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Abstract
The dynamics of linearly-elastic multibody (MB) systems is conventionally modeled via the
floating frame of reference formulation (FFRF); however, its equations of motion (EOMs)
involve significantly more nonlinear terms and quantities than alternative formulations, such
as the absolute coordinate formulation (ACF) and generalized component mode synthesis
(GCMS). This large number of operations required makes computer implementations of the
FFRF laborious as well as error-prone and introduces more complexity in general. These is-
sues associated with the FFRF, and the fact that the formulations are mathematically equiv-
alent as shown by the authors, render the ACF and its relatives appealing alternatives due
to their simplistic equation structures. To make these alternatives even more appealing, this
contribution proposes an improved ACF and GCMS, which (i) reduces the nonlinearity in
the EOMs compared to their standard versions and (ii) eliminates the necessity to calculate
the rigid body (RB) motion from the global nodal displacement field to obtain the flexible
part of the degrees of freedom (DOFs) and the rotation matrix. The proposed EOMs fea-
ture a constant mass matrix, a corotated stiffness matrix in the flexible part, and a “small”
nonlinear stiffness matrix in the RB rotation part. Moreover, attaching the moving reference
frame to the center of mass of the underlying rigid body and employing linearized Tisserand
and rotation matrix constraints eliminates coupling terms within the mass matrix and yields
implementation-friendly EOMs to analyze the dynamics of linear-elastic flexible MB sys-
tems.
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1 Objectives in a nutshell

Before going into details, the objectives of this research should be explained and highlighted
for the reader in a nutshell as follows:

These aspects are elaborated on in the following sections.

2 Introduction and detailed problem statement

Flexible MB dynamics refers to the computational strategies used to determine time histories
of motion, deformation, strain, and stress of interconnected components undergoing large
overall motion due to applied forces, constraints, contact, and initial conditions.

The so-called, linearly-elastic flexible MB simulations are oftentimes sufficient for engi-
neering systems, and are usually based on a corotational approach, where a moving frame
per body follows the corresponding body’s rigid body motion and the deformation is an-
alyzed within this local coordinate system; this description is subjected to the following
assumptions:

� Large rigid body translations and rotations are present.
� Flexible deformations and strains of each body are small with respect to (w.r.t.) each
body’s moving frame.

� The bodies obey a linear constitutive law.

Recently it has been proposed [12–14] and even more recently shown more rigorously
[16] that such linearly-elastic MB systems discretized via isoparametric finite elements
(FEs) may be described fully by the constant mass matrix M ∈ R

3nn×3nn and stiffness ma-
trix K ∈ R

3nn×3nn from the underlying linear FE model, as well as the corresponding nodal
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Fig. 1 FE-discretized body �

(�e depicts a representative
element of the FE mesh) with
global inertial F (x, y, z) and
local moving F (x, y, z) frame;
the translation between the
frames is given by τ ∈R

3×1 and
the orientations are related by the
rotation matrix A ∈ R

3×3. The
position vector r(i) ∈ R

3×1

defines the current position of
representative node (i). The
flexible nodal displacement and
deformed nodal position of node
(i), with reference position
x(i) ∈ R

3×1, relative to the
moving frame are given by

c
(i)
f ∈R

3×1 and r
(i)
f ∈ R

3×1,
respectively. Note that overlined
quantities are expressed in the
moving frame in contrast to
global quantities expressed in the
inertial frame. The illustration is
adapted from [14].

quantities.1 Hence, the kinetic energy T and the strain energy U may be expressed as

T = 1

2
ṙTMṙ, (1)

U = 1

2
cT

f Kcf, (2)

where the nodal quantities used in this work are illustrated and described in Fig. 1 and
Sect. 3.1. Note that in Eqs. (1) to (2) and throughout the paper lower-case nodal quantities
are arranged in the standard FE manner (stacked format), e.g.,

c =
⎡
⎢⎣

c(1)

...

c(nn)

⎤
⎥⎦ ∈R

3nn×1, (3)

and the corresponding upper-case nodal quantities in list format, where each row corre-
sponds to one node, e.g.,

C =

⎡
⎢⎢⎣

c(1)T

...

c(nn)T

⎤
⎥⎥⎦ ∈R

nn×3, (4)

where nn denotes the number of FE nodes of the body under consideration.

