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Abstract

This paper will deal with differentiability properties of the class of Hellinger—
Kantorovich distances HKKa 5 (A, ¥ > 0) which was recently introduced on the space
M(R?) of finite nonnegative Radon measures. The derivatives of 1 — H As (g, )2,
for absolutely continuous curves (i¢)s, (v¢); in (J\/[(]Rd), Ha,x), will be computed
£ ae.. The characterization of absolutely continuous curves in (M(]Rd), Ha.x)
will be refined.

1 Introduction

Recently, a new class of distances on the space M(RRY) of finite nonnegative Radon
measures was established by three independent teams [3, 4, 7-9]. We will follow
the presentation of these distances by Liero, Mielke and Savaré [8, 9] who named
it Hellinger—Kantorovich distances. The class of Hellinger—Kantorovich distances
Ha,x (A, £ > 0) is based on the conversion of one measure into another one (possibly
having different total mass) by means of transport and creation / annihilation of mass.
The parameters A and X serve as weightings of the transport part and the mass
creation/annihilation part respectively. To be more precise, the square KK = (141, 1£2)?
of the Hellinger—Kantorovich distance K, 5 between two measures (1, u2 € M(RY)
on R¥ corresponds to
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with entropy cost functions %(o,- logo; —o; + 1),

d .
o = il (y; i-th marginal of y), (1.2)
du

and transportation cost function

s () i {—%log(cos(«/iE/MA)d)) ifd < VAT, 03
' +o00 ifd>n7/A/%.

There exists an optimal plan y for the Logarithmic Entropy-Transport problem (1.1)
(cf. Thm. 3.3 in [9]), and if w; is absolutely continuous with respect to the Lebesgue
measure and y is such optimal plan, then there exists a Borel optimal transport mapping
¢t : R? — R 5o that y takes the form

y = (I xDay1 = (I X 1)go11

(cf. Thm. 4.5 in [6] and Thm. 6.6 in [9]). We refer the reader to ([9], Cor. 7.14,
Thms. 7.17 and 7.20) for the proofs that KK yx defined via the Logarithmic Entropy-
Transport problem (1.1) indeed represents a distance on the space of finite nonnegative
Radon measures and that (J\/[(Rd ), KKa,x) is a complete metric space. Furthermore,
the Hellinger—Kantorovich distance K, x metrizes the weak topology on M(R?) in
duality with continuous and bounded functions (cf. Thm. 7.15 in [9]) and can be
interpreted as weighted infimal convolution of the Kantorovich-Wasserstein distance
and the Hellinger-Kakutani distance. A representation formula a la Benamou-Brenier
which can be proved for HKKp 5 (cf. ([9], Thm. 8.18; [8], Thm. 3.6(v))) justifies this
interpretation:

1
. (1, v,w)
FKA,z(/Ll,Mz)z:mln{f fd(A|v,|2+z|wt|2>dmdr: py Y m}
0o JR
(1.4)

where 41 (H’wv»’w) 2 means that i : [0, 1] — M(Rd ) is a continuous curve connecting
w(0) = wp and u(l) = o and satisfying the continuity equation with reaction

Oy = —Adiv(vuy) + Zwyjay, (1.5)

governed by Borel functions v : (0, 1) x R? - R and w : (0, 1) x R? — R with

1
//d<A|vf|2+E|wt|2>dutdr<+oo, (1.6)
0 R
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in duality with C*°-functions with compact support in (0.1) x R?, i.e.

1
/0 /Rd(a,w(t,x)+A(V1ﬁ(t,x),v(t,x))
+Xy(t, x)w(t, x))du,(x)dr = 0 (L.7)

for all € C2((0, 1) x RY).

The class of such continuous curves u satisfying (1.5), (1.6) for some Borel vector
field (v, w) coincides with the class of absolutely continuous curves (f4;)se[0,1] in
(M(RY), HA,s) with square-integrable metric derivatives (cf. Thms. 8.16 and 8.17
in [9], see Sect. 3 in this paper).

In order to deepen our understanding of a distance, it is always worth studying
its differentiability along absolutely continuous curves (e.g. see Chap. 8 in [1] for
the corresponding analysis of the Kantorovich-Wasserstein distance on the space of
Borel probability measures with finite second order moments). The present paper
addresses this issue for the class of Hellinger—Kantorovich distances on the space of
finite nonnegative Radon measures. Clearly, if (1t;)/¢(0.1], (Vi)ie0,1] are absolutely
continuous curves in (M(R?), K A.x), then the mapping

t > Ha s (e, vr)? (1.8)

is absolutely continuous and therefore .#’!-a.e. differentiable. A natural question that
arises is the one of the concrete form of the corresponding derivatives. We will answer
this question for absolutely continuous curves with square-integrable metric deriva-
tives (for which such characterization (1.5) is available), refine that characterization by
providing more information on (v, w) (see Prop. 3.1), establish a linearization result
(see Thm. 3.4), and determine

d
—Ha (1, vr)? (1.9)
dr

at Zlae.t € [0, 1] (see Thm. 4.1). This piece of work can be viewed as continuation
of Sect. 3 in the author’s paper [5] constituting a starting point for the study of differ-
entiability properties of the Hellinger—Kantorovich distances. Therein, we identified
elements of the Fréchet subdifferential of mappings

t > —Ha s ((I + tv)g(1 + 1R)* 1o, v)?

att = 0, for o, v € M(R?) and bounded Borel functions v : R — R? and R :
R? — R. That subdifferential calculus was an essential ingredient for our Minimizing
Movement approach to a class of scalar reaction-diffusion equations [5] substantiating
their gradient-flow-like structure in the space of finite nonnegative Radon measures
endowed with the Hellinger—Kantorovich distance Ky x.

