 Ti with a GPU-Memory of 11GB and
an Intel Xeon CPU E5-2620 v2 with 256GB of RAM were
used in all experiments.

3.3 ClassificationMetric

The confusion matrix represents a fundamental concept for
evaluating binary classification models. This tabulated visu-
alization contrasts the model predictions and its ground-truth
labels (see Fig. 2). The confusion matrix rows represent the
occurrence in an actual class, whereas the columns represent
a predicted class occurrence [25].

As the decisive classification metric in this work we have
chosen a Fβ -score with an β value of 2. With an β of 2, this
metric is also referred as F2-score. The reason for this choice
is the fact that the dataset at hand is imbalanced and con-
tains significantlymore crack-free images than crack images.
Before computing a Fβ -score, the value of precision and
recall of the model have to be calculated using the following
two equations [25]:

Precision = T P

T P + FP
(3)

Recall = T P

T P + FN
(4)

While a high value of precision corresponds to having fewer
false positives, a high recall value corresponds to having
fewer false negatives. In the context of turbine blade cracks, a
false negative (also known as type-2 error) is equivalent to an
“overlooked crack” and a false positive (also known as type-
1 error) is equivalent to a “false alarm”. While an overlooked
crack can lead in the worst case to a malfunctioning aircraft
engine, an false alarm leads to a improperly rejected turbine
blade from manufacturing thus reducing the profitability.

By choosing aβ value of 2 for the Fβ -scoremore emphasis
is placed on finding a model with a high recall value instead
of taking the harmonic mean of both, precision and recall.
The Fβ -score is calculated as follows [26]:

Fβ = (1 + β2) ∗ Precision ∗ Recall

β2 ∗ Precision + Recall
(5)
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Fig. 2 Binary confusion matrix
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The choice ofmore common classificationmetrics such as
accuracy, ROC-curve (receiver operating characteristic), and
AUROC (area under the receiver operating characteristic )
do not provide any useful or representative results and partly
lead to misleading results. The reason for this is, that the
dataset is not only imbalanced but also involves a class with
a very low amount of samples. This issue is known as class
rarity and leads to the unreliable values of those metrics [27].
Another reason for using an F2-score metric is, that it gives
back a single value, with which the model performance can
be easily compared with other models. In contrast, a model
comparison is more difficult for metrics that return a curve
(e.g. precision-recall-curve).

3.4 Applied Loss Functions

To evaluate the optimization progress during training, a loss
function has to be defined. The quality measure compares
the predicted output with the ground truth (label). In the fol-
lowing, the two applied loss functions are described. While
the (binary) cross-entropy loss is the commonly used stan-
dard loss function for convolutional neural networks [28],
the focal loss is explicitly developed for datasets with severe
data class imbalances [29].

BinaryCross-EntropyLoss (CE-Loss):Thecross-entropy
loss measures the difference between two probability dis-
tributions for a given random example (here: images). The
CE-loss is, for the binary classification case, defined as [30]:

L(y, ŷ; θ) = −
m∑

i=1

(yi log(ŷi) + (1 − yi) · log(1 − ŷi))

{
−log(1 − ŷi), if yi = 0

−log(ŷi), if yi = 1

(6)

where the vector θ consists of the model parameters θi
(weights and biases), the vector y denotes the ground truth
and ŷ the predicted output. The indexm refers to the number
of samples.

Focal Loss (FL): The focal loss adds a modulating factor
to the standard CE-loss. This allows the model to focus more
on learning difficult examples and reducing the influence on
the loss of easy classifiable examples [29]. Equation 7 rep-
resents a rewritten version of the (binary) cross-entropy loss
defined in Eq. 6.

CE(pt) = −log(pt) (7)

where pt is, for notational reasons, defined in Eq. 8:

pt =
{
p, if y= 1

1 − p, otherwise
(8)

Equation 9 shows the novel focal loss (FL), including two
new parameters, α ∈ [0, 1] and γ . This is a classic weight-
ing factor to address the data imbalance, i.e. the importance
of positive or negative samples. Due to notational reasons,
αt is defined as analogues to pt . αt can be used as a hyperpa-
rameter or is, for example, set to the inverse class frequency.
The focusing parameter γ is used to define how easily classi-
fiable samples are down-weighted. Those samples then have
a smaller influence on the loss and more focus is set on dif-
ficult, misclassified samples. With a γ of 0, the focal loss is
equivalent to the CE-loss [29].

