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Abstract
We develop a Nash equilibrium problem representing a perfectly competitive market 
wherein all players are subject to the same source of uncertainty with an unknown 
probability distribution. Each player—depending on her individual access to and 
confidence over empirical data—builds an ambiguity set containing a family of 
potential probability distributions describing the uncertain event. The ambiguity set 
of different players is not necessarily identical, yielding a market with potentially 
heterogeneous ambiguity aversion. Built upon recent developments in the field of 
Wasserstein distributionally robust chance-constrained optimization, each ambigu-
ity-averse player maximizes her own expected payoff under the worst-case probabil-
ity distribution within her ambiguity set. Using an affine policy and a conditional 
value-at-risk approximation of chance constraints, we define a tractable Nash game. 
We prove that under certain conditions a unique Nash equilibrium point exists, 
which coincides with the solution of a single optimization problem. Numerical 
results indicate that players with comparatively lower consumption utility are highly 
exposed to rival ambiguity aversion.
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1  Introduction

This article considers a perfectly competitive market for a single commodity that 
clears well in advance of the realization of an uncertain event � . This event is a com-
mon source of uncertainty for all market players, namely y1, y2,… , Y  . These players 
are uncertainty-aware, and forecast the probability distribution  f (�) describing the 
uncertain event � . Based on the individual probabilistic forecast, each player solves a 
stochastic optimization problem to determine her optimal market participation strat-
egy, aiming to maximize her expected payoff. The collection of individual optimi-
zation problems results in a stochastic Nash equilibrium problem, whose solution 
provides the market-clearing outcome.

1.1 � Ambiguity aversion: definition and its heterogeneity

One extreme case in modeling the common source of uncertainty is to assume that 
the true probability distribution  f (�) is known and publicly available for all players. 
This case is illustrated in Fig. 1a. However, it is rather unlikely that this assumption 
holds true in reality.

Pursuing a more general case, we relax the assumption on the availability of the 
true probability distribution  f (�) and generate a family of potential distributions, the 
so-called ambiguity set. This case is depicted in Fig.  1b. In this case, the players 
are ambiguity-averse [1, 2], meaning that they endogenously determine the worst-
case distribution in their ambiguity set, and optimize their market participation strat-
egy problem against such a distribution.1 Although this case offers a more general 
framework for modeling uncertainty compared to the extreme case in Fig. 1a, it is 
not the most general case as it assumes homogeneous ambiguity aversion,  i.e., an 
identical ambiguity set for all players.2

The most general case, schematically depicted in Fig.  1c, is the one wherein 
every market player possesses her own private empirical data and builds her indi-
vidual ambiguity set, which is not necessarily identical to that of other players. The 
rationale behind this case is that even if the empirical data are publicly available, 
market players may still differently build their individual ambiguity sets, reflecting 
their heterogeneous confidence in those empirical data. Hereafter, we call this case 
as the one with heterogeneous ambiguity aversion.

1.2 � Ambiguity aversion via distributionally robust chance‑constrained 
optimization

We use a distributionally robust optimization approach [4–6] to include individual 
ambiguity sets within stochastic decision-making problems of players. This gives 
1  Another potential generalization of the first case would be the case in which players possess different 
probability distribution functions and each one believes that her function is the true one. However, this 
would lead to a discussion on asymmetric information about an uncertain event [3], whereas this work 
focuses on ambiguity aversion against an uncertain event.
2  Note that in this case the worst-case distribution of players, in contrast to their ambiguity set, is not 
necessarily identical.
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rise to a generalized formulation of a distributionally robust Nash equilibrium prob-
lem. We apply a Wasserstein probability distance metric to build individual ambi-
guity sets [7, 8]. Unlike the illustration in Fig. 1, the ambiguity set of each player 
includes an infinite number of probability distributions that are sufficiently close to 
the empirical distribution. With this approach, each ambiguity-averse player maxi-
mizes her payoff in expectation with respect to the worst-case probability distribu-
tion in her ambiguity set.

The stochastic optimization problems of players may include their operational 
constraints. This is the case of market players in physical systems, e.g., energy or 
transportation systems. In the case the uncertain parameter appears in constraints, 
the resulting optimization problem will embody an infinite number of probabilistic 
constraints, since every constraint should be fulfilled for any realization drawn from 
the worst-case probability distribution. Aiming to achieve a tractable problem for-
mulation, we enforce probabilistic constraints in the form of distributionally robust 
chance constraints [9, 10]. We decompose the uncertain event L(�) into a determin-
istic forecast L and a stochastic component � , showing the uncertain forecast error. 
Additionally, we recast uncertainty-dependent decision variables using an affine pol-
icy [11]. By introducing a linear reformulation of distributionally robust objective 
functions [7] as well as applying the worst-case Conditional Value-at-Risk (CVaR) 
approximation of distributionally robust chance constraints [9, 12], we define a trac-
table convex Nash game. For this Nash game, we show—given a quadratic regu-
larizer in the objective function of certain players as well as convex and compact 
strategy sets for all players—the existence of a unique Nash equilibrium point. In 
addition, we provide the mathematical formulation of an equivalent single and con-
vex optimization problem that can be efficiently solved.
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Fig. 1   Plot a shows the case in which all players know the true probability distribution. Plot b illustrates 
the case in which the true distribution is unknown and thus players consider an ambiguity set, although it 
is identical for all. Plot c refers to the case in which each player forms her own individual ambiguity set, 
resulting in heterogeneous ambiguity aversion
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1.3 � State of the art, contributions, and paper organization

From a mathematical point of view, the work at hand generally lies in the domain 
of stochastic Nash games [13–16]. More precisely, this work models payoff func-
tions by distributionally robust expected values and reformulates stochastic strategy 
sets through distributionally robust chance constraints, resulting in a distribution-
ally robust Nash game [8, 10, 17–19, 19, 20]. The existing works on distributionally 
robust games can be divided into two research strands. The first one includes those 
works that build ambiguity sets using moments, e.g., mean and covariance, whose 
values are captured from the empirical data. Examples of such works are [10, 17, 
18] and [19]. The research works within the second strand, e.g., [8, 19, 20], define 
ambiguity sets based on probabilistic distance metrics, e.g., Wasserstein metric. In 
both strands the possible existence of a Nash equilibrium point was proven [10, 19]. 
In addition, [8] and [10] show the equivalence of a distributionally robust chance-
constrained Nash game to a single optimization problem.

From a conceptual perspective, our work investigates a market equilibrium given 
ambiguity-averse market players: The article at hand offers for the first time a compre-
hensive problem formulation of a market in which players may be ambiguity-averse 
and are subject to the same source of uncertainty. Depending on the parameterization 
of individual Wasserstein ambiguity sets, the proposed tractable Nash game is able to 
model various circumstances in which all players are (i) ambiguity-neutral, (ii) homo-
geneously ambiguity-averse, and (iii) heterogeneously ambiguity-averse owing to indi-
vidual confidence in empirical data and/or access to private empirical data.

From a methodological perspective, differently to [20] that studies a general-
ized distributionally robust Nash equilibrium problem with coupling constraints, we 
consider a pure distributionally robust Nash equilibrium problem in which market 
players are only linked through their payoff functions. Their decision sets are inde-
pendent of each other. Similar to [8, 10] we are interested in providing an analytical 
proof for the existences of a Nash equilibrium point. While [8] and [10] address a 
general game-theoretic framework, this work relies on an affine policy, the worst-
case CVaR approximation of distributionally robust chance constraints, and quad-
ratic regularizers, and thereby, proves the existence and uniqueness of a Nash equi-
librium point. Furthermore, we show that for the underlying Nash game built upon 
Wasserstein ambiguity sets, the Nash equilibrium point coincides with the solution 
of a single optimization problem that can be efficiently solved by commercial solv-
ers. Our numerical results highlight that the realized utility of a market player with 
a comparatively low consumption utility highly depends on the degree of ambiguity 
aversion of the rival market players.

The remainder of this paper is laid out as follows. In Sect. 2 we introduce the dis-
tributionally robust Nash equilibrium problem. Section 3 provides the problem refor-
mulation based on distributionally robust chance constraints and an affine policy. In 
Sect. 4 we provide a linear reformulation of distributionally robust objective func-
tions as well as the worst-case CVaR constraints as approximation of distributionally 
robust chance constraints, and define a tractable Nash game. We discuss numerical 
results in Sect. 5. Section 6 concludes. The methodology for the linear reformulation 
of objective functions and the worst-case CVaR approximation of chance constraints 
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as well as all mathematical proofs are available in four appendices. The source code 
is publicly available in [21].

2 � Problem statement

We consider a perfectly competitive local market.3 Four types of players exist, as 
illustrated in Fig. 2. The first type of players is a single price-inelastic demand, rep-
resenting the aggregation of all inelastic demands—these demands are willing to 
buy electricity an any price. This player is a pure stochastic load without a deci-
sion variable. The second type of players corresponds to a number of price-elastic 
demands n ∈ N  indicated by (⋅)Ed , who maximize their own consumption utility. 
The third type of players is a single spatial arbitrageur indicated by (⋅)Ar , who maxi-
mizes her profit from importing and exporting the trading commodity between the 
local market and the outside, e.g., a wholesale market. Thereby, she ensures liquidity 
of the local market. The last player is a single price-setter, who is a fictitious player 
[22], indicated by (⋅)Ps , who reveals social welfare maximizing prices.

