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Abstract
We define here a directed edge reinforced random walk on a connected locally finite graph.
As the name suggests, this walk keeps track of its past, and gives a bias towards directed
edges previously crossed proportional to the exponential of the number of crossings. The
model is inspired by the so called Ant Mill phenomenon, in which a group of army ants forms
a continuously rotating circle until they die of exhaustion. For that reason we refer to the
walk defined in this work as the Ant RW. Our main result justifies this name. Namely, we will
show that on any finite graph which is not a tree, and on Z

d with d ≥ 2, the Ant RW almost
surely gets eventually trapped into some directed circuit which will be followed forever. In
the case of Z we show that the Ant RW eventually escapes to infinity and satisfies a law of
large number with a random limit which we explicitly identify.

Keywords Reinforced random walk · Ant random walk · Directed edges · Random walk on
graphs

Mathematics Subject Classification 60K35 · 60K37 · 60G50

1 Introduction

The Ant Mill is a phenomenon in which a group of blind army ants gets separated from their
main group and, guided by pheromones, start to walk behind one another and in this way
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form a circuit they follow until they die of exhaustion. We refer the interested reader to the
paper [4] a discussion of that phenomenon, and to the video [9] for an illustration.

In this work we investigate a model that probabilistically encodes the above phenomenon
in the case of a single ant on connected non-tree finite graphs and on Z

d , d ≥ 2. We then
interpret the ant as a random walk with a bias towards already visited directed edges. Here
the bias increases with each crossing of a directed edge, and it decreases whenever an edge is
crossed in the opposite direction. Put differently what counts is the “net” number of crossings.

Our model can be placed into the world of reinforced random walks. To the best of our
knowledge this notion goes back to [2, 5, 14]. Since then, a large literature has been developed
and reinforced randomwalks have become an active and challenging area of research. Among
the most prominent models are the vertex reinforced random walk [14, 15] and the edge
reinforced randomwalk [2, 5], where the bias is proportional to the number of times a certain
vertex and edge respectively has been visited. One of the questions of interest in these models
is concerned with localisation, i.e., will the random walk be eventually trapped in a finite
region? For the vertex reinforced random walk this is indeed the case as has been shown in
numerous works with different stages of refinement [1, 12, 16–18]. Here, depending on the
strength of the reinforcement and the underlying graph the walk may localise on two or more
vertices. For the edge reinforced walk, similar results have been obtained.

The article [11] considers path formation for vertex reinforced random walks that are
non-backtracking. In the case of strong reinforcement, the authors show that, with positive
probability, the walker will localize in a path. More specifically, they showed that for rein-
forcement function W (k) = kα , with α > 1 and 3 ≤ m < 3α−1

α−1 , the walk localizes on m
verticeswith positive probability. Theirmethods rely on stochastic approximation techniques.

In [12] it was shown that if the sum of inverse of weights is finite and under some further
technical assumptions the walk eventually gets stuck on a single edge. We also mention a
model with a similar flavour and names as ours, namely, the directionally reinforced random
walk,whichwas investigated in [10, 13]. However, in thatmodel thewalker looses itsmemory
after each change of direction, which makes the model fundamentally different to ours.

In the present work we aim at showing localisation as in the vertex or edge reinforced
models. However, since the reinforcement is along directed edges localisation on a single
edge is not possible; jumping forth and back over the same edge neutralises the reinforcement.
Instead we will show in our main result, Theorem 2.2, localisation on circuits, which justifies
the Ant RW name for the walk: this theorem states that on non-tree finite graphs and on Z

d

for d ≥ 2, the Ant RW (Ant Random Walk) with probability one eventually gets trapped
in a directed circuit which will be followed forever, similarly to the Ant Mill phenomenon
mentioned at the beginning of this introduction.

What makes the Ant RW so challenging is that it is heavily nonMarkovian, due to the fact
that at each step the behaviour of the walker depends on its entire past. In the two previously
described models a feature that partially compensates that difficulty is monotonicity, i.e., the
more often a vertex, respectively edge, is visited the more attractive it will become in the
future.

In our model this is not the case. Indeed, if an edge (x, y) was crossed as many times as
the edge (y, x) it is as if neither of the two were ever crossed, i.e., it is possible to “kill”
a bias by crossing an edge in the reversed direction. Consequently, classical tools such as
Pólya Urn techniques, e.g., the Rubin construction in [3], are not directly available.

To partially compensate for that difficulty we, at least for the moment, work with a strong,
i.e., exponential reinforcement. This then enables us to analyse the model in two steps. The
first is completely deterministic and investigates the evolution of the environment, i.e., the
field of crossing numbers induced by a fixed path. Having gained sufficient information on
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the environment we then use a renewal property of the dynamics to conclude the analysis.
A relevant feature of the paper is the understanding of the environment; we believe that this
comprehension will be useful also for weaker reinforcement versions of the model. Finally,
it is worthy commenting that ant inspired algorithms are in great development nowadays
in Computer Science (see for instance [6, 7, 19] and references therein). Finally, we would
like to point out that while working on the revision of this article we are working on a new
preprint in which we deal with the case of a super-linear reinforcement, see [8]. We believe
that the results stated in this paper do not change. However we are not sure what to conjecture
in the case of a linear or sub-linear reinforcement.

Organization of the paper. In Sect. 2, we define the model, state results and discuss the
ideas of the proof. In Sect. 3 we give the proof of Theorem 2.2 in the finite graph case and in
Sect. 4 we show Theorem 2.2 in the case of Z

d with d ≥ 2. In Appendix A we provide the
proof of Proposition 2.1.