FL(pt ) = −αt(1 − pt)
γ log(pt) (9)

3.5 Dataset of the Thermographic Images

The dataset was acquired utilizing pulsed induction ther-
mography and an infrared camera. The images were labeled
by NDT inspection specialists into two classes, crack-free
and crack-containing images. A crack-containing image can
contain one or several defective spots. The 16-bit grayscale
images with dimensions of 512×640 pixels represent phase
images. Such an image is shown in Fig. 3.

The datasets of both models are split into 3 parts, namely
the training set, validation set, and test dataset (see Fig. 4).
While the training set is used to train themodel, the validation
set is used to improve the model’s performance during train-

Fig. 3 A grayscale image representing one-third of a turbine blade
trailing edge. This particular turbine blade edge image contains seven
cracks, but only one crack of the total seven is to some extent recog-
nizable (bright spot on the turbine blade edge). Therefore, a false-color
representation is used for visualization. The thin curved line above the
turbine blade edge is the induction wire
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Fig. 4 Dataset splitting

ing. This statistical method for evaluating machine learning
models is known as cross-validation (CV). Based on the CV
results (i.e.metric values and visualized learning curves), one
can adjust the model’s hyperparameters or make changes to
the model architecture. After the model development, a final
model evaluation is performed on the remaining test dataset,
which was never part of the training process [25].

The following twoparagraphs describe the dataset for each
of the two developed models, which namely are the Large
ImageModel (LIM) and Small ImageModel (SIM), in detail.
The main difference of both models is that the SIM dataset
consists of significantly smaller images. Those images are
cropped by a self-developed automatic image patch cropping
algorithm in combination with the known crack positions.
The SIM dataset is built-up from dataset of the LIM.

Large Image Model (LIM) Dataset
The images with a size of 512 × 640 pixels were used as

the input images to the large image model (LIM). The ther-
mographic dataset consisted of 600 crack-free images and 52
crack images. In 21 of the total 52 crack-containing images,
the horizontal position of each crack along the trailing edge
of the turbine blade is further labeled. Approximately 90% of
the data is used for model training (training dataset) and 10%
of the images are held out for final testing (test dataset) (see
Table 1). For the weight decay grid search and the learning
rate finder, the training dataset is further split by a 75/25%
ratio into a training and validation set.

In the actual model training however an extended version
of the CV, the so-called stratified k-fold CV, is used. This is
because the LIM dataset is characterized by a relatively large
data imbalance of 11.5 and contains only very few samples
of the decisive class (crack class).While data imbalance with
a sufficient number of samples in all classes is not much of an

Table 1 Large image dataset (512 × 640)

Set Crack-free Crack

Training dataset 540 47

Test dataset 60 5

Available data

Training dataset

Fold 1 Fold 2 Fold 3 Fold 4

Fold 1 Fold 2 Fold 3 Fold 4

Fold 1 Fold 2 Fold 3 Fold 4

Fold 1 Fold 2 Fold 3 Fold 4

Fold 1 Fold 2 Fold 3 Fold 4

Finding good
hyperparameters

Final evaluation

Split 1

Split 2

Split 3

Split 4

Test 
dataset

Test 
dataset

Fig. 5 K-fold cross-validation: Here, the training dataset is split in
k = 4 folds. In each iteration step a different fold is used as a validation
set (green fold), while the other three folds represent the training set
(blue folds)

issue, the combination of data imbalance and a small number
of samples of the important class poses a major challenge for
model development and training [31].

In k-fold CV, the training dataset is split into k folds. The
process of folding is shown exemplarily in Fig. 5. While k-1
folds are used for model training, the one fold is used for
validation. The process is then repeated k times, resulting in
k models with corresponding performance. The final model,
therefore, represents an accurate estimate of themodel’s aver-
age performance [25].