An example of such a market is a local energy market inside an energy community, in 
which a number of spatially closely located households owning rooftop photovoltaic sys-
tems with uncertain power generation trade electricity [23, 24]. Such a local market may 
contribute to matching electricity supply and demand without stressing the surrounding 
infrastructure, e.g., high-voltage transmission and low-voltage distribution networks. In 
addition, a local energy market would allow the direct market participation of compara-
tively small entities, which usually do not have access to wholesale markets. However, 
the efficiency of such a local market significantly depends on the uncertainty and risk 
aversion of the market participants [25].

We model the ambiguity-averse decision-making problem of a given player 
through a distributionally robust optimization problem of the form

Fig. 2   Market structure with 
four types of players, namely 
a price-inelastic stochastic 
demand, a number of price-elas-
tic demands, a spatial arbitra-
geur and a fictitious price-setter

Price-
setter

Elastic
demand n1

. . .
Elastic

demand N

Inelastic
demand

Spatial
arbitrageur

Import Export

3  The assumption of a perfectly competitive local market provides a benchmark estimation on the market 
impact of ambiguity aversion. In practice, market power in an imperfect competition can be an issue in a 
local market, although it is left aside to be addressed in future research.
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where g(z, �) is an uncertainty-dependent disutility function. In detail, the player 
in question makes the decision z in expectation �F[⋅] of her disutility g(z, �) , given 
the uncertain parameter � . This parameter follows the worst-case probability distri-
bution F that is endogenously selected from the ambiguity set D . Throughout this 
work we indicate parameters and variables depending on the uncertain event � by a 
tilde, i.e.,  ̃(⋅).

2.1 � Distributionally robust Nash equilibrium problem

The consumption of the price-inelastic aggregated demand is the only source of 
uncertainty in this work, denoted by  L̃(𝜉) including the one and only stochastic 
parameter �.4 Given the market-clearing price 𝜆̃(𝜉) under any realization of � , this 
demand pays

For the same given market-clearing price 𝜆̃(𝜉) , each price-elastic demand n mini-
mizes her expected disutility as 

where the variable  d̃n(𝜉) is her consumption, whose value is enforced by  (3b) to 
lie between zero and the maximum consumption level Dn . The parameter Un in the 
objective function (3a) indicates the value of one unit of the trading commodity for 
demand n. Accordingly, Und̃n(𝜉) gives the total value that demand n gains by con-
suming  d̃n(𝜉) , whereas 𝜆̃(𝜉)d̃n(𝜉) is the total payment of this price-elastic demand. 
This player builds the ambiguity set DEd

n
 and minimizes her expected disutility under 

the worst-case probability distribution FEd
n

.
Similarly, the spatial arbitrageur minimizes her expected disutility as 

where the variable  p̃(𝜉) denotes the amount of the trading commodity to be 
imported to—if  p̃(𝜉) > 0—or exported from—if  p̃(𝜉) < 0—the local market, both 
at an identical fixed cost C. This cost shows the price of the commodity outside the 

(1)Min
z

max
F∈D

�F[g(z, �)],

(2)𝜆̃(𝜉)L̃(𝜉).

(3a)
{

Min
d̃n(𝜉)

max
FEd
n
∈DEd

n

�FEd
n

[

𝜆̃(𝜉)d̃n(𝜉) − Und̃n(𝜉)
]

(3b)s.t. 0 ≤ d̃n(𝜉) ≤ Dn

}

, ∀n ∈ N,

(4a)Min
p̃(𝜉)

max
FAr∈DAr

�FAr

[

Cp̃(𝜉) − 𝜆̃(𝜉)p̃(𝜉)
]

(4b)s.t. − P ≤ p̃(𝜉) ≤ P,

4  Later in Sect. 3.2 we decompose the uncertain price-inelastic demand L̃(𝜉) into a deterministic compo-
nent L and a separate stochastic component �.
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local market. If  p̃(𝜉) > 0 , the arbitrageur buys the trading commodity outside the 
local market at price C and sells it back in the local market at price 𝜆̃(𝜉) . Similarly, 
if  p̃(𝜉) < 0 , the arbitrageur buys the trading commodity from the local market at 
price 𝜆̃(𝜉) and sells it back outside the local market at price C. The constraint (4b) 
sets the bound P on  p̃(𝜉) , indicating the potential capacity limit of the trade between 
the local and the outside market. One can hypothesize that the market-clearing 
price 𝜆̃(𝜉) will be equal to C if this constraint is non-binding, otherwise it may take 
a different value. The arbitrageur builds the ambiguity set DAr and minimizes her 
expected disutility under the worst-case probability distribution FAr.

Finally, for given trading decisions d̃n(𝜉) and  p̃(𝜉) the price-setter determines the 
market-clearing price 𝜆̃(𝜉) by maximizing the utility of all players as

The price-setter chooses the price 𝜆̃(𝜉) in (5) under any realization of � such that the 
cost for buyers is minimized and the revenue for sellers is maximized.

Recall that the price 𝜆̃(𝜉) is given in the optimization problem (3) of each price-
elastic demand and in the optimization problem (4) of the spatial arbitrageur. In con-
trast, the price 𝜆̃(𝜉) is a variable in the optimization problem (5) of the price-setter, 
while variables in (3) and (4), i.e., d̃n(𝜉) and  p̃(𝜉) , are given in (5). This makes these 
three problems interconnected, such that they should be solved at once.5 The collec-
tion of optimization problems (3), (4) and (5) constitutes the distributionally robust 
Nash equilibrium problem.

2.2 � Wasserstein ambiguity sets

This section explains how to build the ambiguity set DEd
n

 for each elastic demand n 
as well as the ambiguity set DAr for the spatial arbitrageur. The ambiguity set DEd

n
 

comprises all probability distributions FEd
n

 in the neighborhood of a central empiri-
cal probability distribution F̂Ed

n
 , for which i ∈ IEd

n
 denotes the set of empirical sam-

ples, e.g., historical observations, available to the respective elastic demand n. Fol-
lowing [7], we measure the distance between a distribution FEd

n
 and the empirical 

distribution F̂Ed
n

 based on the Wasserstein distance �(⋅, ⋅) as 

(5)Max
𝜆̃(𝜉)

𝜆̃(𝜉)
(

p̃(𝜉) −
∑

n∈N

d̃n(𝜉) − L̃(𝜉)
)

.

5  The reason for considering such a fictitious player, i.e., the price-setter, is that without it, all other play-
ers, i.e., price-inelastic aggregated demand, price-elastic demands, and spatial arbitrageur, will be linked 
via a common constraint, namely the demand-supply balance equality. It would result in a generalized 
Nash equilibrium problem with shared constraints, for which the proof of existence and uniqueness of 
a Nash equilibrium point is not necessarily straightforward. In contrast, the chosen problem structure 
comprising the fictitious price-setter yields a pure Nash equilibrium problem, for which the existence and 
uniqueness of a Nash equilibrium point can be proven in a straightforward manner. With this fictitious 
player, the strategy of each player still implicitly depends on the strategy of each other player through the 
price-setter’s decision variable 𝜆̃(𝜉).
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in which �Ed
n

 is a joint probability distribution of the uncertain parameter � and 
empirical data �̂Ed

ni
 with marginals FEd

n
 and F̂Ed

n
 , respectively. The symbol p refers to 

an arbitrary norm6 to be applied on the difference between the uncertain parameter � 
and empirical data �̂Ed

ni
.

Similarly, the spatial arbitrageur has access to her own individual empirical sam-
ples i ∈ IAr , which are not necessarily identical to those of other players. We meas-
ure her Wasserstein distance �(⋅, ⋅) as

We now define Wasserstein ambiguity sets DEd
n

 and DAr as

in which the support � = {� ∈ ℝ ∶ H ≤ � ≤ H} restricts the uncertain parameter � 
by a lower bound H and an upper bound H , such that the worst-case probability 
distribution takes realistic values. We assume that all players have perfect and com-
mon information about the support. Lastly, the non-negative parameters �Ed

n
 and �Ar 

in (6c) and (6d), the so-called Wasserstein radii, limit the distance between probabil-
ity distributions FEd

n
 and FAr within ambiguity sets and empirical probability distri-

butions F̂Ed
n

 and F̂Ar , respectively.
Figure  3 illustrates the implication of empirical probability distributions  F̂Ed

n
 

and  F̂Ar as well as the choice of �Ed
n

 and �Ar , describing the confidence in those 
empirical distributions, and therefore the aversion against ambiguity in the empirical 
data [2, 26].7

3 � Towards computational tractability

The distributionally robust Nash equilibrium problem  (3)–(5) is computation-
ally intractable, since it optimizes over infinite-dimensional variables d̃n(𝜉) , p̃(𝜉) , 
and  𝜆̃(𝜉) , subject to infinite-dimensional constraints  (3b) and  (4b). To achieve 

(6a)�(FEd
n
, F̂Ed

n
) = min

�Ed
n
∫

(

∑

i∈IEd
n

|� − �̂Ed
ni
|

p
)

1

p

�Ed
n
(d�, d�̂Ed

ni
), ∀n,

(6b)�(FAr, F̂Ar) = min
�Ar ∫

(

∑

i∈IAr

|� − �̂Ar
i
|

p
)

1

p

�Ar(d�, d�̂Ar
i
).

