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Abstract
Fulton proves that the matrix Schubert variety Xπ

∼= Yπ × C
q can be defined via

certain rank conditions encoded in the Rothe diagram of π ∈ SN . In the case where
Yπ := TV(σπ ) is toric (with respect to a (C∗)2N−1 action), we show that it can be
described as a toric (edge) ideal of a bipartite graph Gπ . We characterize the lower
dimensional faces of the associated so-called edge cone σπ explicitly in terms of
subgraphs of Gπ and present a combinatorial study for the first-order deformations of
Yπ . We prove that Yπ is rigid if and only if the three-dimensional faces of σπ are all
simplicial. Moreover, we reformulate this result in terms of the Rothe diagram of π .

Keywords Matrix Schubert variety · Toric variety · Bipartite graph · Rothe diagram ·
Deformation

Mathematics Subject Classification 14B07 · 14M15 · 14M25 · 52B20 · 05C69

1 Introduction

In this paper, we are studying the matrix Schubert varieties Xπ
∼= Yπ × C

q asso-
ciated with a permutation π ∈ SN , where q is maximal possible. These varieties
first appear during Fulton’s study of the degeneracy loci of flagged vector bundles
in [7]. Knutson and Miller [11] show that Schubert polynomials are multidegrees of
matrix Schubert varieties. Moreover, the matrix Schubert variety is in fact related to
the Schubert variety in the full flag manifold via the isomorphism in [10, LemmaA.4].
On the other hand, Xπ is the closure of the preimage of the natural projection map
GLN → GLN/B+ inside the space of N × N matrices. The matrix Schubert varieties
are normal and one can define them by certain rank conditions encoded in the Rothe
diagram. Our goal is to investigate the natural restricted torus action on these varieties.
Escobar and Mészáros [6] study the toric matrix Schubert varieties via understanding
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their moment polytope. We present a reformulation of their classification in terms of
bipartite graphs. The significance of this restatement is that it allows one to study the
first-order deformations of the matrix Schubert variety in terms of graphs by [13]. The
toric varieties arising from bipartite graphs have been studied in various papers [4,
9, 12, 14] in different perspectives. We will review a few aspects of this theory and
bring our attention to the classification of the rigid toric matrix Schubert varieties. The
toric varieties arising from graphs enable us to produce many interesting examples of
rigid varieties. In fact, the first example of a rigid singularity in [8] is the cone over
the Segre embedding P

r × P
1 → P

2r+1 which is the affine toric variety associated
with the complete bipartite graph Kr+1,2. Following the techniques in [1, 13] for the
study of deformations of toric varieties, we classify rigid toric varieties Yπ in terms
of bipartite graphs and Rothe diagram.

The organization of the paper is as follows. In preliminaries, we present some basic
facts on matrix Schubert varieties and give a brief exposition of toric varieties arising
from bipartite graphs. In Sect. 3, we reformulate the question of classification of toric
matrix Schubert varieties to bipartite graphs. We then indicate how graphs may be
used to investigate the complexity of the torus action in the sense of T -varieties [2, 3].
Section4 starts with a discussion of deformation theory of toric varieties. Furthermore,
it provides a detailed exposition of the faces of the moment (edge) cone of Yπ . In
Lemma 4.5, we characterize the extremal rays of the edge cone. In Proposition 4.8 and
Proposition 4.11, we present conditions for extremal rays to span a two-dimensional
face and a three-dimensional face, respectively. Finally,we concludewith the following
result:

Theorem (Theorem 4.12) The toric variety Yπ is rigid if and only if the three-
dimensional faces of its moment (edge) cone are all simplicial.

We translate this result to the Rothe diagram of π and restate the classification in terms
of certain shapes on the diagram, in particular solely depending on the pattern of the
essential set (Definition 2.4) of π .

Corollary (Corollary 4.13) Let Ess(π) = {(xi , yi ) | xk+1 < · · · < x1 and y1 < · · · <

yk+1} with k ≥ 3 be the essential set of the Rothe diagram of π ∈ SN . Then, the toric
variety Yπ is rigid if and only if

• (x1, y1) �= (m, 2) and (xk+1, yk+1) �= (2, n) or
• for any i ∈ [k], (xi , yi ) �= (xi+1 + 1, yi+1 − 1).

where m is the length and n is the width of the smallest rectangle containing L(π)

from Definition 2.4.

2 Preliminaries

2.1 Matrix Schubert varieties

In this section, we adopt the conventions from [6] for matrix Schubert varieties. We
are mainly interested in matrix Schubert varieties for their effective torus actions and
deformations. The statements presented in this section can be found in [7, 11].
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Fig. 1 The Rothe Diagram of
[2143] ∈ S4

Let π ∈ SN be a permutation. We denote its permutation matrix by π ∈ C
N×N as

well and define it as follows:

πi j =
{
1, if π( j) = i
0, otherwise.

Let B_ denote the group of invertible lower triangular matrices and B+ denote the
group of invertible upper triangular N × N matrices. The product B_ × B+ acts from
left on C

N×N and its action defined as:

(B_ × B+) × C
N×N −→ C

N×N

((M_, M+),M) �→ M_MM−1+

Definition 2.1 LetM(a,b) ∈ C
a×b be the a× b matrix located at the upper left corner

of M ∈ C
N×N , where 1 ≤ a ≤ N and 1 ≤ b ≤ N . The rank function of M is

defined as rM(a, b) := rank(M(a,b)).

Note that the multiplication of a matrixM ∈ C
N×N on the left with M_ corresponds

to the downward row operations and multiplication of M on the right with M+ cor-
responds to the rightward column operations. Hence, one observes thatM ∈ B_πB+
if and only if rM(a, b) = rπ (a, b) for all (a, b) ∈ [N ] × [N ]. In this paper, M
also appears as a matrix of indeterminates; however, the context clarifies which one is
meant.

Definition 2.2 The Zariski closure of the orbit Xπ := B_πB+ ⊆ C
N×N is called the

matrix Schubert variety of π .

Rothe presented a combinatorial technique for visualizing inversions of the permu-
tation π .

Definition 2.3 The Rothe diagram of π is defined as
D(π) = {(π( j), i) : i < j, π(i) > π( j)}.

One can draw the Rothe diagram D(π) in the following way: Consider the permu-
tation matrix π in an N × N grid. Cross out each box containing 1 and all the other
boxes to the south and east of each box containing 1.