The proof in [9] that absolutely continuous curves in (M(H), KKa ») with square-
integrable metric derivatives are characterized via (1.5), (1.6) was carried out only
for H = R¢, endowed with usual scalar product (-, -) and norm | - | := /(- -), but
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according to a comment at the beginning of Sect. 8.5 in [9], it should be possible to
prove such characterization result in a more general setting. We would like to remark
that also our computation of the derivatives (1.9) may be adapted for general separable
Hilbert spaces H.

Our plan for the paper is to give an equivalent characterization of the Hellinger—
Kantorovich distances in Sect. 2, to state and prove new results on absolutely
continuous curves in Sect. 3 and to perform the computation of the derivatives (1.9)
in Sect. 4.

2 Optimal Transportation on the Cone

According to ([8], Sect. 4) and ([9], Sect. 7), the Logarithmic Entropy-Transport
problem (1.1) translates into a problem of optimal transportation on the geometric
cone € on R4, see (2.16), (2.17) below. The fact that all the information on transport of
mass and creation / annihilation of mass according to (1.1) lies in a pure transportation
problem has proved extremely useful for the analysis of HKKs x in [9] and for our
subdifferential calculus in [5].

Geometric cone (€, d¢ A x). The geometric cone is defined as the quotient space

¢ =R x [0, +00)/ ~ 2.1
with
(x1,r1) ~(x2,12) & ri=rp=0o0rr=r, xy=x (2.2)

and is endowed with a class of distances dg A5 (A, £ > 0). The vertex o (for r = 0)
and [x, r] (for x € R? and r > 0) denote the corresponding equivalence classes and

de.a.x([x1, 1], [x2, 121)?

= %(rlz + r22 — 2r1rp cos ((\/m [x1 — x2|) A 7[)) 2.3)

(where o is identified with [%, 0] for some % € R%). It can be proved that

1
. 4 . 1 ) ,
de a5 (yo, y1)* = min {/ (E(,(s))z + K,,(S)zlx(mz) ds’ Yo lx.r] yl}
0
2.4
for Yi = [xi,ri] € €&, where Y0 [)«C»’:] Y1 means that x € Cl([o,l];Rd),r c

C'([0, 11; [0, +00)) and [x(i), 7(i)] = y;, so that the cone distance may be inter-
preted as dissipation distance generated by the metric tensor

AS e e e AL,
&, (1,11, (2, 72)) = Ul (X1, x2) (2.5)
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(cf. Sect. 8.1 in [9]). This metric tensor (2.5) will appear in the formulas in our
differential calculus of KKp 5.

We show how to construct geodesics in (€, dg A x) (cf. Sect. 8.1 in [9]) as they
will play an important role in our analysis of (1.9), too. Let y; := [x;,ri] € €,i =
1,2, and suppose that |x; — x2| < 7/A/Z, ri,r2 > 0. We search for func-
tions Ry, ,, : [0,1] — [0, +00) and 6y, y, : [0,1] — [0, 1] so that the curve
n : [0, 1] — € defined as n(s) := [x1 + 0y,,y,(s)(x2 — x1), Ry,,y,(s)] is a (constant
speed) geodesic connecting [x1, 71] and [x2, r2], which means d¢ A % (1(s), n(¢)) =
|s —t|de A,z ([x1, 1], [x2, r2]) forall s, ¢ € [0, 1]. If x; = x2, we set 0y, ,, = 0. We
note that

de s (), (1)) = |z(s) — z(D) |3, (2.6)

where z : [0, 1] — C is the curve in the complex plane C defined as

z(s) 1=

2
Emyl,yz(s)exp (ie},l,yz(s),/z/M X1 —x2|>, 2.7

and | - |c denotes the absolute value for complex numbers. Thus, if z is a geodesic in

the complex plane between z; := %rl and 7o = \/Lfrz exp (i«/E/4A |x1 — xz|>,

i.e.

z2(s) =z1 +s(z2 —z1) foralls € [0, 1], (2.8)
then 7 is a geodesic in (&, dg A x) between [x1, 1] and [x2, r2]. This condition yields
an appropriate choice for Ry, y, : [0, 1] — [0, 400) and 6, y, : [0,1] — [0, 1],

and it is not difficult to see that they are both smooth functions, their first derivatives
satisty

4 1
E(:R/yl,yz (5)* + X:R,Vl!)'z (5)2(9;”2 ()% |x) — x2
= deas(x1, 71l [x2, 2])? foralls € (0, 1), 2.9)

and they are right differentiable at s = O with right derivatives

ry sin(y/ 2 /4A d(x, x2))

0, yo,+(0) = —
e i VEAN (), x)
Ry e+ @) =racos (v X/4A d(xr, xz)) —r. (2.10)
It is noteworthy that
by (s) = (G;I,yz (s)(x2 — x1), fR;l,yz(s)) (2.11)
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represents the tangent vector to the geodesic at 1(s), s € (0, 1), with
102 (0) = lim by, () = (0;1’y2’+(0)(x2 —x1), CR’yl’yz’Jr(O)), 2.12)

and the left-hand side of (2.9) equals the metric tensor QﬁnA(’s? (ty,y,(8), ty,.y,(s)) (cf.
(2.5)).

We obtain a geodesic from [x1, 1] to the vertex o by setting 6, , = 0 and
Ry1,0(s) == (1 — s)ry and identifying o with [x, 0]. Also in this case, (2.9) and
the second part of (2.10) hold good.

Optimal transportation problem. The distance de¢ A, x gives rise to an optimal
transport problem on the cone and therefore to an extended quadratic Kantorovich-
Wasserstein distance W 4 x on the space M;(€) of finite nonnegative Radon mea-
sures on ¢ with finite second order moments, i.e. fg dea.=(x, 7], 0)2da([x,r]) <
+00. The extended Kantorovich-Wasserstein distance We A x (o1, a2) between two
measures o1, &2 € M3 (€) is equal to +00 if 1 (€) # a2(€) and is given by

2
We A, s (a1, a2)

—nin{ [ deastonlbnn)?aplperea) @1

if o1 (€) = (), with I'(«r1, p) being the set of finite nonnegative Radon measures
on € x € whose first and second marginals coincide with «; and 2. Every measure
o € M,(€) on the cone is assigned a measure har € M(R?) on R¢,
o := x(ra), (2.14)

with (x, 1) : € = R x [0, +00) defined as

&, nN(x,r]) ==, r)for[x,r] € €, r >0, (x,r (o) := (x,0), (2.15)
which means [ ¢ (x) d(ha) = [, r¢ (x) da for all continuous and bounded func-
tions ¢ : R4 — R (short ¢ € Cg(Rd )). Please note that the mapping b : My (€) —
M(R?) is not injective.