1Note that the present paper considers the generic 3D case, which is why, we often encounter the dimension
3nn, however, the 2D case may be established in an analogous fashion.
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In [16] the authors also showed that the EOMs of one body of the aforementioned
linearly-elastic MB systems may be described by formulation-independent EOMs given by

LTMLq̈ + LTML̇q̇ + P TKcf (q) + J Tλ = LTf , (5)

where

L = ∂r

∂q
, (6)

P = ∂cf

∂q
, (7)

J = ∂g

∂q
(8)

are Jacobian matrices given by the partial derivatives of the global nodal positions
r ∈R

3nn×1, the local flexible nodal displacements cf ∈ R
3nn×1, and the constraint equations

g (q, t) = 0 ∈ R
nc×1 w.r.t. the generalized DOFs q ∈ R

nq×1. Note that nc and nq denote
the number of constraints and DOFs, respectively. Furthermore, f ∈ R

3nn×1 and λ ∈ R
nc×1

represent the applied nodal forces and Lagrange multipliers, respectively, and •̇ denotes the
time derivative. Hence, to define a linearly-elastic MB formulation the following steps are
sufficient [16]:

1. Choose the DOFs q – this choice defines the formulation.
2. Define the coordinate mappings r = r (q) and cf = cf (q).
3. Calculate the Jacobians of the coordinate mappings, i.e., L and P .
4. Calculate the time derivative of L, i.e., L̇.
5. Perform the matrix multiplications to obtain the final EOMs.

These steps were outlined in [16] to derive the conventional inertia-shape-integral/ lumped-
mass FFRF with and without modal reduction [9], the nodal-based FFRF with [15] and
without [14] modal reduction, the ACF [4, 12] (not to be mixed up with the absolute nodal
coordinate formulation (ANCF), see, e.g., [5]), the GCMS [8, 13], and the flexible natural
coordinate formulation (FNCF) [10].

The advantage of the FFRF – the formulation implemented in virtually all commercial
flexible MB dynamics software packages such as Recurdyn (FunctionBay, Inc.) [2] and
Adams (MSC Software Corporation) [7] – is that within the body-fixed moving frame the
local flexible coordinates may be easily reduced using well-established modal reduction
methods, see, e.g., [1]. Extensions are available to employ modal reduction also with ab-
solute coordinates as DOFs leading to the already mentioned GCMS or FNCF (which is a
straightforward extension of GCMS), however, realized at the expense of a nine- or tenfold
increase of the flexible modal coordinates, respectively, which is why the FFRF prevailed
in the MB community, despite the linear relationship between nodal positions and DOFs
associated with formulations based on absolute coordinates, which yields a constant mass
matrix and no quadratic velocity “vector,” and the fact that the efficient factorization of the
Jacobian leads to an increased performance of GCMS for larger number of boundary nodes
[3]. Nevertheless, ACF is popular within the FE community because it is a tailor-made FE
formulation for the efficient high-fidelity simulation of systems undergoing large RB mo-
tions – the efficiency stems from the fact the Jacobi matrix may be prefactorized once and
for all times [4]; a feature that may be also employed for the formulations presented in this
paper.
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Looking at the EOMs of the ACF [12], we have

Mc̈ + AbdKAT
bdcf + cT

f

∂Abd

∂cT
KAT

bdcf + J Tλ = f , (9)

subjected to

gjoint = 0, (10)

where c ∈ R
3nn×1 denotes the global nodal displacements, cf ∈ R

3nn×1 denotes the flexible
part of c, and

Abd = diag(A, . . . ,A) ∈R
3nn×3nn . (11)

Note that no reference constraints are required for the ACF, hence, g = 0 ⇒ gjoint = 0.
In comparison to the ACF, the FFRF EOMs read [14]

⎡
⎢⎣

(1 ⊗ I )T M (1 ⊗ I ) −A (1 ⊗ I )T M r̃ fG A (1 ⊗ I )T M

G
T
r̃

T
f M r̃ fG −G

T
r̃

T
f M

sym. M

⎤
⎥⎦

⎡
⎣

τ̈

θ̈

c̈f

⎤
⎦+

⎡
⎢⎢⎢⎣

A (1 ⊗ I )T M
(
ω̃bdω̃bdr f + 2ω̃bdċf − r̃ fĠθ̇

)