Definition 2.4 The connected part containing the box (1, 1) in the diagram is called
the dominant piece and is denoted by dom(π). The set consisting of the southeast
corners of each connected component of D(π) is called the essential set and denoted
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Fig. 2 The representations of dom(π), NW(π), Ess(π), and L ′(π)

as Ess(π). Let NW(π) denote the union of the boxes located to the northwest of each
box in D(π). Finally, let L(π) := NW(π)\ dom(π) and L ′(π) := L(π)\D(π).

In Fig. 2, one can visualize these sets in the Rothe diagram of [2143] ∈ S4.

Theorem 2.5 [7, Proposition 3.3, Lemma 3.10] The matrix Schubert variety Xπ is an
affine variety of dimension N 2−|D(π)|. It can be defined as a scheme by the equations
rM(a, b) ≤ rπ (a, b) for all (a, b) ∈ Ess(π).

Remark 1 By the previous theorem, we observe that there exist no rank conditions
imposed on the boxes which are not in NW(π). Thus these boxes are free in Xπ . Let
Vπ

∼= C
N2−|NW(π)| be the projection of thematrix Schubert variety Xπ ⊆ C

N×N onto
these free boxes. Also, we define Yπ as the projection onto the boxes of L(π). Note
that one obtains (a, b) ∈ dom(π) if and only if rπ (a, b) = 0. Hence, Xπ = Yπ × Vπ

holds. In particular, by Theorem 2.5,

dim(Yπ ) = (N 2 − |D(π)|) − (N 2 − |NW(π)|) = |NW(π)| − |D(π)| = |L ′(π)|.

Example 1 The essential set for the permutation π = [2143] ∈ S4 consists of the
boxes (1, 1) and (3, 3). Let M = (mi j ) ∈ C

4×4. First we note that m11 = 0 since
(1, 1) ∈ dom(π). For the boxes in L(π) one obtains the following inequality by
Theorem 2.5:

rM(3, 3) = rank(M(3,3)) = rank

⎛
⎝

⎡
⎣ 0 m12 m13
m21 m22 m23
m31 m32 m33

⎤
⎦

⎞
⎠ ≤ 2.

One obtains the ideal as generated by I := (
m11, det

(M(3,3)
))
. In particular Xπ

∼=
V(I ) × C

7 and dim(Yπ ) = |L ′(π)| = 7.

2.2 Edge cones of bipartite graphs

In this section, we briefly introduce the construction of the toric varieties related to
bipartite graphs as in [9, 13]. We refer the reader to [5] for details on the toric varieties
and the notations. In particular N ∼= Z

n stands for a lattice and M = HomZ(N , Z)

is its dual lattice. We denote their associated vector spaces as NQ := N ⊗Z Q and
MQ := M ⊗Z Q.
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Let G ⊆ Km,n be a bipartite graph with edge set E(G) and vertex set V (G). One
defines the edge ring as

Edr(G) := C[ti t j | (i, j) ∈ E(G)].

Consider the following morphism:

ϕG : C[x1, . . . , x|E(G)|] −→ Edr(G)

xe �→ ti t j with e = (i, j).

The kernel of this map is a toric ideal, and it is called the toric edge ideal of G. The
affine normal toric variety associated with bipartite graph G is

TV(G) := Spec(C[x1, . . . , x|E(G)|]/ ker ϕG).

Let ei denote a canonical basis element of Z
m ×0 for i = 1, . . . ,m and f j denote a

canonical basis element of 0× Z
n for j = 1, . . . , n. Set the lattices for the associated

cones of the toric variety TV(G) as

N := Z
m+n/(1,−1) and M := Z

m+n ∩ (1,−1)
⊥

where (1,−1) := 〈 ∑m
i=1 ei − ∑n

j=1 f j
〉
. We denote their associated vector spaces as

NQ and MQ. In order to distinguish the elements of these vector spaces, we denote
the canonical basis elements as ei ∈ NQ and ei ∈ MQ.

Hence, we obtain that the (dual) edge cone associated with TV(G) is

σ∨
G = Cone(ei + f j | (i, j) ∈ E(G)) ⊆ MQ,

i.e., we have that

TV(G) = Spec(C[σ∨
G ∩ M]).

We observe in Sect. 3 that the dual edge cone σ∨
G is in fact isomorphic to the moment

cone of amatrix Schubert variety.We use this fact in order to determine the complexity
of the torus action on a matrix Schubert variety.

Proposition 2.6 [13, Proposition 2.1, Lemma 2.17]Let G ⊆ Km,n be a bipartite graph
with k connected components and m + n vertices. Then, the dimension of σ∨

G ⊂ MR

is m + n − k.

Our aim is to study the first-order deformations T 1
TV(G) of the affine toric variety

TV(G) by using the techniques from [1]. One can describe T 1
TV(G) via understanding

the two and three-dimensional faces of the edge cone σG ⊆ NQ. We explain this
briefly in Sect. 4.1. We now introduce terminology and notation from graph theory to
describe the rays and faces of σG in terms of subgraphs of G. In Sect. 4.2, we will
describe the rigidity of TV(G) in terms of graphs.
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Remark 2 Note that if the bipartite graph G is the disjoint union of two connected
bipartite graphs G = G1 �G2, then we have TV(G) = TV(G1)×TV(G2). Thus, for
the remainder of this section, we assume that G ⊆ Km,n is connected.

Definition 2.7 Anon-empty subset A ofV (G) is called an independent set if it contains
no adjacent vertices. An independent set A � V (G) is called a maximal independent
set if there is no other independent set containing it. Let G be a bipartite graph and let
U1 andU2 be the disjoint sets of V (G). We say that an independent set is one-sided if
it is contained either inU1 orU2. In a similar way, A = A1 � A2 is called a two-sided
independent set if ∅ �= A1 � U1 and ∅ �= A2 � U2.

Definition 2.8 The neighbor set of A ⊆ V (G) is defined as

N (A) := {v ∈ V (G) | v is adjacent to some vertex in A}.

The supporting hyperplane of the dual edge cone σ∨
G ⊆ MQ associated with an

independent set ∅ �= A is defined as

HA :=
⎧⎨
⎩x ∈ MQ |

∑
i∈A

xi =
∑

i∈N (A)

xi

⎫⎬
⎭ .