Now, an equivalent characterization of the Hellinger—Kantorovich distance Ky x
is given by the transportation problems

W5 (12> = min {Wen s (@1,00)% [0 € M(©), by = i}
(2.16)

2
4
= min {Wea z(@n. @)’ + & 2 - ) (R 01 € Ma(©),
ho; < m}, (2.17)
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cf. Probl. 7.4, Thm. 7.6, Lem. 7.9, Thm. 7.20 in [9]. Every solution y € M(Rd X R")
to the Logarithmic Entropy-Transport problem (1.1) induces a solution 8 € M(€ x €)
to ((2.17), (2.13)): if y is an optimal plan for (1.1) with Lebesgue decompositions 1

Wi = pivi + 1 (2.18)
then
B = ([x1, vV p1(xD], [x2, vV o2 (x2)Day € M(€ x €) (2.19)

is an optimal plan for the transport problem (2.17), (2.13) (cf. ([9], Thm. 7.20(iii))).
Furthermore, if § € M(€ x €) is a solution to (2.17), (2.13) or a solution to (2.16),
(2.13) (which exists by ( [9], Thm. 7.6)), then

ﬂ(!([xl,rl], o) €CXC: rirm >0, x| — x| > n,/A/z}) -0,
(2.20)

(cf. ([9], Lem. 7.19)).

3 Absolutely Continuous Curves

We fix A, ¥ > 0 and examine the behaviour of absolutely continuous curves in
M(RY), Ky, 5).

Let (t1)re[0,1] be an absolutely continuous curve in (M(Rd), HA,x) with square-
integrable metric derivative, i.e. the limit

KA, s (etns te)

3.1
] (3.1

, .
= lim
[ 47| Jim

exists for Z1-a.e.r € (0, 1), the function ¢ > | w;| which is called metric derivative
of (ut); belongs to L2((O, 1)) and

t
FKA,zws,u,)s/ Wildr  forall0<s<r<1 (3.2)
N

(cf. Def. 1.1.1 and Thm. 1.1.2 in [1]). According to Thms. 8.16 and 8.17 in [9], there
exists an essentially unique Borel vector field (v, w) : (0, 1) x R? — R4 x R so that
the continuity equation with reaction

Oy = —Adiv(vepar) + Zwyp s (3.3)

1 according to Lem. 2.3 in [9], there exist Borel functions p; : R — [0, +00) and nonnegative finite
Radon measures ,ul.J' € M(Rd), p,iJ'J_yi, so that (2.18) holds good.
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(v := (1, ), wy := w(t, -)) holds good, in duality with C°°-functions with compact
support in (0, 1) x R? (see (1.7)), and

/ (Al >+ Sw ) di, = > for Llae.t € (0, 1). (3.4)
R4

Foreveryt € (0,1) and h € (—t, 1 —t), there exists a plan B, ;15 € M(C x €)
which is optimal in the definition of KK x (u;, pL,+h)2 according to (2.16), (2.13), i.e.

Ha s (s faran)? = / de.a.s(x1, 711, [x2, 121> dBrossns
ExC

h(ﬂ#ﬁz,wh) = s, f)(ﬂéﬂz,wh) = Wt+h,

and whose first marginal 77# Bi.1+n satisfies
/€¢([x,r])d(miﬂz,z+h) = /quﬁ([x, 1) dus + h*¢(0) (3.5)

forall ¢ € Cg(@) (cf. Thm. 7.6 and Lem. 7.10 in [9]).

This notation holds good throughout the rest of the paper.
As a first result of our analysis of absolutely continuous curves, Prop. 3.1 will identify
(v, wy) as belonging to a particular class of functions.

Proposition 3.1 For PLlae t € (0, 1), the Borel function (v, wy) belongs to the
closure in L?(u;, R? x R) of the subspace {(V¢,¢): ¢ € CSO(Rd)}.

Here (L2(u;, R4 x R), || - llL2(, Rexr)) denotes the normed space of all w;-
measurable functions (v, w) from R? to RY x R satisfying

o B _ 1/2
16 )z oy = ([ AP+ Bl din ) < 400, G6)

Proof We construct a Borel vector field (7, @) : (0,1) x RY — R? x R satisfying
(3.3) so that, for Plae r e (0, 1), the function (v, w;) belongs to the closure in
L2(u;, R x R) of the subspace {(V¢,¢) : ¢ € CP(R?)} and

~ =02 _ ~ 2 ~ 2 /2
||(v,,wt>||Lz(m,Rde)—/Rd AGP+ 23 dee < WP 3D
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We begin the proof with some estimations. Let ¢ € C2° (RY). 1t follows from the
construction of Ry, r11.[x2.»] a0 O[x; 11, [x2.r»] according to (2.6)-(2.9) that

2 g2
> ds?

