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Abstract
This work studies shape filtering techniques, namely the convolution-based (explicit) and the PDE-based (implicit), and 
introduces the implicit bulk-surface filtering method to control the boundary smoothness and preserve the internal mesh 
quality simultaneously in the course of bulk (solid) shape optimization. To that end, the volumetric mesh is governed by 
the pseudo-solid smoothing equations, which are stiffened by the mesh-Jacobian and endowed with the Robin boundary 
condition, which involves the Laplace-Beltrami operator on the mesh boundaries. Its superior performance from the non-
simultaneous (sequential) treatment of boundary and internal meshes is demonstrated for the shape optimization of complex 
solid structures. Well-established explicit filters, namely Gaussian and linear, and the Helmholtz/Sobolev-based (implicit) 
filter are critically examined for shell optimization in terms of consistency (rigid-body-movement production), geometric 
characteristics, and computational cost. It is demonstrated that implicit filtering is more numerically efficient and robustly 
enforces fixed boundaries compared to explicit filtering. Supported by numerical experiments, a regularized Green’s func-
tion is introduced as an equivalent explicit form of the Helmholtz/Sobolev filter. Furthermore, we give special attention to 
deriving mesh-independent filtered sensitivities for node-based shape optimization with non-uniform meshes. It is shown 
that mesh-independent filtering can be achieved by scaling discrete sensitivities with the inverse of the mesh mass matrix.

Keywords  Implicit bulk-surface filtering method · Node-based shape optimization · Explicit and implicit filters · 
Consistency and mesh-independency

1  Introduction

Filtering is widely recognized as a successful technique in 
discrete topology and shape optimization. For a given filter 
length scale, it should regularize the optimization problem 
independent of the discretization of the underlying geometry. 
Together with adjoint-based sensitivity analysis to determine 
the discrete gradients, filtering or regularization has become 
a very successful procedure for large-scale optimization 
problems in the industry. Techniques for filtering are divided 
into two main categories whose similarities and differences 
are going to be discussed in this paper. In the first approach, 

smoothing is applied implicitly by solving elliptic PDEs 
whose inverse operator is a local smoother, the so-called 
implicit filtering. In the second category, the raw field is 
smoothed by its convolution with a kernel function, the so-
called explicit filtering. Both techniques are conventionally 
used to smooth either design variables or design gradients. 
The former is more consistent with the optimization problem 
formulation, whereas the latter may confuse the optimizer 
and disturb the convergence due to discrepancies between 
the filtered and true (raw) gradients.

Explicit filtering was introduced by Sigmund (1994) in 
order to eliminate two well-known problems in structural 
topology optimization, namely the checkerboard problem 
and the mesh-dependency problem. Since then, the method 
has become a standard tool in structural design and optimi-
zation, mainly due to its simple formulation and robustness. 
In shape optimization, the explicit filtering has been applied 
to structural (Bletzinger et al. 2005, 2010; Le et al. 2011; 
Firl and Bletzinger 2012) as well as fluid and aerodynamic 
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(Stück and Rung 2011; Hojjat et al. 2014; Kröger and Rung 
2015; Najian Asl et al. 2017; Ghantasala et al. 2021b; Anto-
nau et al. 2022) applications. Furthermore, Bletzinger (2014) 
has established a perfect analogy between the explicit filter-
ing and parameterization techniques used for shape optimi-
zation, especially CAD-based techniques.

The traction method (Azegami and Wu 1996) and the 
Sobolev-gradient smoothing (Jameson and Vassberg 2000) 
were pioneering works on PDE-based or implicit filtering. 
The main idea is to project the gradients into a smoother 
design space, the Hilbert or Sobolev space, by letting the 
gradients be the solution of an elliptic equation. Schmidt 
et al. (2008) and Eppler et al. (2009) have demonstrated 
mathematically that the Sobolev smoothing can be inter-
preted as a reduced shape Hessian operator, which turns 
the steepest descent into a quasi-Newton step. Following 
this interpretation, Dick et al. (2022) have used the Sobolev 
smoothing as a preconditioner for discrete shape sensitivities 
to accelerate the convergence in CAD-based shape optimi-
zation, even though the parameterization is smooth itself. 
Mohammadi and Pironneau (2009) also observed that the 
conditioning of the optimization problem is more favorable 
with the Sobolev-based filtering than with the CAD-based 
filtering. Recently, implicit filtering has come to the atten-
tion of the topology optimization community after the early 
works by Lazarov and Sigmund (2011) and Kawamoto et al. 
(2011). The primary motivation behind this is that it has bet-
ter performance profiles than classical or explicit filtering.

This work studies the explicit and implicit filters in 
the context of node-based shape optimization. They are 
discussed qualitatively and quantitatively in terms of the 
consistency between shape gradients and shape updates, 
interpolation of the domain edges (fixed boundaries), and 
the sensitivity of filtered fields to the discretization of the 
underlying geometry, i.e., mesh dependency. Furthermore, 
we present the bulk-surface filtering method designed to 
control the boundary smoothness and simultaneously pre-
vent internal mesh distortion. This is similar to the enhanced 
traction method (Azegami and Takeuchi 2006), which com-
putes shape updates by solving a pseudo-elastic linear prob-
lem that is stiffened by springs on the domain boundary and 
is loaded by discrete shape gradients. In this work, to main-
tain mesh quality and reduce the frequency of remeshing 
during the shape optimization, the so-called Jacobian-based 
stiffening (Tezduyar et al. 1992; Stein et al. 2003; Tonon 
et al. 2021) is applied to the pseudo-elastic solid model. 
Moreover, to ensure smooth boundary geometry shapes, 
the model is endowed with the Robin boundary condition, 
which involves the Laplace-Beltrami operator on the bound-
ary mesh. Furthermore, here we use the filter in a consistent 
manner; hence it is applied to discrete shape control points 
rather than the sensitivities. Consistent filtering was first 
introduced for topology optimization (Bourdin 2001; Bruns 

and Tortorelli 2001), and since then, it has been widely used. 
It should be mentioned that, unlike topology optimization, 
in shape optimization, the control field is unknown a priori, 
and it can be calculated from the discrete shape by inverse 
filtering (deconvolution). Doing so introduces a design space 
in parallel to the geometry space where shape updates are 
applied. Mathematically speaking, the actual optimization 
problem is defined in the control space, and control sensitivi-
ties should be derived consistently by the chain rule. Last but 
not least, since discrete sensitivities are consistent nodal val-
ues that show size effects in the gradients, the inverse of the 
mesh mass matrix is used as a preconditioner for the discrete 
control sensitivities to avoid the mesh dependency issue.