Note that since no pair of vertices of an independent set A is adjacent, we obtain that
A ∩ N (A) = ∅.
Definition 2.9 (1) A subgraph of G with the same vertex set as G is called a spanning

subgraph of G.
(2) Let A ⊆ V (G) be a subset of the vertex set of G. The induced subgraph of

A is defined as the subgraph of G formed from the vertices of A and all of the
edges connecting pairs of these vertices. We denote it as G[A] and we adopt the
convention G[∅] = ∅.
Now, we characterize the independent sets resulting in a facet of σ∨

G .

Definition 2.10 Let G[[A]] denote the subgraph of G associated with the independent
set A and defined as

⎧⎨
⎩
G[A � N (A)] � G[(U1\A) � (U2\N (A))], ifA ⊆ U1 is one-sided.
G[A � N (A)] � G[(U2\A) � (U1\N (A))], if A ⊆ U2 is one-sided.
G[A1 � N (A1)] � G[A2 � N (A2)], if A = A1 � A2 is two-sided.

We define the associated bipartite subgraph G{A} ⊆ G to the independent set A
as the spanning subgraph G[[A]] � (

V (G)\V (G[[A]])).
Finally, we define the first independent sets I(1)

G of G as

I(1)
G :=

{
Two-sided maximal independent sets and one-sided independent sets Ui\{•}
where their associated bipartite subgraph has two connected components.

}
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Note that Definition 2.10 becomes less technical for the first independent sets by [13,
Proposition 2.9, Lemma 2.10]. Namely, we obtain:

G{Ui\{•}} = G[Ui\{•} � Uj ] � {•}, for a one-sided first independent set with
i �= j and
G{A} = G[A1 � N (A1)] � G[A2 � N (A2)], for a two-sided first independent set
A = A1 � A2.

Denote the set of extremal ray generators (i.e., 1-dimensional faces) of σG by σ
(1)
G .

Recall that there is a bijective inclusion-reversing correspondence between the faces
of σG and the faces of σ∨

G . Given a face τ � σ∨
G , we define the dual face τ ∗ of τ as

{x ∈ σ∨
G | 〈x, u〉 = 0 for all u ∈ τ }. In particular, the facets of σ∨

G are in bijection
with the extremal rays of σG .

Theorem 2.11 [13, Theorem 2.8] There is a one-to-one correspondence between the
set of extremal generators σ

(1)
G and the first independent set I(1)

G . In particular, the
map is given as

� : I(1)
G −→ σ

(1)
G

A �→ a := (HAi ∩ σ∨
G )∗

for a fixed i ∈ {1, 2} with Ai �= ∅.
Example 2 We consider the bipartite graph G ⊂ K2,2 obtained by removing one
edge from the complete bipartite graph. The first independent set I(1)

G for the graph

G is colored in green. The sets {1} and {3} are not in I(1)
G since they are contained

in the two-sided maximal independent set {1, 3} and thus their associated subgraph
has three connected components. The cone σG ⊆ NQ is generated by e1, f1, and
e2 − f1 corresponding, respectively, to the associated spanning subgraphs seen in the
following figure.

2 4

1 3

G

2 4

1 3

G{{1}}
2 4

1 3

G{{3}}
2 4

1 3

G{{1, 3}}

The next result classifies d-dimensional faces of σG via intersecting associated
subgraphs related to first independent sets.

Theorem 2.12 [13, Theorem 2.18] Let S ⊆ I(1)
G be a subset of d first independent

sets and let � be the bijection from Theorem 2.11. The extremal ray generators �(S)
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span a face of dimension d if and only if the dimension of the dual edge cone of the
spanning subgraph G[S] := ⋂

A∈S G{A} is m + n − d − 1, i.e., G[S] has d + 1
connected components. In particular, the face is equal to HValS ∩ σG where ValS is
the degree sequence of the graph G[S] and HValS = {x ∈ NQ | 〈ValS, x〉 = 0} is the
usual supporting hyperplane in NQ.

Example 3 All pairs of extremal rays ofσG generate a two-dimensional face ofσG since
the intersection of all pairs of associated subgraphs has three connected components.
In particular, the two-dimensional face generated by (1, 0, 0, 0) and (0, 1,−1, 0), i.e.,
the edge cone of G{{1}} ∩ G{{1, 3}}, is equal to H[0,1,1,0] ∩ σG .

3 Torus action onmatrix Schubert varieties in terms of graphs

The torus action on Yπ has been first studied by Escobar and Mészáros [6] where they
characterize all toric varieties Yπ .We reformulate this classification in terms of graphs.
Moreover, we approach the question of determining the dimension of the torus acting
on Yπ from a perspective of T -varieties. These are normal varieties with effective
torus action not necessarily having a dense torus orbit. They can be considered as the
generalization of toric varieties with respect to the dimension of their torus action. For
more details about T -varieties, we refer to [2, 3].

Definition 3.1 An affine normal variety X is called a T-variety of complexity-d if it
admits an effective T torus action with dim(X) − dim(T ) = d.

The matrix Schubert varieties are normal varieties (see [11, Theorem 2.4.3]). The
action of B_ × B+ on Xπ restricts to the action of T N × T N , where T N ∼= (C∗)N is a
diagonal matrix of size N × N . Since this action is not effective (since (aIN , aIN ) ·
M = M), we consider the stabilizer Stab

(
(C∗)2N

)
of this torus action and the action

of the quotient T := (C∗)2N/Stab
(
(C∗)2N

)
on the matrix Schubert variety Xπ .

Let p be a general point in Yπ which have 1 in all boxes of L(π) and 0 in others.
Then, the closure of the torus orbit (C∗)2N · p is the affine toric variety associated
with the so-called (C∗)2N -moment cone (or weight cone) of Yπ , denoted by �(Yπ ).
One obtains that dim(�(Yπ )) = dim((C∗)2N · p). Since (C∗)2N · p and Yπ are both
irreducible, it suffices to examine their dimension for the complexity of the torus action
on Yπ . Recall that the convex polyhedral cone generated by all weights of the torus
action on Yπ in MR (vector space spanned by the character lattice of the considered
torus) is called the weight cone. Here, the weight cone of the action can be expressed
as

�(Yπ ) = Cone(ei − f j | (i, j) ∈ L(w)),

where ei denotes the canonical basis for R
m × 0 and f j denotes the canonical basis

for 0 × R
n . Note that this cone is linearly isomorphic to a dual edge cone associated

with a bipartite graph. Hence, one can define a bipartite graph Gπ ⊆ Km,n from a
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Rothe diagram D(π) via the following bijection:

L(π) −→ E(Gπ )

(a, b) �→ (a, b)

where for (a, b) ∈ E(Gπ ), a ∈ U1 and b ∈ U2. Hence, we obtain also the vertex set
V (Gπ ). We denote the associated edge cone by σπ . By Remark 1, we conclude the
following:

Proposition 3.2 Yπ is a T-variety of complexity-d with respect to the torus action T if
and only if dim(σ∨

π ) = L ′(π) − d.