2 Statements

Wedefine here the directed edge reinforced randomwalk, whichwill be referred asAnt RW in
the sequel, as a discrete time stochastic process on some locally finite, connected, undirected
graph G with vertex set V = V (G) and edge set E = E(G). Given two vertices v and w we
write v ∼ w if the pair (v,w) forms an edge. We then define the stochastic process (Xn)n∈N
with state space V by the following transition rule. Fix a vertex v, and set X0 = v. For n ≥ 0,
we define

P(Xn+1 = x |Gn) = an(Xn, x)∑

y∼Xn

an(Xn, y)
, (2.1)

where Gn = σ(X0, X1, . . . , Xn) is the σ -algebra generated by the walk up to time n. Here
the weights an are given by

an(Xn, x) = exp
{
β cn(Xn, x)

}
,

where β ∈ (0,∞) and the crossing numbers cn(x, y) above are defined via

cn(x, y) =
n−1∑

k=0

(
1
[
(Xk, Xk+1) = (x, y)

] − 1
[
(Xk, Xk+1) = (y, x)

])
. (2.2)

In plain words, cn(x, y) is the number of times that, up to time n, the walk has jumped from
x to y minus the number of times it has jumped from y to x . The parameter β ∈ (0,∞)

represents the strength of the reinforcement. In the limiting case β = 0 we recover the usual
symmetric randomwalk, whereas in the other limiting case β = ∞ once the walk has crossed
a certain edge (x, y) from x to y, it will always choose the same edge in the same direction
once it returns to x .

Our first observation reads as follows and shows that the behaviour of X on G = Z

is particularly simple. The proof follows from elementary observations and is provided in
Appendix A.
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Proposition 2.1 Let G = Z and assume X0 = 0. Then the Ant RW (Xn)n≥0 is a Markov
chain with transition probabilities given by

P
(
Xn+1 = ±1|Xn = 0

) = 1

2
,

P
(
Xn+1 = x + 1|Xn = x

) =

⎧
⎪⎨

⎪⎩

1

1 + e−β
, if x ≥ 1,

e−β

1 + e−β
, if x ≤ −1,

P
(
Xn+1 = x − 1|Xn = x

) =

⎧
⎪⎨

⎪⎩

e−β

1 + e−β
, if x ≥ 1,

1

1 + e−β
, if x ≤ −1.

(2.3)

In particular, the Ant RW on Z is transient and satisfies the following law of large numbers:

lim
n→∞

Xn

n
= Y a.s. (2.4)

where P

[
Y = ±

(1 − e−β

1 + e−β

)]
= 1/2.

The fact that on G = Z the Ant RW is a Markov chain is due to the specific structure of
Z. In general the process (Xn)n∈N itself is not a Markov chain. However, it is known that
{ξn = (Xn, an), n ∈ N} does define one. We denote by Pξ the law of this joint process when
started from a given configuration ξ0 = ξ .

We introduce more notation. Assume for the moment that G is not a tree, so that in
particular it possesses at least one circuit. Here, a circuit C denotes a closed path of distinct
directed edges and distinct vertices. We will often write C = (u0, . . . , u�−1) to denote a
generic circuit C of length � with starting point (or root) u0, where ui �= u j if i �= j and
u�−1 ∼ u0. We denote by C the set of all circuits on G.

For any i ∈ N = {0, 1, 2, . . .}, abbreviate i(�) = i mod �. We define the trapping event
associated to the circuit C = (u0, . . . , u�−1) and the time m ≥ 0 by

TC
m = {

Xm+i = ui(�) ,∀ i ≥ 0
}
.

In plain words, TC
m is the event that the Ant RW is trapped in C at time m, and afterwards

spins around C forever. We then define

TC =
⋃

m≥0

TC
m , (2.5)

as the event that the Ant RW eventually gets trapped in C . The main result of this paper is
the following:

Theorem 2.2 Consider the Ant RW (Xn)n∈N with strength of reinforcement β ∈ (0,∞) on
an undirected graph G such that

(a) G is connected, finite and is not a tree, or
(b) G = Z

d with d ≥ 2.

Then,

P

( ⋃

C∈C
TC

)
= 1 .
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In words, under the above assumptions, the Ant RWwill almost surely be eventually trapped
in some circuit C . Observe that, differently to random polymers or the Ising model, there
is no phase transition in the parameter β ∈ (0,∞) and, differently to the usual symmetric
random walk, the phase transition in the dimension occurs from d = 1 to d = 2. To keep
notation light, we simply assume that β = 1 throughout the proofs, except in the proof of
Proposition 2.1. Going carefully over our proof it is however not hard to show that all results
hold for any β ∈ (0,∞).

Moreover, the proof of item b) of Theorem 2.2 can be easily adapted to different lattices.
This is explained in Remark 4.2 where we point out which property a lattice must have in
order to exhibit the same behavior as Z

d , d ≥ 2, with respect to the Ant RW. When G is an
infinite tree the walk is transient as in the case G = Z considered in Proposition 2.1. Indeed,
it is possible to show that if the random walk is at depth n, i.e, at distance n from the root,
then its bias to go in the next step to depth n + 1 is at least as big as going from n to n + 1
in the case of G = Z. This yields the conclusion.

2.1 Idea of the Proof for the Finite Case

The central novelty of this article is Theorem 2.2 for which we shortly explain the idea of its
proof in the finite graph case.