−G
T
r̃

T
f M

(
ω̃bdω̃bdr f + 2ω̃bdċf − r̃ fĠθ̇

)

M
(
ω̃bdω̃bdr f + 2ω̃bdċf − r̃ fĠθ̇

)

⎤
⎥⎥⎥⎦+

⎡
⎣

0 0 0
0 0

sym. K

⎤
⎦

⎡
⎣

τ

θ

cf

⎤
⎦ +

⎡
⎣

J T
τ

J T
θ

J T
cf

⎤
⎦λ =

⎡
⎣

(1 ⊗ I )T

−G
T
r̃

T
f AT

bd

AT
bd

⎤
⎦f , (12)

subjected to

gref = 0, (13)

gjoint = 0, (14)

with the rigid body translation modes

1 ⊗ I =
⎡
⎢⎣

1
...

1

⎤
⎥⎦ ⊗

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ =

⎡
⎢⎣

I
...

I

⎤
⎥⎦ ∈R

3nn×3, (15)
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where ⊗ denotes Kronecker’s product,2 and the matrix G ∈ R
3×nr which is implicitly de-

fined by the local angular velocity ω ∈ R
3×1 and the rotational parameters θ as

ω = Gθ̇ . (17)

Furthermore,

ω̃bd = diag(ω̃, . . . , ω̃) ∈ R
3nn×3nn (18)

denotes a block-diagonal matrix with the skew-symmetric3 local angular velocity matrix on
its diagonal. Additional kinematic quantities used in Eq. (12) are explained in more detail
in Fig. 1 and Sect. 3.1. Note that the FFRF requires in addition to joint constraints gjoint = 0
between different system bodies also reference constraints gref = 0 to eliminate the RB
motion from the flexible displacement field and enforce potential orthogonality conditions
on the rotation parameters, see also Sect. 3.4.

It should be emphasized that the EOMs structures of the modally-reduced FFRF and
ACF, i.e., GCMS, are equal to their nonreduced companions, respectively.

It is clear from Eqs. (9) and (12) that we have highly nonlinear stiffness terms but linear
inertia forces when choosing the global total nodal displacements as DOFs, or highly non-
linear inertia terms but linear-elastic forces when decomposing the DOFs into RB motion
and local elastic deformation. However, what is more striking – given that [12, 16] showed
that the formulations are equivalent – is the fact that the FFRF EOMs involve significantly
more nonlinear terms and quantities than the EOMs of the ACF; this large number of opera-
tions required in the former method makes computer implementations of the FFRF laborious
as well as error-prone,4 and introduces more complexity in general, which is why signifi-
cant ongoing effort is directed towards, e.g., the investigation of the importance of different
inertia terms of the FFRF EOMs, see, e.g., [11].

2If R ∈ R
m×n and T ∈ R

p×q , then (R ⊗ T ) ∈R
pm×qn:

R ⊗ T =
⎡
⎢⎣

R11T · · · R1nT

.

.

.
. . .

.

.

.

Rm1T · · · RmnT

⎤
⎥⎦ . (16)

3Note that the tilde operator converts any R
3×1 vector in its corresponding skew-symmetric R

3×3 matrix,
i.e.,

v =
⎡
⎣

v1
v2
v3

⎤
⎦ ⇒ ṽ =

⎡
⎣

0 −v3 v2
v3 0 −v1

−v2 v1 0

⎤
⎦ . (19)

4Note that the FFRF displayed in this paper is its nodal-based version [14, 15]; the conventional FFRF comes
with additional difficulties due to the inertia shape integrals, which are unhandy volume integrals, arising in
the FFRF mass matrix and quadratic velocity “vector,” that depend not only on the DOFs but also on the FE
shape functions. To avoid the evaluation of these integrals, commercial flexible MB packages like ADAMS
(MSC Software Corporation) or RecurDyn (FunctionBay, Inc.) resort to a lumped mass approximation ac-
cording to [9]; see, for example, [2, 7]. In the (approximate) lumped mass approach, each FE nodal degree of
freedom (DOF) is given a so-called nodal mass obtained by, e.g., lumping the consistent FE mass matrix via,
e.g., row-sum lumping. In doing so, the kinetic energy of a flexible body in the system may be approximated
by the sum of all nodal DOF contributions. Hence, all FFRF integrals are replaced and approximated by sums.
This significant simplification enables commercial MB packages to calculate the so-called FFRF invariants,
which are constant “ingredients” required to set up the FFRF mass matrix and quadratic velocity “vector” –
approximately.
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These issues associated with the FFRF, and the fact that the formulations are mathe-
matically equivalent [12, 16], render the ACF an appealing alternative due to the simplistic
equation structure, see Eq. (9). However, Eq. (9) does not emphasize the full complexity of
the formulation since the ACF DOFs are c, and hence