0%, i1 benra] O Rixr 121 ()2 (2 — x1)| < Cx ade a,x (X1, r1], [x2, 2D,

Ryl o] ()7 = de A s ([x1, 711, [x2, 121)%,

29[/x1,r1],[x2,r2](S)R[X1 1l [x2.r2] (S)fol,rl],[xZ,rZ](S)(xz - xl)‘

< Cy.adea.x(x1, 111, [x2, 2D,
d? )
m I:(p (xl + e[xl,rl],[xz,rz] (S)(xz - xl)):R[xl,rl],[xz,rz] (S) :I ‘

< CyCx ade.a x(lx1, 1], [x2, 21)%,

for s € (0, 1), with Cy > O only depending on ¢ and Cx 5 := 2X + 4A; we refer
the reader to the proof of Prop. 2.5 in [5] for details. With (2.9) and these estimations
on hand, it is straightforward to prove that there exists a constant Cy A 5 > 0 only
depending on ¢, A and X so that

10,5, = @}, 1, ()] < Cpoax de.a, s (1, ¥2)°, (3.8)
O (8) = (VO (x1). 0, 1, () (x2 — X)) Ry, 3, ()7 + 20 ()R], |, (9)Ry, 3 (5)
< Cypax dea s (1. 2)° (3.9)
and

(V0. 84, (D062 = 100) Ry () + 20 GOR, 1, 9)) (Ryya ) = 11 )|

< Cy.ax dea,sO1,2)° (3.10)
forall 5,5 € (0, 1), with y; := [xi, ril, @y;,y,(8) = (X1 + Opxy ri1,1x0,r21 (8) (02 —
XD)Rixy 1] (8%

Now, let r € (0, 1) so that the limit (3.1) exists and &, := €\ {0}. By applying
(2.20), (3.9), (3.10), (3.5), Holder’s inequality and (2.9), we obtain

‘/ ¢dﬂt+h*/ ddu;
R4 R

1
< f / 16 O] ds A in <
xe¢ JO

1
/C e /0 (V00D 8y 1115201 ) 2 = D) Rt 1101221 5) + 26 GDRE, 1y 12, )] 05 OB

| [ @erd st dp)
Cx<

+2Cp a, s a5 (e, rin)?
172 Ll 4 12
AIVe2 + Z¢?) d(rl B‘f / —R20")? _ 20 T2 dsd
S</¢n< Vo~ + ¢) (n#ﬂt,t+h)> ig( e by <A ©')*x2 — x1] +):( )) s ﬁm+h>

+2Cy a5HKa 2 (e i4)® < 11V, D)li2, mexryHa, 5 (e 4n) +2Co a5 WK s (e, i)
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and thus,

< 11V, D)ll120u, ity liil. B

. 1
hmsup—\/ ¢th+h—/ ¢ dus
-0 |l JRa Rd

At this point, we may follow the proof of Thm. 8.3.1 in [1]. Therein, a similar charac-
terization of absolutely continuous curves in the space of Borel probability measures
with finite second order moments, endowed with the Kantorovich-Wasserstein dis-

tance, was given by solving a suitable minimum problem. We adapt that approach. Let
w e M0, 1) x RY) be defined by

1
/ W) dpt, x) = f / V(1) dpae (o) dt
(O,I)XR‘I 0 R4

for all y € C)((0,1) x RY), and let (L2 (1, R? x R), || - || 2(,, pixR)) denote the
normed space of all u-measurable vector fields (0, w) from (0, 1) x R? to R? x R
satisfying

1 172
@, D)2, R xR = ( /0 /R (I + Sl ?) dpay dr) < +o0.
(3.12)

An application of (3.11), Fatou’s Lemma, Holder’s inequality and Hahn-Banach The-
orem shows that there exists a unique bounded linear functional L defined on the
closure V in L?(, R? x R) of the subspace {(V¢, () @ ¢ € C2°((0, 1) x R?)},
satisfying

1
L((V¢,0)) == —fo /Rd 9,0(t, x)dp, dr forall ¢ € C2((0, 1) x RY).
(3.13)

We consider the minimum problem

min { 110, D)2, pamy = LG D)+ (0 ) € V). (3.14)

The same argument as in the proof of Thm. 8.3.1 in [1] proves that the unique solution
(v, w) to (3.14) (which clearly exists) satisfies (3.3) and, for Zlae.t € (0,1), the
function (v, w;) belongs to the closure in L2(us, RY x R) of the subspace {(V¢, ¢) :
;eC¥ (R%)} and (3.7) holds good. By Thm. 8.17 in [9], for every Borel vector field
(0, w) € L?(u, R? x R) satisfying the continuity equation with reaction (3.3) the
opposite inequality holds good, i.e.
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f (A0 > + S ) dpy = |ul)? for L'-aer € (0, 1).
Rd

It follows from this and from the strict convexity of || - ||]2d2 (4 RIXER) that the Borel
1

vector field (¥, W) solves (3.3), (3.4) and that it coincides .#'-a.e. with any other
vector field solving (3.3), (3.4). This completes the proof of Prop. 3.1. O

Definition 3.2 Let C(R?) be a countable subset of CSO(Rd ) so that every function in
CSO(Rd ) can be approximated in the C'-norm by a sequence of functions in C(R?).
We define N, as the set of points ¢ € (0, 1) at which the following holds good:

(i) The limit (3.1) exists,
(ii) (v;, w;) belongs to the closure in L?(u;, RY x R) of the subspace {(V¢,¢) :
¢ € C®(R?)} and satisfies (3.4),
(iii) and, for all ¥ € C(RY),

1
}}ig})z(/RddeM —/Rdl/fdliz) = fR (AVY, v) + SYw,) dpay.
(3.15)

Please note that (0, 1) \ N, is an & L_negligible set; it follows from (1.7) that, for
fixed ¢ € C¥° (R?), the mapping ¢ fRd Y du, is absolutely continuous from [0, 1]
to R and (3.15) holds good at Plae t€(0,1).