This paper is structured as follows: In Sect. 2, the explicit 
shape filtering is revisited, and its discrete form is derived. 
Therein, consistency and mesh-dependency issues are elab-
orated, and the mesh mass matrix preconditioner is intro-
duced. In Sect. 3, implicit shape filtering is presented for 
surface geometries and bulk domains using the previously 
described bulk-surface formulation. Finally, Sect. 4 criti-
cally compares the explicit and implicit filtering techniques 
regarding geometric characteristics and the computational 
cost. Therein, the performance of the developed bulk-sur-
face filter is studied for the shape optimization of complex 
solid structures, and comparisons are made against the non-
simultaneous (sequential) treatment of boundary and inter-
nal meshes.

2 � Explicit shape filtering

This technique generates the three-dimensional geometry 
at point x0 = (x1

0
, x2

0
, x3

0
) of the design surface �  from the 

control field s = (s1, s2, s3) via a convolutional filtering 
operation:

where F is the filter (kernel) function which controls the 
properties of filtering and subsequently the produced shapes, 
� is the portion of �  which lies within the filter’s support 
span. In free-form shape optimization, unlike topology and 
CAD-based shape optimization, the control field is unknown 
a priori, and it can be calculated by inverse filtering (decon-
volution). Gaussian and linear hat functions are the most 
commonly used kernels in shape and topology optimization 
and they are defined respectively as 

(1)x0 = ∫
�

F(x, x0) s(x) d� = ∫
�

F(x, x0) s d�

(2a)FG(x, x0) =
1

rE
�

√
2�

e
−1

2
(‖x−x0‖∕rE� )2
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where the surface filter radius of explicit filtering is denoted 
by rE

�
 . Let x = (x1, x2, x3) represent the coordinates of a point 

on the surface. Then, ‖‖x − x0
‖‖ denotes the Euclidean dis-

tance from this point to the center of the filter, x0. (Fig. 1).
In shape optimization, the design surface is often open 

and limited by adjacent non-design areas, which must not 
be modified. In other words, the edges of the design surface 
are fixed or must be interpolated during the optimization. As 
a matter of fact, edge interpolation is a Dirichlet boundary 
condition to the optimization problem and must be satis-
fied strongly and point-wise. In the explicit shape filtering, 
damping (Kröger and Rung 2015; Baumgartner 2020) is 
used to suppress modification of the fixed boundaries and 
smoothly transit between design and not-design areas. The 
implementation of damping is straightforward, and one only 
needs to multiply the filter operator with a damping function 
which is computed based on the distance to the non-design 
domain. Then Eq.1 is updated as 

where D is the damping function, xcpp is determined based 
on the so-called closest point projection (CPP) of x0 onto the 
design surface boundary ��  , and Fmax is defined as the maxi-
mum value of the filter function over its evaluated domain. 
It this way, it is ensured that non-design domains, such as 
the edges of the design surface, are interpolated by the con-
trol variables, allowing for the generation of smooth shapes 
without modifying these non-design domains.

For numerical analysis, the shape governing equation 
of the design surface should be discretized. Although one 
can use different resolutions to discretize the left- and right-
hand sides of Eq. 1, in this work the same grid is used for 

(2b)FL(x, x0) = max

(
0,

rE
�
− ‖‖x − x0

‖‖
rE
�

)

(3a)x0 = D(x0, xcpp) ∫
�

F(x, x0) s d�

(3b)D(x0, xcpp) = 1 − F(x0, xcpp)∕Fmax

the sake of simplicity. Applications of non-matching grids 
can be found in Najian Asl (2019). We use piecewise linear 
finite element functions to approximate the geometry and 
data fields, i.e., isoparametric finite elements. Therefore, the 
actual geometry and its control field within each element 
are approximated as xi ≈ N

i
xi, si ≈ N

i
si; i ∈ {1, 2, 3}, 

where Ni is the vector of element shape functions in the ith 
Cartesian direction, xi and si are the ith components of nodal 
coordinate vector and nodal control point vector, respec-
tively. Then, the geometry at node i reads

where �e,i is the set of elements in the filter support domain 
of node i, and subscript �  indicates that the quantity belongs 
to the surface. Note that the filter function at node i should 
be ideally evaluated at the Gauss points of the associated 
elements �e,i ; however since the neighbor search operation 
is cost prohibitive, it is evaluated at the mesh points, i.e., it 
is discretized. In the vector-matrix format, the explicit shape 
filtering reads

x� ∈ ℝ
3n�×1 is the nodal coordinates vector of the 

design boundary mesh, AE
�
∈ ℝ

3n�×3n�  is the explicit 
filtering matrix composed of the surface mesh mass 
matrix M�  , the weighting matrix W�  whose entries are 
W� (i, j) = F(x� ,i, x� ,j) ⋅ I3×3 and the diagonal damping 
matrix D� (i, i) = (1 − F(x� ,i, xcpp)∕Fmax) ⋅ I3×3 . A drawback 
of such convolutional filtering is that the smoothing effect 
becomes mesh dependent, especially on unstructured meshes 
and finite domains with open boundaries. It is clear that the 
discrete surface x�  is constructed based on a weighted sum 
of the control values at the mesh points, where the weight-
ing is purely a function of the distances to mesh points. 
The standard remedy found in literature is to rescale the 
filter function so that it has a unit volume everywhere in the 
domain, i.e.,

This can be achieved easily by dividing the filter function by 
the inverse of its volume, i.e., F(x, x0)∕ = ∫

�

F(x, x0) d� . 