The key advantage of the k-fold CV compared to the stan-
dard CV is that the resulting averaged model is based on
distinct and independent folds. This leads to a model that
is much less sensitive to the training dataset’s subdivision
into the training and validation set. K-fold CV also ensures
that each sample occurs in the training set and validation set.
Therefore, it is no longer possible for samples containing
important information or features to appear exclusively in
the validation set but not in the training set [25]. It is further
important to note that only the training set is to be sampled,
not the validation set nor the test dataset.

An adaption of the standard k-fold CV approach, in the
case of imbalanced datasets, is the so-called stratified k-fold
CV. Besides yielding better bias and variance results, the
stratified k-fold CV further ensures that each fold holds the
same class proportion as the overall training dataset [30]. If
the initial training dataset consists of, for example, 20% of
class A and 80% of class B, then also all k folds hold a class
ratio of 20 to 80%, respectively.
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The issue of having data imbalance together with very
few samples of the decisive class (class crack), is further
addressed by an additional data-level strategy, namely over-
sampling. Data over-sampling involves random duplication
of samples of the underrepresented class, which can improve
a model’s performance effectively. The under- and over-
represented class are also referred to asminority andmajority
classes [31]. The over-sampling of the LIM dataset is per-
formed by a batch-weighted random sampler. Hereby class
weights, based on the frequency of samples per class of a
batch, are calculated. Then, the minority class samples are
duplicated such that each batch afterwards contains an equal
number of classes [32]. When combining (stratified) k-fold
CV and over-sampling it is important, to first split the train-
ing dataset and then perform the over-sampling and not vice
versa.

Despite the fact, that all models are trained on grayscale
images, it is still helpful to visualize the grayscale images by
means of a false-color representation. The false-color repre-
sentation firstly enables one to identify all cracks along the
edges and secondly allows one to see the cracks more clearly,
as shown in Fig. 6 compared to the same image shown in Fig.
3. This visualization, on the one hand is used to investigate
the impact of different data augmentation operations and is
further especially used for the build-up of the SIM dataset,
which will be described in detail in the next paragraph. In
order to be able to determine,whether there is actually a crack
in an attempted crack-crop, the approximate position in pix-
els of the crack along the edge must be obtained beforehand.
Thismanual positionmeasurement of the cracks is performed
on the basis of false-color visualized images. The acquired
approximate crack positions are later used for ensuring that
each cropped crack image contains a complete and not only
partially crack and additionally ensures that a crack is not too
close to one of the image borders. As all gray values of the 16-
bit images are only in the range from 0 to 3000, specific color
limits have to be further chosen. For optimal visualization of
all cracks in an image and particularly for almost not visible
cracks, the specific color limits would have to be calculated
for each image individually. For reasons of simplification,
therefore, an approximate range of color limits was identified
withwhich all cracks could be visualized sufficiently enough.
The color limit rangewas identified by analyzing the 21 crack
image samples with known crack positions in millimeters,
provided by MTU Aero Engines AG NDT inspections spe-
cialists. These crack image samples incorporated a total of
50 different cracks.

Small Image Model (SIM) Dataset
Complementary to the dataset of images with the size of

512 × 640 pixels, a sub-dataset with significantly smaller
image patches of 64 × 64 pixels was assembled for the sec-
ond model. On one hand, this should increase the number of
available crack images for model training and, on the other

Fig. 6 False-color representation of the grayscale image from Fig. 3.
Now, one can clearly see all (7) cracks in this turbine blade trailing edge.
The red spots along the blade edge represent the cracks. The cracks
range from very distinct appearances to only hardly recognizable ones.
Furthermore, above the blade edge, the induction wire is now also more
clearly visible

hand, maximize the percentage of pixels representing a crack
in the crack images.