cf = cf(c), (20)

Abd = Abd (A(c)) . (21)

This contribution, therefore, employs absolute flexible DOFs in combination with explicit
RB DOFs to obtain an improved ACF (and GCMS), which not only eliminates the neces-
sity to calculate the RB motion from the global total nodal displacement field5 to obtain
cf = cf(c) and Abd = Abd (A(c)) during time integration but also reduces the non-linearity
present in the EOMs.

3 Derivation of the proposed formulations

3.1 Kinematics

Let us consider a representative FE-discretized body of a MB system with nn nodes and an
attached moving frame F ; the origin of F is translated by τ ∈ R

3×1 w.r.t. the origin of the
global inertial frame F and their orientations are related by the rotation matrix A ∈ R

3×3,
see Fig. 1. The current position of the FE nodes is given by

r = xref + c, (22)

where xref = const. is the reference position of all FE nodes w.r.t. the global frame. The
global nodal displacements c account for rigid body translation ct ∈ R

3nn×1, rigid body ro-
tation cr ∈R

3nn×1, and flexible deformation cf ∈R
3nn×1, i.e.,

c = ct + cr + cf. (23)

Assuming without loss of generality that the coordinate systems F and F coincide in the
reference configuration, i.e.,

τ ref = 0 and Aref = I ⇒ x
(i)

ref = x(i), (24)

yields (Fig. 1) [12, 16]

r = (1 ⊗ I )τ + Abdx + cf. (25)

3.2 Improved ACF

Equation (25) reveals that the configuration of the flexible body is fully described by the
translation of the floating frame, the rotation matrix and the flexible deformation. Hence,

5See, e.g., [3, 4] for methods to obtain the RB motion from the global overall displacement field; the RB
translation may be calculated as the average of the global overall displacement field and the RB rotation is
associated with the average gradient of the global overall displacement field or may be calculated from the
position of three points which may not lie on a line.
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these quantities are a suitable choice for the DOFs, i.e.,

q =
⎡
⎣

τ

a

cf

⎤
⎦ , (26)

with a = vec
(
A

)
, i.e.,

a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11

A21

A31

A12

A22

A32

A13

A23

A33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

This specific choice leads to a linear mapping between the nodal positions and the DOFs,
since

r = (1 ⊗ I )τ + Abdx + cf (28)

= [
(1 ⊗ I )

(
X ⊗ I

)
I bd

]
q (29)

= Lq, (30)

where6

X =

⎡
⎢⎢⎣

x(1)T

...

x(nn)T

⎤
⎥⎥⎦ ∈R

nn×3 (32)

and

I bd = diag(I , . . . , I ) ∈R
3nn×3nn . (33)

Hence, the coordinate Jacobian L is constant, and furthermore

L̇ = 0. (34)

The inertia forces take a simple form due to the specific choice of the DOFs as in the
conventional ACF. In addition, due to the employment of explicit RB DOFs, the coordinate
mapping between local flexible nodal coordinates and the DOFs (see Eq. (5)) is simpler, i.e.,

6In general,

u = Wv ∈ R
3×3 ⇒ u =

(
vT ⊗ I

)
vec(W ) ∈ R

3×3, (31)

see [6]; this can be applied to the nodal-based structure as proposed in [16].
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cf = AT
bdcf (35)

= (
Cf ⊗ I

)
Ba, (36)

where, again,

Cf =

⎡
⎢⎢⎣

c
(1)T

f
...

c
(nn)T

f

⎤
⎥⎥⎦ ∈R

nn×3, (37)

and B is a constant, symmetric, and orthogonal permutation matrix such that

vec(AT) = Bvec(A), (38)

i.e.,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (39)