To explain the idea of the proof we introduce our key concept, the good edge. Let v ∈ G
and assume that Xn = v. The probability of the walker to follow the edge (v,w) is given by
(2.1) which can be rewritten as

1

1 +
∑

u : u∼v,
u �=w

exp
{
cn(v, u) − cn(v,w)

} . (2.6)

The main observation is that if (v,w) is good in the sense that cn(v,w) maximises cn(v, u),

over all u ∼ v, then (2.6) is bounded from below by 1/(1 + D), where D is the maximal
degree of the graph G. In particular this bound is uniform in the environment. The major
work in the proof of Theorem 2.5 is then to show that the probability that the walker follows
forever only good edges is as well uniformly in the environment bounded from below. A
renewal argument will then show that eventually this event will happen with probability one.
Since the graph is finite, a path consisting solely of good edges will eventually close a circuit,
which can be shown to be followed forever.

2.2 Open Problems

Theorem 2.2 gives a quite in depth description for the Ant RW on finite graphs. However,
there are still many challenges left open, some of them which we plan to address in future
works. We mention some of them:

• The weights in this article depend exponentially on the crossing numbers. It would be
interesting to investigate the case that the dependence is only of polynomial form. That
is, for some γ > 0, the environment an is given via

an(x, y) =

⎧
⎪⎨

⎪⎩

cn(x, y)γ , if cn(x, y) > 0 ,

1, if cn(x, y) = 0 ,

(−cn(x, y))−γ , if cn(x, y) < 0 .
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Fig. 1 Graph G given by a triangle connected to an infinite leaf

Does Theorem 2.2 still hold true? Is there maybe a phase transition in γ , in the sense
that there exists γ∗ such that for γ < γ∗ the random walk does not necessarily get stuck
in a circuit but for γ > γ∗ it does? If this is the case, does γ∗ depend on the choice
of the graph, or is it maybe universal? We expect that to answer these questions the
understanding of the role of the environment on the dynamics employed in this article
could be used. This however will not be enough. Indeed, one feature that is crucial to
our analysis and to which the notion of good edge is well adjusted is that for any pair of
edges (x1, y1), (x2, y2) one has the relation

an(x1, y1)

an(x2, y2)
= exp

{
β[cn(x1, y1) − cn(x2, y2)]

}
,

which fails to be true in the polynomial case. In particular it is no longer enough to follow
only good edges. In the polynomial case the lower bound will fail to be uniform and our
arguments can not be applied directly.

• This work is mainly concerned with the Ant RW on finite graphs and on Z
d . However,

the behaviour of the walk on general infinite graphs can be very different, and can depend
in a sensitive manner on the structure of the underlying graph. For instance, for the graph
of Fig. 1, composed by a circuit connected to a copy of the infinite half line (we will call
an infinite half line an infinite leaf ), the statement of Theorem 2.2 is not true.

In fact, using the same reasoning as in the proof of Proposition 2.1, one can show that
when walking over the infinite leaf the Ant RW behaves as an asymmetric random walk. In
particular it has positive probability of never returning to the root of the infinite leaf. Hence,
the probability of not getting trapped in any circuit is positive. More generally, any connected
graph which is not a tree and possesses an infinite leaf may serve as example as well. The
presence of an infinite leaf is sufficient to assure that, with positive probability, the Ant RW
is not trapped in any circuit, but we believe that it should be not necessary. Hand-waving
calculations guided us to guess that “an infinite tree whose nodes at even generations are
replaced by circuits with a sufficiently large number of branches leaving from it” should be
such a corresponding example (see Fig. 2 for an illustration).

In light of the above discussion and Theorem 2.2, we also conjecture:

Conjecture 2.3 Let G be an infinite graph. Then, denoting by d(·, ·) the shortest path distance
on G, one has the following dichotomy

P

( ⋃

C∈C
TC ∪ {

lim
n→∞ d(Xn, X0) = ∞}) = 1 ,

i.e., either the walk gets trapped in a circuit or it escapes to infinity.

• The Ant Mill phenomenon alluded to above is observed in a group of army ants. Thus, it
is actually natural to study the behaviour of a large number of Ant RWs. In this case there
will be two effects that are competing with each other. On the one hand if an ant follows
an edge already crossed before by another ant it further reinforces the edge, so that it
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Fig. 2 Infinite graph G which is not a tree, has no infinite leaf, and for which we believe the Ant RW has
positive probability of not getting trapped in any circuit. Since the number of branches as well as circuit lengths
increase exponentially as we step forward to next generations, we believe that the probability of never going
back to a previous generations and also never closing a single circuit is positive

should be easier for a large group of ants to be trapped in a circuit. However, as long as
the reinforcement is not yet strong enough an ant may also simply cross a directed edge
in the opposite direction and in this way kill the reinforcement effect and “neutralize”
the edge. The preprint [8] that we work on while doing the revision of the current article
suggests that as long as the reinforcement is super-linear all ants will get trapped, albeit
possibly in different circuits.

3 Proof of Theorem 2.2 in the Finite Graph Case

To prove Theorem 2.2 in the finite graph case we will show that eventually the walk only
follows good edges, i.e., edges that maximise their crossing numbers among adjacent edges.
By the explanation given in Sect. 2.1 it is tempting to impose that the path only follows good
edges. However, it may be possible that in that way the path ends up in leaf and then is stuck
forever on the edge connecting to that leaf. In other words one must guarantee that the walker
never backtracks, i.e., never goes back to a vertex visited immediately before. To that end a
certain structure on the good edges needs to be required. We now formalise these ideas.

Definition 3.1 Let (Xn)n∈N be the Ant Random Walk on G. Given a vertex u ∈ G we say
that the edge (u, v) ∈ E is a good edge for u at time n if

cn(u, v) = max
w : w∼u

cn(u, w) .

