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Abstract
The discrete distribution of the length of longest increasing subsequences in random
permutations of n integers is deeply related to randommatrix theory. In a seminalwork,
Baik, Deift and Johansson provided an asymptotics in terms of the distribution of the
scaled largest level of the large matrix limit of GUE. As a numerical approximation,
however, this asymptotics is inaccurate for small n and has a slow convergence rate,
conjectured to be just of order n−1/3. Here, we suggest a different type of approxima-
tion, based on Hayman’s generalization of Stirling’s formula. Such a formula gives
already a couple of correct digits of the length distribution for n as small as 20 but
allows numerical evaluations, with a uniform error of apparent order n−2/3, for n as
large as 1012, thus closing the gap between a table of exact values (compiled for up
to n = 1000) and the random matrix limit. Being much more efficient and accurate
than Monte Carlo simulations, the Stirling-type formula allows for a precise numer-
ical understanding of the first few finite size correction terms to the random matrix
limit. From this we derive expansions of the expected value and variance of the length,
exhibiting several more terms than previously put forward.
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1 Introduction

As witnessed by a number of outstanding surveys and monographs (see, e.g., [1, 5, 44,
48]), a surprisingly rich topic in combinatorics and probability theory, deeply related
to representation theory and to randommatrix theory, is the study of the lengths Ln(σ )

of longest increasing subsequences of permutations σ on the set [n] = {1, 2, . . . , n}
and of the behavior of their distribution in the limit n → ∞. Here, Ln(σ ) is defined
as the maximum of all k for which there are 1 ≤ i1 < i2 < · · · < ik ≤ n such that
σi1 < σi2 < · · · < σik . Writing permutations in the form σ = (σ1 σ2 · · · σn) we get,
e.g., L9(σ ) = 5 for σ = (4 1 2 7 6 5 8 9 3), where one of the longest increasing subse-
quences has been highlighted. Enumeration of the permutations with a given Ln can
be encoded probabilistically: by equipping the symmetric group on [n] with the uni-
form distribution, Ln becomes a discrete random variable with cumulative probability
distribution (CDF) P(Ln ≤ l) and probability distribution (PDF) P(Ln = l).
Constructive Combinatorics Using the Robinson–Schensted correspondence [45],
one gets the distribution of Ln in the following form (see, e.g., [49, §§3.3–3.7]):

P(Ln ≤ l) = 1

n!
∑

λ�n : lλ≤l

d2λ. (1)

Here λ � n denotes an integer partition λ1 ≥ λ2 ≥ · · · ≥ λlλ > 0 of n = ∑lλ
j=1 λ j

and dλ is the number of standard Young tableaux of shape λ, as given by the hook
length formula. By generating all partitions λ � n, in 1968 Baer and Brock [3]
computed tables of P(Ln = l) up to n = 36; in 2000 Odlyzko and Rains [40] for
n = 15, 30, 60, 90, 120 (the tables are online, see [38]), reporting a computing time
for n = 120 of about 12 hours (here pn , the number of partitions, is of size 1.8×109).
This quickly becomes infeasible,1 as pn is already as large as 2.3× 1014 for n = 250.
Another use of the combinatorial methods is the approximation of the distribution
of Ln by Monte Carlo simulations [3, 40]: one samples random permutations σ and
calculates Ln(σ ) by the Robinson–Schensted correspondence.2

Analytic Combinatorics and the Random Matrix Limit For analytic methods of
enumeration, the starting points is a more or less explicit representation of a suitable
generating function; here, the suitable one turns out to be the exponential generating
function of the CDF P(Ln ≤ l), when considered as a sequence of n with the length l
fixed:

fl(z) :=
∞∑

n=0

P(Ln ≤ l)

n! zn (z ∈ C, l ∈ N).

1 See Sect. 3.2 below for a method to compute the exact rational values of the distribution of Ln based on
randommatrix theory, which has been used by the author to tabulate P(Ln = l), 1 ≤ l ≤ n, up to n = 1000.
2 InMathematica, a single trial is generated by the command

Length@LongestOrderedSequence[PermutationList[RandomPermutation[n], n]].
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(We note that fl is an entire function of exponential type.) In fact, Gessel [30, p. 280]
obtained in 1990 the explicit representation

fl(z
2) = Dl(z), Dl(z) := l

det
j,k=1

I j−k(2z), (2)

in terms of a Toeplitz determinant of the modified Bessel functions Im , m ∈ Z, which
are entire functions of exponential type themselves. By relating, first, the Toeplitz
determinant to the machinery of Riemann–Hilbert problems to study a double-scaling
limit of the generating function andbyusing, next, aTauberian theorem3 to induce from
that limit an asymptotics of the coefficients, Baik, Deift and Johansson [4] succeeded
1999 in establishing4

P(Ln ≤ l) = F2

(
l − 2

√
n

n1/6

)
+ o(1) (n → ∞), (3)

uniformly in l ∈ N; it will be called the random matrix limit of the length distribution
throughout this paper since F2(t) denotes the Tracy–Widom distribution for β = 2
(that is, the probability that in the soft-edge scaling limit of the Gaussian unitary
ensemble (GUE) the scaled largest eigenvalue is bounded from above by t). This
distribution can be evaluated numerically based on its representation either in terms
of the Airy kernel determinant [23] or in terms of the Painlevé-II transcendent [51];
see Remark 3.1 and [9] for details.

As impressive as the use of the limit (3) might look as a numerical approximation
to the distribution of Ln near its mode for larger n, cf. Fig. 1, there are two notable
deficiencies: first, since the error term in (3) is additive (i.e., w.r.t. absolute scale),
the approximation is rather poor for l 	 2

√
n; second, the convergence rate is rather

slow, in fact conjectured to be just of the order O(n−1/3); see [27] and the discussion
below. Both deficiencies are well illustrated in Table 1 for n = 20 and in Fig. 2 for
n = 1000.
A Stirling-Type Formula In this paper we suggest a different type of numerical
approximation to the distribution of Ln that enjoys the following advantages: (a) it
has a small multiplicative (i.e., relative) error, (b) it has faster convergence rates,
apparently even faster than (3) with its first finite size correction term added, and (c)
it is much faster to compute than Monte Carlo simulations. In fact, the distribution of
Ln for n = 105, as shown in Fig. 1, exhibits an estimated maximum additive error
of less than 10−5 and took just about five seconds to compute, whereas Forrester and
Mays [27] have recently reported a computing time of about 14 hours to generate

3 The Tauberian part (“de-Poissonization”) makes it hard to get more than the leading order of the asymp-
totics.
4 In the first place, [4, Thm. 1.1] states the following limit to hold pointwise in t ∈ R:

lim
n→∞P

(
Ln − 2

√
n

n1/6
≤ t

)
= F2(t).

However, since the limit distribution F2 is continuous, by a standard Tauberian follow-up [54, Lemma 2.1]
of the Portmanteau theorem in probability theory, this convergence is known to hold, in fact, uniformly in t .
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Fig. 1 Discrete distribution of Ln for n = 105 near its mode vs. the random matrix limit given by the
leading order terms in (3) and (42a) (solid red line); here and in the figures below, discrete distributions
are shown as blue bars centered at the integers. Left: CDF P(Ln ≤ l); right: PDF P(Ln = l). The discrete
distributions were computed using the Stirling-type formula (5), with additive errors estimated to be smaller
than 10−5, cf. Fig. 3, which is well below plotting accuracy (Color figure online)

Table 1 The values of P(Ln ≤ l) and various of its approximations for n = 20

l P(L20 ≤ l) Stirling-type (5) Monte Carlo Random matrix (3)

1 4.110 × 10−19 4.119 × 10−19 0.000 6.282 × 10−5

2 2.698 × 10−9 2.703 × 10−9 0.000 1.422 × 10−3

3 6.698 × 10−5 6.710 × 10−5 7.240 × 10−5 1.485 × 10−2

4 1.090 × 10−2 1.092 × 10−2 1.089 × 10−2 8.014 × 10−2

5 1.427 × 10−1 1.429 × 10−1 1.428 × 10−1 2.503 × 10−1

6 4.841 × 10−1 4.846 × 10−1 4.838 × 10−1 5.079 × 10−1

7 8.042 × 10−1 8.064 × 10−1 8.040 × 10−1 7.513 × 10−1

8 9.521 × 10−1 9.581 × 10−1 9.519 × 10−1 9.041 × 10−1

9 9.921 × 10−1 9.996 × 10−1 9.920 × 10−1 9.716 × 10−1

TheMonte Carlo simulation was run with T = 5×106 samples. Clearly observable is a multiplicative (i.e.,
relative) error of already less than 1% for the Stirling-type formula (5) as well as an additive (i.e., absolute)
error of order 4 × 10−4 ≈ T−1/2 for Monte Carlo and an additive error of order 10−1 ≈ n−1/3 for the
limit (3) from random matrix theory

T = 5 × 106 Monte Carlo trials for this n; the error of such a simulation is expected
to be of the order 1/

√
T ≈ 4 · 10−4.

Specifically, we use Hayman’s generalization [33] of Stirling’s formula for H -
admissible functions; for expositions see [22, 39, 55]. For simplicity, as is the case
here for f (z) = fl(z), assume that

f (z) =
∞∑

n=0

anz
n (z ∈ C)
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is an entire function with positive coefficients an and consider the real auxiliary func-
tions

a(r) = r
d

dr
log f (r), b(r) = r

d

dr
a(r) (r > 0).

If f is H -admissible, then for each n ∈ N the equation a(rn) = n has a unique solution
rn > 0 such that b(rn) > 0 and the following generalization of Stirling’s formula5

holds true:

an = f (rn)

rnn
√
2π b(rn)

(1 + o(1)) (n → ∞). (4)

We observe that the error is multiplicative here. In Theorem 2.2 we will prove, using
some theory of entire functions, the H -admissibility of the generating functions fl .
Hence the Stirling-type formula (4) applies without further ado to their coefficients
P(Ln ≤ l)/n!. Since the error is multiplicative, nothing changes if we multiply the
approximation by n! and we get

P(Ln ≤ l) = n! · fl(rl,n)

rnl,n
√
2π bl(rl,n)

(1 + o(1)) (n → ∞), (5)

where we have labeled all quantities when applied to f = fl by an additional index
l. An approximation to P(Ln = l) is then obtained simply by taking differences. The
power of these approximations, if used as a numerical tool even for n as small as
n = 20, is illustrated in Table 1 and Figs. 1, 2 and 3, as well as in Table 2.
Numerical Evaluation of the Generating Function For the Stirling-type formula
(5) to be easily accessible in practice, we require an expression for fl(r) that can be
numerically evaluated, for r > 0, in a stable, accurate, and efficient fashion. Since
the direct evaluation of the Toeplitz determinant (2) is numerically highly unstable,
and has a rather unfavorable complexity of O(l3) for larger l, we look for alternative
representations. One option—used in [11] to numerically extract P(Ln ≤ l) from
fl(z) by Cauchy integrals over circles in the complex plane that are centered at the
origin with the same radius rl,n as in (5)—is the machinery, cf., e.g., [15], to trans-
form Toeplitz determinants into Fredholm determinants which are then amenable for
the numerical method developed in [10]. However, since we need the values of the
generating function fl(r) for real r > 0 only, there is a much more efficient option,
which comes from yet another connection to random matrix theory.