Example 4 Let us consider the matrix Schubert variety Xπ
∼= Yπ ×C

7 for π = [2143]
fromExample 1. The second figure represents L(π), and the third figure represents the
bipartite graph Gπ . For each box (a, b) ∈ L(π), we construct an edge (a, b) ∈ E(Gπ )

with vertices a ∈ U1 and b ∈ U2. The dimension of the associated dual edge cone
σ∨

π is 5 and |L ′(π)| = 7. Hence, Yπ is a T -variety of complexity-2 with respect to
the effective torus action of T ∼= (C∗)5 and with a moment cone linearly equivalent
to σ∨

π .

(3,3)

(2,1)

(1,2)

(2,2)

(3,1) (3,2)

(2,3)

(1,3)

2

3 3

2

1 1

For the complexity zero case, i.e., toric case, we present an alternative proof with
edge cones. A hook with corner (i, j) consists of boxes (i ′, j ′) such that j = j ′ and
i ′ ≥ i or i = i ′ and j ≥ j ′.

Theorem 3.3 [6, Theorem 3.4] Yπ is a toric variety if and only if L ′(π) consists of
disjoint hooks not sharing a row or a column.

Proof By Proposition 3.2, we aim to characterize the case when dim(σ∨
π ) = L ′(π).

Note that L(π) has a skew shape. Assume that L(π) consists of k connected com-
ponents with mi rows and ni columns for each i ∈ [k]. This means that we
investigate the bipartite graph Gπ ⊆ Km,n with k connected bipartite graph com-
ponents Gπ

i ⊆ Kmi ,ni . By Proposition 2.6, the dimension of the cone dim(σπ ) is
m + n − k. Since L(π) has k connected components, the components of L ′(π) for
each i ∈ [k] do not share a row or a column. Therefore, we are left with proving the
statement for a connected component Li (π) of L(π). The dimension of the dual edge
cone of Gπ

i is equal to |L ′
i (π)| if and only if L ′

i (π) has a hook shape. ��
Example 5 Let π = [2413] ∈ S4. The first figure illustrates the Rothe diagram D(π).
The green colored boxes are L(π) and the purple colored boxes are L ′(π). The dimen-
sion of the associated bipartite graph and |L ′(π)| is three.Also, as seen in the last figure,
L ′(π) has a hook shape. Thus, Y[2413] is a toric variety with respect to the effective
torus action of T ∼= (C∗)3, in particular the cone over the Segre variety P

1 × P
1.
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2 2

1 1

Theorem 3.3 and its alternative proof give us the opportunity to study the first-order
deformations of Yπ in terms of edge cone σπ and Rothe diagram D(π) in Sect. 4.

4 Rigidity of toric matrix Schubert varieties

This section is devoted to the study of the detailed structure of the edge cone σπ for
matrix Schubert varieties Xπ where Yπ = TV(Gπ ) is toric. Note that these matrix
Schubert varieties are called toric matrix Schubert varieties in [6] and we adopt this
convention. First, we explain briefly the combinatorial techniques for the first-order
deformations of toric varieties. By studying the first independent sets of the bipartite
graphGπ and the two and three-dimensional faces of σπ , we present the necessary and
sufficient condition for the rigidity of toric matrix Schubert varieties. By Remark 2
and since we investigate rigidity, we can assume that L(π) is connected. Throughout
this section, the connected bipartite graphGπ ⊆ Km,n denotes the associated bipartite
graph of L(π) which was constructed in Sect. 3.

4.1 Deformations of toric varieties

A deformation of an affine algebraic variety X0 is a flat morphism π : X −→ S with
0 ∈ S such that π−1(0) = X0, i.e., we have the following commutative diagram.

X0 X

0 S

π

The varietyX is called the total space and S is called the base space of the deforma-
tion. Let π : X −→ S and π ′ : X ′ −→ S be two deformations of X0. We say that two
deformations are isomorphic if there exists a map φ : X −→ X ′ over S inducing the
identity on X0. Let A be an Artin ring and let S = Spec(A). One has a contravariant
functor DefX0 such that DefX0(A) is the set of deformations of X0 over S modulo
isomorphisms.
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Definition 4.1 The map π is called a first-order deformation of X0 if
S = Spec(C[ε]/(ε2)). We set T 1

X0
:= Def X0(C[ε]/(ε2)).

The variety X0 is called rigid if T 1
X0

= 0. This implies that a rigid variety X0
has no non-trivial infinitesimal deformations. This means that every deformation π ∈
Def X0(A) over S = Spec(A) is trivial, i.e., isomorphic to the trivial deformation
X0 × S −→ S.

For the case where X0 = Spec(C[σ∨ ∩ M]) is an affine normal toric variety, we
introduce the techniques which are developed in [1] in order to investigate theC-vector
space T 1

X0
. The deformation space T 1

X0
is multigraded by the lattice elements of M ,

i.e., T 1
X0

= ⊕
R∈M T 1

X0
(−R). We first recall some definitions from [1, Section 2.4] in

order to describe the homogeneous part T 1
X0

(−R).

Definition 4.2 Let us call R ∈ M a deformation degree and let σ ⊆ NQ be generated
by the extremal ray generators a1, . . . , ak . We define the following affine space

[R = 1] := {a ∈ NQ | 〈R, a〉 = 1} ⊆ NQ.

The assigned vector space is [R = 0] := {a ∈ NQ | 〈R, a〉 = 0} ⊆ NQ. The cross-cut
of σ in degree R is the polyhedron Q(R):= σ ∩ [R = 1].
The cross-cut Q(R) has the cone of unbounded directions Q(R)∞ = σ ∩[R = 0]. The
compact part Q(R)c is generated by the vertices ai = ai/〈R, ai 〉 where 〈R, ai 〉 ≥ 1.
Note that ai is a lattice vertex in Q(R) if 〈R, ai 〉 = 1.

