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Abstract
Data-driven approaches have gained interest recently in the field of wind energy. Data-driven online estimators have been
investigated and demonstrated in several applications such as online loads estimation, wake center position estimations,
online damage estimation. The present work demonstrates the application of machine learning algorithms to formulate an
estimator of the internal loads acting on the bearings of the drivetrain of onshore wind turbines. The loads estimator is
implemented as a linear state-space model that is augmented with a non-linear feed-forward neural network. The estimator
infers the loads time series as a function of the standard measurements from the SCADA and condition monitoring systems
(CMS). A formal analysis of the available data is carried out to define the structure of the virtual sensor regarding the
order of the models, number of states, architecture of neural networks. Correlation coefficient of 98% in the time domain
and matching of the frequency signature are achieved. Several applications are mentioned and discussed in this work such
as online estimation of the forces for monitoring and model predictive control applications.

Datengetriebener virtueller Sensor für die Online Abschätzung der Lasten im Antriebsstrang von
Windkraftanlagen

Zusammenfassung
Datengetriebene Verfahren haben in letzter Zeit im Bereich der Windenergie an Interesse zugenommen. Dabei wurden da-
tengetriebene Online-Schätzverfahren untersucht und in verschiedenen Anwendungen demonstriert, wie z.B. Online-Last-
schätzungen, Schätzungen der Position des Nachlaufzentrums und Online-Schadensschätzungen. Die vorliegende Arbeit
demonstriert die Anwendung von Algorithmen des maschinellen Lernens zur Formulierung eines Schätzers für die in-
ternen Lasten, die auf die Lager des Antriebsstrangs von Onshore-Windkraftanlagen wirken. Der Lastschätzer ist als
lineares Zustandsraummodell implementiert, das durch ein nichtlineares neuronales Netz mit Vorwärtskopplung ergänzt
wird. Der Schätzer leitet die Zeitreihen der Lasten als Funktion der Standardmessungen aus den SCADA- und Zustands-
überwachungssystemen (CMS) ab. Es wird eine formale Analyse der verfügbaren Daten durchgeführt, um die Struktur des
virtuellen Sensors in Bezug auf die Ordnung der Modelle, die Anzahl der Zustände und die Architektur der neuronalen
Netze zu definieren. Es wird ein Korrelationskoeffizient von 98% im Zeitbereich und eine Übereinstimmung mit der
Frequenzsignatur erreicht. Zudem werden mehrere Anwendungen erwähnt und diskutiert, wie z.B. die Online-Schätzung
von Kräften für Überwachungs- und modellprädiktive Steuerungsanwendungen.
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1 Introduction

Data-based modeling approaches play currently a signif-
icant role to improve the performance of assets in terms
of lifetime extension, reduction of maintenance costs, re-
duction of downtime, failure prediction of critical and vul-
nerable components. These objectives can be realized by
exploiting the available measurements from the established
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measurement and control systems on the assets [8]. These
measurements are employed to produce an added value
to the operation of the asset using machine learning and
data analytics techniques. The states and loads estimators,
known as virtual sensors, can be incorporated into condition
monitoring systems for adequate planning of maintenance
to calculate remaining lifetime of mechanical components
hence extending the product lifetime. They have been also
incorporated into adaptive and modern control algorithms to
run the asset efficiently taking into consideration minimiza-
tion of fatigue damage, minimization of actuators’ lifetime
consumption.