To establish this connection we first note that an exponentially generating function
f (r) of a sequence of probability distributions has a probabilistic meaning if multi-
plied by e−r : a process called Poissonization. Namely, if the draws from the different
permutation groups are independent and if we take Nr ∈ N0 := {0, 1, 2, 3, . . .} to be

5 A generalization of Stirling’s classical formula, indeed: for the H -admissible function f (z) = ez , cf.
Theorem 2.1 Criterion II.g, we have an = 1/n!, b(r) = a(r) = r , rn = n and (4) specifies to

1

n! = en

nn
√
2πn

(1 + o(1)) (n → ∞).

As in Table 1, the error is already below 1% for n as small as n = 20.
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Fig. 2 Display of the notable inaccuracy of the random matrix limit (3) for n = 1000 (see the contrast with
Fig. 1 for n = 105). The discrete distribution of Ln is shown near its mode vs. the randommatrix limit given
by the leading order terms in (9) and (42a) (solid red line). Left: CDF P(Ln ≤ l); right: PDF P(Ln = l).
The exact values of the distribution of Ln and their approximation by the Stirling-type formula (5) differ
just by additive errors of the order 10−4 (see Fig. 3), which is well below plotting accuracy (Color figure
online)
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Fig. 3 Maximumabsolute (i.e., additive) errors of various approximations to (left panel) the CDFP(Ln ≤ l)
and (right panel) the PDF P(Ln = l) in a double logarithmic scaling, based on tabulated exact values up
to n = 1000, cf. Sect. 3.2; solid lines are fits of the form c1n

−α1 + c2n
−α2 + c3n

−α3 (CDF) and
n−1/6 · (c1n−α1 + c2n

−α2 + c3n
−α3 ) (PDF) to the points in display. Red +: error of leading order terms

(random matrix limit) in (9), (42a); α = ( 13 , 2
3 , 1). Green ◦: error of expansions (9), (42a) truncated after

the first finite size correction term; α = ( 23 , 1, 4
3 ), where F2,1 has been approximated as in Fig. 4. Blue •:

error of the Stirling-type formula (5); α = ( 23 , 1, 4
3 ) (Color figure online)

a further independent random variable with Poisson distribution of intensity r ≥ 0,
we see that

P(LNr ≤ l) =
∞∑

n=0

e−r rn

n! P(Ln ≤ l) = e−r fl(r) (6)

is, for fixed r ≥ 0, the cumulative probability distribution of the composite discrete
random variable LNr . On the other hand, for fixed l ∈ N, also e−r fl(r) turns out to be
a probability distribution w.r.t. the continuous variable r ≥ 0: specifically, in terms of
precisely the Toeplitz determinant (2), Forrester and Hughes [26, Eq. (3.33)] arrived
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in 1994 at the representation

E (hard)
2 (0; [0, 4r ], l) = e−r fl(r). (7)

Here, E (hard)
2 (0; [0, t], l) denotes the probability that, in the hard-edge scaling limit

of the Laguerre unitary ensemble (LUE) with parameter l, the smallest eigenvalue is
bounded from below by t ≥ 0. Now, the point here is that this distribution can be
evaluated numerically, stable and accurate with a complexity that is largely indepen-
dent of l, based on two alternative representations: either in terms of the Bessel kernel
determinant [23] or in terms of the Jimbo–Miwa–Okamoto σ -form of the Painlevé-
III transcendent [52]; see [9] for details. We will show in Sect. 3 that the auxiliary
functions al(r) and bl(r) fit into both frameworks, too.
Finite Size Corrections to the RandomMatrix Limit In a double logarithmic scal-
ing, a plot of the additive errors (taking the maximum w.r.t. l ∈ {1, 2, . . . , n}) in
approximating the distribution P(Ln ≤ l) by either the random matrix limit (3) or by
the Stirling-type formula (5) exhibits nearly straight lines; see Fig. 3 for n between 10
and 1000. Fitting the data in display to a model of the form c1n−α1 +c2n−α2 +c3n−α3

with simple triples α = (α1, α2, α3) of rationals strongly suggests that, uniformly in
l ∈ {1, 2, . . . , n} as n → ∞,

P(Ln ≤ l) = F2

(
l − 2

√
n

n1/6

)
+ O(n−1/3), (8a)

P(Ln ≤ l) = n! · fl(rl,n)

rnl,n
√
2π bl(rl,n)

+ O(n−2/3). (8b)

The approximation order (and the size of the implied constant) in (8b) is much better
than the one in (8a) so that the Stirling-type formula can be used to reveal the structure
of the O(n−1/3) term in the random matrix limit. In fact, as the error plot in Fig. 3
suggests and we will more carefully argue in Sect. 4.1, this can even be iterated yet
another step and we are led to the specific conjecture6

P(Ln ≤ l) = F2(tl)+n−1/3F2,1(tl)+n−2/3F2,2(tl)+O(n−1), tl := l − 2
√
n

n1/6
, (9)

as n → ∞, uniformly in l ∈ N. Compelling evidence for the existence of the functions
F2,1 and F2,2 is given in the left panels of Figs. 4 and 6.7

6 Note that l ∈ N is always a discrete variable in this paper, so there is no need for taking integer parts here.
7 Based on Monte Carlo simulations, Forrester and Mays [27, Eq. (1.10) and Fig. 7] were recently also led
to conjecture an expansion of the form

P(Ln ≤ l) = F2(tl ) + n−1/3F2,1(tl ) + · · · .

However, the substantially larger errors of Monte Carlo simulations as compared to the Stirling-type for-
mula (5) would inhibit them from getting, in reasonable time, much evidence about the next finite size
correction term.
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Fig. 4 Rescaled differences between the distributions of Ln and their expansions truncated after the leading
order term (i.e., the randommatrix limit)—see (9) for the CDF resp. (42a) for the PDF; data points (to avoid
clutter just every 5th is displayed) have been calculated using the Stirling-type formula (5) for n = 106

(red +), n = 108 (green ◦), n = 1010 (blue •). Left: CDF errors rescaled by n1/3, horizontal axis is
t = (l − 2

√
n)/n1/6, cf. [27, Fig. 7] for a similar figure with data from Monte Carlo simulations for

n = 2 × 104 and n = 105. The solid line is a polynomial F̃2,1(t) of degree 64 fitted to the 836 data points
for n = 1010 with −8 ≤ t ≤ 10; it approximates F2,1(t) in that interval. Right: PDF errors rescaled by

n1/2, horizontal axis is t = (l − 1
2 − 2

√
n)/n1/6. The solid line displays the function F̃ ′

2,1(t) + F ′′′
2 (t)/24

as an approximation of F ′
2,1(t) + F ′′′

2 (t)/24, with the polynomial F̃2,1(t) taken from the left panel. The

dotted line shows the term F̃ ′
2,1(t) only (Color figure online)

We note that a corresponding expansion8 for the Poissonization (6) of the length
distribution was studied by Baik and Jenkins [6, Eq. (25)] (using the machinery of
Riemann–Hilbert problems up to an error of order O(r−1/2)) and by Forrester and
Mays [27, Eqs. (1.18), (2.29)] (usingFredholmdeterminants),whoobtained the expan-
sion, as r → ∞ for bounded t∗l :

P(LNr ≤ l) = F2(t
∗
l ) + r−1/3F∗

2,1(t
∗
l ) + O(r−2/3), t∗l := l − 2

√
r

r1/6
, (10a)

with the explicit functional form (identified by means of Painlevé representations)

F∗
2,1(t) = − 1

10

(
F ′′
2 (t) + t2

6
F ′
2(t)

)
. (10b)

Though (10a) adds to the plausibility of the expansion (9), the de-Poissonization
lemma of Johansson [35, Lemma 2.5] and its commonly used variants (see [4, 5, 44])
would not even allow us to deduce from (10) the existence of the term F2,1(t), let
alone to obtain its functional form.

8 Expansions of probability distributions are sometimes called Edgeworth expansions in reference to the
classical one for the central limit theorem. In random matrix theory a variety of such expansions have been
studied: e.g., for the soft-edge scaling limits of GUE/LUE [16] andGOE/GSE [17], for the hard-edge scaling
limit of LUE [12] and LβE [28], for the bulk scaling limit of CUE/COE/CSE [14]. For the hard-to-soft
edge transition limit of LUE, see the expansion (10) and its discussion.
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Remark (added in proof) On the other hand, by inserting the Poissonized expansion
(10) (and the induced expansions of the quantities b(r) and rl,n) into the Stirling-type
formula (8b) with its conjectured error of order O(n−2/3), we are led to the conjecture

F2,1(t) = F∗
2,1(t) − 1

2
F ′′
2 (t) = − 1

10

(
6F ′′

2 (t) + t2

6
F ′
2(t)

)
. (11)

This functional form is in perfect agreement with the data displayed in Fig. 4; see
Footnote 29 and Remark 4.4 for further numerical evidence. Details will be given in
a forthcoming paper of the author [13], where the expression (11) for F2,1(t) (as well
as one for F2,2(t)) is also obtained by a complex-analytic modification (related to
H -admissibility) of the de-Poissonization process.

We will argue in Sect. 4.3 that the expansion (9) of the length distribution allows
us to derive an expansion of the expected value of Ln , specifically

E(Ln) = 2
√
n + μ0n

1/6 + 1

2
+ μ1n

−1/6 + μ2n
−1/2 + O(n−5/6),

μ0 =
∫ ∞

−∞
t F ′

2(t) dt = −1.77108 68074 · · · ,

μ1 =
∫ ∞

−∞
t F ′

2,1(t) dt = 0.06583 238 · · · ,

μ2 =
∫ ∞

−∞
t F ′

2,2(t) dt = 0.26122 27 · · · . (12)

Similarly, we will derive in Sect. 4.4 an expansion of the variance of Ln of the form

Var(Ln) = ν0n
1/3 + ν1 + ν2n

−1/3 + O(n−2/3),

ν0 =
∫ ∞

−∞
t2F ′

2(t) dt − μ2
0 = 0.81319 47928 · · · ,

ν1 =
∫ ∞

−∞
t2F ′

2,1(t) dt + 1

12
− 2μ0μ1 = −1.20720 507 · · · ,

ν2 =
∫ ∞

−∞
t2F ′

2,2(t) dt − μ2
1 − 2μ0μ2 = 0.56715 6 · · · . (13)

The values of μ0 and ν0 are the known values of mean and variance of the Tracy–
Widom distribution F2, cf. [9, Table 10]. (The leading parts of (12) up to μ0n1/6 and
of (13) up to ν0n1/3 had been established previously by Baik, Deift and Johansson [4,
Thm. 1.2].)
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2 H-Admissibility of the Generating Function and Its Implications

2.1 H-Admissible Functions

For simplicity we restrict ourselves to entire functions. We refrain from displaying the
rather lengthy technical definition of H -admissibility,9 which is difficult to be verified
in practice and therefore seldom directly used. Instead, we start by collecting some
useful facts and criteria from Hayman’s original paper [33]:10

Theorem 2.1 (Hayman 1956) Let f (z) = ∑∞
n=0 anz

n and g(z) be entire functions
and let p(z) denote a polynomial with real coefficients.