Definition 4.3 (i) Let d1, . . . , dα ∈ R⊥ ⊂ NQ be the compact edges of Q(R). The
vector ε̄ ∈ {0,±1}α is called a sign vector assigned to each two-dimensional
compact face ε of Q(R) defined as

εi =
{±1, if di is an edge of ε
0

such that
∑

i∈[α] εi di = 0, i.e., the oriented edges εi di form a cycle along the
edges of ε. We choose one of both possibilities for the sign of ε.

(ii) For every deformation degree R ∈ M , the related vector space is defined as

V (R) =
{
t = (t1, . . . , tα) ∈ C

α :
∑
i∈[α]

ti εi d
i = 0, for every compact 2-face ε � Q(R)

}
.

The toric variety TV(G) associated with a bipartite graph G ⊆ Km,n is smooth in
codimension 2 [13, Theorem 4.5]. Hence, we introduce the result for this special case:

Theorem 4.4 [1, Corollary 2.7] If the affine normal toric variety X0 is smooth in
codimension 2, then T 1

X0
(−R) is contained in V (R)/C(1, . . . , 1). Moreover, it is built

by those t̄’s satisfying ti j = t jk where a j is a non-lattice common vertex in Q(R) of
the edges di j = ai a j and d jk = a j ak .
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Fig. 3 Compact 2-faces sharing
an edge or a non-lattice vertex in
Q(R)

d1 d5

d3

d2
d4

aj

d1

d2
d3

d4
d5

d6

Remark 3 The following two cases of Q(R) in Fig. 3 will appear often while we study
T 1
TV(G)(−R). Let us interpret these cases with the previous result.

• Let ε1, ε2 � Q(R) be the compact 2-faces sharing the edge d3. We choose
the sign vectors ε1 = (1, 1, 1, 0, 0) and ε2 = (0, 0, 1, 1, 1). Suppose that
t = (t1, t2, t3, t4, t5) ∈ V (R). We observe that t1 = t2 = t3 for 2-face ε1 and
t3 = t4 = t5 for 2-face ε2.

• Let ε1, ε2 � Q(R) be the compact 2-faces connected by the vertex a j . As in the
previous case, we obtain that t1 = t2 = t3 and t4 = t5 = t6. By Theorem 4.4, if
a j is a non-lattice vertex, then we obtain t3 = t4.

We will refer to these two cases by “t is transferred by an edge or a vertex” during
the investigation of Q(R) in Theorem 4.12. Note that we observe certain pairs of
vertices of Q(R) where their convex hull is not contained in Q(R). This means that
the corresponding pair of extremal rays of the cone does not form a two-dimensional
face (non-2-faces). In addition to non-3-faces, these are critical cases to investigate
during the application of Theorem 4.4.

4.2 Faces of the edge cone�� of toric variety Y�

In order to study the rigidity of Yπ = TV(σπ ) with Theorem 4.4 and Remark 3,
we investigate the face structure of the edge cone σπ more closely. By definition, we
consider three types of first independent sets with the following notations: the one-
sided first independent sets A = U1\{•}, B = U2\{•} and two-sided (maximal) first
independent setsC = C1�C2. We label the boxes of the essential set from the bottom
of the diagram starting with (x1, y1) to the top ending with (xk+1, yk+1), i.e., we have
xk+1 < · · · < x1 and y1 < · · · < yk+1.

Lemma 4.5 For any permutation π ∈ SN ,

(1) The one-sided first independent sets of Gπ are Ui\{ui } for all ui ∈ Ui and for
i = 1, 2.

(2) The two-sided first independent sets are the maximal two-sided independent sets
of Gπ .

Proof By Theorem 3.3, L ′(π) is a hook. The boxes of L(π) form a shape of a Ferrer
diagram, i.e.,wehaveλ1 ≥ · · · ≥ λt whereλi denotes the number of boxes at i th rowof
L(π). Consider the smallest rectangle containing L(π) of lengthm and ofwidth n. The
removed edges of the bipartite graph Gπ ⊆ Km,n are linked with the free boxes of Xπ

in the rectangle. Let (xi , yi ) ∈ Ess(π), equivalently let (xi , yi ) ∈ E(Gπ ). Then, one
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Fig. 4 A representative figure of
a first independent set of

C ∈ I(1)
Gπ and the associated

spanning subgraph G{C} for a
matrix Schubert variety Xπ

• • • • • • • • • • • • • • • • •
•
• ×
•
• ×
•
• ×
•
•
• ×
•
• ×
•
•
•
• ×

obtains naturally that there exists a two-sidedmaximal independent setC = C1�C2 =
{xi + 1, . . . ,m} � {yi−1 + 1, . . . , n} where (xi−1, yi−1) ∈ Ess(π) with xi−1 > xi
and yi−1 < yi . Then, the neighbor sets are N (C1) = U2\C2 = {1, . . . , yi−1} and
N (C2) = U1\C1 = {1, . . . , xi }. Therefore, the boxes for the induced subgraphs
G[C1�N (C1)] andG[C2�N (C2)] also form a shape of a Ferrer diagram andG{C} has
two connected components. In particular, Ui\{ui } cannot be contained in a two-sided
independent set. Suppose that G{Ui\{ui }} has more than three components. Then, as
in [13, Proposition 2.13], there exist two-sided first independent sets Ci ∈ I(1)

G such
that

⊔
Ci
1 = Ui\{ui } which is not possible. ��

Lemma 4.6 There exist k two-sided first independent sets of Gπ with |Ess(π)| = k+1.
Moreover, if k ≥ 2 and, C and C ′ are two-sided first independent sets of Gπ , then
C1 � C ′

1 and C
′
2 � C2.