The SIM dataset was created by random cropping of
the initial LIM dataset. All large crack-free images of the
LIM dataset can be used for cropping of small crack-free
image patches, while the cropping of crack image patches is
constrained. For cropping small crack image patches, only
the 21 crack images (of the total 52 crack images of the
LIM dataset) with known crack positions can be utilized.
The process of random cropping along the turbine blade
trailing edge is shortly described in the following and is
visualized in Fig. 7. After detecting the approximate ver-
tical position of the turbine blade edge in each 512 × 640
pixel image, based on identifying the image row with the
lowest pixel value variance, the image is then trimmed to
the height of 64 pixels. A separately developed automatic
patch cropping algorithm then, for crack-free images, per-
forms a defined number of crops of crack-free image patches
and for crack images attempts a defined number of crops of
crack-containing image patches based on the known crack
positions in the crack images. An example of the resulting
64 × 64 pixel image patches can be seen in Fig. 8.

The algorithm also ensures that when cropping crack
image patches, the crack center is at least 15 pixels away
from the left and right image border. This cross-checking
guarantees, that the currently attempted crack to be cropped,
is always completely captured and not only partially. The
margin of 15 pixels corresponds to about half of the horizon-
tal dimension of the largest existing crack, which is about 34
pixels wide.

By performing cropping of 90% smaller image patches,
compared to the large images of the LIM dataset, the pixel
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Random defined number of crop attemps

Fig. 7 Steps of the cropping procedure to build up a sub-dataset of significantly smaller image patches

Fig. 8 Random cropped 64× 64 pixel image patches along the turbine
blade edge: a–c each contain a crack, while d is a crack-free image
patch

percentage of cracks in crack images can be increased sig-
nificantly, from much less than 0.1% up to 1.2 to 6.6%. In
addition, the number of crack images is tripled. The SIM
dataset finally contained 161 crack image patches and 7588
crack-free imagepatches ofwhich6000 imageswere cropped
from the large crack-free images. The remaining 1588 crack-
free image patches are cropped from crack-free areas in the
large crack images. For crack-free images, the number of

crop attempts was set to 10, while for cropping crack image
patches the number of random attempts for each crack spot
in each image was set to 60.

It must be further noted that to avoid overfitting, all
retained cropped crack image patches from a given large
image either belonged to the training set, validation set or
test dataset. Random cropping along the turbine blade edge
can result in crack image patches that are very similar to
each other. Therefore, it is necessary to keep datasets strictly
separate to evaluate the performance of the model during
training and afterwards. Cropping to an image patch smaller
than 64 × 64 pixels would not have any advantage, as the
cracks has a certain spatial extent, which have to fit into the
image patches.

The splitting of the SIM dataset into a training set, val-
idation set, and test dataset turned out to be extremely
challenging due to the small number of crack images where
cropping is possible and the constraint that crack image
patches of a given large crack image cannot be split between
different datasets. At the same time, additional attentionmust
be given to ensure that a disproportionately large number of
crack image patches is not used for validation or final testing.
It was possible to build up a representative validation set of
approximately 10% of the training dataset (see Table2) that
included very distinct but also very weak cracks and most
other crack shapes. However, the assembled test dataset was
not representative and was therefore not used further.

Due to the constraint of keeping the dataset separated, the
implementation of k-fold CV for the SIM is not possible.
The data imbalance was instead addressed by using a focal
loss function instead of the standard CE-loss. The focal loss
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Table 2 Small image dataset (64 × 64)

Set Crack-free Crack

Train 6489 141

Validation 720 14

(Test) (379) (6)

is described in Sect. 3.4. Data over-sampling of the minority
class was performed as well.

4 Models and Results

In Sects. 4.1 and 4.2, the two best-performing developed
CNN models are presented. The main difference between
the models is the image dimensions. While the first model
is trained on the images of the dataset with dimensions of
512×640 pixels, the secondmodel is trained on a sub-dataset
of 64×64 pixel image patches. Due to the fluctuating behav-
ior of the learning curves (loss curves) during training, often
used techniques to prevent overfitting, such as early stopping,
are not useful. Instead, the model saving is done by tracking
the F2-score over each epoch and if the value increases, the
current best F2-score model is overwritten.

4.1 Large ImageModel (LIM)

In the first step, the 512 × 640 pixel images are stretched to
squared dimensions of 640 × 640 pixels, as square images
are preferable, and almost all state-of-the-art architectures
are trained on such image dimension relations. Since many
state-of-the-art neural network architectures are optimized
for smaller dimensions (e.g. 224 × 224 pixels), squeezing
the images to such a format was also attempted. However, by
analyzing the squeezed images before training, it was already
suspected that the loss of information through this squeezing
would be too large. A test finally confirmed this assumption
and squeezing the images was, therefore, not pursued further.