Since G is connected for any non-empty subset S ⊂ G and any vertex v ∈ G there is a
path connecting v to any vertex of S. We denote by v → S a shortest such path connecting v

to S. We further fix an circuit C∗ of G. For any finite stopping time τ we define the following
random set

Sτ = {
u ∈ V : ∃ v ∼ u such that |cτ (u, v)| ≥ 2

}
. (3.1)

123
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Now we define an auxiliary random path (Y τ
n )n≥0 that is a deterministic function of the

pair (Sτ , Xτ ). We start with Y τ
0 = Xτ and (cτ

0 (·, ·)) = (cτ (·, ·)). The evolution of the field
(cτ

n (·, ·))n will obey the same rules as in (2.2) with Y instead of X . We distinguish the
following cases.

(1) Sτ �= ∅, and Xτ ∈ Sτ . The construction of (Y τ
n )n goes as follows. Assume that for

some j ≥ 1, Y τ
0 , Y τ

1 , . . . , Y τ
j−1 have already been constructed. We then choose Y τ

j such
that the edge (Y τ

j−1, Y
τ
j ) is good. We remark already at that point that we will show in

Sect. 3.1 that Y τ
j �= Y τ

j−2. Moreover, since G is finite (Y τ
n )n eventually will visit a vertex

for the second time and thereafter will follow forever a circuit composed of good edges.
(2) Sτ �= ∅, and Xτ /∈ Sτ . In that case (Y τ

n )n first follows the path Xτ → Sτ . Having reached
Sτ it copies the strategy from the first item, and therefore will eventually follow a circuit
of good edges forever.

(3) Sτ = ∅, and Xτ /∈ C∗. In that case (Y τ
n )n follows Xτ → C∗ and after that gives infinite

turns around C∗.
(4) Sτ = ∅, and Xτ ∈ C∗. Then (Y τ

n )n just gives infinite turns around C∗.
Note that in all four cases above, the path (Y τ

n )n will eventually follow a circuit of good
edges.

Given the above construction we then define recursively the following sequence of stop-
ping times: τ0 = 0, and

τk+1 = inf{n > τk : Xn �= Y τk
n−τk

}.
where we use the convention that τk+1 = ∞ if τk = ∞.

The crucial observation is that on the event {∃ k ≥ 1 : τk = ∞} the walker (Xn)n≥1 will
eventually be trapped in a circuit.

Lemma 3.2 There exists a constant δ = δ(G) > 0 such that almost surely for any k ∈ N

Pξτk
(τk+1 = ∞) ≥ δ, on the event {τk < ∞}.

WeproveLemma3.2 inSect. 3.2.Wenowshowhow to deduce thefirst item inTheorem2.2
from Lemma 3.2.

Our goal is to prove that for a initial state ξ0 = (X0, c0(·, ·)), with c0(·, ·) ≡ 0, one has
that Pξ0(∃ k ≥ 1 : τk = ∞) = 1. By the Lemma of Borel-Cantelli it is enough to show that

∑

k≥1

Pξ0(τk < ∞) < ∞. (3.2)

Note that by Lemma 3.2 applied to k = 0

Pξ0(τ1 < ∞) = 1 − Pξ0(τ1 = ∞) ≤ 1 − δ.

Assume that

Pξ0(τk < ∞) ≤ (1 − δ)k .

Using the Markov property and again Lemma 3.2 it follows that

Pξ0(τk+1 < ∞) = Pξ0(τk+1 < ∞, τk < ∞)

= Eξ0

[
1{τk < ∞}Pξτk

(τk+1 < ∞)
]

≤ (1 − δ)k+1

and this concludes the proof of (3.2).
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3.1 Non Backtracking Property

The goal of this section is to prove that with certain control on the environment the strategy
of only following only good edges generates a non-backtracking path. To be more precise,
we want to show that the path (Y τ

n )n constructed in the first item in the previous section does
not make steps back to a vertex visited one time unit before. It will be expedient to study
some flow properties of the crossing numbers.

Definition 3.3 The total flow at time n through the vertex u ∈ G is defined by the quantity

Fn(u) =
∑

v : v∼u

cn(u, v) .

The next result is a simple fact about the flow of the random walk on a graph, which is
proved by induction, and so we omit its proof.

Lemma 3.4 In the previous setting, fix a vertex u ∈ G. Then Fn(u) = δX0(u) − δXn (u) and
in particular Fn(u) ∈ {−1, 0,+1}.
A consequence of the previous result is the following proposition.

Proposition 3.5 If Xn
0 = {X0, . . . , Xn} is a trial, i.e., X0 = Xn, and cn(u, w) �= 0 for some

vertex w ∼ u then, for any good edge (u, v) of u, one has that cn(u, v) > 0.

Proof We first note that since X0 = Xn , Lemma 3.4 implies that Fn(u) = 0 for all u ∈ V .
If cn(u, w) > 0 then the good edge has a positive crossing number since it maximises the
crossing numbers among the neighbours of u. If cn(u, w) < 0, then we can conclude from
Fn(u) = 0, that there exists a vertex w∗ such that cn(u, w∗) > 0. Hence, the claim follows.

��
Of course there is no guarantee that the Ant RW at time n does form a trial. However in any
case we have the following result.

Proposition 3.6 Let u be a given vertex, and fix a realisation Xn
0 = {X0, . . . ,

Xn} of the Ant RW until time n. Assuming that there exists an edge (u, w) such that
cn(u, w) ≤ −2, then any good edge (u, v) of u satisfies cn(u, v) ≥ 1.