I. If f is H-admissible, then:

a. f (r) > 0 for all sufficiently large r > 0, so that in particular the auxiliary
functions11

a(r) = r
d

dr
log f (r), b(r) = r

d

dr
a(r) (14)

are well defined there;
b. for r > 0 as in I.a there is log f (r) strictly convex in log r , a(r) strictly mono-

tonically increasing, and b(r) > 0 such that a(r), b(r) → ∞ as r → ∞; in
particular, for large integers n there is a unique rn > 0 that solves a(rn) = n, it
is rn → ∞ as n → ∞;

c. if the coefficients an of f are all positive, then I.b holds for all r > 0;
d. as r → ∞, uniformly in n ∈ N0,

anrn

f (r)
= 1√

2πb(r)

(
exp

(
− (n − a(r))2

2b(r)

)
+ o(1)

)
. (15)

II. If f and g are H-admissible, then:

e. f (z)g(z), e f (z) and f (z) + p(z) are H-admissible;
f. if the leading coefficient of p is positive, f (z)p(z) and p( f (z)) are H-admissible;
g. if the Taylor coefficients of ep(z) are eventually positive, ep(z) is H-admissible.

III. If f has genus zero12 with, for some δ > 0, at most finitely many zeros in the
sector | arg z| ≤ π

2 + δ and satisfies I.a such that b(r) → ∞ as r → ∞, then f is
H-admissible.

9 Since we consider entire functions only, H -admissibility is here understood to hold in all of C.
10 Interestingly, the powerful criterion in part III (which is [33, Thm. XI]) is missing from the otherwise
excellent expositions [22, 39, 55] of H -admissibility.
11 In terms of differential operators we have r d

dr = d
d log r .

12 By definition, an entire function f has genus zero if it is a polynomial or if it can be represented as a
convergent infinite product of the form

f (z) = czm
∞∏

n=1

(
1 − z

zn

)
(z ∈ C),

where c ∈ C is a constant, m ∈ N0 is the order of the zero at z = 0, and z1, z2, . . . is the sequence of the
nonzero zeros, where each one is listed as often as multiplicity requires.
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Fig. 5 Left: the auxiliary function a5(r) (blue solid line) associated with the generating function f5(z),
together with the asymptotics a5(r) = r + O(r6) as r → 0 (green dotted line) and a5(r) = 5r1/2 + O(1)
as r → ∞ (red dashed line). Right: Illustration of the approximation (15) of the Boltzmann probabilities
(blue bars) associated with the generating function f5(z) for intensity r5,15 ≈ 18.23, cf. the notation in
(5). The normal distribution (red solid line) has mean a5(r5,15) = 15 (cf. the left panel) and variance
b5(r5,15) ≈ 10.80 (Color figure online)

Obviously, the Stirling-type formula (4) is obtained from the approximation result
(15) by just inserting the particular choice r = rn .

Remark 2.1 We observe that, if an ≥ 0, Eq. (15) has an interesting probabilistic con-
tent:13 as a distribution in the discrete variable n ∈ N0, the Boltzmann14 probabilities
anrn/ f (r) associated with an H -admissible entire function f are, for large intensities
r > 0, approximately normal with mean a(r) and variance b(r); see the right panel of
Fig. 5 for an illustrative example using the generating function f5(z). The additional
freedom that is provided in the normal approximation (15) by the uniformity w.r.t. n
will be put to good use in Sect. 2.3.

The classification of entire functions (by quantities such as genus, order, type,
etc.) and their distribution of zeros is deeply related to the analysis of their essential
singularity at z = ∞. For the purposes of this paper, the following simple criterion
is actually all we need. The proof uses some theory of entire functions, which can be
found, e.g., in [37].

Lemma 2.1 Let f (z) be an entire function of exponential type with positive Maclaurin
coefficients. If there are constants c, τ, ν > 0 such that there holds, for the principal
branch of the power function and for each 0 < δ ≤ π

2 , the asymptotic expansion
15

D(z) := f (z2) = cz−νeτ z(1 + O(z−1)) (z → ∞, |arg z| ≤ π
2 − δ), (16)

13 Note that the particular case f (z) = ez (which is H -admissible by Theorem 2.1.II.g) specifies to
the well-known normal approximation of the Poisson distribution for large intensities—which is a simple
consequence of the central limit theorem if we observe that the sum of k independent Poisson random
variates of intensity ρ is one of intensity r = ρk.
14 We follow the terminology in the theory of Boltzmann samplers [20], a framework for the random gen-
eration of combinatorial structures. Note that mean and variance of the Boltzmann probabilities anrn/ f (r)
are exactly the auxiliary functions a(r) and b(r) as defined in (14), cf. [20, Prop. 2.1].
15 See Remark A.1 for the uniformity implied by the notation O(z−1) as z → ∞ while |arg z| ≤ π

2 − δ.
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then f is H-admissible. For r → ∞ the associated auxiliary functions a(r) and b(r)
satisfy

a(r) = τ

2
r1/2 − ν

2
+ O(r−1/2), b(r) = τ

4
r1/2 + O(r−1/2), (17)

and the solution rn of a(rn) = n satisfies

rn = 4n

τ 2
(n + ν) + O(1) (n → ∞). (18)

Proof The expansion (16) is equivalent to

f (z) = cz−ν/2eτ z1/2(1 + O(z−1/2)) (z → ∞, |arg z| ≤ π − 2δ), (19)

which readily implies:

• since δ > 0 is arbitrary, f has the Phragmén–Lindelöf indicator

lim supr→∞
log | f (reiθ )|

r1/2
= τ cos(θ/2) (−π < θ < π),

so that f has order 1
2 and type τ , hence genus zero;

• for sufficiently large R = Rδ > 0, there are no zeros z of f with

|z| ≥ R, |arg z| ≤ π − 2δ.

Since the Maclaurin coefficients of f are positive, we have f (r) > 0 for r > 0
and the auxiliary functions a(r), b(r) in (14) are well-defined for r > 0. In fact, both
functions can be analytically continued into the domain of uniformity of the expansion
(19) and by differentiating this expansion (which is, because of analyticity, legitimate
by a theorem of Ritt, cf. [41]) we obtain (17); this implies, in particular, b(r) → ∞
as r → ∞. Thus, all the assumptions of Theorem 2.1.III are satisfied and f is shown
to be H -admissible. ��

2.2 Singularity Analysis of the Generating Function at z = ∞

Establishing an expansion of the form (16) for Dl(z) = fl(z2) as given by (2), that is
to say, for the Toeplitz determinant

Dl(z) = l
det
j,k=1

I j−k(2z), (20)

suggests to start with the expansions (valid for all 0 < δ ≤ π
2 , see [41, p. 251])

Im(z) ∼ ez

(2π z)1/2

∞∑

n=0

(−1)n
An(m)

zn
(z → ∞, |arg z| ≤ π

2 − δ), (21a)
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An(m) = (4m2 − 12)(4m2 − 32) · · · (4m2 − (2n − 1)2)

n! 8n . (21b)

This does not yield (16) at once, as there could be, however unlikely it would be,
eventually a catastrophic cancellation of all of the expansion termswhen being inserted
into the determinant expression defining Dl(z). For the specific cases l = 1, 2, . . . , 8 a
computer algebra system shows that exactly the first l − 1 terms of the expansion (21)
mutually cancel each other in forming the determinant, and we get by this approach16

the expansions

D1(z) = e2z

2π1/2z1/2
(1 + O(z−1)), D2(z) = e4z

8π z2
(1 + O(z−1)),

D3(z) = e6z

32π3/2z9/2
(1 + O(z−1)), D4(z) = 3e8z

256π2z8
(1 + O(z−1)),

D5(z) = 9e10z

1024π5/2z25/2
(1 + O(z−1)), D6(z) = 135e12z

8192π3z18
(1 + O(z−1)),

D7(z) = 6075e14z

65536π7/2z49/2
(1 + O(z−1)), D8(z) = 1913625e16z

1048576π4z32
(1 + O(z−1)).

All of them, inherited from (21), are valid as z → ∞ while |arg z| ≤ π
2 − δ with the

uniformity content implied by the symbol O(z−1). From these instances, in view of
(21) and the multilinearity of the determinant, we guess that

Dl(z) = cl
e2lz

(4π z)l/2(2z)l(l−1)/2
(1 + O(z−1)) (z → ∞, |arg z| ≤ π

2 − δ)

and observe

c1, c2, c3, c4, c5, c6, c7, c8, . . . = 1, 1, 2, 12, 288, 34560, 24883200, 125411328000, . . . .

Consulting the OEIS17 (On-Line Encyclopedia of Integer Sequences) suggests the
coefficients to be generally of the form

cl = 0! · 1! · 2! · · · (l − 1)! .

Though this is very likely to hold for all l ∈ N—a fact that would at once yield the
H -admissibility of all the generating function fl by Lemma 2.1—a proof seems to be
elusive along these lines, but see Remark 2.3 for a remedy.

16 Odlyzko [39, Ex. 10.9] reports that he and Wilf had used this approach, before 1995, for small l in
the framework of the method of “subtraction of singularities” in asymptotic enumeration. He states the
expansions for D4(z) and D5(z), cf. [39, Eqs. (10.30)/(10.39)], with a misrepresented constant factor in
D5(z), though. No attempt, however, was made back then to guess the general form.
17 https://oeis.org/A000178
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Inspired by the fact that the one-dimensional Laplace’s method easily gives the
leading order term in (21) when applied to the Fourier representation

Im(2z) = 1

2π

∫ π

−π

e2z cos θe−imθ dθ (z ∈ C,m ∈ Z), (22)

we represent the Toeplitz determinant Dl(z) in terms of a multidimensional integral
and study the limit z → ∞ by the multidimensional Laplace method discussed in the
Appendix. In fact, (22) shows that the symbol of the Toeplitz determinant Dl(z) is
exp(2z cos θ) and a classical formula of Szegő’s [50, p. 493] from 1915, thus gives,
without further calculation, the integral representation18

Dl(z) = 1

(2π)l l!
∫ π

−π

· · ·
∫ π

−π

e2z
∑l

j=1 cos θ j · ∣∣�(eiθ1 , . . . , eiθl )
∣∣2 dθ1 · · · dθl , (23)

where

�(w1, . . . , wl) :=
∏

j>k

(w j − wk)

denotes the Vandermonde determinant of the complex numbers w1, . . . , wl .

