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Abstract
In wet clutches, load-independent drag losses occur in the disengaged state and under differential speed due to fluid
shearing. The drag torque of a wet clutch can be determined accurately and reliably by means of costly and time-consuming
measurements. As an alternative, the drag losses can already be precisely calculated in the early development phase using
computing-intensive CFD models. In contrast, simple analytical calculation models allow a rough but non-time-consuming
estimation. Therefore, the aim of this study was to develop a methodology that can be used to build a data-driven model for
the prediction of the drag losses of wet clutches with low computational effort and, at the same time, sufficient accuracy
under consideration of a high number of influencing parameters. For building the model, we use supervised machine
learning algorithms. The methodology covers all relevant steps, from data generation to the validated prediction model
as well as its usage. The methodology comprises six main steps. In Step 1, the data is generated on a suitable test rig.
In Step 2, characteristic values of each measurement are evaluated to quantify the drag loss behavior. The characteristic
values serve as target values to train the model. In Step 3, the structure and quality of the dataset are analyzed and,
subsequently, the model input parameters are defined. In Step 4, the relationships between the investigated influencing
parameters (model input) and the characteristic values (model output) are determined. Symbolic regression and Gaussian
process regression have both been proven to be suitable for this task. Lastly, the model is used in Step 5 to predict the
characteristic values. Based on the predictions, the drag torque can be predicted as a function of differential speed in
Step 6, using an approximation function. The model allows a user-oriented prediction of the drag torque even for a high
number of parameters with low computational effort and sufficient accuracy at the same time.
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EineMethodik zur datengetriebenenModellierung und Prädiktion der Schleppverluste nasslaufender
Kupplungen

Zusammenfassung
In nasslaufenden Lamellenkupplungen entstehen im geöffneten Zustand und unter Differenzdrehzahl durch Fluidscherung
hervorgerufene lastunabhängige Schleppverluste. Die genaue und zuverlässige Bestimmung des Schleppmoments einer
nasslaufenden Lamellenkupplung kann mittels kosten- und zeitaufwendiger Messungen erfolgen. Alternativ können die
Schleppverluste mithilfe rechenzeitintensiver CFD-Modelle bereits in der frühen Phase der Entwicklung detailliert be-
rechnet werden. Im Gegensatz dazu erlauben einfache analytische Berechnungsmodelle eine grobe aber dafür schnelle
Abschätzung. Das Ziel dieser Studie war deshalb die Entwicklung einer Methodik zur Bildung eines datengetriebenen
Modells zur Prädiktion der Schleppverluste nasslaufender Lamellenkupplungen mit geringem Rechenaufwand und gleich-
zeitig hinreichender Genauigkeit unter Berücksichtigung einer Vielzahl relevanter Einflussparameter. Zur Modellbildung
kommen Supervised Machine Learning Algorithmen zum Einsatz. Die Methodik deckt alle relevanten Schritte von der Da-
tengenerierung bis zum validierten Prädiktionsmodell sowie dessen Anwendung ab. Die Methodik umfasst sechs Schritte.
In Schritt 1 erfolgt die Datengenerierung an einem geeigneten Prüfstand. In Schritt 2 folgt die Auswertung charakte-
ristischer Kennwerte zur Quantifizierung des Schleppverlustverhaltens. Die charakteristischen Kennwerte dienen bei der
Modellbildung als Zielgrößen. In Schritt 3 werden die Zusammensetzung und Qualität des Datensets analysiert und darauf
aufbauend die Modell-Inputparameter definiert. In Schritt 4 werden die Zusammenhänge zwischen den untersuchten Ein-
flussparametern (Modell-Input) und den charakteristischen Kennwerten (Modell-Output) ermittelt. Es haben sich hierfür
die Symbolische Regression und die Gauß-Prozess Regression bewährt. Das Modell dient schließlich in Schritt 5 zur
Prädiktion der charakteristischen Kennpunkte. Auf Basis der Prädiktionen kann abschließend in Schritt 6 mittels einer
Approximationsfunktion das Schleppmoment als Funktion der Differenzdrehzahl prädiziert werden. Das Modell ermög-
licht auch für eine hohe Parameteranzahl eine anwendernahe Schleppmomentprädiktion mit geringem Rechenaufwand und
gleichzeitig hinreichender Genauigkeit.

1 Introduction

In wet-running multi-plate clutches (short: wet clutches),
load-independent drag losses occur in the disengaged state
and under differential speed due to fluid shearing. In par-
ticular, if several clutches in a drivetrain are disengaged
at the same time, their drag losses can represent a consid-
erable percentage of the total loss [1]. Results of various
investigations show that the drag losses of wet clutches can
be reduced by an optimized clutch design and optimized
operating conditions [2–6]. Consequently, determining the
drag torque in the early development phase is of high im-
portance. Currently, the drag torque can be determined ac-
curately and reliably by means of costly and time-consum-
ing measurements on a suitable test rig. Alternatively, drag
losses can be precisely calculated with computing-intensive
CFD (computational fluid dynamics) models, while analyt-
ical calculation models allow only a rough, but non-time-
consuming estimation.

1.1 Drag loss behavior

The drag loss behavior of wet clutches has been frequently
investigated in prior studies from the 1970s [7, 8] until
today [4, 9]. Usually, the authors describe the drag loss
behavior by the change of the drag torque with respect to
the differential speed (see Fig. 1). The curve can be divided

into three characteristic phases ([10]; see Fig. 1). For a more
detailed specification, individual phases are often further
subdivided ([3, 4, 11, 12]; see Fig. 1). Further characteristics
are the power loss and the dissipated energy with respect
to the differential speed [6, 13].