Recently, considerable work has been directed to tackle
the research questions regarding the applications of sys-
tem identification and machine learning techniques to con-
struct universal estimators that rely mainly on data to be
deployed as virtual sensors. [2] developed a virtual sensor
of transmitted loads in wind turbine gearboxes using neural
networks. The authors achieved coefficient of determina-
tion, R2, of more than 90% using the proposed methodol-
ogy. [18] also proposed an online fatigue monitoring esti-
mator using Kalman filters and least square approach and
a quasi-static approach based on the low-fidelity simula-
tion model on the intermediate shaft and high-speed shaft
of gearbox of wind turbines, where they achieved high co-
efficient of correlation in the range of 50% to 96%. [16]
formulated damage equivalent loads (DEL) estimator on
the torque arm of the gearbox housing of wind turbines
based on low-frequency SCADA measurements. Several re-
gression algorithms were investigated, yielding correlation-
coefficient more than 80%. [5, 6] developed digital twins
as state-estimators using Kalman filters to estimate loads
on towers using standard SCADA and kinematic measure-
ments, achieving errors of estimations that is less than 8%.
On the other hand, [1] highlighted one of the potential ap-
plications of using reduced order models and virtual sen-
sors to develop sophisticated control strategies, where they
incorporated a reduced order model of the wind turbine
into a model predictive controller that attempts to minimize
the accumulated damage on the tower root while maintain-
ing compromise between generated power and accumulated
damage in the form of economic cost function.

2 Problem Statement

The problem at hand deals with the online estimation of the
structural loads endured by the bearings in the drivetrain of
onshore wind turbines. This study considers the structural
loads on the bearing on front pinion shaft of the drivetrain
as an exemplary quantity of investigation.

The development of virtual sensors that can estimate the
loads requires several characteristics of the estimator that

Fig. 1 Qualitative response of the virtual sensor according to Eq. 1

are developed in this work. The virtual sensor should fulfill
the following characteristics:

� computational speed and efficiency due to the need of
real time estimations,

� minimal, i.e. delivers only the required information,
� can infer the internal states of the system that are neither

possible nor easy to measure (e.g. forces and torques),
� is a mathematical dynamical system that can be simu-

lated forward in time and can be used for what-if scenar-
ios and control applications,

� mathematically differentiable that can be used in gradi-
ent-based optimization algorithms (e.g. model predictive
control frameworks).

3 Methodology

The realization of the attributes mentioned in Sect. 2 of
a virtual sensor imposes the implementation of a data-based
reduced order model (ROM). The formulation of the pro-
posed concept is based on a reduced-order state-space for-
mulation, which is a linear approximation of the system
at hand, which is augmented with a neural network that
estimates the error mismatch of the underlying state-space
system.

The wind turbine system is inherently non-linear due to
for instance the presence of contact between gears or the
controller which attempts to maximize the generated power
by varying its control variables (the pitch angle and gener-
ator torque) that follow a non-linear control strategy based
on gain scheduling [15, 22]. Accordingly, having a linear
time-invariant reduced representation of the system is not
a rational approach. Hence, the need of a more sophisticated
system representation is crucial. Thus, the formulation of
the virtual sensor presented in this work is based on the
assumption that the physical behavior of the investigated
dynamical system can be reproduced using an additive es-
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timator of reduced state-space (SS) system and a neural
network (data-based) model. The combined model reads as

fM Ñ cM;
fM = MSS +MNN ;

(1)

where cM is the system response of the high-fidelity phys-
ical model (ground truth), fM is the estimated system re-
sponse using the virtual sensor, MSS and MNN are the
system responses of the linear state-space and neural net-
work models respectively. MSS can only reproduce the
prevalent quasi-static response (so called slow dynamics)
of the investigated system due to the reductive nature of
the implemented formulation, while MNN is implemented
to be able to estimate the error mismatch between the lin-
ear state-space system and the ground truth, which is the
transient dynamics arising from higher-order dynamic non-
linearities such as excitation due to gear contact. The qual-
itative overall system response is depicted in Fig. 1.

3.1 State-space Formulation

The state-space modeling approach is based on the canon-
ical linear time-invariant dynamic system representation
with m inputs, q outputs and n state variables, which reads

Px = Ax + Bu
y = Cx +Du;

(2)

where x 2 Rn is the states vector, y 2 Rq is the output vec-
tor, u 2 Rm is the input vector. An�n;Bn�m;Cq�n;Dq�m

are the state, input, output, feedthrough matrices respec-
tively. For dynamic systems, D is set to Oq�m by default,
meaning that the system has no feedthrough.