Remark 2.2 By Weyl’s integration formula on the unitary group U (l), cf. [46,
Eq. 1.5.89], the integral (23) can be written as

Dn(z) = EU∈U (l)e
z tr (U+U∗),

where the expectation E is taken with respect to the Haar measure. Without any
reference to (2), this form was derived in 1998 by Rains [42, Cor. 4.1] directly from
the identity

P(Ln ≤ l) = EU∈U (l)(| tr U |2n),

which he had obtained most elegantly from the representation theory of the symmetric
group.

We are now able to prove our main theorem.

Theorem 2.2 For each 0 < δ ≤ π/2 and l ∈ N, there holds the asymptotic expansion

Dl(z) = fl(z
2) = 0! · 1! · 2! · · · (l − 1)! · e2lz

(2π)l/2(2z)l2/2
(1 + O(z−1))

(z → ∞, |arg z| ≤ π
2 − δ).

18 This induces, see (7), an integral representation of the distribution E (hard)
2 (0; [0, s], l) which has been

derived in 1994 by Forrester [24] using generalized hypergeometric functions defined in terms of Jack
polynomials.
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Thus, by Lemma 2.1, the generating functions fl(z) are H-admissible and their aux-
iliary functions satisfy, as r → ∞,

al(r) = lr1/2 − 1
4 l

2 + O(r−1/2), bl(r) = 1
2 lr

1/2 + O(r−1/2). (24)

Proof We write (23) in the form

e−lz Dl (z/2) = 1

(2π)l l!
∫ π

−π

· · ·
∫ π

−π

e−z
∑l

j=1(1−cos θ j ) · ∣∣�(eiθ1 , . . . , eiθl )
∣∣2 dθ1 · · · dθl .

The phase function of this multidimensional integrand, that is to say

S(θ1, . . . , θl) :=
l∑

j=1

(1 − cos θ j ),

takes it minimum S(θ∗) = 0 at θ∗ = 0 with the expansion S(θ1, . . . , θl) = 1
2θ

T θ +
O(|θ |4) as θ → 0, where | · | denotes Euclidean length. Likewise we get for the
non-exponential factor19

∣∣�(eiθ1 , . . . , eiθl )
∣∣2 =

∏

j>k

|eiθ j − eiθ j |2 =
∏

j>k

∣∣∣iθ j − iθ j + O(|θ |2)
∣∣∣
2

= �(θ1, . . . , θl)
2 + O(|θ |l(l−1)+1) (θ → 0),

where the degree of the homogeneous polynomial �(θ1, . . . , θl)
2 is l(l − 1).

Therefore, by the multidimensional Laplace method as given in Corollary A.1 (see
also formula (54) following it) we obtain immediately

e−lz Dl(z/2) = cl
(2π)l/2z−

l+l(l−1)
2

(2π)l
(1 + O(z−1)) (z → ∞, |arg z| ≤ π

2 − δ)

with

cl := 1

l!
1

(2π)l/2

∫

Rl
e−θT θ/2 · ∣∣�(θ1, . . . , θl)

∣∣2 dθ = 0! · 1! · 2! · · · (l − 1)!, (25)

where the evaluation of this multiple integral is well-known in random matrix theory,
e.g., as a consequence of Selberg’s integral formula, cf. [2, Eq. (2.5.11)]. ��
19 This factor is zero at θ∗ = 0, so that Hsu’s variant (48) of Laplace’s method, which is the one pre-
dominantly found in the literature, does not yield the leading term of Dl (z). That we have to expand the
non-exponential factor up to degree l(l − 1) for the first nonzero contribution to show up, corresponds to
the mutual cancellation of the leading terms of (21) when being inserted into the Toeplitz determinant that
defines Dl (z).
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Remark 2.3 By (7), Theorem 2.2 implies

E (hard)
2 (0; [0, s], l) = 0! · 1! · 2! · · · (l − 1)!

(2π)l/2
· s−l2/4e−s/4+ls1/2 (1 + O(s−1/2)) (s → ∞),

an asymptotics first rigorously proven, using Riemann–Hilbert problemmachinery, by
Deift, Krasovsky and Vasilevska [19] in 2010. Besides that our proof is much simpler,
their result, which is for real s > 0 only, would by itself not suffice to establish the
H -admissibility of the generating function fl(z); one would have to complement it
with the arguments given above for expanding the Toeplitz determinant (20) based on
the expansions (21) of the modified Bessel functions. However, their result is more
general in another respect: it covers parameters α ∈ C of the LUE with �α > −1
instead of just l ∈ N; the superfactorial factor 0! · 1! · 2! · · · (l − 1)! is then to be
replaced by G(1 + α), where G(z) is the Barnes G-function.20

We complement the large r expansion (24) of the auxiliary functions with their
expansions as r → 0+, which are simple consequences of elementary combinatorics.

Lemma 2.2 The auxiliary functions of the generating function fl satisfy, as r → 0+,

al(r) = r − rl+1

l! · (l + 1)! + O(rl+2), bl(r) = r − rl+1

l! · l! + O(rl+2). (26)

Proof Because of Ln ≤ n and since there is just one permutation σ with Ln = n, we
get

P(Ln ≤ l) =
{
1 n ≤ l,

1 − 1
(l+1)! n = l + 1.

This implies, by truncating the power series of fl at order l + 1,

fl(z) = 1 + z + z2

2! + · · · + zl

l! + 1 − 1
(l+1)!
l! zl+1 + O(zl+2)

= ez − zl+1

((l + 1)!)2 + O(zl+2).

Logarithmic differentiation of the power series thus yields, as z → ∞,

z
f ′(z)
f (z)

= z − zl+1

l!(l + 1)! + O(zl+2), z
d

dz

(
z
f ′(z)
f (z)

)
= z − zl+1

(l!)2 + O(zl+2),

and the results follow from specializing to z = r > 0. ��
20 For real α > −1, Tracy and Widom [52] had conjectured this asymptotics in 1994 based on a guess of
the connection formula (33) for the Painlevé transcendent (32) and a numerical exploration of the constant
factor. In the same year Forrester [24] confirmed this to be true for α ∈ N by sketching an argument that,
basically, uses the idea underlying the multidimensional Laplace method in the proof of Theorem 2.2. So,
Corollary A.1 can be used to spell out the details there, and for the generalization to β-ensembles sketched
in [25, p. 608].
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The left panel of Fig. 5 visualizes the expansions (24) and (26) fora5(r). Apparently,
as a function of log r , the auxiliary log al(r) interpolates monotonically, concavely,
and from below between the following two extremal regimes:

• log r as r → 0+, which reflects, by the proof of Lemma 2.2, the regime l ≥ n, and
• 1

2 log r + log l as r → ∞, which reflects the regime l 	 n1/4 (see Sect. 2.3).

It is this seamless interpolation between the two regimes l ≥ n and l 	 n1/4 that helps
to understand the observed uniformity of the Stirling-type formula w.r.t. l, cf. (8b).

2.3 A New Proof of Regev’s Asymptotic Formula for Fixed l

A simple closed form expression in terms of n and l is obtained by studying the
asymptotics, as n → ∞ for fixed l, of the Stirling-type formula (5) itself—or even
easier yet, because of its added flexibility, of Hayman’s normal approximation (15)
for a suitable choice of r . As tempting as it might appear, however, this stacking of
asymptotics leads, first, to a considerable loss of approximation power for small n,
cf. Table 2, and, second, to a lack of uniformity w.r.t. l since the result is effectively
conditioned to the constraint l 	 n1/4.

To avoid notational clutter, we suppress the index l from the generating function
fl , its auxiliaries al , bl and from the radius rl,n . Solving a(rn) = n yields, by (18), the
expansion

rn = n2

l2
+ n

2
+ O(1) (n → ∞); (27)

which suggests to plug its leading order term r∗
n := n2/l2 into (15). Theorem 2.2

gives, as n → ∞,

f (r∗
n ) = 0! · 1! · 2! · · · (l − 1)!

(2π)l/22l2/2
· e2n

(
l

n

)l2/2

(1 + O(n−1)),

a(r∗
n ) = n − 1

4 l
2 + O(n−1), b(r∗

n ) = 1
2n + O(n−1).

The Gaussian term in (15) has thus the expansion

exp

(
− (n − a(r∗

n ))2

2b(r∗
n )

)
= e−l4/16n(1 + O(n−2)

) = 1 − l4

16n
+ O(n−2), (28)

which indicates that we can expect r∗
n to deliver a quality of approximation comparable

to rn (which corresponds to using the Stirling-type formula) only if l 	 n1/4; see
Table 2 for an illustrative example. Altogether Hayman’s normal approximation (15)
gives, choosing r = r∗

n ,

#{σ : Ln(σ ) ≤ l} = n! · P(Ln ≤ l) = 0! · 1! · 2! · · · (l − 1)!
(2π)l/22l2/2

· (n!)2 ( e
n

)2n
l2n+l2/2

√
π n(l2+1)/2

(1 + o(1))
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as n → ∞. Wrapping up by using Stirling’s formula in the form

(n!)2
( e
n

)2n = 2πn (1 + O(n−1))

we have thus given a new proof of Regev’s formula [43, Eq. (4.5.2)]:

#{σ : Ln(σ ) ≤ l} = 0! · 1! · 2! · · · (l − 1)! · l2n+l2/2

(2π)(l−1)/2(2n)(l
2−1)/2

(1 + o(1)) (n → ∞). (29)

Remark 2.4 The fixed l asymptotics (29) was first proved by Regev [43] in 1981,
cf. [48, Thm. 7]. His delicate and rather long21 proof proceeds, first, by identifying
the leading contributions to the finite sum (1) using Stirling’s formula, and then,
after trading exponentially decaying tails (the basic idea of Laplace’s method), by
approximating the sum by a multidimensional integral which, finally, leads to the
evaluation of Selberg’s integral (25).