(6c)DEd
n

=
{

FEd
n

∈ M(�) ∶ �(FEd
n
, F̂Ed

n
) ≤ �Ed

n

}

, ∀n,

(6d)DAr =
{

FAr ∈ M(�) ∶ �(FAr, F̂Ar) ≤ �Ar
}

,

7  In the case the intersection of ambiguity sets of different players is empty, the underlying Nash equi-
librium problem might be infeasible. However, the feasibility can be restored by allowing involuntarily 
curtailment of the price-inelastic aggregated demand L̃(𝜉) while considering a significant cost (penalty) 
incurred by not fully supplying such a demand. This work has only focused on cases wherein the inter-
section of ambiguity sets is not empty, and leaves the potential issue of feasibility restoration for the 
future work.

6  We will apply later in Appendix A the infinity norm to derive a linear reformulation.
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tractability, we apply some convex reformulations as illustrated in Fig.  4. For 
the sake of clarity, this figure includes the inelastic demand, although there is no 
optimization problem for this player. In Sect. 3.1 we use distributionally robust 
chance-constrained programming [7] to cope with the infinite-dimensional nature 
of constraints (3b) and (4b). We then introduce an affine policy [11] in Sect. 3.2 
to decompose uncertainty-dependent decision variables, and analytically derive 
the market-clearing price in Sect. 3.3. Based on a linear reformulation of distribu-
tionally robust objective functions [7] as well as the worst-case CVaR approxima-
tion of distributionally robust chance constraints [9, 12, 27] we define a tractable 
Nash game.8

3.1 � Distributionally robust chance constraints

We consider a generic individual distributionally robust chance constraint of the 
form

where the decision z is made under the worst-case probability distribution F that is 
endogenously determined from the given ambiguity set D . The probability ℙF[⋅] of 
the probabilistic constraint h(z, �) ≤ 0 to be fulfilled is greater than or equal to 1 − � . 
Note that � is a parameter to be tuned by the respective decision-maker, whose value 
lies between zero and one. Accordingly, we rewrite constraints (3b) as 

(7)min
F∈D

ℙF[h(z, �) ≤ 0] ≥ 1 − �,

F̂Ed
n1

=F̂Ed
N =F̂Ar

0=ρEd
n1

=ρEd
N =ρAr

F̂Ed
n1

=F̂Ed
N =F̂Ar

0<ρEd
n1

=ρEd
N =ρAr

ρAr

ρEd
n1

ρEd
N

F̂Ed
n1

=F̂Ed
N =F̂Ar

0<ρEd
n1

�=ρEd
N �=ρAr

ρAr

ρEd
n1

ρEd
N

F̂Ed
n1

�=F̂Ed
N �=F̂Ar

0<ρEd
n1

�=ρEd
N �=ρAr

ρAr

ρEd
n1

ρEd
N

(a) (b) (c-1) (c-2)

Fig. 3   The Wasserstein ambiguity sets DEd

n
 and DAr can represent four different circumstances. In the first 

case there is no ambiguity, and therefore all players consider a single and common probability distribu-
tion, see plot  (a). In the second case there is homogeneous ambiguity aversion among all players, see 
plot (b). In the third case there is heterogeneous ambiguity aversion among players owing to their indi-
vidual confidences in common empirical data, see plot (c-1). Finally, in the fourth case there is hetero-
geneous ambiguity aversion among players owing to not only their individual confidences but also their 
individual empirical data, see plot (c-2)

8  The methodology to linearly reformulate a distributionally robust objective function [7] as well as the 
worst-case CVaR approximation of a distributionally robust chance constraint [9, 12, 27] is available in 
Appendix A.
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Similarly, constraints (4b) are rewritten as 

Without loss of generality, we consider identical � in all aforementioned chance 
constraints.9

3.2 � Affine policy

We decompose the uncertain event, i.e., the consumption L̃(𝜉) of the aggregated ine-
lastic demand, as 

The parameter L is the nominal, e.g., tentative, inelastic demand, which is independ-
ent of uncertainty. However, � is the uncertain deviation, either positive or negative, 
from L at a future stage. Substituting (10a) in (2) yields the consumption cost of the 
inelastic demand as

(8a)min
FEd
n
∈DEd

n

ℙFEd
n

[

0 ≤ d̃n(𝜉)
]

≥ 1 − 𝜖, ∀n,

(8b)min
FEd
n
∈DEd

n

ℙFEd
n

[

d̃n(𝜉) ≤ Dn

]

≥ 1 − 𝜖, ∀n.

(9a)min
FAr∈DAr

ℙFAr

[

− P ≤ p̃(𝜉)
]

≥ 1 − 𝜖,

(9b)min
FAr∈DAr

ℙFAr [p̃(𝜉) ≤ P̄] ≥ 1 − 𝜖.

(10a)L̃(𝜉) = L + 𝜉.

(10b)𝜆̃(𝜉)(L + 𝜉).

( Inelastic Demand:
Elastic Demand n ∈ N :
Spatial arbitrageur:
Price setter:

Equilibrium
problem

(2)
(3)
(4)
(5)

Chance
constraints

(8)
(9)

Affine
policy

(10b)
(11)
(12)
(13)

Reformulation,
approximation

(18)
(20)

Nash
game

(16) )
(18)
(20)
(21)

Fig. 4   By introducing distributionally robust chance constraints, applying an affine policy, and reformu-
lating objective functions as well as approximating chance constraints, we derive a tractable Nash game 
corresponding to the distributionally robust Nash equilibrium problem (3)–(5)

9  Assigning different values for � motivates a case where market players are heterogeneously risk averse 
against the violation risk of operational constraints. This risk aversion is beyond the scope of this work, 
and therefore we consider an identical value � for all players, which can be interpreted as a case with 
homogeneously risk-averse players.
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We apply an affine policy [11] to decisions made by price-elastic demands and the 
spatial arbitrageur. Accordingly, the probabilistic decision variables  d̃n(𝜉) and  p̃(𝜉) 
are approximated by

where variables dn and p are nominal trades given the expected inelastic demand L. 
In addition, the free variables, i.e., either positive or negative, �Ed

n
 and �Ar , the so-

called participation factors, are in per-unit and show the linear response of the 
price-elastic demand n and the spatial arbitrageur at a future stage to the uncertain 
deviation � , respectively. In other words, they indicate the contribution of the cor-
responding player to offset any supply–demand imbalance at the future stage, when 
the uncertainty � is realized. For example, consider a deviation 𝜉 > 0 , meaning that 
the realized consumption of the inelastic demand is more than the tentative one. 
According to (10c) and (10d), the price-elastic demand n and the spatial arbitrageur 
would respond to this deviation by decreased consumption—ensured by the minus 
in (10c)—and by additional imports—enforced by the plus in (10d)—, respectively.

By introducing distributionally robust chance constraints  (8a) and  (8b), and by 
applying the affine policy used in  (10c), problem (3) of each price-elastic demand n 
reads 

Similarly, we rewrite problem  (4) of the spatial arbitrageur using  (9a), (9b), 
and (10d) as 

Lastly, substituting (10a), (10c), and (10d) in (5) yields

(10c)d̃n(𝜉) = dn − 𝛼Ed
n
𝜉, ∀n,

(10d)p̃(𝜉) = p + 𝛼Ar𝜉,

(11a)

{

Min
dn,𝛼

Ed
n

max
FEd
n
∈DEd

n

�FEd
n

[(

𝜆̃(𝜉) − Un

)(

dn − 𝛼Ed
n
𝜉
)]

(11b)s.t. min
FEd
n
∈DEd

n

ℙFEd
n

[

0 ≤ (dn − �Ed
n
�)
]

≥ 1 − �,

(11c)min
FEd
n
∈DEd

n

ℙFEd
n

[

(dn − �Ed
n
�) ≤ Dn

]

≥ 1 − �
}

, ∀n.

(12a)Min
p,𝛼Ar

max
FAr∈DAr

�FAr

[(

C − 𝜆̃(𝜉)
)(

p + 𝛼Ar𝜉
)]

(12b)s.t. min
FAr∈DAr

ℙFAr

[

−P ≤ p + �Ar�
]

≥ 1 − �,

(12c)min
FAr∈DAr

ℙFAr [p + �Ar� ≤ P] ≥ 1 − �.
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3.3 � Analytical derivation of market‑clearing prices

This section focuses on the unconstrained problem (13), whose optimality condition 
imposes 

where L(13) denotes the Lagrangian function of (13). Given the response of the spa-
tial arbitrageur �Ar as well as the response of elastic demands �Ed

n
,∀n , the equality 

constraint (14a) holds true for any realization of � if

The equality constraints  (14b) and  (14c) are derived by separating  �-dependent 
uncertain and  �-independent nominal terms in  (14a). Thereby, the equality con-
straints (14b) imposes that the total response of the spatial arbitrageur and the price-
elastic demands should be able to fully offset the supply–demand imbalance at the 
future stage.10 In addition, the equality constraint  (14c) imposes that all nominal 
demands should be fully supplied.