The choice of the model order (size of x 2 Rn in Eq. 2)
is done according to the Hankel singular-values of the avail-
able time data. These singular-values define the “energy”
of each state in the system. The Hankel singular-values are
defined as [4]

�H =
p

�i .PQ/; (3)

Fig. 2 Gray-box model in de-
ployment with an example deep
neural network

where P; Q are the controllability and observability Grami-
ans of the system, and �H is the Hankel singular-value
associated with the eigenvalue �i . The highest six Hankel
singular-values captured more than 90% of the energy of the
high-fidelity system, leading to compromise between qual-
ity of estimations and complexity of the identified model,
which lead to selecting the order of the model to be in the
range n = 4–6.

3.2 Neural Network Model

Feed-forward neural networks are implemented to construct
the second element of the virtual sensor. Neural networks,
according to the universal approximation theorem, can rep-
resent a wide variety of the underlying functions when given
appropriate weights and internal parameters [7, 12, 17].

The neural network is used to predict only the error mis-
match between the ground truth and the linear state-space
system, i.e.

eSS =by −eySS
eeSS = f .u;eySS/;

(4)

where by is the ground truth, eySS is the output estima-
tion of the state-space system, and accordingly eSS is the
error of between the ground truth and the state-space sys-
tem estimation, eeSS is the estimated error using the neural
network, and f is the trained neural network.

The feed-forward neural networks are inherently not able
to reproduce dynamic systems behavior due to the absence
of state derivatives and/or history of inputs or outputs. How-
ever, this can be handled by explicitly feeding in time his-
tory as exogenous inputs, in the form:

yk = f .uk ;uk−1; � � �;uk−n/; (5)

where yk is the output at timestep k, uk ;uk−1; � � �;uk−n are
the inputs at timesteps k; k − 1; � � �; k − n in which n previ-
ous timesteps are considered. This approach is very simple
compared to other approaches that inherently handle the
time dependence of dynamic systems such as recurrent neu-
ral networks (RNN), gated recurrent units (GRU) and long-
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short term memory networks (LSTM), which are very com-
plex and problematic during training and deployment [11].

After investigating the effect of shifting the inputs in
time and feeding them to the network exogenously, a shal-
low (one layer) feed-forward neural network of lag = 2
(uk−1;uk−2 in Eq. 5) with 10 neurons with sigmoid activa-
tion function was trained and deployed afterwards.

3.3 Gray-box Model

Following the identification of two building blocks, namely
the state-space and neural network models separately, both
models are combined in the gray-box model to construct
the virtual sensor as demonstrated in Fig. 2 and Eq. 6.

eyk =eykSS.uk/ +eeSS.eySSk ;uk ;uk−1;uk−2/: (6)

The proposed approach is applied to estimate the ax-
ial force on the frontal bearing of the pinion shaft in the
drivetrain, FPS;F;x.

4 Implementation

4.1 Modeling and Simulation

The simulations in this study are executed using the IEA
Task 37 3.4MW onshore wind turbine [3]. The wind turbine
configuration is summarized in Table 1. A multibody sys-
tem (MBS) simulation model is set up using the commercial
MBS package Simpack [9] where different load cases are
investigated using simulated turbulent wind conditions in
accordance with the IEC 61400-1 [13] standard. Simpack
has been validated in comparison to other state-of-the-art
modeling software such as FAST, HAWC2 (e.g. [20, 21]).

The MBS model is used to generate a time-series of the
inputs and outputs of the model that are used afterwards
in training and fitting of the corresponding data models
as depicted in Fig. 3 which summarizes the work flow of

Fig. 3 Workflow of the proposed approach [2]

Table 1 Summary of the configuration of 3.4MW wind turbine [3]

Parameter Value Unit

Wind class IEC 3A [–]

Rated aerodynamic
power

3 MW

Hub height 110 m

Cut-in wind speed 3 ms−1

Cut-out wind speed 25 ms−1

Rotor diameter 130 m

Rated rotor speed 11.753 rpm

Rated wind speed 9.8 ms−1

Gear ratio 97 [–]

data generation.Fig. 4 demonstrates the 3D model of the
wind turbine and the detailed model of the drivetrain with
the component under consideration and the corresponding
coordinate system.