The second step in our analysis is to establish a connection between the “tangent
vector” (v;, w;) to u; and tangent vectors to geodesics in (€, d¢ A 5 ), measured by
Bt,i+4 for |h| small. Fort € Ny, h € (—t,1 —1t) and s € (0, 1), the mappings

1
D 01:32) = (KON FOD). (R (965, 1, () X(32)

2
X)) 7R, ) (3.16)

from (@ X Qj) \ {([xl,rl], [x2, ) € EXC: rp, >0, |x] —x2| > nM] to
(R? x R) x (R x R) will be considered, with x, r as in (2.15), and Ryi.y25 O3y, y, being
constructed according to (2.6)—(2.9). Their second components may be interpreted as
blow-ups of tangent vectors to geodesics in (€, d ¢ o x); in fact, the transition from
(x, r) to the local chart (1/A Ry, y,(s) x, 2/ X r) transforms the tangent vector ty, y, (s)
from (2.11) into the tangent vector

- 1 2
ty ), () == (XfRyl,yz ()65, 5, () (X(y2) = x(y1)), Eleyl,yz (s)). (3.17)

We will take advantage of the fact that this chart transition transforms the metric tensor
&M% from (2.5) into a metric tensor which is equal to A < vy, w; > +X v, for
tangent vectors v := (v1, 02), v := (01, tv2) € RY x R at [x, Ry, ()] € €
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We turn to the push-forward A; 5 € M((Rd x R) x (Rd x R)) of B; 1+ through
(3.16), defined by

/ OO Ay, = / S, s (515 2) ABrran
(R xR) x (R4 xR) Cx ¢

forall ® € CY((RY x R) x (R? x R)). Please recall (2.20) in this context and note
that, by (2.9), the mappings (3.16) are Borel measurable. The following proposition
will provide information on the limits of A; ; ¢ as h — 0, linking them to (v, w;).

Proposition 3.3 Lett € N, and s € (0, 1). Then

lim S()dA s = / & ((x. 1), (0 (x). wy () dp
h—0 J(Rd xR) x (R4 xR) R

(3.18)

for all continuous functions ® : (R? x R) x (RY x R) — R satisfying the growth
condition

(@1 ), Gzl < C(1+ Ll +12P?) (3.19)

for some C > 0.

Proof We set Y := R x R.
Lett € N, and s € (0, 1). We note that, by (2.9) and Def. 3.2(i),

/ (Alx2l? + Zral?) dAs ps ((x1, 71), (x2, 72))
YxY

B s (e frern)®

e — > ash — 0. (3.20)

We may apply Prokhorov’s Theorem to any sequence (A; p, s)ken, hx — 0, of
measures from the family (A; p s)he(—r,1-r) C M(Y x Y), since such sequence is
bounded and equally tight by (3.5) and (3.20), and we obtain a subsequence h, — 0
and a measure A € M(Y x Y) so that (A,,hkws)leN converges to A in the weak
topology on M(Y x Y), in duality with continuous and bounded functions. So let
(At py,s)1en (hy — 0) be a convergent sequence with limit measure A € M(Y x Y),
i.e.

lim O(y) dA; b5 =/ d(y)dA (3.21)
=00 Jyxy YxY

forall ® € Cg(Y x Y). We want to identify A as ((x, 1), (v;(x), w;(x)))#u;. It is not
difficult to infer from (3.5) that the first marginal n# A of A coincides with (x, 1)4u,,
i.e.

/ ¢ ((x.r) AT} A) = / (. 1) duy (3.22)
Y R4
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forallg € Cg(Y).Letw € C(RY). Then (3.21) also holds good for @ ((x1, 1), (x2,72))
= | AV (x1), x2) + El//(xl)rz]rlz Indeed, we have

iim [ @v)da.= [ @nda
[=o0 Jyxy YxY

forall N > 0, with @y := (P AN)V (—N). Setting Yy :={(x,r) € Y : |x|+]|r| >
N}, Cy = sup,cgpa{|V¥(x)| + [¥(x)]}, and applying (3.5), (3.20) and (3.22), we
conclude that for every € > 0 there exists N > 0 so that

/ (Ix2] + [r2]) dAs py s +/ (Ix2| +Ir2)dA <€ forall N > N, [ €N,
YxYn YxYn

and

limsup’/ D dA; s —f dDdA)
[—o0 YxY YxY

< lim sup [ (Pcy a+2)N) dArpys — / Pc, a+z)N dA
[— o0 YxY YxY
4+ Cy(A + ) lim sup / (2l + 112y d(A gy + A)
[—o00 JYxYn,
< Cy(A+ D)e.

Hence, taking (3.22) into account, we obtain
tim [ (A, x2) + 9 0r | dAd.,

-0 Jyxy
- f [A(Vw(xl),xz) n zw(xl)rz] dA. (3.23)

YxY

It holds that
/ Y didspn —/ Ydu, = /@ (W (2)r3 — Y (x0)r?) dBy it
xC
/; @/ l/f(XI + 9}(1 r11.[x2,r2] (S)(.Xz - xl))‘(R[xl r1],[x2,r2] (S) :Ids dﬁt,t-ﬁ-h]
X

so that (3.15), (3.8), (3.9), (3.10), Def. 3.2(i) and (3.23) yield

f (A(VY, v) + ZYpw,) dp, = hm — / Ydurn — /dwdm)

[—o0

= lim [ AV + Ew(xl)rz]rl dAr s
YxY

= [ [mtvwen) + Bun]aa.
YxY
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According to the Disintegration Theorem (see e.g. Thm. 5.3.1 in [1]) and (3.22), there
exists a Borel family of probability measures (Ax, )y cre C M(Y), Ay (Y) =1, s0
that

| ean=[ ([ ot dang @) dut)
YxY R Ny

for all A-integrable maps @ : ¥ x ¥ — R. We infer from (3.20) that, for u,-a.e.
x1 € RY, the measure A x; has finite second order moment and we define the function
(va, wa) : R — RY x R by

va(xy) i=/X2 dAy, ((x2,72)), wa(x1) 1=/rszx1((xz,r2))
Y Y
for u;-a.e. x1 € RY. (3.24)

The function (va, wa) is Borel measurable (cf. (5.3.1) and Def. 5.4.2 in [1]), and