This scaling has two effects. On one hand, it results in the 
so-called consistency property for the filtering, meaning that 
a constant variation in the control field �s = [1, 1, 1] results 
in a constant update in the geometry �x = [1, 1, 1] . On the 
other hand, it destroys the self-adjoint property of the filter 

(4)x� ,i = D(x� ,i)
∑

k∈�e,i

∫� e

F(x� ,i, x� ,k) N
T
�
N� s� ,k d�

(5)
x� = D� ⋅W� ⋅M� ⋅ s� = A

E
�
⋅ s�

M� =
∑

∫� e

N
T
�
N� d�

(6)∫
Γ

F(x, x0) d� = 1.0, ∀x0 on �

Fig. 1   Notional schematic of the design surface ( �  ), the Gaussian fil-
ter function ( F ), the integration area ( � ) and the closest point projec-
tion of x0 ( xcpp ) onto the design surface boundary ( �� )
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function and, accordingly, the symmetry property of the 
weighting matrix. The consistent explicit filtering matrix 
reads

where VΓ ∈ ℝ
3nΓ×3nΓ is a diagonal matrix and its entries are 

basically the volume under nodal filter functions, i.e., 
V� (i, i) =

∑
k∈�e,i

∫
� e F(x� ,i) N� d� ⋅ I3×3 . Replacing D� by the 

identity matrix, it is noted that the consistency property is 
reflected as unit row sums in the filtering matrix. Also, note 
that the matrix is a large and dense matrix; however, it can 
be applied in a matrix-free mode by computing the weights 
in advance, storing them inside each node and cycling 
through the nodes. At first glance, the lack of the self-adjoint 
property does not seem relevant; however, a closer look at 
the response sensitivity analysis and shape update rule that 
will follow reveals some inconsistency issues.

2.1 � Sensitivity analysis and update rule

In this work, filtering is applied to the discrete shape rather 
than the discrete shape sensitivities, meaning that parallel to 
the geometry space x where shape sensitivities are evaluated, 
the design space s lives where the optimization problem is 
defined. Applying the chain rule of differentiation, control 
gradients of the response J read

where dJ∕ds� and dJ∕dx� are the discrete control and shape 
sensitivities of the response, respectively. It is important to 
note that the derivation above makes use of the fact that 
the submatrices of the filter matrix exhibit symmetry, even 
though the filter matrix ( AE

�
 ) itself may not be symmetric. 

This implies that when the filter matrix is transposed, it only 
reverses the order of the submatrices.

In fluid and structural optimization, response functions are 
typically smooth differentiable integral functional whose con-
tinuous variation reads

where the spatial variation of the integral is neglected. Then, 
consistent or discrete gradients can be derived by basis func-
tions of finite elements (Oden and Reddy 1972) as

(7)A
E
�
= D� ⋅ V

−1
�

⋅W� ⋅M�

(8)

dJ

ds�
=

dJ

dx�
⋅

dx�

ds�
= (AE

�
)T ⋅

dJ

dx�

= M� ⋅W� ⋅ V
−1
�

⋅ D� ⋅

dJ

dx�

(9)�J(x) = ∫
�

�j(x) d�

(10)dJ

dx�
= M� ⋅

dj

dx�

dj∕dx�  is the continuous gradient field sampled at mesh 
points and associated with the discrete/consistent field 
dJ∕dx� via the mesh mass matrix M� . Since the control field 
s�  is also a continuous field sampled at mesh points, it must 
be updated with a field of the same type in the direction of 
the steepest descent. Therefore, inspired by Eq. 10 it seems 
reasonable to develop the following control update rule:

where � is a constant step size, dj∕ds�  is the scaled/con-
tinuous control sensitivities which are linked to the con-
sistent ones dJ∕ds�  via the inverse mass matrix. One can 
interpret the proposed update rule as a quasi-Newton step 
with the diagonal approximation of the Hessian matrix by 
the scaled mass matrix. A careful look at Eqs. 8,11 shows 
that the desirable consistency property (unit row sum) in 
the explicit shape filtering (Eqs. 5,7) does not hold for the 
sensitivity filtering. This means that a uniform continuous 
gradient field, e.g., dj∕dx� = [1]3n�×1 , does not result in a 
uniform gradient field in the control space and subsequently 
a uniform geometry update, i.e.,

where for the sake of simplicity, no damping or design 
boundary interpolation is considered, i.e., D� (i, i) = I3×3 . 
The above holds in particular for open design surfaces, inde-
pendent of the mesh type.

2.2 � Consistency check

In gradient-based shape optimization, the consistency prop-
erty means rigid-body-movement production for a given 
translational (uniform) sensitivity field, independent of the 
mesh discretization. Kröger and Rung (2015) have discussed 
the consistency aspects of explicit filtering in great detail. 
They strictly require the filter to compute constant and linear 
filtered fields, respectively, for constant and linear distribu-
tions of the continuous sensitivity field. In shape and topol-
ogy optimization, the filter matrix can also be only applied 
to the design sensitivities rather than the design variables 
themselves, the so-called sensitivity filtering technique. 
However, in shape and density filtering, the matrix is used 

(11)

Δs� = −� ⋅

dj

ds�
= −� ⋅M

−1
�

⋅

dJ

ds�

= −� ⋅M
−1
�

⋅M� ⋅W� ⋅ V
−1
�

⋅ D� ⋅

dJ

dx�

= −� ⋅W� ⋅ V
−1
�

⋅ D� ⋅

dJ

dx�

= −� ⋅W� ⋅ V
−1
�

⋅ D� ⋅M� ⋅

dj

dx�

(12)

Δx� = A
E
�
⋅ Δs�

= −� ⋅ A
E
�
⋅W� ⋅ V

−1
�

⋅M� ⋅ [1]3n�×1

≠ −� ⋅ [1]3n�×1
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twice, once in the design update rule (Eq. 12) and once in 
the sensitivity analysis using a transpose operation (Eq. 8).