The high-fidelity MBS model features flexible modeling
of tower, blades, low speed shaft, high speed shaft using
linear beam finite elements. Flexible contact between gears
is considered analytically using the Steiner method [10].
Inflow aerodynamics is considered using blade element
momentum theory through the coupling of the AeroDyn
solver [19]. Rotational bearings are modeled using linear
stiffness and damping elements. Cross coupling of stiffness
forces is considered in the main bearings.The MBS model
provides data with sampling frequency of 1000Hz.

4.2 Data Processing and Analysis

Conditions of power production design load cases (DLC
1.2 & 1.3) according to [13] are considered for the
data generation. Wind profiles with normal turbulence
(NTM) for DLC 1.2 and extreme turbulence (ETM) for
DLC 1.3 were generated using TurbSim [14], with 2
seeds for each DLC for the nominal wind velocities:
Œ3; 6; 9; 12; 15; 18; 21; 23; 25�ms−1. Additional misaligned
inflow design conditions of ˙8ı yaw misalignment at rated

K



Forsch Ingenieurwes (2023) 87:31–38 35

Fig. 4 3D diagram of the wind turbine with the detailed model of the
drivetrain from Simpack showing the coordinate system and the com-
ponent under consideration

wind speed are considered in the analysis, yielding 40
simulations totally, each of 600s long. The load cases are
summarized in Table 2.

For training and fitting of the state-space and neural net-
work models the first seed was used, while the second seed
was used for testing and validation purposes. Three state-
space models were trained using the dataset from DLC
1.3 with wind speeds: Œ3; 12; 21�ms−1. The trained models
were combined into one state-space model using statisti-
cally weighted means of the parameters of the individual
models. The combination was done using the covariance
matrices of the A;B;C matrices of the individual state-
space models from each DLC, where these covariance ma-
trices indicate the uncertainty of the individual models. The
fitting and training of the neural network was done using

Table 2 Summary of load cases

DLC Wind Speeds [ms−1] Turbulence
Model

No. of
Seeds

Notes Total No. of
Simulations

1.2 3, 6, 9, 12, 15, 18, 21, 23, 25 NTM 2 – 18

1.2 9.8 NTM 2 Yaw misalignment = ˙8ı 4

1.3 3, 6, 9, 12, 15, 18, 21, 23, 25 ETM 2 – 18

the other DLCs that were not used for fitting the state-space
models to avoid data leakage and overfitting.

5 Results and Discussion

The proposed approach is implemented on one output
quantity exemplarily, namely the axial reaction component
on the front bearing of the pinion shaft, FPS;F;x. The inputs
to the virtual sensor considered for the investigated output
quantity are u =

�

!Gen Pelec aPS;F aT T ˛PS;F;x

�

,
which are typically the available and accessible physical
measurements from the SCADA and CMS systems, where
!Gen is the generator rotational speed, Pelec is the gener-
ated electric power, aPS;F are the measured translational
acceleration of the front pinion shaft in the directions
x; y; z. aT T is the tower tip translational acceleration in
the directions x; y; z, and ˛PS;F;x is the rotational accel-
eration of the front bearing of the pinion shaft around the
rotational axis x.

The validation of the proposed virtual sensor concept
is presented using comparison between the ground truth,
which is generated using the high-fidelity simulation tool
Simpack, the trained linear state-space model, and the
proposed concept of augmenting the simplified linear model
with neural networks.