Hence, see Eqs. (35) to (36),

P =
[

∂cf

∂τ

∂cf

∂a

∂cf

∂cf

]
(40)

= [
0

(
Cf ⊗ I

)
B AT

bd

]
. (41)

Finally, according to Eq. (5) with Eqs. (26), (29), (30), (34), (35), (36), and (41), we have

⎡
⎣

(1 ⊗ I )T M (1 ⊗ I ) (1 ⊗ I )T M
(
X ⊗ I

)
(1 ⊗ I )T M(

X ⊗ I
)T

M
(
X ⊗ I

) (
X ⊗ I

)T
M

sym. M

⎤
⎦

⎡
⎣

τ̈

ä

c̈f

⎤
⎦+

⎡
⎣

0 0 0
BT

(
Cf ⊗ I

)T
K

(
Cf ⊗ I

)
B 0

sym. AbdKAT
bd

⎤
⎦

⎡
⎣

τ

a

cf

⎤
⎦ +

⎡
⎣

J T
τ

J T
a

J T
cf

⎤
⎦λ =

⎡
⎣

(1 ⊗ I )T

(
X ⊗ I

)T

I bd

⎤
⎦f , (42)

subjected to

gref = 0, (43)

gjoint = 0, (44)
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see Sect. 3.4 for the treatment of reference constraints.
Note that all the submatrices of the generalized mass matrix in Eq. (42) are constant and

can be precomputed from the FE mass matrix M and the FE reference nodal coordinates x.

3.3 Improved GCMS

It is usually required to reduce the number of flexible DOFs due to limited computation
resources or efficiency reasons. However, the fact that global flexible displacements are em-
ployed as DOFs, see Eq. (26), precludes “standard” structural dynamics modal reduction
techniques, see [1], inapplicable. However, it is known that generalizing these “standard”
reduction modes enables their use with absolute coordinates, since the flexible so-called
generalized component modes can represent “standard” deformation modes in any possible
orientation of the body, see [13] for further explanations and illustrated generalized compo-
nent modes.

“Standard” reduction methods approximate the local flexible deformation by a linear
combination of nm component modes, such as vibration eigenmodes, static modes, etc., i.e.,

cf ≈
nm∑

m=1

ψmζm = �ζ with nm = dim(ζ ) � dim(cf) = 3nn, (45)

where � ∈ R
3nn×nm contains column-wise the modes included in the reduction basis, i.e., a

low-dimensional solution subspace, and ζ ∈R
nm×1 are the associated modal coordinates.7

The GCMS framework generalizes any type of modes included in the reduction basis as
follows [16], see also Eqs. (31) and (45):

cf = Abdcf (46)

= Abd�ζ (47)

= (
ϒ ⊗ I

)
(ζ ⊗ a) , (48)

where

ϒ =

⎡
⎢⎢⎣

ψ
(1)T

1 . . . ψ
(1)T

nm
...

. . .
...

ψ
(nn)T

1 . . . ψ
(nn)T

nm

⎤
⎥⎥⎦ ∈R

nn×3nm (49)

simply contains all modes included in the reduction basis arranged according to Eq. (4).
Hence, it follows from Eqs. (35) and (48) that

cf = AT
bd

(
ϒ ⊗ I

)
(ζ ⊗ a) . (50)

Furthermore, Eqs. (37), (45), and (49) imply that

Cf = ϒ (ζ ⊗ I ) , (51)

7The equality sign is used in the following equations for the sake of simplicity even though an approximation
is introduced if dim(ζ ) < dim(cf).
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and Eq. (37) gives

Cf = CfA
T. (52)

Hence, combining the previous two equations,

Cf = ϒ (ζ ⊗ I )AT, (53)

and furthermore,8

Cf ⊗ I = [
ϒ (ζ ⊗ I )AT

] ⊗ I (55)

= (
ϒ ⊗ I

) (
ζ ⊗ AT ⊗ I

)
. (56)