Proof Since cn(u, w) ≤ −2 and Fn(u) = ∑
z:z∼u cn(u, z) ≥ −1 (cf. Lemma 3.4) it is

impossible that cn(u, w) ≤ 0 for all w ∼ u. Therefore, any good edge (u, v) of u satisfies
cn(u, v) ≥ 1. ��

Now we will show that if Sτ �= ∅, and Xτ = v0 ∈ Sτ , then (Y τ
n )n is non backtracking.

Recall that Y τ
0 = Xτ = v0. By Proposition 3.6, any neighbour v1 of Y τ

0 such that (Y τ
0 , v1)

is a good edge satisfies cτ
0 (Y

τ
0 , v1) ≥ 1. To proceed assume Y τ

1 = v1. As consequence,
cτ
1 (Y

τ
0 , Y τ

1 ) ≥ 2, which implies cτ
1 (Y

τ
1 , Y τ

0 ) = −cτ
1 (Y

τ
0 , Y τ

1 ) ≤ −2. Thus, we can again
apply Proposition 3.6. Consequently, for all neighbours v2 of Y τ

1 such that (Y τ
1 , v2) is a good

edge one has that cτ
1 (Y

τ
1 , v2) ≥ 1. Note that v2 �= Y τ

0 since cτ
1 (Y

τ
1 , Y τ

0 ) ≤ −2. In particular,
Y τ
1 = v1 has degree at least 2. The key observation is that for any v2 as above the path

{Y τ
0 = v0, Y τ

1 = v1, Y τ
2 = v2} is non-backtracking and that cτ

2 (Y
τ
1 , Y τ

2 ) ≥ 2.
Repeatedly applying the above arguments shows that (Y τ

n ) never backtracks. Moreover,
it also shows that since the graph G is finite, and (Y τ

n ) walks along vertices of degree at least
2, it eventually follows a circuit consisting of strictly positive good edges.
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3.2 Proof of Lemma 3.2

We assume that τk is finite almost surely. We want to prove that Pξτk
(τk+1 = ∞) ≥ δ. This

is implied by

Pξτk

(∀ n ≥ τk, Xn = Y τk
n−τk

) ≥ δ.

To prove the above statement we will need to estimate the probability of giving turns
around a circuit. If C = (u0, . . . , u�−1) is a circuit and Xn = u0 = u�, then the probability
of making a turn around C is given by

�−1∏

j=0

1

1 +
∑

w : w∼u j ,

w �=u j+1

exp
{
cn+ j (u j , w) − cn+ j (u j , u j+1)

} . (3.3)

To analyse (3.3) it comes in handy to introduce the quantity RC
n defined via

RC
n = min

0≤ j≤�−1
min

y : y∼u j ,

y �=u j+1

[
cn(u j , u j+1) − cn(u j , y)

]
. (3.4)

Recall the definition of the event TC in (2.5).

Lemma 3.7 Assume that RC
n ≥ −2 and let |V | be the number of vertices of G and D be the

maximum degree of G. Then for any configuration ξ0

Pξ0(T
C ) ≥ exp

(−|V |De2

1 − e−1

)
.

We prove this Lemma in Sect. 3.3.
Now we proceed to prove Lemma 3.2. We distinguish between several cases.
(1) Sτk = ∅. In this case, the absolute value of all crossing numbers are bounded by one.

Observe that on the event {Sτk = ∅} one has that RC∗
τk

≥ −2. Define the stopping time
σ = inf{m ≥ 0 : Y τk

m ∈ C∗}. We have the equality

{∀ n ≥ τk, Xn = Y τk
n−τk

} = {Xτk → C∗} ∩ TC
σ .

Therefore, we need to estimate the probability

Pξτk

[
{X0 → C∗} ∩ TC∗

σ

]
.

In the following we will use the Markov Property at time σ. Notice that on the event
{X0 → C∗} one still has that RC∗

σ ≥ −2 and it always holds that |C | ≤ |V |. Then with the
help of Lemma 3.7, we can estimate, almost surely, the above probability from below by

Eξτk

[
1{X0→C∗}Pξσ

[
TC ]] ≥ Pξ0

[
Xτk → C∗] exp

(−|V |De2

1 − e−1

)
.

It only remains to bound the probability on the right hand side above. To that end note that
along the path Xτk → C∗ all edges have crossing number bounded in modulus by one and
that σ ≤ |V |. Hence, for any fixed vertex v ∈ V , on the event {Xτk = v, Sτk = ∅},

Pξτk

[
X0 → C∗] = Pv

[
X0 → C∗] ≥ 1

(1 + De2)|V | .
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Thus, we can conclude that on {Sτk = ∅}

Pξτk

(∀ n ≥ τk, Xn = Y τk
n−τk

) ≥ 1

(1 + De2)|V | exp

(−|V |De2

1 − e−1

)
:= δ(1) .

(2) Sτk �= ∅, and Xτk = v0 ∈ Sτk . By definition on the event

{∀ n ≥ τk, Xn = Y τk
n−τk

}
the walker will follow only good edges and eventually closes a good circuit C and gives
infinite turns around it. Let σ be the first time the walker meets C . Since C is a good circuit,
then RC

σ ≥ 0 > −2. Again the path joining Xτk with C is of length at most |V |. Hence,
similarly as in the case Sτk = ∅, we see that on {Sτk �= ∅} ∩ {Xτk /∈ C}

Pξτk

(∀ n ≥ τk, Xn = Y τk
n−τk

) ≥ 1

(1 + D)|V | exp

(−|V |De2

1 − e−1

)
:= δ(2) .

where the terms e2 are not present since the path connecting Xτk with C consists only of
good edges.