The analytical procedure from  (13) to  (14b)-(14c) suggests that one could also 
decompose the probabilistic market-clearing price  𝜆̃(𝜉) to two deterministic vari-
ables �B and �E . Therefore, we rewrite the optimization problem (13) of the price-
setter by a collection of two deterministic optimization problems as

(13)Max
𝜆̃(𝜉)

𝜆̃(𝜉)

(

p + 𝛼Ar𝜉 −
∑

n∈N

(dn − 𝛼Ed
n
𝜉) − L − 𝜉

)

.

(14a)
𝜕L(13)

𝜕𝜆̃(𝜉)
=(p + 𝛼Ar𝜉) −

∑

n∈N

(dn − 𝛼Ed
n
𝜉) − (L + 𝜉) = 0,

(14b)�Ar� +
∑

n∈N

�Ed

n
� = � ⇔ �Ar +

∑

n∈N

�Ed

n
= 1,

(14c)p −
∑

n∈N

dn − L = 0.

(14d)Max
�B

�B

(

�Ar +
∑

n∈N

�Ed

n
− 1

)

,

10  Note that �Ed
n
,∀n and �Ar are free variables meaning that they can be either positive or negative and 

even greater than the absolute value of  1 as long as their summation is equal to  1. Thereby, an elas-
tic demand could, for example, increase her consumption, i.e., 𝛼Ed

n
< 0 , although the local market faces 

a deficit in supply given by a deviation 𝜉 > 0 as long as any other player, e.g., the spatial arbitrageur 
by 𝛼Ar > 1 or another elastic demand, offsets the demand increase.
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Since the optimality conditions of  (14d) and  (14e) are identical to the equality 
constraints (14b) and (14c), any �E and �B are optimal solutions of (14d) and (14e) as 
long as these optimality conditions are fulfilled. The variable �E provides the deter-
ministic market-clearing price for the underlying commodity. In addition, �B pro-
vides the payment due to balancing services, i.e., the payment to remunerate price-
elastic demands and the spatial arbitrageur for their response to any supply–demand 
imbalance.

Eventually, given that (14b) and (14c) hold, we can replace the terms including 
the price 𝜆̃(𝜉) in (10b), (11a) and (12a) as 

4 � A tractable Nash game

We revisit our distributionally robust Nash equilibrium problem given the analytical 
prices derived in Sect. 3.3.

4.1 � Price‑inelastic demand

The payment of the inelastic demand (10b) recasts as

indicating that the inelastic demand is charged at the price �E for the nominal con-
sumption L. In addition, she pays �B for the balancing services, as she deviates � 
from her nominal consumption L.

4.2 � Price‑elastic demand

Next, we revisit the optimization problem (11) of the price-elastic demand n. Pursu-
ing an equilibrium solution existence and uniqueness, we make two slight changes. 
First, we arbitrarily introduce theoretical lower and upper bound A on the participa-
tion factor �n . The rationale behind these bounds is to achieve a compact and closed 
strategy set, which is required later for the equilibrium solution existence proof. 
However, we select sufficiently large values for these bounds, and check a posteriori 

(14e)Max
�E

�E

(

p −
∑

n∈N

dn − L

)

.

(15a)𝜆̃(𝜉)L = 𝜆EL; 𝜆̃(𝜉)𝜉 = 𝜆B,

(15b)𝜆̃(𝜉)dn = 𝜆Edn; 𝜆̃(𝜉)𝛼Ed
n
𝜉 = 𝜆B𝛼Ed

n
,

(15c)𝜆̃(𝜉)p = 𝜆Ep; 𝜆̃(𝜉)𝛼Ar𝜉 = 𝜆B𝛼Ar.

(16)�EL + �B,
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that these constraints are non-binding. Second, we add a quadratic regularizer [28] 
in the form of c(z, x) = 1

2
�(z + x)2 to the objective function, in which � is a suffi-

ciently small positive constant, e.g., 10−3 . A sufficiently small value for � will alter 
negligibly the social welfare of the market in comparison to � = 0 . However, this 
quadratic regularizer, which can be institutionally interpreted as a transaction cost 
arising from trades, ensures an identical payoff for identical players. In addition, this 
regularizer yields a strongly monotone objective function, which is necessary later 
to achieve a unique equilibrium solution. The revisited problem (11) writes as 

 in which the last �-dependent term in the objective function  (17a) as well as the 
distributionally robust chance constraints  (11b) and  (11c) make the problem still 
intractable. We follow the convex reformulation technique proposed in [7] for a 
distributionally robust objective function. In addition, we use the worst-case CVaR 
constraints as an approximation of distributionally robust chance constraints [9, 12], 
and therefore, provide—except of the regularizer c(dn, �Ed

n
) in the objective func-

tion—a purely linear approximation for (17).
Based on  (22) and  (23), we write the decision-making problem of the elastic 

demand n as 

Reformulation of (17a):

CVaR approximation of (11b):

(17a)
{

Min
dn,�

Ed
n

(

�E − Un

)

dn − �B�Ed
n

+ c(dn, �
Ed
n
) + max

FEd
n
∈DEd

n

�FEd
n

[

Un�
Ed
n
�
]

(17b)s.t. (11b)–(11c),

(17c)− A ≤ �Ed
n

≤ A
}

, ∀n,

(18a)

{

Min
�Ed
n

JEd
n

=
(

�E − Un

)

dn − �B�Ed
n

+ c(dn, �
Ed
n
) + �Ed

n
�Ed
n

+
1

|I
Ed
n
|

∑

i∈IEd
n

�Ed
ni

(18b)s.t. U
n
�Ed

n
�̂Ed
ni

+
∑

b∈B

�Ed
nbi

(

H
b
− Q

b
�̂Ed
ni

)

≤ �Ed

ni
∶ �Ed.1a

ni
,∀i,

(18c)− �Ed
n

≤

∑

b∈B

Qb�
Ed
nbi

− Un�
Ed
n

≤ �Ed
n

∶ �Ed.1b
ni

, �
Ed.1b

ni
,∀i,

(18d)0 ≤ �Ed
nbi

∶ �Ed.1c
nbi

,∀b, i,

(18e)�Ed
n

+
1

�

(

�Ed

n
�Ed
n

+
1

|I
Ed

n
|

∑

i∈IEd
n

�Ed

ni

)

≤ 0 ∶ �Ed.2a
n

,
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CVaR approximation of (11c):

Constraint (17c):

(18f)−dn + �Ed
n
�̂Ed
ni

− �Ed
n

+
∑

b∈B

�Ed1
nbi

(

Hb − Qb�̂
Ed
ni

)

≤ �Ed
ni

∶ �Ed.2b
ni

,∀i,

(18g)
∑

b∈B

�Ed2
nbi

(

Hb − Qb�̂
Ed
ni

)

≤ �Ed
ni

∶ �Ed.2c
ni

,∀i,

(18h)−�Ed

n
≤

∑

b∈B

Qb�
Ed1

nbi
− �Ed

n
≤ �Ed

n
∶ �Ed.2d

ni
, �

Ed.2d

ni
,∀i,

(18i)− �Ed

n
≤

∑

b∈B

Qb�
Ed2

nbi
≤ �Ed

n
∶ �Ed.2e

ni
, �

Ed.2e

ni
, ∀i,

(18j)0 ≤ �Ed1
nbi

∶ �Ed.2f
nbi

, ∀b, i,

(18k)0 ≤ �Ed2
nbi

∶ �Ed.2g
nbi

, ∀b, i,

(18l)�Ed
n

+
1

�

⎛

⎜

⎜

⎝

�
Ed

n
�Ed
n

+
1

�IEd
n
�

�

i∈IEd
n

�Ed

ni

⎞

⎟

⎟

⎠

≤ 0 ∶ �Ed.3a
n

,

(18m)dn − �Ed
n
�̂Ed
ni

− Dn − �Ed
n

+
∑

b∈B

�Ed1
nbi

(

Hb − Qb�̂
Ed
ni

)

≤ �Ed

ni
∶ �Ed.3b

ni
, ∀i,

(18n)
∑

b∈B

�Ed2
nbi

(

Hb − Qb�̂
Ed
ni

)

≤ �Ed

ni
∶ �Ed.3c

ni
, ∀i,

(18o)− �
Ed

n
≤

∑

b∈B

Qb�
Ed1

nbi
+ �Ed

n
≤ �

Ed

n
∶ �Ed.3d

ni
, �

Ed.3d

ni
, ∀i,

(18p)− �
Ed

n
≤

∑

b∈B

Qb�
Ed2

nbi
≤ �

Ed

n
∶ �Ed.3e

ni
, �

Ed.3e

ni
, ∀i,

(18q)0 ≤ �Ed1
nbi

∶ �Ed.3f
nbi

, ∀b, i,

(18r)0 ≤ �Ed2
nbi

∶ �Ed.3g
nbi

, ∀b, i,
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 where �Ed
n

= {dn, �
Ed
n
,�Ed

n
, �Ed

ni
, �Ed

nbi
, �Ed

n
, �Ed

n
, �Ed

ni
, �Ed1

nbi
, �Ed2

nbi
, �Ed

n
, �

Ed

n
, �Ed

ni
, �Ed1

nbi
, 

�Ed2
nbi

}, ∀n ∈ N  , and |IEd
n
| returns the cardinality of set IEd

n
 . Symbols followed a 

colon denote the dual variable of the respective constraint. We will need those dual 
variables later when we derive the Karush-Kuhn-Tucker conditions in 
Appendix C.2.