Therefore, from Eqs. (36) and (56) we also have

cf = (
ϒ ⊗ I

) (
ζ ⊗ AT ⊗ I

)
Ba, (57)

where we would like to introduce the term


 = (
ζ ⊗ AT ⊗ I

)
B, (58)

which contains simply the components of the newly introduced flexible GCMS DOFs

ξ = ζ ⊗ a (59)

in a rearranged manner.
In summary, for GCMS (see Eqs. (26), (48), and (59)),

q =
⎡
⎣

τ

a

ξ

⎤
⎦ , (60)

and (see, in addition, Eqs. (28) to (30))

r = [
(1 ⊗ I )

(
X ⊗ I

) (
ϒ ⊗ I

)]
q, (61)

as well as (see Eqs. (50) and (57)–(59))

cf = AT
bd

(
ϒ ⊗ I

)
ξ (62)

= (
ϒ ⊗ I

)

a. (63)

Following now the same procedure as outlined for ACF in Sect. 3.2, we have

L = [
(1 ⊗ I )

(
X ⊗ I

) (
ϒ ⊗ I

)] ⇒ L̇ = 0, (64)

8Note that in general [6]

(R ⊗ T ) (V ⊗ W ) = (RV ) ⊗ (T W ) , (54)

if the matrices involved are of such size that one can form the matrix products RV and T W .
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and

P = [
0

(
ϒ ⊗ I

)

 AT

bd

(
ϒ ⊗ I

)]
. (65)

Finally, the reduced EOMs read

⎡
⎢⎣

(1 ⊗ I )T M (1 ⊗ I ) (1 ⊗ I )T M
(
X ⊗ I

)
(1 ⊗ I )T M

(
ϒ ⊗ I

)
(
X ⊗ I

)T
M

(
X ⊗ I

) (
X ⊗ I

)T
M

(
ϒ ⊗ I

)

sym.
(
ϒ ⊗ I

)T
M

(
ϒ ⊗ I

)

⎤
⎥⎦

⎡
⎣

τ̈

ä

ξ̈

⎤
⎦+

⎡
⎢⎣

0 0 0


T
(
ϒ ⊗ I

)T
K

(
ϒ ⊗ I

)

 0

sym. Âbd

(
ϒ ⊗ I

)T
K

(
ϒ ⊗ I

)
Â

T

bd

⎤
⎥⎦

⎡
⎣

τ

a

ξ

⎤
⎦+

⎡
⎣

J T
τ

J T
a

J T
ξ

⎤
⎦λ =

⎡
⎢⎣

(1 ⊗ I )T

(
X ⊗ I

)T

(
ϒ ⊗ I

)T

⎤
⎥⎦f , (66)

subjected to9

gref = 0, (67)

gjoint = 0, (68)

since

(
ϒ ⊗ I

)T
Abd = Âbd

(
ϒ ⊗ I

)T
. (69)

The matrices commute10, since the GCMS modal matrix consists of blocks that are multiples
of the identity matrix I .

Note that, as for the unreduced EOMs, all the submatrices of the generalized mass ma-
trix in Eq. (66) are constant and can be precomputed from the FE mass matrix M , the FE
reference nodal coordinates x, and the reduction modes � .

3.4 Moving frame position and reference constraints

Positioning the moving frame in the center of mass yields

(1 ⊗ I )T M
(
X ⊗ I

) = 0, (70)

since [15]

(1 ⊗ I )T Mx = mχu, (71)

where χu is the position of the center of mass of the undeformed body w.r.t. the moving
frame and m is the total mass.

9Again, see Sect. 3.4 for the treatment of reference constraints.
10Note that the size of Abd ∈ R

3nn×3nn changes to Âbd ∈ R
9nm×9nm if the order of multiplication is

changed, such that a proper matrix multiplication is defined [13].
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The linearized Tisserand reference conditions may be written directly with the nodal-
based quantities as11 [15]

(1 ⊗ I )T Mcf = 0, (73)

x̃
T
Mcf = 0, (74)

which may be written in terms of ACF DOFs as

(1 ⊗ I )T Mcf = 0, (75)

since the block-diagonal rotation matrix commutes with the FE mass matrix and the rigid
body translation modes, and

x̃
T
MAT

bdcf = x̃
T
M

(
Cf ⊗ I

)
Ba = 0, (76)

see Eqs. (35) to (36).
Likewise, the linearized Tisserand reference conditions may be written in terms of GCMS

DOFs as

(1 ⊗ I )T M
(
ϒ ⊗ I

)
ξ = 0, (77)

see Eq. (48) as well as Eq. (59), and

x̃
T
MAT

bd

(
ϒ ⊗ I

)
ξ = x̃

T
M

(
ϒ ⊗ I

)

a = 0, (78)

see Eqs. (62) to (63).
In addition, six (due to symmetry) orthogonality conditions of the rotation matrix

A = [
a1 a2 a3

]
, i.e.,

aT
i aj − δij = 0 ∀ i, j ∈ {1,2,3} | i ≤ j, (79)

where δij denotes Kronecker’s delta, are to be enforced to obtain a proper set of reference
conditions.