We perform consistency tests with a uniform continuous 
sensitivity field of dj∕dx� = [(0, 0, 1)]n�×1 over a perforated 
plate which is discretized non-uniformly, Fig. 2. It should be 
emphasized that although the continuous shape sensitivity 
field dj∕dx�  is uniformly distributed, the consistent/discrete 
nodal sensitivities dJ∕dx�  are not necessarily uniform, and 
indeed they are scaled by the mesh mass matrix, see Eq. 10. 
Control sensitivities obtained after explicit filtering with a 
linear hat function are demonstrated in Fig. 3. As could be 
expected, the consistent/discrete control sensitivities are 
non-smooth and, indeed, mesh-dependent. In contrast, the 
ones scaled by the inverse mass matrix are certainly smooth 
and mesh-independent. As a matter of fact, any consistent 
discrete field is mesh-dependent and noisy. Therefore, scal-
ing the consistent sensitivities dJ∕ds� with the inverse mass 
matrix is absolutely necessary to avoid mesh-dependency 
and introducing irrelevant noises into the design. We also 
notice that the scaled sensitivities are non-uniform close to 
the boundary edges, indicating a lack of consistency in map-
ping/filtering sensitivity with the explicit approach.

3 � Implicit shape filtering

Filtering can also be performed implicitly by elliptic 
PDEs whose inverse operator is a local smoother. A well-
established and commonly used implicit filter is the so-
called Helmholtz/Laplace-Beltrami operator (Lazarov 

and Sigmund 2011; Kawamoto et al. 2011), which is also 
labeled as the Sobolev smoothing (Jameson and Vassberg 
2000; Schmidt et al. 2008; Mohammadi and Pironneau 
2009; Dick et al. 2021); it reads

where is d̃ is the filtered field, d is the raw field and � is 
a scalar penalizing high spatial variations in d̃ . As men-
tioned previously, the so-called traction method (Azegami 
1994; Azegami and Takeuchi 2006; Riehl et al. 2014) is 
also an implicit filtering scheme. This method determines 
the filtered field by solving a pseudo-elastic problem with 

(13)

(I − � ⋅ Δ) d̃ = d

n ⋅ ∇d̃ = 0, along external boundaries.

d̃ = d, along fixed/Dirichlet boundaries.

Fig. 2   A perforated plate meshed non-uniformly. Consistent/discrete 
nodal sensitivities dJ∕dx� associated with the uniform continuous 
sensitivity field dj∕dx� = [(0, 0, 1)]n� ×1

Fig. 3   Control/filtered sensitivities computed with explicit filtering 
for the consistent/discrete sensitivities in Fig. 2
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the loading of the raw field. In this work, we develop surface 
and bulk-surface implicit smoothers based on the Helmholtz 
operator in Eq. 13. They are respectively applied to the shell 
and solid geometries to ensure C1 shape variations during 
the optimization iterations. It must be mentioned that the 
bulk-surface filtering treats boundary and internal domains 
simultaneously. Therefore, there is no need for the inclu-
sion of any mesh motion technique in shape optimization 
for volumetric domains.

3.1 � Surface filtering

The Sobolev/Helmholtz operator in Eq. 13 can be cast on 
the design surface as

∇� ⋅ ∇�  is the Laplace-Beltrami operator. ∇�  is the tangen-
tial gradient operator and can be calculated for a function 
w defined on some open neighborhood of �  with a unit 
normal n as ∇�w = ∇w − (n.∇w) n, rH

�
 is the filter radius/

length parameter of Helmholtz-based filtering which plays a 
similar role as rE

�
 in the explicit filtering and as it approaches 

zero, rH
�
→ 0, smoothing effect disappears, i.e., x = s. The 

smoothing property of Eq. 14 in every spatial direction can 
be clearly explained by the minimization of the associated 
potential � as

where the first and second integrals respectively measure 
the noisiness (spatial variation) of geometry and the differ-
ence between control and actual geometries. Here, rH

�
 can be 

interpreted as the weight/importance of smoothness in the 
minimization of the multi-objective function � . It should 
be noted that Eq. 14 is an isotropic in-surface filtering that 
does not depend on the direction.

3.2 � The implicit bulk‑surface filtering method

In node-based shape optimization with volumetric 
domains, we need to treat not only the surface/bound-
ary nodes but also the internal nodes to avoid losing the 
mesh quality for numerical computations. In the litera-
ture so far, surface and internal nodes have mainly been 
treated separately in a master-follower manner, meaning 
that surface nodes are the master and internal nodes fol-
low them using mesh motion techniques. The main issue 
with this approach is that not every smooth shape mode 
of the surface mesh can be tolerated by the volume mesh 
in terms of quality measures. Therefore, remeshing may 
be needed in the course of the optimization process. To 
enforce the surface smoothness and maintain the volume 

(14)−(rH
�
)2 ∇� ⋅ ∇� xi + xi = si, i ∈ {1, 2, 3}; on �

(15)�
(
x
i
)
=

1

2
(rH

�
)2 ∫�

|∇xi|2 d� +
1

2 ∫�

(
x
i − s

i
)2

d�

mesh quality in one shot, we use an elliptic partial differ-
ential equation, posed on the solid domain with a smooth 
boundary, endowed with a generalized Robin boundary 
condition which involves the Laplace-Beltrami operator 
on the boundary surface as 

where rH
�

 is the Helmholtz bulk filter radius, ∇ is the conven-
tional spatial gradient operator, � is a second order tensor 
similar to the Cauchy stress tensor in continuum mechanics 
and defined as 

where tr() is the trace operator, � and � are the Lamé con-
stants, I is the identity tensor, � is the strain tensor acting 
on geometry. Once again, one should note that rH

�
 and rH

�
 

are devised to control the surface and bulk filtering proper-
ties of the presented shape parameterization. To reveal these 
properties and their relation, we formulate Eqs. 16 as the 
minimization of associated potential

Here, we minimize a weighted sum of the total strain energy 
of the geometry occupying � , the integrated spatial variation 
of the boundary geometry (noisiness) and the totaldeviation 
between the control and actual geometries. The correspond-
ing weights are respectively (rH