/ I:A<V1/f(xl),x2>+21ﬂ(x1)r2] dA
YxY
= [ ([ [Aw 0.5+ B im] a2, ) dist)
Rd Y

- /R (A(VY, va) + SPwa) dp.
All in all, we have found that
o (A(VY, v) + ZYpw,) dp, = /Rd (A(VY,va) + ZYwa)du,  (3.25)

for all Y € C(R?). Since every function in CSO(Rd ) can be approximated in the C!-
norm by a sequence of functions in €(R¥) (cf. Def. 3.2) and, by (3.20) and Def. 3.2(ii),
the functions va, wa, v;, w; are square-integrable w.r.t. i, (3.25) holds good for all
v e C?O(Rd) and for all pairs in the L%(u;, R x R)-closure of {(VZ,2) @ ¢ €
CSO(R" )}. It follows from this and from Def. 3.2(ii) that

1 w22, iz = /R (A va) + Twwa)dp. (326)

Applying Holder’s inequality to (3.26), taking the definition (3.24) of va, wa, Jensen’s
inequality, (3.21), (3.20) and Def. 3.2(ii) into account, we obtain
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N, wOllL2(, R xr) = 11VA, WAIL2(, REXR)

12
<([ @b+ zinpaa)” < (3.27)
YxY

. 2 2 12
< lim ( (Alx2]” 4+ X|rp )dA,,h,,s)
l YxY

— 00

= 11w, wllp 2, R xR) (3.28)

so that, in fact, equality holds good everywhere in (3.27) and (3.28). We infer from
this and from (3.26) that

[[(vr, we) = (a, wA)lL2(y, RixR) =0
which means
vr(x) = va(x) and wy(x) = wa (x) for ps-ae. x € RY. (3.29)

Moreover, the fact that the second inequality in (3.27), resulting from Jensen’s inequal-
ity, is in fact an equality and (3.29) yield A, = 8y,(x;) ® 8w, (x,) for jt;-a.e. x; € RY
(cf. a canonical proof of Jensen’s inequality), i.e.

/yfﬁ((x,r))dAxl = ¢ (v (x1), wy (x1)) (3.30)

forall ¢ € C(Y), for p,-a.e. x; € R,
Altogether, we may conclude that A = ((x, 1), (vs(x), ws(x)))# s,

f (Alxl? + 2 dA = |1 ?
YxY

= lim (Alx2|* + S(r2)?) dAs gy s (3.31)

=00 Jyxy

and that (3.18) holds good for all € Cg(Y x Y). A similar argument as in the
proof of (3.23), making use of (3.31), will show (3.18) for all continuous functions
® : Y xY — Rsatisfying the growth condition (3.19) (cf. Thm. 7.12 in [10] where the
space of Borel probability measures with finite second order moments is considered
and the equivalence between convergence in the Kantorovich-Wasserstein distance
and convergence in duality with continuous functions satisfying a suitable growth
condition is proved). This completes the proof of Prop. 3.3. O

Now, Theorem 3.4 yields a linearization result for absolutely continuous curves.
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Theorem3.4 Lett € Ny,.

Define & = {[x,r] e €\ {o} : ()| < ﬁandhu[(xﬂ < ﬁ} and
Et,h . C — C,

[x + Ahvy(x), (1 4+ Zhw, ()] if [x, 7] € €,

[x,r] else . (3-32)

El‘,h([-x’r]) = {

Let x5 = (Et)h)#(ﬂ'#ﬂ;’lq»h) be the push-forward of the first marginal of By i+n
through 2; p, i.e.

/@ ¢ (Lx. r]) dyxon = /Q (o (6 1) AT Brron)

forall ¢ € Cg(@). Then

K ’ 2
Az Waens xen)™ 0. (3.33)

lim 5
h—0 h

Remark 3.5 The technical role of ¢, , will be visible in the proof. First, the restriction
to & , ensures that [x + Ahv(x), r(1 + %hw, (x))] € €is well-defined, and second,
we will take advantage thereof in order to suitably estimate de¢ A % (E/.1(V1), y2)2 / h?
for (y1, y2) € supp B r+h-

Proof We set Y :=R¢ x R.
Lett € Ny,. According to (2.13), (2.16), we have

KA, = (teshs Dxen)? _

< — de.a.x(Bra(lxi, r1D), [x2, 2D dBrrin.
]’l2 h2 exe t t, 1+

(3.34)

We will prove that the right-hand side of (3.34) converges to 0 as h — 0.
First we note that, by Prokhorov’s Theorem, Def. 3.2(ii) and the proof of Prop.

3.3, every sequence (((U;(Xl), wy(x1)), (x2, rz))#At’h,,S>l N h; — 0, is relatively

€
compact w.r.t. the weak topology in M(Y x Y) and in duality with continuous functions
®: Y xY — Rsatisfying (3.19), and the second marginals of the corresponding limit
measures coincide with (v;(x), w;(x))#u;. It follows therefrom that for N € N, 5 €
0, 1),

. 1
lim sup — de. s (X1, 711, [x2, 12D? dByssn
-0 1= J@eve, pxe

. 2 2
N hmsuP/ (Al + 120D gy, (02 VR or fur (122vF/5) O dAras
h—0 YxY

2 2 A
= /y y(A|x2| + X|r2| )ﬂ{(x,r):|x|2\/ﬁ0r|r|22\/ﬁ/2}(x1’ ry) dA,
x
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(where A denotes a suitable limit measure of ((v;(x1), we(x1)), (x2, 72))4 A; p5) and
an application of the Dominated Convergence Theorem then yields