Fig. 5 exhibits the statistical distribution of the normal-
ized with reference to the mean of the reference time se-
ries output bF PS;F;x vs the estimations using state-space
model and neural network augmented state-space model.
The state-space model (light green) can in most cases repro-
duce the median of the distribution accurately, however the
25th and 75th percentiles are deviating systematically, while
the neural network (light coral) can accurately reproduce
the median, the 25th and 75th percentiles and the minimum
and maximum ranges of the data with minimal deviations.
The deviations observed in the case of vw = 3ms−1 can be
explained as follows. The cut-in wind speed of the investi-
gated turbine is 3ms−1, where the controller ramps up the
turbine till it reaches the rated rotational speed, hence highly
non-linear behavior of the commanded generator torque is
present, which leads to larger deviations in the estimations
of the virtual sensor compared to the reference signals.

In order to have deeper understanding of the quality of
the proposed concept, correlation of the regression is in-
vestigated. Pearson’s coefficient of correlation is used as an
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Fig. 5 Statistical box plot of
DLC 1.2 for different wind
speeds and yaw conditions of
the normalized output variable.
Color code: Simpack (blue),
Linear State-Space (green),
Augmented State-Space and
Neural Network (Proposed ap-
proach) (red)
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Fig. 6 Correlation between esti-
mations and reference signals
for 2 DLCs, x-axis represents
the reference signal and y-axis
represents the estimations of
the virtual sensor. a DLC 1.2,
vw = 18ms−1, b DLC 1.3,
vw = 6ms−1
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Fig. 8 Power spectral density of estimation vs. ground truth. a DLC
1.2, rated wind speed at � = −8ı, b DLC 1.3, vw = 21ms−1

error metric, defined as a measure how strong a relationship
is between two variables, which reads

rxy =

Pn
i=1.xi − �x/.yi − �y/

q

Pn
i=1.xi − �x/2

q

Pn
i=1.yi − �y/2

; (7)

where xi and yi are the sample points, n is the number
of samples in population, and �x; �y are the mean of the
population.

The regression of two load cases is demonstrated in
Fig. 6, achieving 99% coefficient of correlation.

The investigation of the signals in the time and frequency
domain helps understand the nature of the quantity to be
predicted. Fig. 7 shows the reference signal and the esti-
mated signals of DLC 1.2 for wind speed vw = 9ms−1

and an extract of 0.1 s. The linear state-space model does
not capture the time-domain behavior well in comparison
to the augmented state-space and neural network approach.

Fig. 8 illustrates the power spectral density of two load
cases, namely DLC 1.2 at rated wind speed vw = 9.8ms−1

with yaw misalignment � = −8ı and DLC 1.3 with wind
speed vw = 21ms−1. The virtual sensor is capable of
capturing the complete frequency response of the dynamic
system with minimal mismatch.

6 Conclusion and FurtherWork

In this work a formulation of data-based virtual sensor was
achieved which can estimate the internal forces on mechan-
ical components, namely the front bearing of the pinion
shaft, with correlation reaching 99% in time and frequency
domains. The proposed formulation is based on the aug-
mentation of a linear state-space model with a non-linear
feed forward neural network. The data used for fitting and
training of the virtual sensor elements were generated using
a high-fidelity multibody simulation model of the wind tur-
bine system. Sect. 5 highlights an excerpt of the achieved
results.

The virtual sensor can be incorporated into a monitoring
framework that can enhance the monitoring capabilities of
the standard condition monitoring systems in which it can
estimate the internal forces on the mechanical components
using the already available and accessible measurements
from SCADA and CMS systems. It can also be employed
for online vibration monitoring in the frequency domain,
where the significant natural frequencies of the system can
be identified in an online manner highlighting any abnor-
mal or excessive vibration in the system. In addition to the
monitoring purposes, the virtual sensor can be integrated
to sophisticated control systems such as model predictive
control frameworks, where the virtual sensor can provide
measurements of the forces that can be used for optimiza-
tion purposes such as damage accumulation on the critical
mechanical components in order to extend the lifetime of
the investigated component or minimize the maintenance
costs due to the benefit of prediction of non-measurable
quantities.
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