3 Numerical Evaluation of the Generating Function and Its Auxiliaries

The numerical evaluation of the Stirling-type formula (5) requires the evaluation of
the generating function fl(r) and its auxiliaries al(r), bl(r) for real r > 0. This will
be based on the representation (7). That is to say, by writing

gl(s) := E (hard)
2 (0; [0, s], l), vl(s) := −s

d

ds
log gl(s), ul(s) := sv′

l(s),

(30a)
for the functions from random matrix theory, we obtain

fl(r) = er gl(4r), al(r) = r − vl(4r), bl(r) = r − ul(4r). (30b)

As is common in the discussion of the LUE, we generalize this by replacing l ∈ N

with a real parameter α > −1. Dropping the index altogether we write, briefly, just
g(s), v(s), and u(s).

21 Though Regev studies, with a real parameter β > 0, the more general combinatorial sums

S(β)
l (n) :=

∑

λ �n : lλ≤l

dβ
λ ,

this generality adds only marginally to the complexity of his proof. In its final step he refers to the same
instance of Selberg’s integral, cf. [2, Eq. (2.5.11)], that we have used to obtain (25) in the specific case
β = 2.
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3.1 Evaluation in Terms of�-Painlevé-III

The work of Tracy and Widom [52] shows

g(s) = exp

(
−

∫ s

0
v(x)

dx

x

)
(s ≥ 0),

where v(s) satisfies a Jimbo–Miwa–Okamoto σ -form of the Painlevé-III equation
(related to the Hamiltonian formulation PIII′ in the work of Okamoto; cf. [25, §8.2]),
i.e., the nonlinear second-order differential equation

(xv′′)2 − (αv′)2 + v′(v − xv′)(4v′ − 1) = 0 (x > 0), (31)

subject to the following initial condition, which is consistent with (26) for α = l ∈ N:

v(x) = 1


(α + 1)
(α + 2)

( x
4

)α+1
(1 + O(x)) (x → 0+). (32)

A numerical integration of the initial value problem gives approximations to v(s) and
v′(s), thus also to u(s) = sv′(s). As explained in [9], a direct numerical integration has
stability issues as the solution v is a separatrix solution of the σ -Painlevé-III equation.
It is therefore advisable to solve the differential equation numerically as an asymptotic
boundary problem by supplementing the initial condition by its connection formula,
that is the corresponding expansion for x → ∞:

v(x) = x

4
− α

2
x1/2 + α2

4
+ α

16
x−1/2 + α2

16
x−1 + O(x−3/2) (x → ∞). (33)

Note the consistency with (24) for α = l ∈ N; for general α > −1 this connection
formula was conjectured by Tracy andWidom [52, Eq. (3.1)], a rigorous proof is given
in [19], cf. Remark 2.3.

3.2 Compiling a Table of Exact Rational Values

As observed recently by Forrester and Mays [27, Sec. 4.2], substituting a truncated
power series expansion of v(x) into the σ -Painlevé-III equation (31) is a comparatively
cost-efficient way22 to compile a table of the exact rational values of the distribution
P(Ln ≤ l); they report to have done so up to n = 700.

We note that instead of dealing directly with (31) in this fashion, it is of advantage
to use an equivalent third-order differential equation belonging to the Chazy-I class,23

22 There are holonomic recurrences satisfied by n! ·P(Ln ≤ l)w.r.t. n; cf. the explicit formulae for l = 2, 3
in [30, p. 281], for l = 4 in [48, p. 556] (the cases l = 3, 5 are misprinted there), for l = 5 in [7, p. 468];
we have used the one for l = 5 in Table 2. For l > 5 the polynomial coefficients quickly become unwieldy,
though.
23 In fact, this equation is obtained as the particular choice c1 = c2 = c4 = c5 = c8 = c9 = 0, c3 = −1,
c6 = 1/4, c7 = −l2/4, f (x) = x in the full Chazy-I equation of the form discussed in [18, Eq. (A3)].
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namely

v′′′
l + 1

x
v′′
l − 6

x
v′2
l + 4

x2
vlv

′
l + x − l2

x2
v′
l − 1

2x2
vl = 0, (34)

which is obtained from differentiating (31) w.r.t. x and dividing the result by 2x2v′′2
l .

Note that the Chazy-I equation (34) is linear in the highest order derivative of vl and
quadratic in the lower orders, whereas the σ -Painlevé-III equation (31) is quadratic in
the highest order derivative and cubic in the lower orders. Therefore, substituting the
expansion

vl(x) =
∞∑

n=l+1

anx
n (35a)

into the Chazy-I equation (34) yields a much simpler recursive formula for the an ,
n = l + 1, . . . :

(n+1)(n2−l2)an+1+(n− 1
2 )an −2

n−l∑

m=l+1

mam ·(3(n−m)+1)an+1−m = 0, (35b)

uniquely determining the coefficients an from the initial value (32), that is, from

al+1 = 1

4l+1l!(l + 1)! . (35c)

It is now a simple matter of truncated power series calculations in a modern computer
algebra system to expand the generating function itself,

fl(r) = exp

(
r −

∫ 4r

0
vl(x)

dx

x

)
= exp

(
r −

K∑

n=l+1

4nan
n

rn + O(r K+1)

)
.

Avoiding the overhead of reducing fractions and computing common denomi-
nators in exact rational arithmetic, we have used significance arithmetic with
�2.5 log10(1000!)� = 6420 digits and subsequent rational reconstructions to com-
pile a table24 of P(Ln = l), 1 ≤ l ≤ n, up to n = 1000 (in just about 1.5 hours CPU
time using one core of a 3GHz Xeon server). This table is used in Figs. 3 and 6 as
well as Sect. 4.3 (note that Table 1 could have been compiled with the values for up
to n = 36 that were tabulated in the work of Baer and Brock [3]).

24 The table is available for download at https://box-m3.ma.tum.de/f/7c4f8cb22f5d425f8cff/. The tabulated
valueswere checked, for l = 1, . . . , 5, against the recurrences cited inFootnote 22 and, forn−l = 0, . . . , 20,
against an explicit formula by Goulden [31, Cor. 3.4(a)]—note the restriction on l for it to hold true:

P(Ln = l) =
∑

i, j ,k≥0,i+ j+k≤n−l

(−1)i+ j n!
i ! j !k!(n − i − k)!(n − j − k)! (l ≥ (n − 1)/2).
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3.3 Evaluation in Terms of Bessel Kernel Determinants and Traces

In [10] the author has shown that Nyström’s method for integral equations can be
generalized to the numerical evaluation of Fredholm determinants. Thus, as advo-
cated in [9], there is a stable and efficient numerical method to directly address the
representation

g(s) = det(I − K )|L2(0,s), (36a)

derived by Forrester [23] in 1993, in terms of the Bessel kernel

K (x, y) := Jα(
√
x)

√
y Jα−1(

√
y) − √

x Jα−1(
√
x)Jα(

√
y)

2(x − y)
. (36b)

This numerical method was extended in [14, Appendix] to the evaluation of general
terms involving determinants, traces, and resolvents of integral operators. The evalu-
ation of the auxiliary functions v(s), u(s), as defined in (30), is thus facilitated by the
following theorem.

Theorem 3.1 Let K (x, y) be a smooth kernel that induces an integral operator K on
L2(0, s) for all s > 0 and define the derived kernel as

K ′(x, y) := K (x, y) + xKx (x, y) + yKy(x, y).

Then, if we assume g(s) = det(I − K )|L2(0,s) > 0 for all s > 0, there holds

v(s) = −s
d

ds
log g(s) = tr

(
(I − K )−1K ′)|L2(0,s),

u(s) = sv′(s) = tr
(
(I − K )−1K ′′ + ((I − K )−1K ′)2

)|L2(0,s).

Proof Rescaling integrals w.r.t. the measure dμ(y) = K (x, y) dy from being taken
over the interval (0, s) to (0, 1) induces a transformation of the kernel K (x, y) accord-
ing to

Ks(x, y) = sK (sx, sy).

This way we can keep the space L2(0, 1) fixed while the kernels become dependent
on the parameter s > 0; in particular, then, there is no need to distinguish in notation
between kernels and their induced integral operators. Now, if we denote differentiation
w.r.t. to the parameter s by a dot, we get

K̇s(x, y) = K ′(sx, sy) = s−1K ′
s(x, y),

and thus, by [14, Lemma 1], the logarithmic derivative

g′(s)/g(s) = − tr
(
(I − Ks)

−1 K̇s
)|L2(0,1) = −s−1 tr

(
(I − K )−1K ′)|L2(0,s),

123



Foundations of Computational Mathematics (2024) 24:915–953 937

which proves the asserted formula for v(s) = −sg′(s)/g(s). Since, cf. [52, Eq. (2.4)],

d

ds
(I − Ks)

−1 = (I − Ks)
−1 K̇s(I − Ks)

−1,

we get by the linearity of the trace

u(s) = sv′(s) = tr
(
(I − Ks)

−1K ′′
s + ((I − Ks)

−1K ′
s)

2)|L2(0,1),

which finishes the proof after a back-transformation to L2(0, s). ��
For the Bessel kernel (36b) at hand, we get the derived kernels

K ′(x, y) = 1

4
Jα(

√
x)Jα(

√
y),

K ′′(x, y) = (1 − α)K ′(x, y) + 1

8

(
Jα(

√
x)

√
y Jα−1(

√
y) + √

x Jα−1(
√
x)Jα(

√
y)

)
.

We observe that both, K ′ and K ′′, induce integral operators of finite rank, namely

K ′ = φ ⊗ φ, K ′′ = (1 − α) φ ⊗ φ + 1

2
(φ ⊗ ψ + ψ ⊗ φ),

where we have put

φ(x) := 1

2
Jα(

√
x), ψ(x) := 1

2

√
x Jα−1(

√
x).

Hence, the results of Theorem 3.1 simplify considerably: first, we obtain25

v(s) = tr
(
(I − K )−1φ ⊗ φ

)|L2(0,s) = 〈(I − K )−1φ, φ〉L2(0,s); (36c)

next, by observing

K ′(I − K )−1K ′ = 〈(I − K )−1φ, φ〉L2(0,s) · φ ⊗ φ = v(s) · K ′,

we get, because of symmetry and linearity,

u(s) = (1 − α)v(s) + 〈(I − K )−1φ,ψ〉L2(0,s) + v(s)2. (36d)

Both formulae for the auxiliary functions u and v can now be easily implemented
in the author’s MATLAB toolbox for Fredholm determinants (which provides also
commands to evaluate traces and inner products of general operator terms includ-
ing resolvents; cf. [9, 10] and [14, Appendix]). Since all the numerical evaluations
come with an estimate of the (absolute) error there, the implied approximation errors

25 Correcting an obvious typo, (36c) is precisely [12, Eq. (6)]. As it was noted there, (36c) can also be
found, though not explicitly, in [52]. On the other hand, formula (36d) seems to be new.
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in computing the generating function fl(r) and its auxiliaries al(r) and bl(r) can
straightforwardly be assessed.