Proof Consider again the smallest rectangle containing L(π) of a length m and of a
width n. If there exists only one essential set of π , then Gπ = Km,n . Assume that
there is more than one essential box. Let (x j , y j ) and (xi , yi ) be two essential boxes
with j < i , x j > xi and y j < yi . By Lemma 4.5, we obtain two first independent sets
C = {xi +1, . . . ,m}�{yi−1+1, . . . , n} andC ′ = {x j +1, . . . ,m}�{y j−1+1, . . . , n}
of Gπ . We infer that C1 � C ′

1 and C
′
2 � C2. ��

Example 6 The boxes of L(π) for the toric variety Yπ are presented in Fig. 4. The
blue boxes are removed edges between some vertex sets C1 ⊂ U1 and C2 ⊂ U2. We
observe that C := C1 � C2 is a maximal independent set. In particular, the orange
color represents the edges of the induced subgraph G[C1 � N (C1)] and the purple
color represents the edges of the induced subgraph G[C2�N (C2)]. The crossed boxes
are the boxes of the essential set Ess(π). The boxes with a dot form the shape of a
hook and these are the boxes of L ′(π).

Let us first identify the cases where there are one or two essential boxes.

Lemma 4.7 Let Gπ ⊆ Km,n be the associated connected bipartite graph to the toric
variety Yπ .
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(1) If |Ess(π)| = 1, then the toric variety Yπ is isomorphic to TV(Km.n), i.e., the
cone over the Segre variety P

m−1 × P
n−1. In particular, Yπ is rigid if m �= 2 and

n �= 2.
(2) If |Ess(π)| = 2, then the toric variety Yπ is rigid if and only if |C1| �= 1 and

|C2| �= n − 2 or |C1| �= m − 2 and |C2| �= 1.

Proof It follows from [13, Theorems 4.3, 4.6]. ��
From now on, we assume that |Ess(π)| ≥ 3. This means that we consider the

associated connected bipartite graph Gπ
� Km,n with m, n ≥ 4. We denote by I(d)

Gπ

the set of tuples of first independent sets forming a d-dimensional face of σG . Let σ
(d)
Gπ

be the set of d-dimensional faces of σπ . Recall the classification of d-dimensional
faces of an edge cone in Theorem 2.12 for a subset S = {A(1), . . . , A(d)} ⊆ I(1)

G of d
first independent sets. Let � be the isomorphism from Theorem 2.11. Then, we have

�d : I(d)
Gπ −→ σ

(d)
Gπ

(A(1), . . . , A(d)) �→ (�(A(1)), . . . , �(A(d))) = HValS ∩ σGπ

if and only if G[S] = ⋂
A∈S G{A} has d + 1 connected components.

Next, we analyze the pairs of extremal rays of σπ to determine if they form a face.
This is one of the crucial results for the proof of Theorem 4.12.

Proposition 4.8 Let A = U1\{i}, B = U2\{ j}, C = C1 � C2 be three types of first
independent sets of the bipartite graph Gπ .

(1) For any A, B ∈ I(1)
Gπ , (A, B) ∈ I(2)

Gπ .

(2) For any C,C ′ ∈ I(1)
Gπ , (C,C ′) ∈ I(2)

Gπ .

(3) (A, A′) /∈ I(2)
Gπ if and only if there exists a first independent set U1\{i, i ′} � C2

where C2 � U2 is some vertex set with |C2| ≤ n − 2.
(4) (A,C) /∈ I(2)

Gπ if and only C1 = {i} or there exists C ′ ∈ I(1)
Gπ with C1\C ′

1 = {i}.

Proof (1) Suppose that there exist a pair (A, B) /∈ I(2)
Gπ . Consider the intersection

subgraph G{A} ∩ G{B} and assume that it has isolated vertices other than {i, j}.
Consider the isolated vertices in U1\{i}. This means that there exists a two-sided
independent set consisting of these isolated vertices and B, which is impossible
since B ∈ I(1)

Gπ . Now assume that G{A} ∩ G{B} consists of the isolated vertices
{i, j} and k ≥ 2 connected bipartite graphs Gi . Let the vertex set of Gi consist of
Vi � U1 and Wi � U2. Since B ∈ I(1)

Gπ , there exist an edge (i, wi ) ∈ E(Gπ ) for

each i ∈ [k], where wi ∈ Wi . Symmetrically, since A ∈ I(1)
Gπ , there exist an edge

( j, vi ) ∈ E(Gπ ) for each i ∈ [k] where vi ∈ Vi . However, then for I � [k], we
obtain the two-sided maximal independent sets of form

⊔
i∈I Vi � (B\(⊔i∈I Wi )

which contradicts the construction of Gπ .
(2) Let (x j , y j ) and (xi , yi ) be two essential boxes with x j > xi and y j < yi ,

associated with two first independent setsC andC ′ in I(1)
Gπ . It is enough to check if

G[C ′
1 � N (C ′

1)] ∩G[C2 ∩ N (C2)] is connected. We observe that the edges of this
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graph are represented by the square with vertices (xi +1, y j−1+1), (xi +1, yi−1),
(x j , y j−1+1), and (x j , yi−1), intersectedwith the diagram D(π). This intersection
is also a Ferrer diagram and connected.

(3) Consider the intersection subgraphG{A}∩G{A′}. Assume that it has only {i, i ′} �

U1 as isolated vertices and k connected bipartite graphs. Then, as in case (1),
there exist first independent sets C,C ′ with C1 ∩C ′

1 = ∅, which is impossible by
Lemma 4.6. Assume that it has the isolated vertices {i, i ′} � U1 andC2 � U2 with
|C2| ≤ n − 2. Then, C := U1\{i, i ′} �C2 is maximal and thus a first independent
set.

(4) Suppose that i ∈ C1 and (A,C) /∈ I(2)
Gπ . Consider the intersection subgraph

G{A} ∩ G{C}. Similarly to the last investigations, we conclude G[C1 � N (C1)]
cannot admit {i} as its only isolated vertex. If C1 = {i}, then the intersection
subgraph admits of |N (C1)| + 1 isolated vertices and G[C2 � N (C2)]. Assume
that the intersection subgraph consists of the isolated vertex {i} � C1 and some
vertex set C ′

2 � N (C1). This means that C ′ := C1\{i} � C ′
2 � C2 is a maximal

two-sided independent set. Hence, C ′ ∈ I(1)
Gπ . ��

In order to eliminate the non-rigid cases of Yπ , we introduce the following result.
This allows us to focus only on simplicial three-dimensional faces of σπ .

Theorem 4.9 [13, Theorem 3.18] Let G ⊆ Km,n be a connected bipartite graph.
Assume that the edge cone σG admits a three-dimensional non-simplicial face. Then,
TV(G) is not rigid.