�
)2 , (rH

�
)2 and 1, assuming 

uniform distribution over the integration domains. It should 
be noted that this is a multi-criteria optimization that may be 
posed to well-known challenges such as the conflict between 
criteria and dominance over each other. Since smoothness of 
the design boundary �  (second term in Eq. 18) is of greater 
importance and to prevent it from being dominated by the 
volumetric strain (first term in Eq. 18), the Helmholtz bulk 
filter radius is calculated as follows

(16a)−(rH
�
)2 ∇ ⋅ � + x = s, in �

(16b)−(rH
�
)2 ∇� ⋅ ∇� x = 0, on �

(17a)� = � tr(�(x)) I + 2 � �(x)

(17b)�(x) =
1

2

(
∇x + (∇x)T

)

(18)

�(x) =
1

2
(rH

�
)2 ∫�

� ∶ � d�

+
1

2
(rH

�
)2 ∫�

∇� x
T .∇� x d�

+
1

2 ∫�

(x − s)T .(x − s) d�

(19)(rH
𝛺
)2 = 𝛽

(rH
𝛤
)2 �𝛤

∇𝛤 x
T .∇𝛤 x d𝛤

�𝛺

�∶ � d𝛺

, 0 < 𝛽 ≤ 1.
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β is the weighting factor that directly controls the importance 
of the volumetric strain minimization versus the boundary 
noisiness minimization. � = 1 means that the volumetric and 
surface criteria are treated equally.

3.3 � FEM discretization

To solve PDEs, we use piecewise linear finite element 
functions to approximate the geometry and data fields, i.e., 
isoparametric finite elements. Therefore, actual geometry 
and its control field within each element are approximated as 
xi ≈ N

i
xi, si ≈ N

i
si; i ∈ {1, 2, 3} , where Ni is the vector 

of element shape functions in the ith Cartesian direction, 
xi and si are the ith component of nodal coordinate vector 
and nodal control point vector, respectively. Furthermore, 
the traces of isoparametric bulk finite element functions on 
the boundary are used as surface finite elements. The same 
approach has been followed by Edelmann (2021); Dziuk 
and Elliott (2013) in the context of bulk-surface and surface 
PDEs. We derive a matrix-vector formulation of the discre-
tized PDEs using a standard Galerkin-based finite element 
formulation. Then we can define the following bulk and sur-
face mass and stiffness matrices: 

where B contains the spatial gradients of the bulk shape 
functions N , C is the linear-elastic isotropic constitutive 
matrix, N�  is the traces of bulk shape functions on the 
boundary, rH

�e is the elemental Helmholtz bulk filter radius 
which is assumed to be spatially varying. In this work, with 
the aim to maintain the mesh quality and reduce the fre-
quency of remeshing during shape optimization, the bulk fil-
ter radius is selected element-wise, based on element sizes. 
Among others, “Mesh-Jacobian-based stiffening” (MJBS) 
(Tezduyar et al. 1992; Stein et al. 2003) has been widely 
used to selectively stiffen or soften elements against shape 
changes. It can be implemented simply by dropping Jacobian 
from the finite element formulation of the mesh governing 
equations, resulting in the smaller elements being stiffened 
more than the larger ones. That can be realized by choosing 
the elemental Helmholtz filter radius as rH

�e =
J0

Je
 , where Je 

(20a)M� =
∑

∫�e

N
T
Nd�,

(20b)M� =
∑

∫� e

N
T
�
N� d�

(20c)K� =
∑

∫�e

(rH
�e )

2
B
T
CB d�

(20d)K� = (rH
�
)2
∑

∫� e

(∇�N� )
T∇�N� d�

is the Jacobian for element e and J0 is a scaling parameter 
which is calculated based on Eq. 19 as follows

Having evaluated the bulk and surface mass and stiffness 
matrices, the shape governing equations for shells and solids 
(Eqs. 14,16) read respectively as 

where the superscript I refers to the implicit filtering, 
A
I
�

 and AI are the implicit filter matrix of surface and bulk 
geometries, respectively. As the corresponding tangent 
matrices are symmetric and positive definite, the solution 
of the linear system can be achieved by utilizing efficient 
iterative solvers such as Conjugate Gradient.

3.4 � Sensitivity analysis and update rule

Straight forward, applying the chain rule of differentiation, 
the derivative of the response function with respect to the 
surface and volumetric control points is given respectively 
as 

It should be reminded that discrete sensitivities in the 
above equations are consistent nodal values that show 
size effects in the gradients. To avoid mesh dependency, 
the discrete control sensitivities are scaled by the inverse 
mass matrix, which basically means that we reconstruct 
the control gradient field sampled at mesh points from the 
consistent nodal sensitivities, viz. 

The scaled gradients do not include disturbing dis-
cretization effects and ensure computations of efficient 
search directions without the necessity of second-order 

(21)
J0 = �

(rH
�
)2 (x� )

T K� x�

(x)T
�
∑

∫�e

(
1

Je
)BT

CB d�

�
x

(22a)x� = (AI
�
)−1 ⋅ s� ; A

I
�
= (K� +M� )

−1
⋅M�

(22b)x = (AI)−1 ⋅ s; A
I
�
= (K� + K� +M�)

−1
⋅M�

(23a)
dJ

ds�
= M� ⋅ (K� +M� )

−1
⋅

dJ

dx�

(23b)
dJ

ds
= M� ⋅ (K� + K� +M�)

−1
⋅

dJ

dx

(24a)
dj

ds�
= M

−1
�

⋅

dJ

ds�
= (K� +M� )

−1
⋅

dJ

dx�

(24b)
dj

ds
= M

−1
�

⋅

dJ

ds
= (K� + K� +M�)

−1
⋅

dJ

dx
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information. Therefore, the discrete control field and sub-
sequently the geometry are updated as follows

As mentioned earlier, one can interpret the proposed control 
update rule using the scaled gradients as a quasi-Newton 
step with the diagonal approximation of the Hessian matrix 
by the mass matrix.