The LIM utilizes (stratified) k-fold CV, CE-loss, data aug-
mentation, and over-sampling of the minority class. Data
augmentation operations include random image rotation (up
to ±15◦), contrast adjustment (scale: 0.85 to 1.15), and ver-
tical flipping, all applied with a probability of 10%, as well
as horizontal image flipping with a probability of 50%. The
model is further trained on a relatively small batch size of
8, which produced significantly better results than a batch
size of 32 or 64. The reason for better results with a rather
low batch size arises from the fact, that the weights per epoch
are updatedmore frequently during the optimization process.
By incorporating more noise than large batches, small batch
sizes offer a regularizing effect which improves the gen-

eralization performance [33,34]. This noise, however, also
prevents from fully converging to the minimum and instead
causes a fluctuation around the minimum at one point. The
magnitude of the fluctuations depends on the noisiness of
the batches [33]. A further advantage of small batch sizes
is the reduced amount of GPU memory that is needed for
optimization.

To choose a reasonable architecture, different on Ima-
geNet pre-trained CNNs were compared with each other.
First a variety of models were trained for 8 epochs and 3
folds as shown in Table 3. As only the last layer (fully-
connected layer), responsible for adjusting the number of
output classes, of each pre-trained model is re-trained, the
rather short training time of 8 epochs is also sufficient for
more complex (deeper) networks to be compared [35].

Subsequently, the three best architectures with the highest
achieved F2-scores,were trained again, butwithmore epochs
(30) and more folds (4). The results are given in Table 4. As
the number of folds has been changed, the metric values of
Tables 3 and 4 cannot be compared with each other.

The final model training was done using a learning rate
range from 1e−4 to 1e−2, a weight decay of 1e−4, and a
full re-training of all parameters of the ResNet-18 network.
The training data was split into 8 stratified folds of which
each was trained for 250 epochs (total training time of 38 h).
Figure 9 shows the loss curves averaged over all folds.

As can be seen in Fig. 9, both loss curves are, after 250
epochs, still in a slightly decreasing trend. However, the aver-
aged F2-score begins after approximately 50–75 epochs to
slowly decrease again, which results from a decreasing recall
and vice versa an increasing precision. The average epoch
from all 8 folds, where the model has its largest F2-score,
was found at 61 (see Fig. 10).

The confusion matrix in Fig. 11 shows the result achieved
on the validation set. The final recall and precision value
equal 0.60, resulting in an F2-score of 0.60 (see Table 5).
From a class-specific viewpoint, these values represent the
values of the crack class. Looking at the class-specific value
also reveals that the model works almost perfectly predicting
on crack-free images (recall andprecision equal both to 0.97).

As the turbine blade edges and possible cracks only take
up a small proportion in the large images, the validation
results are further checked with a gradient-weighted class
activation mapping (Grad-CAM) implementation. In Fig. 12
the Grad-CAM heatmaps for some validation images can be
seen. Clearly, the classifier focuses on horizontally short to
medium-length narrow areas located about one half of the
image height. The reddish highlighted areas, which are the
image regions that are decisive for the model’s classification
decision, coarsely coincide with the turbine blade edges in
these images. Therefore, it can be deduced that the correct
image areas are considered for classification decision.
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Table 3 Used settings and implementation: a batch size of 8, stratified 3-fold CV + automatic oversampling, 8 epochs, CE loss, a LR of 1e−1,
weight decay of 1e−8, ImageNet stats normalization, and re-training only the last layer group of the pre-trained architectures

Architecture Confusion matrix [TP, FP; FN, TN] Accuracy [%] Recall Precision Fbeta-Score (β = 2)