4.3 � Spatial arbitrageur

Similarly, we revisit the optimization problem  (12) of the spatial arbitrageur, 
yielding 

 whose linear approximation writes as 

Reformulation of (19a):

CVaR approximation of (12a):

(18s)− A ≤ �Ed

n
≤ A ∶ �Ed.4a

n
, �

Ed.4a

n

}

, ∀n,

(19a)Min
p,�Ar

(

C − �E
)

p − �B�Ar + c(p, �Ar) + max
FAr∈DAr

�FAr

[

C�Ar�
]

(19b)s.t.(12a)–(12b),

(19c)−A ≤ �ar
≤ A

(20a)Min
�Ar

JAr =
(

C − �E
)

p − �B�Ar + c(p, �Ar) + �Ar�Ar +
1

|IAr|

∑

i∈IAr

�Ar
i

(20b)s.t. C�Ar�̂Ar
i

+
∑

b∈B

�Ar
bi

(

Hb − Qb�̂
Ar

i

)

≤ �Ar

i
∶ �Ar.1a

i
, ∀i,

(20c)− �Ar
≤

∑

b∈B

Qb�
Ar
bi

− C�Ar
≤ �Ar ∶ �Ar.1b

i
, �

Ar.1b

i
, ∀i,

(20d)0 ≤ �Ar
bi

∶ �Ar.1c
bi

, ∀b, i

(20e)�Ar +
1

�

(

�Ar�Ar +
1

|I
Ar
|

∑

i∈IAr

�Ar

i

)

≤ 0 ∶ �Ar.2a,

(20f)− P − p − �Ar�̂Ar
i

− �Ar +
∑

b∈B

�Ar1
bi

(

Hb − Qb�̂
Ar
i

)

≤ �Ar
i

∶ �Ar.2b
i

, ∀i,
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CVaR approximation of (12c):

Constraint (19c):

 where �Ar = {p, �Ar,�Ar, �Ar
i
, �Ar

bi
, �Ar, �Ar, �Ar

i
, �Ar1

bi
, �Ar2

bi
, �Ar, �

Ar
, �Ar

i
, �Ar1

bi
, �Ar2

bi
}.

(20g)
∑

b∈B

�Ar2
bi

(

Hb − Qb�̂
Ar
i

)

≤ �Ar
i

∶ �Ar.2c
i

, ∀i,

(20h)− �Ar
≤

∑

b∈B

Qb�
Ar1

bi
+ �Ar

≤ �Ar ∶ �Ar.2d
i

, �
Ar.2d

i
, ∀i,

(20i)− �Ar
≤

∑

b∈B

Qb�
Ar2

bi
≤ �Ar ∶ �Ar.2e

i
, �

Ar.2e

i
, ∀i,

(20j)0 ≤ �Ar1
bi

∶ �Ar.2f
bi

, ∀b, i,

(20k)0 ≤ �Ar2
bi

∶ �Ar.2g
bi

, ∀b, i,

(20l)�Ar +
1

�

(

�
Ar

�Ar +
1

|I
Ar
|

∑

i∈IAr

�Ar

i

)

≤ 0 ∶ �Ar.3a,

(20m)p + �Ar�̂Ar
i

− P − �Ar +
∑

b∈B

�Ar1
bi

(

Hb − Qb�̂
Ar
i

)

≤ �Ar

i
∶ �Ar.3b

i
, ∀i,

(20n)
∑

b∈B

�Ar2
bi

(

Hb − Qb�̂
Ar
i

)

≤ �Ar

i
∶ �Ar.3c

i
, ∀i,

(20o)− �
Ar

≤

∑

b∈B

Qb�
Ar1

bi
− �Ar

≤ �
Ar

∶ �Ar.3d
i

, �
Ar.3d

i
, ∀i,

(20p)− �
Ar

≤

∑

b∈B

Qb�
Ar2

bi
≤ �

Ar
∶ �Ar.3e

i
, �

Ar.3e

i
, ∀i,

(20q)0 ≤ �Ar1
bi

∶ �Ar.3f
bi

, ∀b, i,

(20r)0 ≤ �Ar2
bi

∶ �Ar.3g
bi

, ∀b, i,

(20s)− A ≤ �Ar
≤ A ∶ �Ar.4a, �

Ar.4a

,
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4.4 � Price‑setter

Lastly, the optimization problem (13) of the price-setter is revisited by a determinis-
tic problem comprising (14d) and (14e), but with theoretical constraints. This opti-
mization problem writes as 

Recall that the sufficiently large parameter � constitutes theoretical bounds, such 
that the feasible set is closed and compact, which is required later for the proof of 
the equilibrium solution existence. In our numerical study, we check a posteriori 
that these bounds are inactive.

Definition 1  Based on the decision-making problems (18), (20), and (21), we define 
the tractable Nash game  � (Z,K, {Ji}∀i∈Z) corresponding to the distributionally 
robust Nash equilibrium problem  (3), (4), and  (5). The symbol Z is the set of all 
players, and Ji their respective payoff function, i.e., {{JEd

n
}∀n∈N, J

Ar, JPs} . The sym-
bol  K = (KEd

n1
×⋯ × KEd

N
× KAr × KPs) denotes the strategy set of the game, 

where KEd
n

 is the strategy set of the price-elastic demand n ∈ N  , KAr is the strategy 
set of the spatial arbitrageur, and lastly KPs is the strategy set of the price-setter.

Proposition 1  For the Nash game � (Z,K, {Ji}∀i∈Z) a Nash equilibrium point exists.

Proof 1  We provide the proof in Appendix B. 	�  ◻

Proposition 2  For the Nash game � (Z,K, {Ji}∀i∈Z) an equivalent  convex optimiza-
tion problem exists, whose global solution is unique and, thereby, gives a unique 
Nash equilibrium point.

Proof 2  We provide the proof in Appendix C. 	�  ◻

Remark 1  Note that our proofs rely on the affine policy, the worst-case CVaR approx-
imation of distributionally robust chance constraints,11 and the quadratic regularizer. 
In detail, the affine policy allows for a linear reformulation of distributionally robust 
objective functions, and—along with the worst-case CVaR approximation—the 

(21a)Max
�E,�B

JPs = �E
(

p −
∑

n∈N

dn − L
)

+ �B
(

�Ar +
∑

n∈N

�Ed
n

− 1
)

(21b)s.t. − � ≤ �E ≤ � ∶ �Ps.E, �
Ps.E

,

(21c)− � ≤ �B ≤ � ∶ �Ps.B, �
Ps.B

.

11  Given that � ≤ N
−1 in (11b), (11c) as well as in (12b), (12c)—with N noting the number of samples 

applied—the CVaR representation of distributionally robust chance constraints is in this case according 
to [12] an exact representation of distributionally robust chance constraints.
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definition of a tractable and convex Nash game. The quadratic regularizer is needed 
to obtain strict monotonicity of players’ preferences, which we take advantage of to 
prove uniqueness of the Nash equilibrium point.

Remark 2  This article generalizes the findings in [3] by showing that although dif-
ferent players may have access to different empirical data and are heterogeneously 
ambiguity-averse, an equivalent optimization to the competitive market equilibrium 
problem still exists.

5 � Numerical results and discussion

This section numerically analyzes the implications of heterogeneous ambiguity aver-
sion on local market-clearing outcomes. To identify the Nash equilibrium point, i.e., 
market-clearing outcomes, we solve the single optimization problem  (26), which 
is—according to Proposition  2—equivalent to the Nash game � (Z,K, {Ji}∀i∈Z) . 
This optimization problem is a convex quadratic program that can be solved by 
available commercial solvers such as the Gurobi Optimizer or the IBM CPLEX 
Optimizer. Without the quadratic regularizer in the objective function, this single 
optimization problem becomes a linear program. All source codes are available in 
our online companion [21].

Let us consider a local market for a general commodity. Figure 5 illustrates the 
players in the game as well the arbitrarily selected input data. In detail, a spatial 
arbitrageur is restricted to import and export a given commodity up to a maximum 
quantity P of 30 units at a fixed cost C of €0.5 per unit. This restriction is imposed 
by the physical network constraints. Two elastic demands, namely n1 and n2 , may 
consume a maximum quantity Dn of 10 units each. The elastic demand n1 gains a 
utility Un1

 of €0.6 per unit, while n2 earns a slightly higher utility Un2
 of €0.7 per 

unit. The aggregated inelastic demand expects to consume L = 15 units, while her 

Fig. 5   Case study: A local market with two elastic demands, namely n1 (green) and n2 (blue), an aggre-
gated inelastic demand (yellow), and the spatial arbitrageur (red). The maximum consumption as well 
as the import/export capacity are given in units (u.). The import cost and export revenue as well as the 
consumption utility are expressed in € per unit (€ p.u.)



1398	 N. Vespermann et al.

1 3

uncertain deviation � follows a multivariate Gaussian distribution N(�, �) , with a 
mean of � = 0 and a standard deviation of � = 3.