Lemma 4.10 Assume that |Ess(π)| ≥ 3.

(1) Let C,C ′ ∈ I(1)
Gπ with C ′

1 � C1 and C2 � C ′
2. If |C1|−|C ′

1| = 1 and |C ′
2|−|C2| =

1, then Yπ is not rigid.
(2) If there exists a first independent set C ∈ I(1)

Gπ with |C1| = 1 and |C2| = n − 2 or
|C1| = m − 2 and |C2| = 1, then Yπ is not rigid.

Proof We refer again to [13]. These are the cases from Lemma 3.10 (2)(i) and
Lemma 2.11 (2). By Theorem 4.9, we conclude that Yπ is not rigid in these cases. ��

We denote the image of the first independent sets A = U1\{i}, B = U2\{ j}, and
C under the map � of Theorem 4.9 by a = ei , b = f j , and c.

Example 7 Let π = [1, 10, 8, 7, 6, 9, 4, 5, 2, 3] ∈ S10 and let us consider the diagram
L(π). The dotted boxes L ′(π) form a hook and therefore Yπ is toric. Consider the first
independent sets C = {8, 9} � {3, 4, 5, 6, 7, 8} and C ′ = {7, 8, 9} � {4, 5, 6, 7, 8} of
the associated connected bipartite graph Gπ

� K9,8. By Lemma 4.10, 〈c, c′, e7, f4〉
spans a three-dimensional face of σπ and hence Yπ is not rigid.

• • • • • • • •
•
•
•
•
• ×
• ×
•
•
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The cases in Lemma 4.10 are the only cases where σπ has non-simplicial
three-dimensional faces. We conclude this by examining the non-2-face pairs from
Proposition 4.8 (3) and (4).

From now on, wemay assume that all three-dimensional faces ofGπ are simplicial.
In the next proposition, we examine the triples which do not form a three-dimensional
face of σπ . After this result, we will be ready to prove Theorem 4.12.

Proposition 4.11 Let I be a triple of the first independent sets of Gπ not forming a
three-dimensional face. Assume that any pair of first independent sets of I forms a
two-dimensional face. Then, the triple I is

(1) (A, A′, A′′) /∈ I(3)
Gπ if and only if there exists C ∈ I(1)

Gπ with C1 = U2\{i, i ′, i ′′}.
(2) (A, A′,C) /∈ I(3)

Gπ if and only if C1 = {i, i ′} or there exists C ′ ∈ I(1)
Gπ with

C1\C ′
1 = {i, i ′}.

Proof Thefirst case follows analogously as in the proof of Proposition 4.8 (3).Consider
a triple of form (C,C ′,C ′′) with C1 � C ′

1 � C ′′
1 and C ′′

2 � C ′
2 � C2. Any such triple

forms a 3-face, since the intersection graph G{C} ∩ G{C ′} ∩ G{C ′′} is equal to

G[C1 � N (C1)] � G[(C ′
1\C1) � (C2\C ′

2)] � G[(C ′′
1\C ′) � (C ′

2\C ′′
2 )] � G[C ′′

2 � N (C ′′
2 )]

and has 4 connected components since any pair of two-sided first independent sets
forms a 2-face. For such triples containing both A and B, similar to the arguments in the
proof of Proposition 4.8 (1), we conclude that they form 3-faces. Finally, consider the
triple (A, A′,C). Since (A, A′) ∈ I(2)

Gπ , i and i ′ cannot be both in N (C2). Assume that
i ∈ C1 and i ′ ∈ N (C2). Since (A,C) and (A′,C) form 2-faces, the triple (A, A′,C)

forms a 3-face. Hence, we have that {i, i ′} ⊆ C1. The statement follows by an analysis
similar to that in the proof of Proposition 4.8 (4). ��
Remark 4 In addition to the triple in Proposition 4.11, the triples of first independent
sets of Gπ , containing the pairs in Proposition 4.8 (3) and (4) do not form a three-
dimensional face of σπ .

4.3 Classification of rigid toric varieties Y�

The following two results classify the rigid toric matrix Schubert varieties in terms of
edge cone σπ and in terms of its Rothe diagram D(π).

Theorem 4.12 The toric variety Yπ = TV(σπ ) is rigid if and only if the three-
dimensional faces of σπ are all simplicial.

Proof We have proven the statement for |Ess(π)| = 1, 2. We prove it now for
|Ess(π)| ≥ 3. We examine the non-2-faces pairs from Proposition 4.8 (case (iii)
and case (iv)) and non-3-face triples from Proposition 4.11 (case (i) and case (ii)).
By Theorem 4.4 and Remark 3, we compute T 1

X0
(−R), for all deformation degrees

R ∈ M ∼= Z
m+n/(1,−1).
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(i) Suppose that (e1, e2, e3) does not span a 3-face and (e1, e2), (e1, e3) and (e2, e3)
do span 2-faces. By Proposition 4.11 (1), there exists a first independent set C ∈ I(1)

Gπ

with C1 = U1\{1, 2, 3} and |C2| ≤ n − 2. Assume that e1, e2, and e3 are vertices in
Q(R) for some deformation degree R ∈ M . Let a ∈ σ

(1)
π be an extremal ray. Since

(a, ei , e j ) spans a 3-face of σπ for every i, j ∈ [3] and i �= j , we are left with showing
that there exists no such a ∈ Q(R). However, even though this is the case, i.e., Ri ≤ 0,
for every i ∈ [m + n]\{1, 2, 3}, then c ∈ Q(R). By Proposition 4.11 (2), (ei , e j , c)
spans a 3-face for all i, j ∈ [3] with i �= j .

(ii) Suppose that (e1, e2, c) does not span a 3-face and (e1, e2), (e1, c) and (e2, c) do
span 2-faces. By Proposition 4.11, |C1| = {1, 2} or there exists C ′ ∈ I(1)

Gπ such that
C1\C ′

1 = {1, 2}. Assume that e1, e2, and c are vertices in Q(R) for some deformation
degree R ∈ M . If |C1| = {1, 2}, then there exists b ∈ N (C1) such that B = U2\{b} ∈
I(1)
Gπ and b ∈ Q(R) is not a lattice vertex or there exist at least three vertices bi ∈ N (C1)

such that Bi = U2\{bi } ∈ I(1)
Gπ and bi is a lattice vertex in Q(R). If C1\C ′

1 = {1, 2},
then either c′ ∈ Q(R) or b ∈ Q(R) for b ∈ C ′

2\C2 and B = U2\{b} ∈ I(1)
Gπ . By

Proposition 4.11, any triple containing a pair of {e1, e2, c} and a ray generator of type
b, bi, c′ defined as before forms a 3-face.