Resnet18 [9, 4; 3, 95] 62.12 0.69 0.75 0.70

Resnet34 [10, 3; 17, 81] 76.90 0.77 0.37 0.63

Resnet50 [7, 6; 10, 88] 61.94 0.54 0.41 0.51

Resnet101 [8, 5; 8, 90] 83.57 0.61 0.50 0.58

Resnet152 [12, 1; 30, 68] 83.51 0.92 0.29 0.64

Squeezenet1_0 [6, 7; 15, 83] 83.52 0.46 0.29 0.41

Squeezenet1_1 [9, 4; 18, 80] 83.83 0.69 0.33 0.57

Densenet121 [11, 2; 9, 89] 89.22 0.85 0.55 0.77

Densenet161 [10, 3; 7, 91] 88.93 0.77 0.59 0.73

Densenet169 [9, 4; 9, 89] 84.12 0.69 0.50 0.64

Densenet201 [12, 1; 24, 74] 85.32 0.92 0.33 0.68

VGG16_bn [8, 5; 4, 94] 89.54 0.62 0.67 0.63

VGG19_bn [10, 3; 52, 46] 50.19 0.77 0.16 0.44

Alexnet [9, 4; 38, 60] 72.46 0.69 0.19 0.45

InceptionResnetv2 [9, 4; 19, 79] 83.21 0.69 0.32 0.56

Inception v3 [12, 1; 29, 69] 82.01 0.92 0.29 0.64

Inception v4 [9, 4; 16, 82] 84.74 0.69 0.36 0.58

ResNeXt 101_32x4d [9, 4; 14, 84] 79.31 0.69 0.39 0.60

ResNeXt 101_64x4d* [7, 6; 3, 95] 44.95 0.54 0.70 0.57

Se_Resnet50 [8, 5; 8, 90] 77.89 0.62 0.50 0.59

Se_Resnet101 [11, 2; 42, 56] 56.40 0.85 0.21 0.53

Se_Resnext 50_32x4d [10, 3; 50, 48] 77.22 0.77 0.17 0.45

Senet154 [9, 4; 18, 80] 58.31 0.69 0.33 0.57

* with batch size = 4, due to GPU memory limitations
Decisive metric: F2-score (compare subsection with Sect. 3.3)

Table 4 Used settings and implementation: a batch size of 8, stratified 4-fold CV + automatic oversampling, 30 epochs, CE loss, a LR of 1e−1,
weight decay of 1e−8, ImageNet stats initialization, and re-training only the last layer group of the pre-trained architectures

Architecture Confusion matrix [TP, FP; FN, TN] Accuracy [%] Recall Precision Fbeta-Score (β = 2)

Resnet18 [9, 1; 10, 63] 73.53 0.90 0.47 0.76

Densenet121 [5, 5; 9, 64] 88.62 0.50 0.36 0.46

Densenet161 [4, 6; 14, 59] 78.12 0.40 0.22 0.34

Decisive metric: F2-score (compare with Sect. 3.3)

Fig. 9 Averaged loss curves over all 8 stratified folds of the LIM

The performance achieved on the held-out test dataset,
containing a total of 65 images (≈10%of the total dataset), of

Fig. 10 F2-score of the LIM

which 5 are crack images, is shown in Fig. 13. The confusion
matrix equals to a recall of 0.60, precision of 0.20, and an
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Fig. 11 Confusion matrix of the validation set images for the LIM
model

Table 5 LIM validation set
results (512 × 640)

Recall Precision F2-score

0.60 0.60 0.60

Fig. 12 Grad-CAM visualization of some LIM validation images

F2-score of 0.43 (see Table 6). Considering the negative class
(crack-free class) a recall of 0.80 and a precision of 0.96 is
achieved.

When comparing the confusionmatrix to the one achieved
during training (validation set) an increase of false positives
(=̂ increase of precision) can be identified.However, themost
important metric value for the task at hand, the recall value
of class crack, did not decrease. The performance reduction
was mainly due to more crack-free images being classifed as
crack images, i.e. false alarms. The degradation may result
from the random choice of the only 5 crack images selected
for final testing. For example, if all 5 crack images used in
the test dataset only contain very weak cracks, distinguish-
ing between crack-free and crack images is very difficult.
Therefore, the results achieved on the validation set are sig-
nificantly more meaningful.
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Fig. 13 Confusion matrix of the test set images for the LIM model

Table 6 LIM test set results
(512 × 640)

Recall Precision F2-score

0.60 0.20 0.43

The model’s overall performance is on the one hand lim-
ited by the low amount of crack images and on the other hand
by the fact that in the large images the cracks are extremely
small (smaller than 0.1% of all image pixels) making it dif-
ficult for the classifier. This consideration was the reason
for developing another model that used significantly smaller
images patches to increase the number of pixels representing
a crack in a crack image.