From N(�, �) we draw 105 random samples, and provide the spatial arbitrageur as 
well as the elastic demands n1 and n2 with 500 randomly selected samples, the so-
called training data. These training samples for different players are not necessarily 
identical. We will use 104 number of the remaining samples later as test data. Given 
the training data, we solve the Nash equilibrium problem and determine the optimal 
values for quantities p, dn1, dn2 , participation factors �Ar, �Ed

n1
, �Ed

n2
 , price �E and bal-

ancing service payment  �B . Given the test data, we compute a posteriori the 
expected out-of-sample disutility of the players. Note that we do not solve another 
optimization problem for the out-of-sample computations, since the optimal values 
of the participation factors have been already determined.12 We set the regularizer 
to � = 10−6 , and the violation probability of the chance constraints to � = 0.05.

5.1 � The impact of ambiguity aversion

Two elastic demands n1 and n2 and the spatial arbitrageur contribute to offsetting any 
consumption deviation � of the inelastic demand from her nominal consumption L. 
Based on their expectation on � the spatial arbitrageur and two elastic demands make 
an individual trade-off between the quantity of the commodity to be bought and their 
participation factor. This trade-off highly depends on their individual belief on the 
deviation � . As the ambiguity set for a specific player enlarges, she contributes more 
actively to balancing services.

This effect is illustrated in Fig. 6, where the radius of all players is assumed to be 
identical, i.e., �Ed

n1
= �Ed

n2
= �Ar . This assumption will be relaxed later. By increasing 

the radius, players become more ambiguity-averse. Meanwhile, all players possess 
the same empirical data,  i.e.,  F̂Ed

n1
= F̂Ed

n2
= F̂Ar , yielding homogeneous ambiguity 

sets. As the ambiguity aversion of all players increases, all players reduce their quan-
tity of the commodity to be traded as shown in Fig. 6a. However, we observe that 
this decrease is less steep for the elastic demand n1 , since her utility from consump-
tion is slightly lower than that of n2 . The commodity price �E falls as the ambiguity 
aversion increases. Figure 6b shows the evolution of the participation factors �Ar , 
�Ed
n1

 , and �Ed
n2

 . As the ambiguity aversion increases the elastic demand n2 as well as 
the spatial arbitrageur provide a greater contribution to balancing services. Mean-
while, the elastic demand n1 proportionally reduces her participation, although start-
ing from a significantly higher value. The balancing price �B rises as the ambiguity 
aversion increases. Lastly, we observe in Fig.  6c that the expected disutility only 
slightly changes, whereas its standard deviation, indicated by the shaded area around 
the expected disutility, is positively correlated to the participation factor.

12  We assume that the market applies a real-time schedule determined in the forward stage.
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5.2 � On heterogeneous ambiguity aversion

In the following we are interested in exploring the impact of heterogeneous ambi-
guity aversion. For this purpose, we assume the radius of the spatial arbitrageur 
to be �Ar = 0.1 . At the same time, we gradually increase the radius of both elastic 
demands.

Figure  7 illustrates the expected disutility,  i.e., the negative utility, of elastic 
demands n1 and n2 , respectively, as a function of own as well as rival ambiguity 
aversion. As own ambiguity aversion of a demand increases her expected disutility 
increases as well. However, it also depends on the ambiguity aversion of the rival. 
According to Fig. 7a, corresponding to demand n1 , her expected disutility signifi-
cantly depends on the ambiguity aversion of the elastic demand n2 . Given a high 

(a)

(b)

(c)

Fig. 6   Evolution of quantities to be traded (plot a), participation factors (plot b), and expected out-of-
sample disutility as well as its standard deviation highlighted by the shaded area (plot c) as a function of 
the radius
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ambiguity aversion of both elastic demands, player n1 does not earn any utility. In 
contrast, as shown in Fig. 7b, the disutility of the elastic demand n2 hardly depends 
on the rival ambiguity aversion. Given a high ambiguity aversion of both elastic 
demands, she still earns a utility from consumption. These observations highlight 
that a player with a comparatively low consumption utility is highly exposed to the 
rival ambiguity aversion.

6 � Conclusion

We studied a perfectly competitive local market, in which players trade a single com-
modity while being subject to the same source of uncertainty. These players could 
be heterogeneously ambiguity-averse by having individual knowledge about and 
confidence in empirical data describing the uncertain event. We proposed a general-
ized formulation of a distributionally robust Nash equilibrium problem and applied 
a Wasserstein distance metric to model the ambiguity set of each player. Through 
the application of distributionally robust chance constraints, an affine policy and a 
quadratic regularizer, we defined a tractable Nash game. We mathematically proved 
that for this game an equivalent single optimization problem exists, whose solution 
is unique. This implies the existence of a unique Nash equilibrium point. Numerical 
results indicated that a player with a comparatively low consumption utility is highly 
subject to rival ambiguity aversion.

Linear approximation

For the linear reformulation, we follow [7] and reformulate a distributionally robust 
objective function of the form max

F∈D
�F

[

C��
]

 as 

0
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Fig. 7   Expected disutility of the elastic demand n1 and n2 as a function of the radius of the own and the 
rival’s ambiguity sets
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where �, �i and �bi are auxiliary variables, and |I| returns the cardinality of set I  . 
Set B contains the bounds on �,  i.e., max(�̂i,∀i) and min(�̂i,∀i) . Parameter Qb is a 
vector of [1,−1] . The absolute value | ⋅ | in (22c) results from the dual of the infinity-
norm applied in (6a).

As discussed in [9] a distributionally robust chance constraint can be conserva-
tively approximated by a constraint including the CVaR at level � . According to [12, 
Proposition 1] and [27], a distributionally robust chance constraint of the form

min
F∈D

ℙF

[

B − �� ≤ 0
]

≥ 1 − �

can be approximated as a CVaR constraint
max
F∈D

ℙF − CVaR�

[

B − ��
]

≤ 0 . Applying the dual of an infinity norm as our arbi-
trary choice, such a CVaR constraint reduces to the following set of linear 
equations: 

 where �, �CVaR, �CVaR
i

, �b1
bi

 and �b2
bi

 are auxiliary variables.

(22a)min
�,�

i
,�
bi

�� +
1

|I|

∑

i∈I

�
i

(22b)s.t. C��̂i +
∑

b∈B

�bi
(

Hb − Qb�̂i
)

≤ �i, ∀i,

(22c)
|

|

∑

b∈B

Qb�bi − C�|
|

≤ �, ∀i,

(22d)�bi ≥ 0, ∀b, i,

(23a)� +
1

�

(

�CVaR� +
1

|I|

∑

i∈I

�CVaR
i

)

≤ 0,

(23b)B − ��̂i − � +
∑

b∈B

�b1
bi

(

Hb − Qb�̂i
)

≤ �CVaR
i

, ∀i,

(23c)
∑

b∈B

�b2
bi

(

Hb − Qb�̂i
)

≤ �CVaR
i

, ∀i,

(23d)
|

|

∑

b∈B

Qb�
b1
bi

+ �|
|

≤ �CVaR, ∀i,

(23e)
|

|

∑

b∈B

Qb�
b2
bi
|

|

≤ �CVaR, ∀i,

(23f)�b1
bi
, �b2

bi
≥ 0, ∀b, i,



1402	 N. Vespermann et al.

1 3

Proof of proposition 1

This proof is based on [29, Theorem 1], which states that a solution set to the com-
petitive equilibrium problem exists given that the strategy set of each player is con-
vex and compact. In addition, the objective function of each player needs to be con-
tinuous. For the game � (Z,K, {Ji}∀i∈Z) the strategy set K comprising the stratgey 
set of each player is closed, compact, convex, and non-empty. Moreover, all objec-
tive functions Ji∈Z are continuously differentiable. Consequently, a solution to the 
competitive Nash equilibrium problem exists.

Proof of proposition 2

In the following, we show the existence of an equivalent single optimization prob-
lem to the Nash game � (Z,K, {Ji}∀i∈Z) , whose optimal solution coincides with the 
Nash equilibrium point. The rationale behind the proof of this equivalence is that the 
Karush-Kuhn-Tucker (KKT) conditions of the Nash game � (Z,K, {Ji}∀i∈Z) and of 
the single optimization problem are identical. In addition, we show that the global 
solution to the single optimization problem is unique, which implies the existence of 
a unique Nash equilibrium point.

Towards a single optimization problem

We first derive the objective function of the single optimization problem based on 
individual cost functions (16), (18a) and (20a) as

With the first-order coefficient for �E and �B of the price-setter’s problem (21) equal 
to zero, the function (24) reduces to

(24)

�EL + �B
⏟⏞⏟⏞⏟

(16)

+
∑

n∈N

(

(

�E − Un

)

dn − �B�Ed

n
+ c(dn, �

Ed

n
) + �Ed

n
�Ed
n

+
1

|I
Ed

n
|

∑

i∈IEd
n

�Ed

ni

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(18a)

)

+
(

C − �E
)

p − �B�Ar + c(p, �Ar) + �Ar�Ar +
1

|I
Ar
|

∑

i∈IAr

�Ar

i

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(20a)

.
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Based on the function (25) we propose the single optimization problem 

where �Cp = {dn, p, �
Ed
n
, �Ar,�Ed

n
, �Ed

ni
, �Ed

nbi
, �Ar, �Ar

i
, �Ar

bi
, �Ed

n
, �Ed

n
, �Ed

ni
, �Ed1

nbi
, �Ed2

nbi
, 

�Ed
n
,�

Ed

n
, �Ed

ni
, �Ed1

nbi
, �Ed2

nbi
, �Ar,�Ar, �Ar

i
, �Ar1

bi
, �Ar2

bi
, �Ar,�

Ar
, �Ar

i
, �Ar1

bi
, �Ar2

bi
} . Note 

that �E states the dual variable of the equality constraint (26b), while �B presents the 
dual variable of the equality constraint (26c).