3.5 � Consistency check

The discrete implicit filtering was derived and discussed 
using conventional finite elements. As is well known in finite 
element theory, a proper finite element formulation includes 
the rigidbody motion capability. However, for the sake of 
completeness, we numerically study the consistency aspects 
of implicit filtering. Perforated plate used in Sect. 2.2 is 
reconsidered, and the synthetic consistent sensitivity field in 
Fig. 2 is used for the test. Control sensitivities obtained after 
implicit (Sobolev/Helmholtz) filtering are demonstrated in 
Fig. 4. Similar to explicit filtering, the consistent/discrete 
control sensitivities are highly mesh-dependent, whereas the 
scaled ones are fully uniform and mesh-independent. The 
obtained results indicate that the consistency (rigid-body-
movement production) can be perfectly achieved throughout 
the implicit shape filtering process if control sensitivities are 
scaled by the inverse mesh mass matrix, independent of the 
discretization.

4 � Comparison of the explicit and implicit 
filters

The literature has discussed the relation between the con-
volution-based (explicit) and the Sobolev-/Helmholtz-based 
(implicit) filters. Stück and Rung (2011) state that explicit 
filtering using a Gaussian kernel function is a first-order 
approximation to the Sobolev-based filtering. On the other 
hand, Lazarov and Sigmund (2011) have shown in 1D the 
correlation between the explicit filtering using the linear hat 
function and the Helmholtz-based filtering. The fundamen-
tal solution of the non-homogeneous modified Helmholtz 
equation in Eq. 14 for an infinite domain reads (Polyanin 
and Nazaikinskii 2016)

(25)
Δs� = −� ⋅

dj

ds�
→ Δx� = A

I
�
⋅ Δs�

Δs = −� ⋅

dj

ds
→ Δx = A

I
⋅ Δs

which is basically a convolutional filtering using Green’s 
function FH as the kernel. It should be mentioned that the 
integral of Green’s function is always one; therefore, the 
consistency property is naturally included. We also note that 
the Green’s function in Eq. 26 is singular at the evaluation 
point x0 , therefore we propose a regularized form of it as

(26)
x0 =

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

FH(x, x0) s(x) dx
1 dx2 dx3

FH(x, x0) =
1

4���x − x0
��∕(rH)2

e−‖x−x0‖∕rH

(27)FRH(x, x0) =
1

1 + (4���x − x0
��∕(rH)2)

e−‖x−x0‖∕rH

Fig. 4   Control/filtered sensitivities computed with implicit filtering 
for the consistent/discrete sensitivities in Fig. 2
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In order to compare qualitatively explicit and implicit filters, 
a square flat plate of 100 × 100 meshed by triangles with the 
average element size of 1 is used. Figure 5 illustrates sche-
matically the considered filter functions for a given radius 
of 5. It should be mentioned that the Helmholtz’s kernel at 
every mesh point is calculated numerically from the corre-
sponding row in the inverted Helmholtz’s stiffness matrix, 
i.e., (K� +M� )

−1 . The first observation indicates that the 
proposed regularized Green’s function almost matches the 
numerical kernel of the Helmholtz filter. We also notice 
that the linear hat function is approximately spanning over 
1∕2

√
3 of the other’s support span, which confirms the rela-

tion developed by Lazarov and Sigmund (2011). Further-
more, during the upcoming sections, the performance of the 
presented filters is critically discussed for shape optimization 
of shells and solids receptively.

4.1 � Mesh dependency in filtering

Discrete mesh is only a means for describing the geometry, 
and ideally, it should be independent of parameters like the 
element size and type. Subsequently, mesh-based calcula-
tions like FEM analysis and filtering are desired to be fault-
lessly mesh-independent. Let us reconsider the perforated 
plate example for studying the dependency of optimal shape 
on the mesh and filtering. For this study, the geometry is 
mirrored about the X and Y planes, and each quarter is 
meshed with a different average element size � , as shown 
in Fig. 6.

In order to ensure the convexity of the problem and avoid 
simulation errors that may influence the accuracy of shape 
gradients, the total surface area of the plate is chosen as the 
objective function. The outer boundaries of the plate are 
fully fixed during optimization, and two filter radii (40,80) 
are used for filtering. The results of this study for different 
cases are shown in Fig. 7. This optimization considers three 
shape filtering configurations. These include implicit filter-
ing with the newly introduced mesh-independency treatment 

(a), explicit filtering with damping and mesh-independency 
treatment (b), and finally, explicit filtering with damping 
but without mesh-independency treatment (c). In all three 
cases, the optimization process terminates when the mesh 
becomes distorted because it interferes with the validity of 
the numerical simulation. Additionally, for the implicit filter-
ing case, we provide shape evolutions at different objective 
improvement levels (imprv.) to demonstrate the robustness 
of this technique in preserving mesh quality. Based on the 
provided results, several crucial observations can be made, 
including: (I) the implicit filtering outperforms the explicit 
filtering in preserving surface mesh quality and geometri-
cal properties (such as plane symmetry) regardless of the 
filter and mesh size. This observation is particularly sig-
nificant since, in practice, meshes tend to be highly non-
uniform in complex geometries and physics. Therefore, it is 
crucial that the filtering and mesh size are independent of 
each other. (II) By comparing Fig. 7b and c, we can evalu-
ate the impact of the introduced mesh-independency treat-
ment (i.e., scaling discrete sensitivities with the inverse of 
the mesh mass matrix) on the performance of the explicit 
filter. This observation serves to confirm the significance of 
the rigid-body-movement production property for filtering, 
as discussed in detail in Sect. 2.2. (III) As observed from 
the circled and zoomed regions in Fig 7b, the damping tech-
nique used in explicit filtering to prevent fixed domains from 
moving results in unsuitable interference between filtering 
and damping near these regions, leading to mesh distortion. 
In contrast, enforcing fixed boundaries is straightforward in 
implicit filtering because it is naturally achieved through the 
Dirichlet boundary condition of the governing PDE of the 
filter (see Eq. 13).