4.2 Small ImageModel (SIM)

Based on the results of the LIM, a second model was devel-
oped that worked with significantly smaller images. Since
the images of this sub-dataset were much smaller in their
dimensions, the choice of larger batch sizes did not cause
any problems regarding the GPU memory. Also, the issue
of disproportionate over-sampling, when using larger batch
sizes, was not as problematic as in the LIM. A batch size of
256 was finally chosen. As a data-level imbalance handling
strategy again a batch weight random sampler was used for
over-sampling. However, as already mentioned in Sect. 3.5,
the use of k-fold CVwas not possible as the image patches of
the different datasets have to be strictly kept separate. Also, a
focal loss instead of the standard CE-loss was implemented.
As the data is already over-sampled, the weighting parameter
α of the FL was set to 0.5 (=̂ no specific class weighting) and
more focus was placed on difficult classification samples by
setting the focal loss focusing factor γ to 2.

For the SIM a ResNet-18 architecture (no pre-training),
data augmentation, a learning rate range of 3e−5 to 1e−3
and a weight decay value of 1e−8 was chosen. Data aug-
mentation operations again include random image rotation
(up to ±15◦), contrast adjustment (scale: 0.85 to 1.15), and
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Fig. 14 Loss curves of the SIM

Fig. 15 F2-score of the SIM with an additional moving average for an
interval of 20 epochs for better visualization

Table 7 SIM validation set
results (64 × 64)

Recall Precision F2-score

0.93 0.62 0.85

vertical flipping, all applied with a probability of 10%, as
well as horizontal image flipping with a probability of 50%.
The model was trained for 1000 epochs and the model was
saved at the epoch with the highest F2-score (see Fig. 14).

The best-performing models (based on the F2-score) are
generally found within the first 100 epochs. However, due to
the fluctuating behavior of the metrics, good models also can
be found sporadically beyond 100 epochs, while the general
overall performance is already in a decreasing trend due to
overfitting. In this case, the best-performingmodelwas found
at epoch 208 (see Fig. 15).

The confusionmatrix in Fig. 16 shows the results achieved
on the validation set. Thefinal recall value equals 0.93 and the
precision 0.62, resulting in an F2-score of 0.85 (see Table 7).
From a class-specific viewpoint, these values represent the
values of the crack class. Looking at those values also reveals
that the model works almost perfectly predicting crack-free
images (recall of 0.99 and precision of 1.00).

It is again noted, that due to the functioning of the image
patch cropping procedure and the very limited amount of
crack images of which crack image patches can be cropped,
it was not possible to build up a representative test set.
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Fig. 16 Confusion matrix for the validation set images for the SIM
model

5 Conclusion

After both the LIM and SIM models have been discussed, in
this section a conclusion is drawn. The main issue of having
large images with extremely small decisive details could be
reduced by cropping smaller image patches of 64 × 64 pix-
els. Additionally, by performing random cropping the rather
small number of crack images of the LIM dataset could be
tripled in the SIM dataset, despite the fact that of only 21
original crack images (from a total of 52) the cracks posi-
tions were known and subsequently could be cropped from.

The resulting performance (on the validation set) of the
LIM was only slightly better at correctly predicting crack
images than random guessing (recall and precision of 0.60).
In comparison, the SIM working with much smaller image
patches achieves a recall of 0.93, which is significantly
higher. The achieved precision value was 0.62, as more
weightingwas put on finding a good recall. Nevertheless, this
rather low value is not too problematic, as it is much more
important to have less false negative (=̂ high recall) than
false positive (=̂ high precision) predictions. Furthermore,
it must be remembered that the SIM cannot utilize k-fold
CV , which generally (and especially for small datasets) can
greatly improve a model’s generalization performance. In
addition, for both models, misclassified images of the vali-
dation set were analyzed for any labeling errors. However,
no obvious mistakes could be found.