(3) Sτk �= ∅, and Xτk /∈ Sτk . Define σ = inf{m ≥ 0 : Y τk
m ∈ Sτk }. Denote by v0 a

random vertex in Sτk that minimizes the graph distance to Xτk = Y τk
0 among all vertices in

Sτk . In this case the path Y τk
0 → v0 lies completely in S�

τk
, i.e., all edges on this path have

crossing numbers bounded in absolute value by one. Hence, as in the case (1) we obtain,
almost surely,

Pξτk

[
X0 → S0

] ≥ 1

(1 + De2)|V | .

On the event {Y τk
0 → Sτk } we then have that Y τk

σ ∈ Sτk ⊂ Sτk+σ . In particular, on the
event {∀ n ≥ τk, Xn = Y τk

n−τk
} we have that Xτk+σ ∈ Sτk+σ and we are in the setting of the

previous case. Therefore, on the event {Sτk �= ∅} ∩ {Xτk /∈ Sτk } we can bound

Pξτk

(∀ n ≥ τk, Xn = Y τk
n−τk

)

≥ 1

(1 + De2)|V |
1

(1 + D)|V | exp
(−|V |De2

1 − e−1

)
:= δ(3) .

Collecting all estimates obtained we see that the proof is concluded with the choice δ =
min

{
δ(1), δ(2), δ(3)

} = δ(3).

3.3 Proof of Lemma 3.7

Fix a circuit C = (u0, . . . , u�−1) and recall our notation i(�) = i mod �. For k ∈ N we
define the truncated trapping event T C,k

m by

TC,k
m = {Xm+i = ui(�),∀ 0 ≤ i ≤ k�} . (3.5)

In plain words, TC,k
m is the event in which the walk makes k consecutive turns around C

starting at time m.
To continue bounding the above trapping event we adopt a notation in this section that

slighty differs from the one used in the rest of the article. For a field of integers {c0(x, y) :
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(x, y) ∈ E} we denote with a slight abuse of notation

cn(x, y) = c0(x, y) +
n−1∑

k=0

(
1
[
(Xk, Xk+1) = (x, y)

] − 1
[
(Xk, Xk+1) = (y, x)

])
.

Recall that we write ξn = (Xn, an) for the pair consisting of the position of the Ant RW and
its induced environment at time n. Let ξ0 = (u0, a0) be the initial state of this Markov chain.
We then have the following:

Lemma 3.8 Let G be any locally finite graph. If X0 = u0, then

Pξ0(T
C,1
0 ) ≥

�−1∏

j=0

1

1 +
∑

w : w∼u j
w �=u j+1

exp
{
c0(u j , w) − c0(u j , u j+1)

} .

Proof Observe that on the event TC,1
0 the walker makes one turn around C . Therefore, on

that event we have, for all 0 ≤ j ≤ � − 1,
{
c0(u, v) = c j (u, v), if (u, v) /∈ C,

c j (u, v) ≥ c0(u, v), if (u, v) ∈ C .

It is now plain to see that for all j ∈ {0, . . . , � − 1} and for all w ∼ u j , w �= u j ,

c j (u j , w) − c j (u j , u j+1) ≤ c0(u j , w) − c0(u j , u j+1) .

Hence, the claim follows from Eq. (3.3). ��
Lemma 3.9 Let G be a locally finite graph with maximum degree D < ∞. For all k ∈ N

and all M ∈ R, if RC
0 ≥ M and Xn = u0, then

Pξ0(T
C,k
0 ) ≥ 1

∏k−1
j=0

(
1 + D exp{−M − j})�

.

Proof We prove the result by induction. The case k = 1 is an immediate consequence of
Lemma 3.8 using that D is a bound for the degree of any vertex of G.

Assume that the result is true for 1, . . . , k − 1 and for all M ∈ R. Using the Markov
Property and the observation TC,k

0 = TC,k−1
0 ∩ TC,1

(k−1)�, we obtain that

Pξ0

[
TC,k
0

] = Eξ0

[
Pξ0(T

C,k
0 |G(k−1)�)

]

= Eξ0

[
Pξ0

(
TC,k−1
0 ∩ TC,1

(k−1)� |G(k−1)�
)]

= Eξ0

[
1TC,k−1

0
Pξ(k−1)�

(
TC,1
0

)]
.

Now observe that on the event TC,k−1
0 , we have that RC

(k−1)� ≥ M + k − 1. Therefore, using
the base case k = 1, we can write

Eξ0

[
1TC,k−1

0
Pξ(k−1)� (T

C,1
0 )

] ≥ Eξ0

[
1TC,k−1

0

1

(1 + D exp{−M − (k − 1)})�
]

= 1

(1 + D exp{−M − (k − 1)})� Pξ0

(
TC,k−1
0

)

and using the induction hypothesis we finish the proof. ��
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To finish the proof of Lemma 3.7 we just use the following facts:

(1) Pξ0

(
TC
0

) = limk→∞ Pξ0

(
TC,k
0

)
,

(2) 1 + x ≤ ex ,
(3)

∑
i≥0 x

i = 1/(1 − x) if x ∈ [0, 1).

4 Proof of Theorem 2.2 in the Z
d Case

Westart now to dealwith the proof of Theorem2.2 in the caseG = Z
d with d ≥ 2.A sketch of

the proof goes as follows. First, wewill argue that for theAnt RW the probability to be trapped
in a circuit directly after escaping certain well chosen increasing balls is uniformly bounded
from below in the environment. This will show that the walk is almost surely bounded. Then,
we will construct a simultaneous coupling between the Ant RW on Z

d and on all those balls.
Under that coupling and by the previous boundedness result, we will conclude that the Ant
RW on Z

d almost surely coincides with the Ant RW on some (random) ball. This with the
finite case of Theorem 2.2 will permit to conclude the proof.