Fig. 5   Discretized profiles of the considered filter functions

Fig. 6   Mirrored perforated plate example. The average element size � 
changes at each quarter
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4.2 � Numerical properties

This section intends to compare the presented filter kernels 
mainly concerning numerical properties. Figure 8 shows a 
half-cylinder shell fully clamped at the edges and loaded 
by a nodal force at the center. The specified geometry is 
described by 73522 unstructured triangles with an aver-
age element size of 0.1m. As a linear system solver, we use 
AMGCL - an efficient parallel iterative linear solver Demi-
dov (2020).

Helmholtz, regularized Green, Gaussian, and linear hat 
kernel functions are used for the following investigations. 
The projected steepest descent algorithm with constant step 
size (Najian Asl 2019) is employed to minimize the linear 
strain energy of the structure while constraining its mass. 
Optimal geometries obtained for the considered kernel func-
tion are presented in Fig.9a. Filter radii are set so that the 
kernel functions have the same support span p = 2m . It is 
observed that the Helmholtz and regularized Green kernels 
resulted in similar optimal geometries, which are sharper 
than the others due to the resolution of local features. On the 
other hand, it can be seen from Fig.9b that the Helmholtz 
and regularized Green kernels allow the creation of a kink at 
the center; therefore, not only do they obtain smooth shapes 
but could develop a kink as well (Müller et al. 2021). The 
improved objective function is depicted in Fig.9c. It shows 
that all filter functions reduced the structural strain energy 
significantly; however, optimization with the Helmholtz fil-
tering seems to converge faster.

A comparison of the time necessary for applying the 
explicit and implicit filters for different support span to ele-
ment size ratios p/a is shown in Fig. 10a. For reference, this 
study is performed on a 6 core XEON W-2133 3.60GHz pro-
cessor using hyper-threads-based parallelism. The neighbor 
search and distance evaluation needed for the explicit filter-
ing is done by use of octrees for the sake of efficiency. The 

Fig. 7   Area minimization of the perforated plate in Fig. 6. Distorted 
or collapsed mesh is used as the optimization stopping criterion

Fig. 8   Geometry, support and loading of half-cylinder shell
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results indicate that the explicit filter, regardless of whether 
it was implemented with the matrix-based method or with-
out storing the filter matrix, is slower than the implicit PDE 
filter. Additionally, as the ratio of p/a increases, the cost 
of the explicit filter rises excessively, whereas the cost of 
the implicit filter shows minimal growth and remains nearly 
constant even for high ratios. In conclusion, the cost of con-
structing a search tree and conducting a neighbor search to 
explicitly filter a surface field is higher than the cost of solv-
ing a linear system that is associated with implicit surface 
filtering. This aligns with the findings and conclusions made 
by Lazarov and Sigmund (2011).

To investigate the sensitivity of filtering and subsequently 
the optimal shape to the filter radius, the condition number 
of the discrete filter operator is used in this work. This is par-
ticularly important since the conditioning of the filter matrix 
directly influences the conditioning of the optimization prob-
lem, see Najian Asl et al. (2017) for discussions and studies 
on this subject. Conditioning of the discrete filter operator 
matrix is shown in Fig. 10b as a function of the support 
span. It was predictable that the Helmholtz and regularized 
Green kernel functions would behave very similarly. They 
show very good-conditioning with much less sensitivity to 
the p/a ratio. The linear and Gaussian kernels generally have 
ill-conditioning behavior, which worsens by increasing the 
support span. So we can conclude that the regularized Green 
kernel function may be preferred over the others for explicit 
shape filtering.

(a) Optimal geometries obtained with different kernels
of the same support span p = 2m.

(b) Cross sections of optimal geometries through the
YZ plane at the center.
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(c) Convergence of objective.

Fig. 9   Optimal design of the half-cylinder shell

Fig. 10   Numerical properties of different kernel functions
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4.3 � Challenge of fixing domains

In node-based optimization, interpolating or fixing the 
non-design domains during the optimization iterations can 
present a challenge, depending on the problem setup. For 
instance, in Sect. 4.1, we noticed artifacts around the outer 
boundaries (non-design/fixed edges) due to the conflict 
between explicit filtering and damping. However, no such 
artifacts were observed in Sect. 4.2. To better understand the 
challenge, let us consider the optimization problem of the 
shell roof shown in Fig. 11. The roof is secured at its corners 
and experiences a uniform load. The load distribution will 
not alter even if the roof undergoes shape modifications. 
Additionally, the linear static analysis is conducted using 
Kratos-Multiphysics and the surface is divided into 5416 
nodes and 10498 triangular shell elements with an average 
size of 0.3m. In the structural analysis and optimization, 
the four corners are completely fixed and during optimiza-
tion, one-quarter of the inner holes (as indicated) are also 
fixed. Examining the results, the shape obtained through 
implicit filtering appears highly smooth, natural, and satis-
fies the geometrical constraint. On the other hand, the shape 
obtained through explicit filtering has undesirable and mean-
ingless artifacts near the fixed edges. Geometry interpola-
tion represents a strong and point-wise Dirichlet boundary 
condition for the shape optimization problem. Explicit shape 
filtering, however, uses damping to limit modifications of 
fixed boundaries in a practical manner. In contrast, implicit 
filtering consistently satisfies geometric constraints through 
Dirichlet boundary conditions, regardless of the filter radius 
selected. This example clearly demonstrates the superiority 
of implicit filtering over the other method for node-based 
shape optimization.

4.4 � Solid optimization

This section is devoted to the analysis and comparison of 
the presented methods for the shape optimization of solid 
structures. It is significant because attention must be paid not 
only to smoothing or regularizing the surface mesh but also 
to preserving internal mesh quality by properly handling the 
volume mesh. In the upcoming sections, we will evaluate the 
implicit bulk-surface filtering approach outlined in Sect. 3.2 
against the explicit handling of surface and volume mesh for 
two complex geometry problems.