Remark 3.1 A result similar to Theorem 3.1 holds for smooth integral kernels K (x, y),
with sufficient decay at ∞, which induce integral operators K on L2(s,∞) for all
s ∈ R. Here we define the derived kernel as

K ′(x, y) := Kx (x, y) + Ky(x, y)

and get, if g(s) = det(I − K )|L2(s,∞) > 0 for all s ∈ R, the logarithmic derivative

d

ds
log g(s) = − tr

(
(I − K )−1K ′)|L2(s,∞).

The proof goes by considering Ks(x, y) = K (s + x, s + y) and transforming (s,∞)

to (0,∞) by a shift. As an example, the Tracy–Widom distribution F2(s) used in (3)
is known to be given in terms of the Airy kernel determinant [23],

F2(s) = det(I − K )|L2(s,∞), K (x, y) = Ai(x)Ai′(y) − Ai′(x)Ai(y)
x − y

. (37a)

Here we have K ′(x, y) = −Ai(x)Ai(y), i.e., K ′ = −Ai⊗Ai, and thus

F ′
2(s) = −F2(s) · tr (

(I − K )−1K ′)|L2(s,∞) = F2(s) · 〈(I − K )−1 Ai,Ai 〉L2(s,∞).

(37b)
The last formula was used for the calculations shown in Table 3. In the same manner
we get

F ′′
2 (s) = 2F2(s) · 〈(I − K )−1 Ai,Ai′ 〉L2(s,∞), (37c)

F ′′′
2 (s) = 2F2(s) ·

(
〈(I − K )−1 Ai′,Ai′ 〉L2(s,∞) + 〈(I − K )−1 Ai,Ai′′ 〉L2(s,∞)

)
,

(37d)

as well as similar formulae for higher order derivatives of F2.26

3.4 Implementation Details

First, by uniqueness, solving al(r) = n for r = rl,n can easily be accomplished by an
iterative solver. In view of the left panel in Fig. 5 and the expansion (27) we take as
initial guess

r0 := max(n, (n/l)2 + n/2).

26 Though the inner products in (37b) and (37c) appear in the work of Tracy and Widom [52, Eq. (1.3)],
the formula for F ′′

2 (s) is not given there.
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Second, the numerical evaluation of the Stirling-type formula (5) for larger values of n
requires to avoid severe overflow of intermediate terms. Based on the representations
in (30), and by rearranging terms, we can write (5) equivalently as follows:27

P(Ln ≤ l) = τn · gl ·
exp

(
n

(vl

n
− log

(
1 + vl

n

)))

√
1 + vl − ul

n

(1 + o(1)) (n → ∞), (38)

where gl , vl and ul are evaluated at s = 4rl,n and there is

τn := n!√
2πn

( e
n

)n = 1 + n−1

12
+ n−2

288
− 139n−3

51840

− 571n−4

2488320
+ 163879n−5

209018880
+ O(n−6).

In IEEE hardware arithmetic we take the definition of τn until n = 100 and only
switch to the shown Stirling expansion for larger n—thus seamlessly providing full
accuracy.28 This allows us to approximate the PDF P(Ln = l) near its mode for up to
n = 1012 and larger. For accurate tails, such as in Table 2, we have to resort to higher
precision arithmetic, though.

4 First and Second Finite Size Corrections to the RandomMatrix Limit

4.1 The CDF of the Distribution of Ln

Based on data from Monte Carlo simulations, Forrester and Mays [27] have recently
initiated the study of finite size corrections to the random matrix limit (3), which is

P(Ln ≤ l) = F2(tl) + o(1), tl := l − 2
√
n

n1/6
, (39)

as n → ∞, uniformly in l ∈ N. We will refine their study by using the much more
accurate and efficient Stirling-type formula (5) instead. Looking at the error

δ0(n) := max
l∈{1,...,n}

∣∣P(Ln ≤ l) − F2(tl)
∣∣

27 We have to stabilize the numerical evaluation of the expression h − log(1+ h) for small h := vl/n ≈ 0.
This is done, first, by using h-log1p(h) and, second, by switching to a suitable Taylor expansion for
very small h.
28 In fact, nothing of substance would change if we just replaced τn by 1 since the thus committed error
would be in the same ballpark as the one of the Stirling-type formula (5) itself. We did not bother to do so,
though.
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Fig. 6 Rescaled differences between the distributions of Ln and their expansions truncated after the first
finite size correction term—see (9) for the CDF resp. (42a) for the PDF; the data points have been calculated
with the polynomial F̃2,1(t) from Fig. 4 for the exact values of the distribution for n = 250 (red+), n = 500
(green ◦), n = 1000 (blue •). Left: CDF errors rescaled by n2/3, horizontal axis is t = (l − 2

√
n)/n1/6.

The solid line is a polynomial F̃2,2(t) of degree 48 fitted to all the 152 data points with −7.5 ≤ t ≤ 9.5;
it approximates F2,2(t) in that interval. Right: PDF errors rescaled by n5/6, horizontal axis is t = (l −
1
2 − 2

√
n)/n1/6. The solid line displays F̃ ′

2,2(t) + F̃ ′′′
2,1(t)/24 + F(5)

2 (t)/1920 as an approximation of

F ′
2,2(t) + F ′′′

2,1(t)/24 + F(5)
2 (t)/1920, with the polynomial F̃2,2(t) taken from the left panel and F̃2,1(t)

as in Fig. 4. The dotted line displays the term F̃ ′
2,2(t) only (Color figure online)

for n up to 1000 (see the red crosses in the left panel of Fig. 3 in a double logarithmic
scaling) suggest that δ0(n) ≈ c1n−1/3 + c2n−2/3 and yields the conjecture

P(Ln ≤ l) = F2(tl) + n−1/3F2,1(tl) + O(n−2/3) (40)

for some function F2,1(t). Numerically, the conjecture has been convincingly checked
against the data obtained by the Stirling-type formula (5) for n = 106, n = 108, and
n = 1010; see the left panel of Fig. 4. We have fitted a polynomial F̃2,1(t) of degree
64 to the 836 data points obtained for n = 1010 in the interval −8 ≤ t ≤ 10, thus
approximating the putative function F2,1(t) there.

Remark 4.1 The error of approximating F2,1(t) by this procedure can be estimated
as follows. Extrapolating the errors displayed in the left panel of Fig. 3 shows
that the Stirling-type formula induces a perturbation of size ≈ (0.031n−2/3 +
0.058n−1)n1/3|n=1010 = 1.4 × 10−5. On the other hand, the finite size effect of the
next order term n−2/3F2,2(t), displayed in the left panel of Fig. 6, induces a pertur-
bation of size ≈ 0.25n−1/3|n=1010 = 1.2 · 10−4. Thus, altogether F̃2,1 approximates
F2,1 up to an error29 of the order 10−4.

If we iterate this approach yet another step, by looking at the error

δ1(n) := max
l∈{1,...,n}

∣∣P(Ln ≤ l) − F2(tl) − n−1/3 F̃2,1(tl)
∣∣

29 (added in proof) In fact, the conjectured analytic form (11) of F2,1(t) gives ‖F̃2,1 − F2,1‖∞ ≈ 1.1814 ·
10−4.

123



Foundations of Computational Mathematics (2024) 24:915–953 941

for n up to 1000, then a double logarithmic plot (the green circles in the left panel
of Fig. 3) suggests that δ1(n) ≈ c1n−2/3 + c2n−1. As stated in the introduction, this
yields the refinement (9) of conjecture (40), namely that there is further a function
F2,2(t) such that

P(Ln ≤ l) = F2(tl) + n−1/3F2,1(tl) + n−2/3F2,2(tl) + O(n−1) (n → ∞), (41)

uniformly in l ∈ N.

Remark 4.2 To validate conjecture (41) against numerical data, obtained by replacing
F2,1(t) by the approximation F̃2,1(t), we have to be careful with an effective choice
of n, though. On the one hand, as a perturbation of F2,2(t) the error of about 10−4

in F̃2,1, as estimated in Remark 4.1, would get amplified by n1/3. On the other hand,
an extrapolation of the errors displayed in the left panel of Fig. 3 shows that the
Stirling-type formulawould induce an additional perturbation of size≈ (0.031n−2/3+
0.058n−1)n2/3. The sweet spot of both perturbations combined is at n ≈ 1.4 × 104

with a minimum error of about 3.6 × 10−2. Thus, we better stay with the tabulated
exact values of the distribution of Ln up to n = 1000, which restricts the size of the
perturbation to just less than the order of n1/310−4|n=1000 = 10−3.

Thus, staying with the tabulated values of the distribution of Ln for n = 250,
n = 500, and n = 1000 we get a convincing picture; see the left panel of Fig. 6. We
have fitted a polynomial F̃2,2(t) of degree 48 to all of the 152 data points in the interval
−7.5 ≤ t ≤ 9.5, approximating the putative function F2,2(t) there.

4.2 The PDF of the Distribution of Ln

Ifwe apply the central differencing formula, for smooth functions F(x) and increments
h → 0, that is to say

F(x + h) − F(x) = hF ′(x + h/2) + h3

24
F ′′′(x + h/2)

+ h5

1920
F (5)(x + h/2) + O(h7),

with the increment h = n−1/6 to the conjectured expansion (41), now written in the
form

P(Ln = l) = P(Ln ≤ l) − P(Ln ≤ l − 1)

= (
F2(tl) − F2(tl−1)

) + n−1/3(F2,1(tl) − F2,1(tl−1)
)

+n−2/3(F2,2(tl) − F2,2(tl−1)
) + · · · ,

we get, assuming some uniformity, an induced expansion of the PDF:

P(Ln = l) = n−1/6F ′
2(t̂l) + n−1/2

(
F ′
2,1(t̂l) + 1

24
F ′′′
2 (t̂l )

)
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+n−5/6
(
F ′
2,2(t̂l) + 1

24
F ′′′
2,1(t̂l) + 1

1920
F (5)
2 (t̂l)

)
+ O(n−7/6) (n → ∞)

(42a)

uniformly in l ∈ N, where we have briefly written

t̂l := l − 1
2 − 2

√
n

n1/6
. (42b)

Note the shift by 1/2 in the numerator of t̂l as compared to tl (defined in (39)). There is
compelling numerical evidence for the expansion (42a); see the right panels of Figs. 4
and 6.

4.3 The ExpectedValue of Ln

By a shift and rescale, the expected value of the discrete random variable Ln can be
written in the form

E(Ln) =
n∑

l=1

l · P(Ln = l) = 2
√
n + 1

2
+ n1/6

n∑

l=1

t̂l · P(Ln = l).