(iii) In the previous two cases, we showed that t is transferred by an edge for non-3-
faces as explained in Remark 3. We next continue the proof for non-2-faces.

Suppose that (e1, e2) does not span a 2-face and e1 and e2 are in Q(R) for some
deformation degree R ∈ M . Then, by Proposition 4.8 (3), there exists a first indepen-
dent set C = C1 � C2 ∈ I(1)

Gπ with C1 = U1\{1, 2} and |C2| ≤ n − 2. Assume that
there exist k vertices f j in Q(R) where j ∈ [k] ⊆ [n]. If k = 0, then c is a non-lattice
vertex in Q(R), and t is transferred by c. If k = 1, then f1 is a non-lattice vertex in
Q(R) and t is transferred by f1. If k ≥ 3, there can be at most one non-2-face pair by
Proposition 4.8 (3) and by Lemma 4.6, say ( f1, f2). However, the other triples of type
(A, B, B ′) not containing both U2\{1} and U2\{2} form 3-faces by Proposition 4.11.

Suppose now that there exists a lattice vertex c′ in Q(R). Then, by Lemma 4.6,
we have that C ′

1 ⊂ C1. We can assume that there exists only one such extremal
ray c′, since any triple of type (C,C ′,U1\{1}) and (C,C ′,U1\{2}) form 3-faces. By
Proposition 4.8 (4), there exists at most one f j such that ( f j , c′) does not span a
two-dimensional face. Thus t is transferred by edges of 2-faces in Q(R). It leaves
us to check the case where k = 2: if the pair { f1, f2} do not span a 2-face σπ , then
there exists a first independent set C ′′ = C ′′

1 � C ′′
2 ∈ IGπ with C ′′

2 = U2\{1, 2} and
|C ′′

1 | ≤ m − 2. Then, c ∈ Q(R) and it is not a lattice vertex. Furthermore, (ei , f j , c)
spans three-dimensional faces of σπ for i ∈ [2] and j ∈ [2]. Last, assume that ( f1, f2)
spans a 2-face of σGπ . Again, it is enough to check the cases for only one vertex c′ in
Q(R). There exists at most one non-2-face pair, say ( f1, c′). But then (c′, f2, e1) is a
3-face of σGπ and t is transferred by the edges of Q(R). In particular, if there exist
e j ∈ Q(R) for j �= 1, 2, by Proposition 4.8 (3), there can be at most one non-2-face
pair and analogous arguments follow.

Lastly, suppose that {c, ei } does not span a 2-face and c and ei are in Q(R) for some
deformation degree R ∈ M . Remark here that we excluded the cases where there
exist non-simplicial three-dimensional faces. This means c and ei forms 2-faces with
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each extremal ray of σπ . Assume that there exist more than three vertices in Q(R)

other than c and ei . We examined the cases where non-3-face (e1, e2, e3) appears and
where non-2-face (e1, e2) appears in Q(R). Therefore, we assume that there exists
another non-2-face pair, say (c∗, e j ). But, since c∗ and e j also forms 2-faces with each
extremal ray of σπ , it is enough to check the cases where there exist less than five
vertices in Q(R).

Let us first consider the case where there exist exactly two more vertices in Q(R)

other than c and ei . By Proposition 4.8 (4), if (A,C) is a non-2-face pair, thenC1 = {i}
or there exists C ′ ∈ I(1)

Gπ with C1\C ′
1 = {i}. We first start with C1 = {i}. Then, there

exists a non-lattice vertex f j ∈ Q(R) where j ∈ U2\C2. By Lemma 4.6, there

exists no other first independent set C ′ ∈ I(1)
Gπ such that C2 � C ′

2, since C = {i}.
Therefore, it is impossible that there exists another non-2-face pair containing c′ in
Q(R). Secondly, suppose that there exists C ′ ∈ I(1)

Gπ with C1\C ′
1 = {i}. The vertex

c′ is in Q(R), unless there exists f j ∈ Q(R) where j ∈ C ′
2\C2. This vertex cannot

be f j with { j} = C ′
2\C2, because then (c, c′, ei , f j ) spans a 3-face. Hence, c′ is one

of these two vertices. It remains to check the case where other vertex is ei−1. Then,
there exists a first independent set C ′′ ∈ I(1)

Gπ . We have that c′′ /∈ Q(R) if and only if

there exists f ′
j with j ′ ∈ C ′′

2\C ′
2, by the same reasoning as before. Lastly, assume that

there exists only one lattice vertex in Q(R) other than c and ei . We observe that c′ is
a lattice vertex of Q(R) if there exist some f j ∈ Q(R) where j ∈ C ′

2\C2. Therefore,
we assume that this lattice vertex is f j for some j ∈ [n]. In order to obtain 〈R, c′〉 = 0,
we must have { j} = C ′

2\C2, but this implies that (c, c′, ei , f j ) is a 3-face of σπ . ��
We also interpret the rigidity of Yπ by giving certain conditions on the Rothe

diagram.

Corollary 4.13 Let Ess(π) = {(xi , yi ) | xk+1 < · · · < x1 and y1 < · · · < yk+1} with
k ≥ 3. Then, the toric variety Yπ is rigid if and only if

• (x1, y1) �= (m, 2) and (xk+1, yk+1) �= (2, n) or
• for any i ∈ [k], (xi , yi ) �= (xi+1 + 1, yi+1 − 1).

Proof This follows by Lemma 4.10 which characterizes the non-simplicial three-
dimensional faces and by Theorem 4.12 which classifies rigid toric varieties Yπ . ��
Example 8 In the figure ofExample 7, consider the essential boxes (x2, y2) and (x3, y3)
which are associatedwith the first independent setsC ′ andC .We obtain that (x2, y2) =
(7, 3) = (x3 + 1, y3 − 1) and also (x1, y1) = (9, 2). Therefore, Yπ is not rigid. On
the other hand, the toric variety in Example 6 is rigid.
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