4.4.1 � Tensegrity‑tower node: mass minimization

In Ghantasala et al. (2021a), the Vertex-Morphing technique 
as an explicit surface filtering was used in shape optimi-
zation of the connecting nodes of a five-meter tensegrity 
(“tensional integrity”) tower, see Fig. 12a. The tower is float 
in the air and built out of tensile and compressive elements. 
The nodes are highly complex connections between the rods 
and cables, and they are additively manufactured using the 
laser powder bed fusion (LPBF) process.

Here, an aluminum node of the tower is reconsidered for 
shape optimization. Figure 12b illustrates the problem setup, 
including the boundary conditions for structural analysis and 
design optimization. Volume mesh consists of 212689 tetra-
hedrons and the outer surface of the node colored in green 
is subject to optimization. In the first step, the mass of the 
node is optimized without any constraint. This is especially 
challenging due to the large compression that mesh under-
goes to reach the global optimal shape, which is basically 
the projection of the design surface onto the non-design sur-
faces. Figure 13 depicts optimal shapes obtained with the 

Fig. 11   Settings and optimization results for the square roof with holes
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bulk-surface Helmholtz filtering using � = 1 and the Vertex-
Morphing technique. While the former handles boundary 
and internal nodes implicitly and simultaneously, the latter 
treats them sequentially by first applying the explicit filtering 
on the surface and then using a pseudo-structural model with 

the Jacobian-based stiffening to deform the internal mesh. 
Furthermore, the distorted or collapsed mesh is used as the 
optimization stopping criterion. Although both methods lev-
erage the Jacobian-based stiffening technique to improve the 
deformed internal mesh quality, with the bulk-surface Helm-
holtz filtering much bigger surface deformation and objec-
tive improvement ( 96.02% vs. 57.28% ) could be achieved.

To study the influence of the weighting factor β on the 
performance of the proposed bulk-surface filtering, strain 
energy minimization of the node is performed under mass 
constraint, and the result is compared against that of the 
Vertex-Morphing technique. It should be noticed that the 
lower the factor is, the less attention or weight is given to 
the preservation of the internal mesh quality, which results 
in an earlier mesh distortion. This is clearly seen in the 
results presented in Fig. 14. However, we observe that 
even for a small value � = 0.125 , the proposed implicit 
filtering outperforms the explicit one. On the other hand, 
we notice that the proposed bulk-surface filtering requires 
a linear system solve (Eq.  23b) for calculating each 
response function derivative with respect to solid control 
points. A comparison of the time necessary for filtering 
a surface sensitivity field using the explicit surface fil-
ter and the bulk-surface filter for different support span 
to element size ratios p/a is shown in Fig. 15. Similar 
observations and conclusions as in the shell optimization 
case (Sect. 4.2) can be made. For moderate ratios, e.g., 
p∕a = 10 , the cost of the bulk-surface filter is comparable 
to that of the matrix-free explicit filtering, whereas for 
higher ratios cost of the matrix-free explicit filtering hin-
ders the performance.

(a) The five-meter “tensegrity tower” exhibited in the Deutsches
Museum of Science and Technology in Munich.

(b) Problem setup of an aluminum connecting node.

Fig. 12   Shape optimization of the nodes of a tensegrity-tower

Fig. 13   Unconstrained mass minimization of the considered tenseg-
rity node using the bulk-surface Helmholtz shape filtering with � = 1 
(left) and the explicit filtering (right)
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4.4.2 � Hook: stiffness maximization

The second solid shape optimization example is the stiff-
ness maximization (strain energy minimization) of a hook 
under the initial volume constraint. Figure 16 provides 
settings and optimization results using the explicit and 
bulk-surface implicit techniques. The geometry is dis-
cretized by 39,292 nodes (× 3 = number of design vari-
ables) and 197,541 small displacement elements. A rela-
tively large filter radius of 0.06m was intentionally used 
to ensure global (low-frequency) shape changes during 

optimization. The β parameter of the bulk-surface regu-
larization (implicit) is set to one, which means that the 
volumetric and surface criteria are treated equally. The 
distorted or collapsed mesh was also used as the optimiza-
tion stopping criterion. From the results, it is evident that 
explicit filtering is not as effective as the implicit bulk-sur-
face filtering in maintaining mesh quality and improving 
the design. Upon close examination of the explicit filtering 
result at the cross-section (b), it is evident that damping 
was not successful in ensuring low shape mode during the 
transition from the non-design to design domains. Based 
on the observations made and the fact that the explicit 
technique becomes highly computationally demanding for 
large filter radii, the implicit technique is the better choice 
for robust and efficient node-based optimization of solids.

5 � Conclusions

In this work, we visited two primary filtering techniques for 
node-based shape optimization: convolution-based (explicit) 
and PDE-based (implicit). Consistency and mesh independ-
ency, as two strict requirements for any kind of filtering, 
were carefully discussed and demonstrated for both tech-
niques. Mesh-independent filtering was achieved by scaling 
discrete control sensitivities with the inverse of the mesh 
mass matrix. Supported by numerical experiments, a regu-
larized Green’s function was introduced as an equivalent 
explicit form of the so-called Helmholtz-/Sobolev-based 
(implicit) filter. It was observed that the Helmholtz and 
regularized Green kernels not only do they obtain smooth 
shapes but can allow the generation of features like kink or a 
corner if the optimum requires. With the aim of controlling 
the boundary smoothness and preserving the internal mesh 
quality simultaneously, this work introduced the implicit 
bulk-surface filtering technique for the shape optimization 

Fig. 14   Strain energy constrained mass minimization of the tenseg-
rity node using the bulk-surface Helmholtz shape filtering (implicit) 
and the Vertex-Morphing technique (explicit)

Fig. 15   Time necessary for filtering a surface sensitivity field using 
the bulk-surface filter and the explicit surface filter without (matrix-
free) storing the filter matrix for various p/a ratios
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of volumetric domains. Its superior efficiency and robust-
ness from explicit filtering were demonstrated for shape 
optimization of complex solid structures. Overall, whether 
the surface or bulk domain is filtered, the implicit approach 
was numerically more efficient and unconditionally consist-
ent than the explicit one.
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