If we write (42a), with obvious definitions of the functions G j (t), in the form

P(Ln = l) = n−1/6G0(t̂l) + n−1/2G1(t̂l) + n−5/6G2(t̂l) + O(n−7/6) (43)

we get the induced expansion

E(Ln) = 2
√
n + n1/6μ(n)

0 + 1

2
+ n−1/6μ

(n)
1 + n−1/2μ

(n)
2 + · · ·

μ
(n)
j := n−1/6

n∑

l=1

t̂l G j (t̂l).

Now, if we assume (a) that the decayG j (t) → 0 (and likewise for all the derivatives) is
exponentially fast as t → ±∞ (see Figs. 4 and 6) and (b) that the G j can be extended
analytically to a strip containing the real axis, we obtain

μ
(n)
j

.= n−1/6
∞∑

l=−∞
t̂l G j (t̂l)

.=
∫ ∞

−∞
t G j (t) dt =: μ j , (44)

where “
.=” denotes equality up to terms that are exponentially small for large n. Here, in

the first step the series was obtained by adding, under assumption (a), the exponentially
small tail, and in the next step we have identified the series as the trapezoidal rule with
step-size h = n−1/6—a quadrature rule known to converge, under assumption (b),
exponentially fast to the integral, cf. [53].
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Table 3 Exponentially fast
convergence of first (k = 1) and
second (k = 2) moments,

μ
(n)
0,k :=

n−1/6 ∑n
l=1 t̂

k
l F

′
2(t̂l ) →

μ
(∞)
0,k := ∫ ∞

−∞ tk F ′
2(t) dt

n μ
(n)
0,1 μ

(n)
0,2 μ

(n)
0,2 − (

μ
(n)
0,1

)2

6 −1.73195 96234 3.76769 77551 0.76801 36177

12 −1.77034 42726 3.94627 23262 0.81215 34824

24 −1.77108 66107 3.94994 20793 0.81319 42965

48 −1.77108 68074 3.94994 32722 0.81319 47928

.

.

.
.
.
.

.

.

.
.
.
.

∞ −1.77108 68074 3.94994 32722 0.81319 47928

Remark 4.3 For the function G0(t) = F ′
2(t), i.e., the density of the Tracy–Widom

distribution, the asserted exponentially fast convergence (44) can be checked against
numerical data which were obtained by applying the highly accurate numerical meth-
ods described in [9] to the representation (37b) of F ′

2(t); see Table 3.

We have thus derived from (41)—based on the assumptions of uniformity, expo-
nential decay, and analytic continuation of the functionsG j and their derivatives—the
following expansion which adds three more terms to the expansion given in [4,
Thm. 1.2]:

E(Ln) = 2
√
n + μ0n

1/6 + 1

2
+ μ1n

−1/6 + μ2n
−1/2 + O(n−5/6); (45)

where we have, with the numerical value of μ0 taken from [9, Table 10], cf. also
Table 3,

μ0 =
∫ ∞

−∞
t F ′

2(t) dt = −1.77108 68074 · · · ,

μ1 =
∫ ∞

−∞
t
(
F ′
2,1(t) + 1

24
F ′′′
2 (t)

)
dt =

∫ ∞

−∞
t F ′

2,1(t) dt,

μ2 =
∫ ∞

−∞
t
(
F ′
2,2(t) + 1

24
F ′′′
2,1(t) + 1

1920
F (5)
2 (t)

)
dt =

∫ ∞

−∞
t F ′

2,2(t) dt .

We note that the higher derivatives do not contribute to the integral values, as can be
shown using integration by parts and the assumed exponential decay to zero. Based
on the polynomial approximations displayed in Figs. 4 and 6 we get the numerical
estimates—comparing, in addition to n = 1010, with the analogous results for n = 109

and n = 1011:

μ1 ≈
∫ 10

−8
t F̃ ′

2,1(t) dt ≈ 0.0659, μ2 ≈
∫ 9.5

−7.5
t F̃ ′

2,2(t) dt ≈ 0.25. (46)
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Further evidence for the validity of the expansion (45) comes from looking at a least
squares fit of the form30 (where the upper bound k = 9 has been chosen as tomaximize
the number of matching digits for the two data sets below)

E(Ln) ≈ 2
√
n + 1

2
+

9∑

k=0

ckn
(1−2k)/6,

with E(Ln) obtained from the tabulated values of P(Ln = l) up to n = 1000. If we
do so in extended precision for two different data sets, first for n from 500 upwards
and next for n from 600 upwards, we obtain as digits that are matching in both cases

c0 = −1.77108 68074 · · · , c1 = 0.06583 238 · · · , c2 = 0.26122 27 · · · ,

c3 = −0.11938 4 · · · .

Here the value of c0 is in perfect agreement with the known value of μ0 and c1, c2 are
consistent with the inaccuracies of the estimates in (46), cf. Remarks 4.1/4.2. Hence,
the most accurate values that we can offer for μ1 and μ2 are those displayed in (12).

4.4 TheVariance of Ln

By a shift and rescale, the variance of Ln can we written as

Var(Ln) =
n∑

l=1

l2 · P(Ln = l) − E(Ln)
2 = n1/3

n∑

l=1

t̂2l · P(Ln = l)

−
(
E(Ln) − 2

√
n − 1

2

)2

.

By inserting the expansions (43) and (45), and by arguing as in (44), we get the
following expansion which adds two more terms to the leading order found in [4,
Thm. 1.2]:

Var(Ln) = ν0n
1/3 + ν1 + ν2n

−1/3 + O(n−2/3); (47)

30 Forrester and Mays [27, Sect. 4.4] discussed a least squares fit of the form

E(Ln) ≈ 2
√
n − 1.77108 68074 · n1/6 + ĉ1 + ĉ2n

−α,

where they let α = 1/6 compete with α = 1/3. Using exact values of E(Ln) for n from 10 up to 700, they
identified the exponent α = 1/3 to provide the better fit, with values ĉ1 = 0.507 and ĉ2 = 0.222. They
give reasons (different from ours) to expect ĉ1 = 0.507 to correspond to an exact constant term 1/2 in the
expansion of E(Ln). However, we can fully explain their result by just taking the least squares fit of their
ansatz to the relevant terms of the expansion (45), that is by fitting the simplified model

0.5 + 0.0658n−1/6 + 0.261n−1/2 − 0.119n−5/6 ≈ c̃1 + c̃2n
−α

for n = 10, . . . , 700.Unsurprisingly,α = 1/3 is the better choice overα = 1/6 here; andwe get c̃1 = 0.506
and c̃2 = 0.222, reproducing the values reported by them.
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where we have, with the numerical value of ν0 taken from [9, Table 10], cf. also
Table 3,31

ν0 =
∫ ∞

−∞
t2F ′

2(t) dt − μ2
0 = 0.81319 47928 · · · ,

ν1 =
∫ ∞

−∞
t2F ′

2,1(t) dt + 1

12
− 2μ0μ1, ν2 =

∫ ∞

−∞
t2F ′

2,2(t) dt − μ2
1 − 2μ0μ2.

By using the polynomial approximations F̃2,1 and F̃2,2 displayed in Figs. 4 and 6,
as well as the numerical values of μ0, μ1, μ2 from (12), we get the estimates ν1 ≈
−1.2070 and ν2 ≈ 0.57.

Once again, further evidence and increased numerical accuracy comes from a least
squares fit of the form32 (where the upper bound k = 8 has been chosen as tomaximize
the number of matching digits for the two data sets below)

Var(Ln) ≈
8∑

k=0

ckn
(1−k)/3,

with Var(Ln) obtained from the tabulated values of P(Ln = l) up to n = 1000. If we
do so in extended precision for two different data sets, first for n from 500 upwards
and then for n from 600 upwards, we obtain as digits that are matching in both cases

c0 = 0.81319 47928 · · · , c1 = −1.20720 507 · · · ,

c2 = 0.56715 6 · · · , c3 = 0.01669 · · · .

Here the value of c0 is in perfect agreement with the known value of ν0 and the values
for c1, c2 are consistent with the inaccuracies of the estimates for ν1 and ν2 shown
above, cf. Remarks 4.1/4.2. Hence, the most accurate values that we can offer for the
coefficients ν1 and ν2 are those displayed in (13).

Remark 4.4 (added in proof) The conjectured functional form (11) of F2,1(t) gives
numerical values of the coefficients μ1 and ν1 that agree with the values displayed in
(12) and (13) to all digits shown.
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31 Note that 1
24

∫ ∞
−∞ t2F ′′′

2 (t) dt = 2
24

∫ ∞
−∞ F ′

2(t) dt = 1
12 .

32 See [27, Eq. (4.19)] for a less accurate fit of the form Var(Ln) ≈ 0.81319 47928 · n1/3 + c̃1 + c̃2n
−1/3.
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A. Appendix: TheMultidimensional Laplace Method

The classical one-dimensional method of Laplace can be generalized to provide the
asymptotics, as z → ∞, of multidimensional integrals of the form

∫

�

e−zS(x) f (x) dx .

Here, � ⊂ R
n is a measurable set and f , S : � → R are subject to suitable assump-

tions. For instance, if we assume that f and S are sufficiently smooth and the phase
function S(x) takes a uniqueminimum at an interior point x∗ of�with det S′′(x∗) �= 0
then the standard result—going back to Hsu [34, Lemma 1]—states that for each
0 < δ ≤ π

2 as z → ∞
∫

�

e−zS(x) f (x) dx =
(
2π

z

)n/2 e−zS(x∗)

√
det S′′(x∗)

(
f (x∗) + O

(
z−1)) (|arg z| ≤ 1

2π − δ). (48)

Remark A.1 As is customary in asymptotic analysis in the complex plane, cf. [41, p. 7],
we understand this asymptotic expansion (and similar expansions with o- or O-terms)
to hold uniformly in {z ∈ C : |z| ≥ Rδ, | arg z| ≤ π

2 − δ} if Rδ > 0 has been chosen
sufficiently large.

If f (x∗) = 0, however, formula (48) fails to yield the precise leading order term of
the expansion. On the other hand, it is known that there holds, for sufficiently smooth
f and S, cf. [21, Eq. (1.27)], a general asymptotic expansion of the form

∫

�

e−zS(x) f (x) dx ∼ e−zS(x∗)z−n/2
∞∑

k=0

ckz
−k (z → ∞, |arg z| ≤ 1

2π − δ).

(49)
Still, it would be extremely awkward to determine the first nonzero coefficient from
the standard proof33 of (49), in which the ck depend on higher order derivatives of a
nonlinear transform obtained from the Morse lemma, deforming S(x) to a quadratic
form.