Proposition 4.1 The Ant RW in G = Z
d with d ≥ 2 is almost surely bounded.

Proof Denote by Bk = B[0, k] the closed ball of center 0 and radius k ∈ N in the graph
Z
d with respect to the �1-distance and denote by ∂Bk its inner boundary. Recall that we are

assuming X0 = 0. For each k ∈ N we define the stopping time

τk = inf{n > 0 : Xn ∈ B�
3k} (4.1)

and let

Ek
def= {

τk < ∞}
.

That is, Ek is the event where the Ant RW escapes the ball of radius 3k. Let V (k) be the set
of vertices v ∈ Z

d such that d(v, B3k) = 1. It is elementary to check that, for each v ∈ V (k),
there exists a circuitCv of length 4 such thatCv ⊂ B3(k+1)\B3k , see Fig. 3 for an illustration.
These circuits are not unique. However in the sequel, for ease of notation, for each v as above
Cv ⊂ B3(k+1)\B3k denotes a fixed but arbitrarily chosen circuit.

Recall the trapping event TC
m defined in (2.5) and let

Fk
def= Ek

⋂( ⋃

v∈V (k)

TCv
τk

)
.

In other words, Fk is the event in which the Ant RW eventually escapes B3k and immediately
after that, is trapped in a directed circuit of length four contained in B3(k+1)\B3k , see Figure 3.

We now claim that there exists some δ = δ(d) > 0 such that

P
(
Fk | Ek

)
> δ , ∀ k ∈ N . (4.2)

To prove the claim we first apply the strong Markov property at time τk , which yields that

P
(
Fk |Ek

) = P

(
τk < ∞,

⋃

v∈V (k)

TCv
τk

∣∣∣∣τk < ∞
)

= E

[
Pξτk

( ⋃

v∈V (k)

TCv

0

) ∣∣∣∣τk < ∞
]

.

Note now that

{τk < ∞} =
⋃

v∈V (k)

{
τk < ∞ , Xτk = v

}
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Z
d

0

B3k

B3(k+1)

Cu0

x

Fig. 3 Event Fk . After exiting the ball B3k , the Ant RW spins forever around a circuit C ⊂ B3(k+1)\B3k of
length4,which is indicatedby arrows.Thegrayball represents the rootu0 of the circuitCu0 = (u0, u1, u2, u3).
The vertex x is the last visited vertex of ∂B3k before exiting B3k

and

Pξτk

( ⋃

v∈V (k)

TCv

0

)
≥ Pξτk

(
T
Cu0
0

)
on the event {τk < ∞, Xτk = u0} . (4.3)

Therefore, to obtain (4.2) it is enough to get a uniform lower bound for the random variable
on the right hand side of (4.3) on the event {τk < ∞, Xτk = u0}.

Immediately after exiting B3k , the Ant RW has not crossed any edge in
B3(k+1)\B3k except the edge {Xτk−1, Xτk } connecting the vertex Xτk−1 ∈ ∂B3k to the root
u0 = Xτk ∈ B3(k+1) of the circuit Cu0 = (u0, u1, u2, u3). Therefore, at time τk , all edges
contained B3(k+1)\B3k have crossing number zero, except the two directed edges (Xτk−1, u0)
and (u0, Xτk−1) which have crossing number 1 and −1 respectively. Thus, it follows that

R
Cu0
τk ≥ −1 > −2. Lemma 3.7 permits one to obtain the desired δ > 0, which is independent

of k and hence the claim.
Since Fk ⊂ E�

k+1 and by the previous claim, we obtain that P
(
E�
k+1 ∩ Ek

)
> δ P

(
Ek

)

for all k ∈ N. Since Ek+1 ⊂ Ek , this implies that P
(
Ek

) − P
(
Ek+1

)
> δ P

(
Ek

)
, for all

k ∈ N, which leads to P
(
Ek+1

)
< (1− δ)k+1

P
(
E0

) = (1− δ)k+1 for all k ∈ N. This yields
P
( ⋂∞

k=1 Ek
) = 0 and finishes the proof. ��

Proof of the Theorem 2.2 in the case G = Z
d with d ≥ 2

For any k ∈ N we denote by (XBk
n )n≥0 the Ant RW on Bk . We will construct a coupling

(
(Xn)n≥0, (X

B1
n )n≥0, (X

B2
n )n≥0, (X

B3
n )n≥0, . . .

)
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Z
d

0

Bk

Fig. 4 Coupling between the Ant RW on Z
d and the Ant RW’s on Bk ⊂ Z

d , k ∈ N. After the hitting time σk

of ∂Bk , the Ant RW X
Bk
n evolves independently of the Ant RW Xn . Above, the dashed path represents X

Bk
n

for times greater than σk . Note that, immediately after σk , the Ant RW Xn may or may not exit Bk . The gray

ball represents the (final) position of X
Bk
n and the black ball the (final) position of Xn

of all these stochastic processes. To do so, we first assume that (Xn)n≥0 has been constructed
on some probability space, which will be enriched in the sequel. On this probability space,
we define stopping times σk defined via

σk = min
{
n ≥ 0 : Xn ∈ ∂Bk

}
.