L 1
lim hmsup—z/ de A s (x1, 1, [x2, 2D? dBrisn = 0,
h (E\&;,1/n)x €&

N—oo 0

which implies
1 2
lim — deax(x1, 71l [x2, r21)°dBrisn = 0. (3.35)
(E\C; p)x

Next we consider h—12 fE; X E de A= (8 n(x1, r1]), [x2, r])? dp:.i+h. According
to ([2], Sect. 3.6) and ([9], Sect. 8.1), the geometric cone (&, d¢ A x) is a length space
and it holds that any curve n := [x,r] : [0, 1] — € for C!-functions x : [0, 1] — R4
and r : [0, 1] — [0, +00) is absolutely continuous in (¢, dg A, x) and

dea (Dm0 = [ (AR + 1rePOR) &
¢,z (), =J \= A

(cf. ([9], Lem. 8.1)). We define, for y; := [x1,r1] € &5, Y2 1= [x2,72] € €,
with |x; — x2| < w/A/X if r, > 0, an absolutely continuous curve Ap g(y),y, :
[0, 1] — € connecting E(y1) = [x1 + Ahvs(x1), 11 (1 + Zhw:(x1)/2)] and y; by
setting An,g(y).y2 = [Xn.8(1).325 R 2).ya s

Xn, @),y (8) 1= X1 4 Oy 3, () (x2 — x1) + AL — $)hv; (x1), (3.36)

R B9 (8) 1= fRyl,yz(s)(l +30 - s)hwt(xl)/2> (3.37)

(cf. (2.6)-(2.9), (2.20)). The functions X z(y),y, : [0, 1] — R? and Ruzo -
[0, 1] — [0, +00) are continuously differentiable with

(R}, 200192 ()

2
= (EiR’yl,yz(s)(l —s)hw;(x1)/2 + iR’ylyyz(s) — EfRy,,yz(s)hwl(xl)/Z)

2
< 20h1% de a5 (01, 320 + 2R}, (6) = Sk (11)/2)

and

R, 2132 )X 2 (31,30 O
< ARy, 3, (9)710], 4, () (X2 — x1) = Ahv, (xp) P
< S(Ime,yz ()], 1, () (x2 = x1) = Arihv, (x)[* 4+ A% [R[|Ry, 5, (s) — mz)

= 8(1Ry10 96,y () (2 = 1) = Arihv D + A2S[hI /4 de a5 (01, 12)?),
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where we have made use of (2.9) and the fact that y; = [x1, r1] € & ;. It follows
from the above estimations and an application of Fubini’s Theorem that

1

ITZ/ dea s (Ern(xt, D), [x2, r2D)* dByr i
< pxe

1 L , 1 . )
< ﬁ/mw/o (g(mh,sm),n(“)) + <R30 T 2517, 0 )ds dBrrin

1
< [0 (e = ) 88 = ) A ), (o) s
0 JYxY

HKa,x (1r s pagn)?

+Cax
7|

with Cp y only depending on A and X. According to Def. 3.2(ii), there exists a
sequence of functions ¢, € C° (R?) (n € N) so that (V&u, £n))neN converges to
(v, wy) in L2(u;, R x R), which means

lim (rlz@n (x1) — i (x1))*

n—o00 YxY

FrEIVE () = v )P ) dAs (1, 1), (2, r2) =0 (3.38)

uniformly in 2 € (—¢, 1 —t) and s € (0, 1). Moreover, Prop. 3.3 and (3.5) yield

lim [ (S02 =G0 + Al = VG GDI) dAr
h—0 YxY

= 11 we) = (Vo IR, sy (3.39)

forall n € N and s € (0,1). Combining (3.38) and (3.39) and the fact that the
right-hand side of (3.39) converges to 0 as n — 0o, we obtain

lim sup/ (2Z(rz — rw, (x1)?
h—>0 Jyxy

+8A1x2 = r1y (D)) dAr (1, 71), (32,72) = 0,

for every s € (0, 1), and thus, by Fatou’s lemma,

1
limsup/ f (2E(r2—r1wz(xl))2
>0 Jo Jyxy

+8A L — 1oy (D)) A (1, 1), (2er))ds = 0. (340)
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Finally, applying the above estimation of hLZ ]Q,h we dea (B n([x1, r1]), [x2, r1)?
dB:.i+n, (3.40) and Def. 3.2(i), we obtain

o1 -
tim o5 [ deas(@alxn. bl dhos = 0. GAD
& px€
which completes the proof of Thm. 3.4. O

4 Differentiability Results

This section finally treats the differentiability of the Hellinger—Kantorovich distance
Ha,» along absolutely continuous curves; the linearization result of Thm. 3.4 puts us
in a position to precisely compute the corresponding derivatives.

We fix another absolutely continuous curve (v;);¢[o,1] in (M(RY), K A, s ) with square-
integrable metric derivative 7 > |v;|. It follows from (3.2) that

1
te SHA s Gu, vr)? (4.1)

is an absolutely continuous mapping from [0, 1] to [0, +-00) and thus .Z'-a.e. differ-
entiable.

Let (3, w) : (0,1) x R? - R? x R be the essentially unique Borel vector field
associated with (v;), so that the continuity equation with reaction

8;\1, = —Adiv(l_};v;) + Eu_)t\)[

holds good and
/ (A5 )? + S|, ) dv, = > for Llae. € (0, 1),
]Rd

let N, be the associated set of times defined according to Def. 3.2 and let N denote
the set of times # € N,, NN, at which (4.1) is differentiable. Clearly, (0, 1) \ N is an
Z1-negligible set.

Theorem 4.1 Ift € Nand B, € M(€ x &) is optimal in the definition of Kx s (111, v;)*
according to ((2.17), (2.13)), i.e.

Qg o= g — h(”#ﬂt) >0, b i=v— h(ﬂﬁﬂt) >0,

HasGuon? = [ deasonl. )’ d,

cxC
+4/% [1;(RY) + 4/% D, (RY),
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then the derivative %[%I-KA,): (s, v,)z] of (4.1) at t coincides with

— fe C[es)A,;E(tyl,mm),si‘,m) + B (ty,,0,(0), 57 ) 1dB;
X

+2< wediy + | W, dﬁ,) (4.2)
R4 R4

where sy :=(Av (X()), Z/2r(y)w; (X(y))) and's} == (AT (x(y)), T /2r(y)r (X(¥)))-
Before proving Thm. 4.1, let us try to gain an insight into the above formula (4.2).