6 Outlook

In this section, an outlook for future work is given. This
includes the potential for improvement of the developed
AI pipeline, the data preparation/dataset creation, and also
addresses further applications. It has must be noted that both
models were optimized and trained on a very small dataset.
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6.1 Improvements for Developed Classification
Models

Image Dimension
The results achieved from both models indicate that the

model working with small image patches should be the focus
of further improvement and development efforts. However,
this does not mean that the model, working with the images
of 512 × 640 pixel, cannot be further improved with addi-
tional image data for training. Since the decisive details are
extremely small in the large images, it can be assumed that a
higher than the average number of training images would be
required to improve performance, especially for the correct
identification of crack images. Working with large images
also results in significantly longer training times and higher
GPU memory requirements.

Regarding the image labeling, the labeling of images used
for the LIM is significantly less expensive, as one crack found
in an image is already sufficient to label the image as a crack
image. In comparison, the process of image labeling, from
which the algorithm can crop, is muchmore time-consuming
since all cracks in an image must be identified and labeled to
ensure error-free image patch cropping. Additional labeling
also posses an increased potential for error in the form of
misclassifications. Further, the use k-fold CV is not possible
when working with random cropped image patches.

Automatic Patch Cropping Algorithm

– The random cropping algorithm can be extended to
provide a selection option whether multiple cracks are
allowed in an crack image patch or just one. This can be
the case if two cracks lie very close to each other. For a
small dataset, such as the one at hand, the occurrence of
two cracks in a single crack image patch can be confusing
for the classification decision of the CNN model, since
the vast majority of crack image patches contain only
one defect. With an increasing dataset size, this becomes
less of an issue, since there are then enough crack image
patches that contain two (or more) cracks on which the
model can be trained.

– If there is no extreme need to have more crack images
for model training, it is preferable to implement and use
an defined cropping approach of smaller image patches
rather than a random approach. The reason for this is that
during AI inference a turbine blade image is classified
by sub-classifying 19 defined image patches of 64 × 64
pixels along the turbine blade trailing edge (see Fig. 17).
For an optimal prediction model it is recommended to
use images for training that are generated in the same
way as in the later model deployment stage.

Fig. 17 Defined cropping with 19 partly overlapping small image
patches which cover the entire turbine blade trailing edge of a large
image

Multiclass Classification
A reasonable enhancement of the presented CNN models

would be to extend the binary classification to more than the
two classes. The prerequisite for this, however, is the avail-
ability of a significantly larger dataset than the one provided
for this work. In the following, two possibilities for a multi-
class classification are provided.

– Crack-specific classification:
A subdivision of the class crack into a crack class of weak
cracks and a crack class containing significant cracks
is thinkable. NDT inspections specialists already distin-
guish between so-calledSR-cracks andSX-cracks.While
SR-cracks are characterized by a vertical (transverse to
the blade edge) elongated extension and are often very
distinct and tend to be easier to recognize, SX-cracks have
a more circular shape and are more difficult to identify.
SX-cracks are further also considered as conspicuities
(a.o. scratches, surface damages).

– Crack number-specific classification:
A subdivision of the class crack into classes with dif-
ferent numbers of cracks could also provide insightful
information. When the number of defects of classified
crack images is known, it would be possible to draw
conclusions about particularly favorable (or unfavorable)
manufacturing parameters or any other possible crack-
causing circumstances.

6.2 Crack Detection and Localization

The developed approach provides the basis for an object
detection algorithm or even an object segmentation approach
for identifying cracks in turbine blade images. While the
positions of cracks along the turbine blade trailing edge are
predictable by an object detection approach, a further more
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advanced crack segmentation model would even allow a
quantification of the spatial extent of cracks. However, for
such an approach, the training images need to be not only
labeled but also segmented. Before that, a precise definition
of what a crack is and which pixels in n thermographic crack
image belong to a crack, is needed.
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