Karush–Kuhn–Tucker conditions

We continue by comparing the KKT conditions of the Nash game � (Z,K, {Ji}∀i∈Z) 
with those of the single optimization problem  (26). The  KKT conditions associated 
with (18) are as follows. 

(25)

∑

n∈N

(

−Undn + c(dn, �
Ed
n
) + �Ed

n
�Ed
n

+
1

|IEd
n
|

∑

i∈IEd
n

�Ed
ni

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Elastic demand n

)

+ Cp + c(p, �Ar) + �Ar�Ar +
1

|IAr|

∑

i∈IAr

�Ar
i

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Spatial arbitrageur

.

(26a)

Min
�Cp

∑

n∈N

(

− Undn + c(dn, �
Ed
n
) + �Ed

n
�Ed
n

+
1

|I
Ed
n
|

∑

i∈IEd
n

�Ed
ni

)

+ Cp + c(p, �Ar) + �Ar�Ar +
1

|I
Ar
|

∑

i∈IAr

�Ar
i

(26b)s.t. p −
∑

n∈N

dn − L = 0 ∶ �E,

(26c)�Ar +
∑

n∈N

�Ed
n

− 1 = 0 ∶ �B,

(26d)(18b)–(18s), ∀n,

(26e)(20b)–(20s),

(27a)
�LEd

n

�dn
= �E − Un + �dn +

1

|IEd
n
|

∑

i∈IEd
n

(

− �Ed.2b
ni

+ �Ed.3b
ni

)

= 0, ∀n,
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(27b)

�LEd

n

��Ed
n

= −�B + ��Ed

n
+

1

|I
Ed

n
|

∑

i∈IEd
n

(

�Ed.1a
ni

U
n
�̂Ed
ni

+ �Ed.1b
ni

U
n
− �

Ed.1b

ni
U

n

+ �Ed.2b
ni

�̂Ed
ni

+ �Ed.2d
ni

− �
Ed.2d

ni
− �Ed.3b

ni
�̂Ed
ni

− �Ed.3d
ni

+ �
Ed.3d

ni

)

− �Ed.4a
n

+ �
Ed.4a

n
= 0,∀n,

(27c)
�LEd

n

��Ed
n

= �Ed
n

+
1

|IEd
n
|

∑

i∈IEd
n

(

− �Ed.1b
ni

− �
Ed.1b

ni

)

= 0, ∀n,

(27d)
�LEd

n

��Ed
ni

=
∑

i∈IEd
n

1

|IEd
n
|

− �Ed.1a
ni

= 0, ∀n, i,

(27e)

�LEd
n

��Ed
nbi

= �Ed.1a
ni

(

Hb − Qb�̂
Ed
ni

)

− �Ed.1b
ni

Qb + �
Ed.1b

ni
Qb − �Ed.1c

nbi
= 0, ∀n, b, i,

(27f)
�LEd

n

��Ed
n

= �Ed.2a
n

−
1

|IEd
n
|

∑

i∈IEd
n

�Ed.2b
ni

= 0, ∀n,

(27g)

�LEd

n

��Ed

n

= �Ed.2a
n

1

�
�Ed
n

+
1

|I
Ed

n
|

∑

i∈IEd
n

(

− �Ed.2d
ni

− �
Ed.2d

ni
− �Ed.2e

ni
− �

Ed.2e

ni

)

= 0, ∀n,

(27h)
�LEd

n

��Ed
ni

=
1

�
1

|IEd
n
|

�Ed.2a
n

− �Ed.2b
ni

− �Ed.2c
ni

= 0, ∀n, i,

(27i)

�LEd
n

��Ed1
nbi

= �Ed.2b
ni

(

Hb − Qb�̂
Ed
ni

)

− �Ed.2d
ni

Qb + �
Ed.2d

ni
Qb − �Ed.2f

nbi
= 0, ∀n, b, i,

(27j)

�LEd
n

��Ed2
nbi

= �Ed.2c
ni

(

Hb − Qb�̂
Ed
ni

)

− �Ed.2e
ni

Qb + �
Ed.2e

ni
Qb − �Ed.2g

nbi
= 0, ∀n, b, i,
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(27k)
�LEd

n

��Ed
n

= �Ed.3a
n

−
1

|IEd
n
|

∑

i∈IEd
n

�Ed.3b
ni

= 0, ∀n,

(27l)

�LEd
n

��
Ed

n

= �Ed.3a
n

1

�
�Ed
n

+
1

|IEd
n
|

∑

i∈IEd
n

(

− �Ed.3d
ni

− �
Ed.3d

ni
− �Ed.3e

ni
− �

Ed.3e

ni

)

= 0, ∀n,

(27m)
�LEd

n

��Ed

ni

=
1

�
1

|IEd
n
|

�Ed.3a
n

− �Ed.3b
ni

− �Ed.3c
ni

= 0, ∀n, i,

(27n)

�LEd
n

��Ed1
nbi

= �Ed.3b
ni

(

Hb − Qb�̂
Ed
ni

)

− �Ed.3d
ni

Qb + �
Ed.3d

ni
Qb − �Ed.3f

nbi
= 0, ∀n, b, i,

(27o)

�LEd
n

��Ed2
nbi

= �Ed.3c
ni

(

Hb − Qb�̂
Ed
ni

)

− �Ed.3e
ni

Qb + �
Ed.3e

ni
Qb − �Ed.3g

nbi
= 0, ∀n, b, i,

(27p)0 ≤ −Un�
Ed
n
�̂Ed
ni

−
∑

b∈B

�Ed
nbi

(

Hb − Qb�̂
Ed
ni

)

+ �Ed
ni

⟂ �Ed.1a
ni

≥ 0, ∀n, i,

(27q)0 ≤ �Ed
n

+
∑

b∈B

Qb�
Ed
nbi

− Un�
Ed
n

⟂ �Ed.1b
ni

≥ 0, ∀n, i,

(27r)0 ≤ −
∑

b∈B

Qb�
Ed
nbi

+ Un�
Ed
n

+ �Ed
n

⟂ �
Ed.1b

ni
≥ 0, ∀n, i,

(27s)0 ≤ �Ed
nbi

⟂ �Ed.1c
nbi

≥ 0, ∀n, b, i,

(27t)0 ≤ −�Ed
n

−
1

�

(

�Ed

n
�Ed
n

+
1

|IEd
n
|

∑

i∈IEd
n

�Ed
ni

)

⟂ �Ed.2a
n

≥ 0, ∀n,

(27u)

0 ≤ d
n
− �Ed

n
�̂Ed
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+ �Ed
n

−
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b∈B

�Ed1
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(
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�̂Ed
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+ �Ed
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≥ 0, ∀n, i,
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�Ed2
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Ed
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+ �Ed
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⟂ �Ed.2c
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≥ 0, ∀n, i,
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(27w)0 ≤ �Ed

n
+
∑

b∈B

Qb�
Ed1

nbi
− �Ed

n
⟂ �Ed.2d

ni
≥ 0, ∀n, i,

(27x)0 ≤ −
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Qb�
Ed1
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+ �Ed

n
+ �Ed
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n
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Qb�
Ed2
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(27z)0 ≤ −
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b∈B

Qb�
Ed2

nbi
+ �Ed

n
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Ed.2e

ni
≥ 0, ∀n, i,

(27aa)0 ≤ �Ed1
nbi

⟂ �Ed.2f
nbi

≥ 0, ∀n, b, i,

(27ab)0 ≤ �Ed2
nbi

⟂ �Ed.2g
nbi

≥ 0, ∀n, b, i,

(27ac)0 ≤ −�Ed
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−
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Ed
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Ed
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+ �Ed
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⟂ �Ed.3c
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(27af)0 ≤ �
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+
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b∈B

Qb�
Ed1

nbi
− �Ed
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+ �
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+
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 where LEd
n

 is the Lagrangian function of (18).
The KKT conditions corresponding to (20) write 

(27aj)0 ≤ �Ed1
nbi

⟂ �Ed.3f
nbi

≥ 0, ∀n, b, i,

(27ak)0 ≤ �Ed2
nbi

⟂ �Ed.3g
nbi

≥ 0, ∀n, b, i,

(27al)0 ≤ A + �Ed
n

⟂ �Ed.4a
n

≥ 0, ∀n

(27am)0 ≤ −�Ed
n

+ A ⟂ �
Ed.4a

n
≥ 0, ∀n

(28a)
�LAr

�p
= C − �E + �p +

1

|IAr|

∑

i∈IAr

(

− �Ar.2b
i

+ �Ar.3b
i

)

= 0,

(28b)

�LAr

��Ar
= − �B + ��Ar +

1

|I
Ar
|

∑

i∈IAr
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�Ar.1a
i

C�̂Ar
i

+ �Ar.1b
i

C − �
Ar.1b

i
C

− �Ar.2b
i

�̂Ar
i

− �Ar.2d
i

+ �
Ar.2d

i
+ �Ar.3b

i
�̂Ar
i

+ �Ar.3d
i

− �
Ar.3d

i

)