To construct (XBk
n )n≥0 from (Xn)n≥0, we let XBk

n
def= Xn for n < σk . If σk < ∞, then

for n ≥ σk we let (XBk
n )n≥σk evolve independently of (Xn)n≥σk on Bk , see Fig. 4 for an

illustration. One then readily checks that (XBk
n )n≥0 indeed has the law of the Ant RW on Bk .

Moreover, for n < σk , one has that

Xn = XBk
n = XBk+1

n = XBk+2
n = · · · (4.4)

By Theorem 2.2 for finite graphs, we know that for any k ∈ N there exists a random circuit
C = C(k) such that (XBk

n )n≥0 is almost surely eventually trapped in C . By Proposition 4.1,
the Ant RW X on Z

d is bounded. Hence, almost surely there exists a random index k ≥ 1
such that σk = ∞ and hence (4.4) holds for any n ∈ N. Therefore, the Ant RW on Z

d is
almost surely trapped in some (random) circuit C , thus concluding the proof. ��
Remark 4.2 The key property of the lattice Z

d , d ≥ 2, in proof of Theorem 2.2 item b)
is the presence of circuits of fixed length starting from any vertex (outside of any given
large set), which lead to the conditional probability (4.2). Keeping this in mind, the proof of
Theorem 2.2 item b) can be easily adapted to different lattices as the slab {1, . . . , N } × Z

d ,
regular non-square lattices etc.

123



18 Page 16 of 18 D. Erhard et al.

Acknowledgements The authors would like to thank Milton Jara for helping us with the argument on the
proof of Proposition 4.1. The authors are also grateful with Augusto Quadros and to the anonymous ref-
erees for helping us to simplify the proof of Theorem 2.2. D. E. gratefully acknowledges financial support
from the National Council for Scientific and Technological Development - CNPq via a Universal Grant
409259/2018-7 and a Bolsa de Produtividade 303520/2019-1. D.E. moreover acknowledges support by the
Serrapilheira Institute which supported this work (Grant Number Serra-R-2011-37582). T. F. was supported by
a project Jovem Cientista-9922/2015, FAPESB-Brazil and by National Council for Scientific and Technologi-
cal Development (CNPq) through a Bolsa de Produtividade. G. R. was supported by a Capes/PNPD fellowship
888887.313738/2019-00. D. E and G. R are also thankful to the Hausdorff Institute for their hospitality during
the program Randomness, PDEs and Nonlinear Fluctuations during which part of this work was completed.
G. R. are also thankful to IMPA for their hospitality and support during the summer school program of 2020.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A Proof of Proposition 2.1

First observe that all crossing numbers cn(x, y) take values in the set {−1, 0,
1}. Indeed, this is a direct consequence of the fact that the graph Z is a tree. Thus, for
each n and each pair x, y ∈ Z we have that an(x, y) ∈ {e−β, 1, eβ}. See Fig. 5 for an
illustration.

We can say even more about the weights. To that end, for an edge e = (e−, e+) with
starting point e− and end point e+ in Z and for x ∈ Z, we write e ≤ x if e− ∨ e+ ≤ x and
e ≥ x if e− ∧ e+ ≥ x . Moreover we also write an(e) instead of an(e−, e+). We then claim
that for all n ∈ N and all directed edges e = (e−, e+), there are three cases.

(1) Xn = 0. In this case we simply have an(e) = 1.
(2) Xn > 0. In this case one has

an(e) =

⎧
⎪⎨

⎪⎩

1, if e ≤ 0 or e ≥ Xn,

eβ, if 0 ≤ e ≤ Xn and also e− < e+,

e−β, if 0 ≤ e ≤ Xn and also e− > e+.

− 3 −2 −1 0 1 2 3 4

1

1

1

1

1

1

eβ

e−β

eβ

e−β

eβ

e−β

1

1

1

1

Fig. 5 Illustration of the jump weights, where Xn = 3
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(3) Xn < 0. In this case one has

an(e) =

⎧
⎪⎨

⎪⎩

1, if e ≥ 0 or e ≤ Xn,

eβ, if Xn ≤ e ≤ 0 and also e− > e+,

e−β, if Xn ≤ e ≤ 0 and also e− < e+.

The above is easily proved by induction on n. In particular we see that the position of the
walk at time n completely determines the environment (an(·, ·))n∈N and therefore (Xn)n∈N
is a Markov chain. The transition probabilities claimed in (2.3) are then an immediate con-
sequence of (2.1).

To deduce the desired transience we then define the following sequence of stopping times

τ1 = min{n > 0 : Xn = 0} and

τk = min{n > τk−1 : Xn = 0} , for k ≥ 2 .

Now observe that as a consequence of (2.3) the Ant RW behaves as an asymmetric random

walk with bias 1−e−β

1+e−β to the right on the set {x ≥ 1}, respectively to the left on the set
{x ≤ −1}. Hence, we see that (Xτk+1, . . . , Xτk+1) has the distribution of the asymmetric
random walk just described on x ≥ 1 provided that Xτk+1 = 1 respectively on x ≤ −1
provided that Xτk+1 = −1. Moreover it follows from (2.3) that for all k

P(Xτk+1 = ±1) = 1

2
.

Furthermore the processes (Y k
n )0≤n≤τk+1−τk = (Xτk+n)0≤n≤τk+1−τk indexed by k ∈ N are

independent from each other. Hence, in view of the fact that the asymmetric random walk
has positive probability of never returning to the origin, we conclude that almost surely
there is k such that τk = ∞. Thus, almost surely the walk eventually does not return to the
origin. Finally, the law of large numbers (2.4) is a consequence of the law of numbers for the
asymmetric random walk.
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