Hence, the improved ACF proposed in this paper reads

11Note that the matrix x̃ comprises the nn skew-symmetric matrices x̃
(i) ∈ R

3×3 (see also Eq. (19)) of all
FE nodes associated with the nodal reference position relative to the floating frame, see Fig. 1, i.e., [14]

x̃ =

⎡
⎢⎢⎣

x̃
(1)

.

.

.

x̃
(nn)

⎤
⎥⎥⎦ ∈ R

3nn×3. (72)
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and its reduced version, i.e., the improved GCMS

with the translational mass matrix

mI = (1 ⊗ I )T M (1 ⊗ I ) , (90)

the resultant force vector

f res = (1 ⊗ I )T f , (91)

the inertia tensor projected into the space of a, i.e.,

proja(
) = (
X ⊗ I

)T
M

(
X ⊗ I

)
, (92)

the resultant moment (including the moment due to nodal accelerations) projected into the
space of a, i.e.,

proj∗a
(
mres

) = (
X ⊗ I

)T [
f − Mc̈f

]
(93)

= (
X ⊗ I

)T [
f − M

(
ϒ ⊗ I

)
ξ̈
]
, (94)

and the reduced flexible GCMS system matrices and applied nodal forces, i.e.,

M̂ = (
ϒ ⊗ I

)T
M

(
ϒ ⊗ I

)
, (95)
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K̂ = (
ϒ ⊗ I

)T
K

(
ϒ ⊗ I

)
, (96)

f̂
∗ = (

ϒ ⊗ I
)T

f ∗, (97)

with the modified nodal force due to rotational acceleration, i.e.,

f ∗ = f − M
(
X ⊗ I

)
ä. (98)

Note that it is hypothesized that the additional force contributions in Eqs. (93) to (94)
and Eq. (98), as well as the stiffness matrices in Eqs. (81) and (86) should vanish since the
effect of the flexibility on a pure rigid body rotation, and vice versa, must be null.

4 Conclusions

This contribution proposes an improved absolute coordinate formulation and generalized
component mode synthesis based on explicit rigid body coordinates, which (i) reduces the
nonlinearity in the equations of motion compared to their standard versions and (ii) elimi-
nates the necessity to calculate the rigid body motion from the global total nodal displace-
ment field to obtain the flexible part of the degrees of freedom and the rotation matrix. This,
however, entails the necessity to enforce reference conditions, i.e., the orthogonality the of
rotation matrix and the uniqueness of deformation field (e.g., linearized Tisserand), as in the
floating frame of reference formulation. Reference constraints are enforced with existing
“infrastructure” in multibody codes, i.e., via Lagrange multipliers.

The proposed equations of motion feature a constant mass matrix, no quadratic velocity
“vector”, a corotated stiffness matrix in the flexible part, and a “small” nonlinear stiffness
matrix in the rigid body rotation part, i.e., a lower order nonlinearity compared to the stan-
dard absolute coordinate formulations and less nonlinear terms compared to the floating
frame of reference formulation.

Attaching the moving reference frame to the center of mass of the underlying rigid
body and employing linearized Tisserand and rotation matrix constraints eliminates cou-
pling terms within the mass matrix and yields implementation-friendly equations of motion
to analyze the dynamics of linear-elastic flexible multibody systems.

Future research shall be directed to numerical experiments – analyzing a variety of bench-
mark problems in order to draw meaningful conclusions on the evaluation of the efficiency
of the formulations that fit within the unified framework shown in Eq. (5), i.e., the floating
frame of reference formulation, absolute coordinate formulation, generalized component
mode synthesis, flexible natural coordinate formulation, and the formulations presented in
this paper.
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