− �Ar.4a + �
Ar.4a

= 0,

(28c)
�LAr

��Ar
= �Ar +

1

|IAr|

∑

i∈IAr

(

− �Ar.1b
i

− �
Ar.1b

i

)

= 0,

(28d)
�LAr

��Ar
i

=
∑

i∈IAr

1

|IAr|
− �Ar.1a

i
= 0, ∀i

(28e)
�LAr

��Ar
bi

= �Ar.1a
i

(

Hb − Qb�̂
Ar
i

)

− �Ar.1b
i

Qb + �
Ar.1b

i
Qb − �Ar.1c

bi
= 0, ∀b, i

(28f)
�LAr

��Ar
= �Ar.2a −

1

|IAr|

∑

i∈IAr

�Ar.2b
i

= 0,

(28g)

�LAr

��Ar
= �Ar.2a

1

�
�Ar

+
1

|I
Ar
|

∑

i∈IAr

(

− �Ar.2d
i

− �
Ar.2d

i
− �Ar.2e

i
− �

Ar.2e

i

)

= 0,
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(28h)
�LAr

��Ar
i

=
1

�
1

|IAr|
�Ar.2a − �Ar.2b

i
− �Ar.2c

i
= 0, ∀i,

(28i)
�LAr

��Ar1
bi

= �Ar.2b
i

(

Hb − Qb�̂
Ar
i

)

− �Ar.2d
i

Qb + �
Ar.2d

i
Qb − �AR.2f

bi
= 0, ∀b, i,

(28j)
�LAr

��Ar2
bi

= �Ar.2c
i

(

Hb − Qb�̂
Ar
i

)

− �Ar.2e
i

Qb + �
Ar.2e

i
Qb − �Ar.2g

bi
= 0, ∀b, i,

(28k)
�LAr

��Ar
= �Ar.3a −

1

|IAr|

∑

i∈IAr

�Ar.3b
i

= 0,

(28l)

�LAr

��
Ar

= �Ar.3a
1

�
�Ar

+
1

|IAr|

∑

i∈IAr

(

− �Ar.3d
i

− �
Ar.3d

i
− �Ar.3e

i
− �

Ar.3e

i

)

= 0,

(28m)
�LAr

��Ar

i

=
1

�
1

|IAr|
�Ar.3a − �Ar.3b

i
− �Ar.3c

i
= 0, ∀i,

(28n)
�LAr

��Ar1
bi

= �Ar.3b
i

(

Hb − Qb�̂
Ar
i

)

− �Ar.3d
i

Qb + �
Ar.3d

i
Qb − �Ar.3f

bi
= 0, ∀b, i,

(28o)
�LAr

��Ar2
bi

= �Ar.3c
i

(

Hb − Qb�̂
Ar
i

)

− �Ar.3e
i

Qb + �
Ar.3e

i
Qb − �Ar.3g

bi
= 0, ∀b, i,

(28p)0 ≤ −C�Ar�̂Ar
i

−
∑

b∈B

�Ar
bi

(

Hb − Qb�̂
Ar
i

)

+ �Ar
i

⟂ �Ar.1a
i

≥ 0, ∀i,

(28q)0 ≤ �Ar +
∑

b∈B

Qb�
Ar
bi

− C�Ar
⟂ �Ar.1b

i
≥ 0, ∀i,

(28r)0 ≤ −
∑

b∈B

Qb�
Ar
bi

+ C�Ar + �Ar
⟂ �

Ar.1b

i
≥ 0, ∀i,

(28s)0 ≤ �Ar
bi

⟂ �Ar.1c
bi

≥ 0, ∀b, i
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(28t)0 ≤ −�Ar −
1

�

(

�Ar�Ar +
1

|IAr|

∑

i∈IAr

�Ar
i

)

⟂ �Ar.2a ≥ 0,

(28u)

0 ≤ P + p + �Ar�̂Ar
i

+ �Ar −
∑

b∈B

�Ar1
bi

(

Hb − Qb�̂
Ar
i

)

+ �Ar
i

⟂ �Ar.2b
i

≥ 0, ∀i,

(28v)0 ≤ −
∑

b∈B

�Ar2
bi

(

Hb − Qb�̂
Ar
i

)

+ �Ar
i

⟂ �Ar.2c
i

≥ 0, ∀i,

(28w)0 ≤ �Ar +
∑

b∈B

Q
b
�Ar1
bi

+ �Ar
⟂ �Ar.2d

i
≥ 0, ∀i,

(28x)0 ≤ −
∑

b∈B

Qb�
Ar1

bi
− �Ar + �Ar

⟂ �
Ar.2d

i
≥ 0, ∀i,

(28y)0 ≤ �Ar +
∑

b∈B

Qb�
Ar2

bi
⟂ �Ar.2e

i
≥ 0, ∀i,

(28z)0 ≤ −
∑

b∈B

Qb�
Ar2

bi
+ �Ar

⟂ �
Ar.2e

i
≥ 0, ∀i,

(28aa)0 ≤ �Ar1
bi

⟂ �Ar.2f
bi

≥ 0, ∀b, i,

(28ab)0 ≤ �Ar2
bi

⟂ �Ar.2g
bi

≥ 0, ∀b, i,

(28ac)0 ≤ −�Ar −
1

�

(

�
Ar
�Ar +

1

|IAr|

∑

i∈IAr

�Ar

i

)

⟂ �Ar.3a ≥ 0,

(28ad)

0 ≤ −p − �Ar�̂Ar
i

+ P + �Ar −
∑

b∈B

�Ar1
bi

(

Hb − Qb�̂
Ar
i

)

+ �Ar

i
⟂ �Ar.3b

i
≥ 0, ∀i,

(28ae)0 ≤ −
∑

b∈B

�Ar2
bi

(

Hb − Qb�̂
Ar
i

)

+ �Ar

i
⟂ �Ar.3c

i
≥ 0, ∀i,

(28af)0 ≤ �
Ar

+
∑

b∈B

Qb�
Ar1

bi
− �Ar

⟂ �Ar.3d
i

≥ 0, ∀i,

(28ag)0 ≤ −
∑

b∈B

Qb�
Ar1

bi
+ �Ar + �

Ar
⟂ �

Ar.3d

i
≥ 0, ∀i,
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 where LAr is the Lagrangian function of (20).
Lastly, the KKT conditions of (21) write 

 where LPs is the Lagrangian function of (21).
Similarly, the KKT conditions of the single optimization problem (26) are given 

by 

(28ah)0 ≤ �
Ar

+
∑

b∈B

Qb�
Ar2

bi
⟂ �Ar.3e

i
≥ 0, ∀i,

(28ai)0 ≤ −
∑

b∈B

Qb�
Ar2

bi
+ �

Ar
⟂ �

Ar.3e

i
≥ 0, ∀i,

(28aj)0 ≤ �Ar1
bi

⟂ �Ar.3f
bi

≥ 0, ∀b, i,

(28ak)0 ≤ �Ar2
bi

⟂ �Ar.3g
bi

≥ 0, ∀b, i,

(28al)0 ≤ A + �Ar
⟂ �Ar.4a ≥ 0,

(28am)0 ≤ −�Ar + A ⟂ �
Ar.4a

≥ 0,

(29a)
�LPs

��E
= p −

∑

n∈N

dn − L − �Ps.E + �
Ps.E

= 0,

(29b)
�LPs

��B
= �Ar +

∑

n∈N

�Ed
n

− 1 − �Ps.B + �
Ps.B

= 0,

(29c)0 ≤ � + �E ⟂ �Ps.E ≥ 0,

(29d)0 ≤ −�E + � ⟂ �
Ps.E

≥ 0,

(29e)0 ≤ � + �B ⟂ �Ps.B ≥ 0,

(29f)0 ≤ −�B + � ⟂ �
Ps.B

≥ 0,

(30a)(27a)–(27am),

(30b)(28a)–(28am),
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Note that the KKT conditions of the single optimization problem (26) is a collec-
tion of the KKT conditions corresponding to optimization problems (18) and (20) 
with two additional equality constraints, namely  (30c) and  (30d). However, given 
that the constraints on �E and �B in the price-setters’ optimization problem (21) are 
non-binding, the equality constraints  (30c) and  (30d) are equivalent to the deriva-
tives with respect to �E (29a) and �B (29b) of the price-setter’s problem.

Consequently, for non-binding constraints on  �E and  �B the solution of the 
single optimization problem  (26) is equivalent to the solution of the Nash 
game � (Z,K, {Ji}∀i∈Z) , and vice versa.

Uniqueness of the Nash equilibrium point

We note that the objective function  (26a) of the single optimization problem is 
strictly convex given by the quadratic term c(dn, �Ed

n
) and c(p, �Ar) indicating strict 

monotonicity of players’ preferences [30]. Owing to strict convexity of the objec-
tive function (26a) and the convex and compact strategy set (26b)–(26e), the single 
optimization problem (26) yields a unique solution. Since (26) is equivalent to the 
original Nash game � (Z,K, {Ji}∀i∈Z) , the Nash equilibrium point is also unique.
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