Remark 4.2 Suppose thatvy = v € M(RY). There exists an optimal plan S; associated
with u, and v whose marginals satisfy u; = f)(ﬂé B:) and v = b(nﬁﬁ,) (cf. Thm. 7.6
in [9]). The derivative %[%I—KA,E (s, v)?] att € N then takes the form

- / Qﬁ;’\lyz(tylsyZ (0)1 sﬁfyl ) dﬂ[. (4.3)
Ex¢

The tangent vectors ty, y,(0) (see (2.12)) and 55 y O the geometric cone €, for
(1, y2) € supp B:, represent the directions p; ~» v and u; ~» prpp (for b > 0
small) respectively on an infinitesimal level (cf. Thm. 3.4). It is noteworthy that the
metric tensor & (see (2.5)) at y; € € between such tangent vectors ty;,,(0) and
sffy] is equal to the derivative at h = 0 of & > —1/2 deg A 2 (Ern(1), y2)? (see
(3.32)), i.e.

de.a.x(Bra(), y2)? (4.4)
h=0

1d
— 60 F 0. 5,) = 5o

for a simple computation shows that both terms in (4.4) equal

2r2w, (x1) — 2r1raw; (x1) cos(v/ T /4A|x; — x2))
—2riry/A/Z (Sm( 2/4A 0 = xa)) (x2 —x1), vz(X1)>

[x1 — x2|

i = [xi,ri] € ©).

Also, we would like to remark that the derivatives of (4.1) atf € N can be expressed
equally in terms of the Logarithmic Entropy-Transport characterization (1.1) of the
Hellinger—Kantorovich distance K4 x, by applying (2.19) to the above representation
(4.2) of the derivatives.

Proof Lett € N.Thent € N, NN, and (4.1) is differentiable at 1. We apply Thm. 3.4

to both curves ()5 and (vg)s defining &, ¢ 4, Xu,r,n and Ey s p, Xv,r,n TESpectively
according thereto so that, by the corresponding linearization results,

@ Springer



Applied Mathematics & Optimization (2023) 87:37 Page210of24 37

% I:%H(A,E(Ns’ Vs)2]

s=t
— 1lim %H(A,E(qu,t,h, [')Xu,t,h)2 - %"KA,E(Mn Vt)2
T >0 h

4.5)

(cf. (3.32), (3.33)). Let xu,rn = (Burn)utu, and Xy ;5 = (Ey s p)uoy, be the
push-forwards of the marginals o ; := n,}t Br and «y; = n,%ﬁ, of B; through the
mappings E, ;5 and 8, ; ; respectively. We have

/Rd ¢dMXprn) = /; (14 Shw; (x)/2)°¢ (X + Ahv, (X)) de,
ot h

+ / ¢ (x) da, ¢
C\Cu,,t,h

— / (1 4+ Shw;(x)/2)*¢ (x + Ahv(x)) dhay, ,
X(Cp..t,h)

+ / ¢ (x) dbory, s
X(¢\¢/L.t,h)

< / (1 + Shw, (0)/2% (x + Ahv,(x)) diy
X(Q:/L,t.h)

4 / 600 duy = / A x,00n)
X(E\Cy 1.1) R4

for all nonnegative bounded Borel functions ¢ : R? — R (cf. (2.14), (2.15)), from
which we infer that

, x2 A
O = D Ot = D70e) R = @ + [ (S + 2w )?) de

X(Cprn)

Similarly,

DXv.en < BXvin,

Oor — BFove ) ®Y) = D, (RY) + /

22
(2ha),(x) + —hzu_)t(x)z) di,.
X(€, 0 0) 4

We obtain

1

5 (A 0 D00 = 3 (i v0)?)
< l w v = 2 _ w 2
=5 C,A,E(X}L,I,hv Xv,t,h) G,A,Z(a,u,t’ O‘v,t)

)y .
+2 / <hwt(x) + —hzwt(x)2) dfis
X(€p) 4
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¥
+2/ (hd),(x) + 2R, (x)z) di,.
(€0 n) 4
and

We n.sFuths Fvan) < f de.a.x(Eprn(xt, 1), Byra(lx2, r21))? dB;.

Cx¢&

The same argument as in the proof of Lem. 2.2 in [5] then yields

| . - 01 2
IWe A s Xpths Xven)™ — 3We a s (@, dvr)

lim sup
110 h

=< 2/CXG [rlzwz(xl) — rirw (x1) cos(v/S 4Ax1 — x2])
—r1r2y/A/T (Sa.x(x1, x2), v,(xl))] dp,
22 [ [t o st SRRy
+r1ir2y/ A/ T (Sa 5 (x1, %2), Mm))] B,

1 - v 2 1 2
L. QWC,A,E(X/L,t,h’ Xv,t,h) - QWC,A,E(au,I’ Olu,t)
< liminf

ht0 h

9

with Sp 5 defined as

sin(v/E/4A|x1 —x2])

Sa.x(x1, x2) = {0 Ix1—x2] (xg —x1) if x; # xp,

if x; = x».
Since the limit (4.5) exists, the sum of the above integrands is identical with
—BN T (b, 1,(0), 51 ,) — B F(ty, 4, (0), 87 ) (i =[x ri)

(cf. Rem. 4.2), and

. b R R
lim (wt(x) + —hwt(x)2> dii, = / wy (x) dfty,
h=0Jx(€0m) 4 R
. ) SN o
lim (w,(x) + S, () )dvt = | @) db,
=0 Jx@,.n) 4 R
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it follows from the above computations that

. THA B Bxv.n)? — SHKA s (i, v1)?
h—0 h

=- /@ . [B2% (ty,.1,(0). 51 )) 4+ B 7 (b, (0). 57, )] dBy
X

+2(/};{dwtd/l,+/wwtdﬁ,).

The proof of Thm. 4.1 is complete. O
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