Building on a different technique introduced by Fulks and Sather [29], Kirwin
[36] succeeded in establishing formulae for the higher order coefficients in terms of
asymptotic expansions of f and S into homogeneous functions at x∗. However, these
authors consider only the case of real z → ∞, whereas we need uniformity, for

33 See, e.g., [8, Eq. (8.3.52)], [55, Thm. IX.3], [47, Thm. 15.2.5] for real z and [21, Eq. (1.26)] for complex
z.
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arbitrary small δ > 0, as z → ∞ with | arg z| ≤ π
2 − δ. Since the leading order term

of their expansions suffices for the purposes of Sect. 2, we will give a much simplified
version of their proof in this Appendix, explicitly tracing constants to establish the
required uniformity.

Notation and Assumptions

By a simple transformation (see the proof of Theorem 2.2) we can restrict ourselves
to

x∗ = 0, S(x∗) = 0.

Writing z = σ + iτ we have

0 < σ ≤ |z| ≤ σ csc δ (|arg z| ≤ 1
2π − δ). (50)

Let � ⊂ R
n we a measurable set with 0 as an interior point, that is, there is ε0 > 0

such that Bε(0) ⊂ � for all open balls of radius 0 < ε ≤ ε0 centered at 0. By denoting
| · | the Euclidean norm on Rn , we write Rn \ {0} � x = ρ · ξ in spherical coordinates
with ρ = |x | and ξ = x/ρ ∈ Sn−1. We assume that f , S : � → R are measurable
functions subject to the following conditions:

(1) S(x) is positively bounded away from zero on � \ Bε(0) for each ε > 0;
(2) there is a ν > 0 and a positive continuous function S0 : Sn−1 → R with

S(x) = ρνS0(ξ) + o(ρν) (ρ → 0),

uniformly in ξ ∈ Sn−1;
(3) there is a λ > 0 and a bounded measurable function f0 : Sn−1 → R with

f (x) = ρλ−n f0(ξ) + o(ρλ−n) (ρ → 0),

uniformly in ξ ∈ Sn−1;
(4) integrability: there is σ0 > 0 with M = ∫

�
e−σ0S(x)| f (x)| dx < ∞.

We extend f0 and S0 to all of Rn by homogeneity, that is, by

f0(x) = ρλ−n f0(ξ), S0(x) = ρνS0(ξ) (x �= 0)

and, for definiteness, f0(0) = S0(0) = 0. Finally, for purposes of reference we recall
the following well known integral evaluation,

∫ ∞

0
e−zρν

ρλ−1 dρ = 
(λ/ν)

ν
z−λ/ν (σ = �z > 0). (51)

The leading order result of [29, p. 186]34 and [36, Thm. 1.1] is now as follows:

34 Note that there is a typo in [29, p. 186]: the constant has to be 
(λ/ν)/ν rather than 
((λ + 1)/ν)/λ.
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Theorem A.1 Under conditions (1)–(4) there holds for each 0 < δ ≤ π
2 as z → ∞

∫

�

e−zS(x) f (x) dx = z−λ/ν

∫

Rn
e−S0(x) f0(x) dx + o(z−λ/ν) (|arg z| ≤ 1

2π − δ).

(52)
Denoting the surface measure on Sn−1 by ω, the integral on the right evaluates to

∫

Rn
e−S0(x) f0(x) dx = 
(λ/ν)

ν

∫

Sn−1

f0(ξ)

S0(ξ)λ/ν
dω(ξ).

We fix δ > 0 and break the proof of this theorem, based on the idea of “trading
tails” (a notion popularized forLaplace’smethod in [32, p. 466]), into somepreparatory
steps.

Lemma A.1 For σ ≥ σ0 and 0 < ε ≤ ε0, there is a constant α > 0 such that

∫

�\Bε (0)
e−zS(x) f (x) dx = O

(
e−(σ−σ0)αεν

)

where the implied constant does not depend on z and ε.

Proof By Conditions (1) and (2) there is a constant α > 0 such that

S(x) ≥ αεν (x ∈ � \ Bε(0)).

Hence, Condition (4) yields straightforwardly

∣∣∣∣
∫

�\Bε (0)
e−zS(x) f (x) dx

∣∣∣∣ ≤ e−(σ−σ0)αεν

∫

�

e−σ0S(x)| f (x)| dx = O
(
e−(σ−σ0)αεν

)
,

the implied constant being just M . ��
Lemma A.2 There is ηε → 0 for ε → 0 such that for σ ≥ σ0 and 0 < ε ≤ ε0

∫

Bε (0)
e−zS(x) f (x) dx =

∫

Bε (0)
e−zS(x) f0(x) dx + ηε · O (

σ−λ/ν
)

where the implied constant does not depend on z and ε.

Proof Conditions (1) and (2) give the existence of a constant γ > 0 such that

S(x) ≥ γ |x |ν (|x | ≤ ε0)

and Condition (3) gives ηε → 0 for ε → 0 with

| f (x) − f0(x)| ≤ ηε |x |λ−n (|x | ≤ ε).
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Hence we get

∣∣∣∣
∫

Bε (0)
e−zS(x)( f (x) − f0(x)) dx

∣∣∣∣ ≤ ηε

∫

Rn
e−σγ |x |ν |x |λ−n dx

= ηεωn−1

∫ ∞

0
e−σγρν

ρλ−1 dρ

= ηεωn−1ν
−1
(λ/ν)(σγ )−λ/ν

where the integral over Rn was evaluated by spherical symmetry and the resulting
gamma integral by Eq. (51); ωn−1 denotes the surface area of the sphere Sn−1. ��

Lemma A.3 There is η′
ε → 0 for ε → 0 such that, for 0 < ε ≤ ε0 with ε0 sufficiently

small and z ∈ C with |arg z| ≤ π
2 − δ, |z| ≥ σ0 · csc δ,

∫

Bε (0)
e−zS(x) f0(x) dx =

∫

Bε (0)
e−zS0(x) f0(x) dx + η′

ε · O (
z−λ/ν

)

where the implied constant does not depend on z and ε.

Proof Condition (2) gives η′′
ε → 0 for ε → 0 and α′ > 0 with

|S(x) − S0(x)| ≤ η′′
ε |x |ν (|x | ≤ ε) and S0(x) ≥ α′|x |ν (x ∈ R

n), (53)

whereas Condition (3) yields a constant γ ′ > 0 such that

| f0(x)| ≤ γ ′|x |λ−n (x ∈ R
n).

Because of |ew − 1| ≤ e|w| − 1 for w ∈ C and by (50) we obtain for x ∈ Bε(0)

∣∣∣e−zS(x) − e−zS0(x)
∣∣∣ ≤ e−σ S0(x)

(
eη′′

ε |z|·|x |ν − 1
)

≤ e− sin(δ)α′|z|·|x |ν (
eη′′

ε |z|·|x |ν − 1
)

≤ e− sin(δ)(α′−η′′
ε csc δ)|z|·|x |ν − e− sin(δ)α′|z|·|x |ν

Thus, if ε0 is small enough to guarantee η′′
ε csc δ < α′, we obtain by the same calcu-

lations as previously in the proof of Lemma A.2

∣∣∣∣
∫

Bε (0)

(
e−zS(x) − e−zS0(x)

)
f0(x) dx

∣∣∣∣

≤ γ ′ωn−1

(λ/ν)

ν
(sin(δ)|z|)−λ/ν

(
1

(α′ − η′′
ε csc δ)λ/ν

− 1

(α′)λ/ν

)
= η′

ε · O(z−λ/ν)

if we define the term given by the large bracket to be η′
ε . ��
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Proof of TheoremA.1 By splitting the integral as follows and by applying Lem-
mas A.1–A.3, we get for 0 < ε ≤ ε0 with ε0 sufficiently small and for z ∈ C

with |arg z| ≤ π
2 − δ, |z| ≥ σ0 · csc δ

∫

�

e−zS(x) f (x) dx =
∫

Bε (0)
e−zS0(x) f0(x) dx +

∫

Bε (0)
(e−zS(x) − e−zS0(x)) f0(x) dx

+
∫

Bε (0)
e−zS(x)( f (x) − f0(x)) dx +

∫

�\Bε (0)
e−zS(x) f (x) dx

=
∫

Bε (0)
e−zS0(x) f0(x) dx + η′

ε · O(z−λ/ν)

+ηε · O(σ−λ/ν) + O
(
e−(σ−σ0)αεν

)

where the implied constants do not depend on z and ε. By (53) and Lemma A.1, we
get likewise

∫

Rn
e−zS0(x) f0(x) dx =

∫

Bε (0)
e−zS0(x) f0(x) dx + O

(
e−(σ−σ0)α

′εν
)

.

Coupling ε ∝ |z|−1/2ν , we thus get some expression η(|z|−1) → 0 for z → ∞ with

∫

�

e−zS(x) f (x) dx =
∫

Rn
e−zS0(x) f0(x) dx + η(|z|−1) · O(z−λ/ν)

where the implied constant does not depend on z. Finally, by transforming to spherical
coordinates and using (51) for the inner integral once more, we calculate

∫

Rn
e−zS0(x) f0(x) dx =

∫

Sn−1

∫ ∞

0
e−zS0(ξ)ρν

f0(ξ)ρλ−1 dρ dω(ξ)

= z−λ/ν 
(λ/ν)

ν

∫

Sn−1

f0(ξ)

S0(ξ)λ/ν
dω(ξ)

which finishes the proof. ��

Quadratic Leading Order Term in the Phase Function

It is straightforward from (52) to specialize Theorem A.1 to the case of a quadratic
leading order term S0 in the asymptotic expansion of the phase function S.

Corollary A.1 Under conditions (1)–(4) with a quadratic S0(x) = xT Hx/2 defined
by a symmetric positive definite matrix H ∈ R

n×n, there holds for each 0 < δ ≤ π
2

as z → ∞
∫

�

e−zS(x) f (x) dx = (2π)n/2z−λ/2

√
det H

(E( f0) + o(1)) (|arg z| ≤ 1
2π − δ)
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where E denotes expectation with respect to the multivariate normal distribution with
covariance matrix H−1, namely

E( f0) :=
√
det H

(2π)n/2

∫

Rn
e−xT Hx/2 f0(x) dx .

Remark A.2 Corollary A.1 is providing the precise leading order asymptotic of the
integral only if the conditionE( f0) �= 0 is satisfied. In the case of a sufficiently smooth
integrand the function f0 is the first nonzero homogeneous polynomial appearing in
the Taylor expansion of f at zero. For symmetry reasons, E( f0) �= 0 implies that
deg f0 must be even. Thus, if also S is sufficiently smooth, a comparison with (49)
yields, if E( f0) �= 0,

∫

�

e−zS(x) f (x) dx = (2π)n/2z−
n+deg f0

2√
det H

E( f0)
(
1 + O(z−1)

)
(|arg z| ≤ 1

2π −δ).

(54)
If f (0) �= 0, this reproduces Hsu’s formula (48) since then f0 ≡ f (0) and hence
E( f0) = f (0).
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