In these experimental and theoretical studies, various pa-
rameters influencing the drag torque were identified. The
main influencing parameters are the plate size, number of
gaps, oil viscosity, feeding flow rate in the case of injection
lubrication, oil level in the case of dip lubrication, clear-
ance, groove pattern, differential speed, and operating mode
[4–6, 13–20]. However, the design of the carriers also has
a crucial influence on the drag losses [13]. Further, the dis-
tribution of the total clearance and the material properties
of the friction lining affect the drag loss behavior [12, 21].
The characteristic drag torque curve is comparable for in-
jection lubrication and dip lubrication, although the effects
acting in the gaps are different [4, 22]. At a low differential
speed, the drag torque increases approximately linearly un-
til a maximum is reached (Phase 1a, see Fig. 1). In the case
of the widely used injection lubrication, the gap is com-
pletely filled with oil in this phase, resulting in a single-
phase flow. As the differential speed increases, the convey-
ing effect of the clutch also increases. As the conveyable
flow rate exceeds the feeding flow rate, air is sucked into the
gap and a two-phase flow is formed. The reduced oil-wetted
surface and the lower viscosity of the oil-air mixture cause
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Fig. 1 Characteristic drag torque curve and its classification, based on
[4, 10]

the drag torque to continuously decrease (Phase 1b, see
Fig. 1) until a quasi-steady drag torque is reached (Phase 2,
see Fig. 1). At very high speed, a re-increase of the drag
torque (Phase 3, see Fig. 1) may occur as a result of plate
tumbling or plate movement [13, 23–26].

1.2 Calculationmethods

Methods for calculating the drag torque of wet clutches are
the current state of research. Basically, existing models are
either based on analytical or numerical calculation methods.
The numerical CFD simulation represents a modern tool to
calculate the drag torque and has therefore been used in var-
ious research studies [9, 11, 20, 27–33]. CFD simulations
can be performed in the early development phase, do not
require prototype parts or even series parts, and enable tar-
geted optimization of the clutch design and the operating
parameters. The CFD simulation provides the considera-
tion of the real groove geometry and a high level of detail
in modeling the fluid behavior [2, 27]. Also, the design of
the carriers can be considered [11, 34]. Thus, the CFD sim-
ulation enables modeling of the entire clutch system. Con-
sequently, a very high depth of the model can be realized,
which in turn commonly results in a high accuracy of the
calculations [11, 27]. A decisive step in model development
is the final validation of the simulation model by means of
complex experiments. A high correspondence of simulation
and measurement can be achieved with a high-resolution 3D
CFD model [27]. To model the heterogenous phase distri-
bution in the two-phase flow, the Volume of Fluid (VOF)
model [35] is commonly used [11, 27–31]. However, the
simulations usually require high computational resources
[2, 11]. To obtain results in acceptable time, simplifications
are often made with respect to clutch geometry and fluid be-
havior [11, 36, 37]. For instance, mixture models [36] and
cavitation models [12, 37, 38] solve the two-phase flow re-
gion by considering a viscosity of the oil-air mixture. With
a cavitation model, the drag torque at a specific differential
speed can be calculated in about 1.5hrs on a workstation

with 32 cores, while the more computing-intensive Volume
of Fluid model leads to about 8hrs of computation [11]. The
CFD models usually consider only one gap with a constant
clearance [11, 34, 37]. Thus, the time-dependent variation
of the clearance is not considered.

Analytical models [22, 39–47] represent a further option
to estimate the drag losses. The analytical models pre-
sented in the literature are typically based on the Navier-
Stokes equations, often assuming major simplifications.
Cited models usually assume, among other things, a lami-
nar, incompressible, and steady flow in the gap and neglect
gravity and the axial flow component. Generally, analytical
models have a lower model depth compared to numerical
models. For example, the groove geometry is commonly
not considered. Therefore, analytical models are not uni-
versally applicable, especially regarding the groove pattern.
The groove area or the groove volume are often used to
determine correction factors [39, 43]. In addition, existing
analytical models cannot be used to calculate the drag
losses of the entire clutch system. The model parameters
are typically limited to the number of gaps, plate size, oil
viscosity, differential speed, clearance, and feeding flow
rate [39–41, 43]. Further, analytical models usually allow
only the calculation of the drag torque caused by fluid
shearing in the gap. However, it is known from experi-
mental investigations that the design of the carriers can
considerably influence the drag loss behavior [13]. In the
case of non-grooved plates, analytical models [39–41, 43]
show good correspondence with the measurement in the
region of single-phase flow [2]. However, the simplified
modeling of the complex two-phase flow partly causes
major deviations between experiment and calculation [2].
In the case of grooved plates, however, satisfactory results
cannot be achieved generally [2]. Analytical models re-
quire low computational resources and thus allow a non-
time-consuming estimation of the drag torque. However,
due to various simplifications and limitations in the model
building, the achievable accuracy is low [2].

1.3 Aim of the study

The aim of the study therefore was to develop a method-
ology that can be used to build a data-driven model for
the prediction of the drag losses of wet clutches with low
computational effort and, at the same time, with sufficient
accuracy under consideration of a high number of influ-
encing parameters. Today, data-driven modeling is widely
used in different fields of engineering and science [48]. Fig-
ure 2 shows the classification of the data-driven model in
terms of computational effort and accuracy or model depth
compared to existing models.
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Fig. 2 Classification of the data-driven model compared to existing an-
alytical models and CFD models

2 Methodology

The developed methodology covers all relevant steps from
data generation to the validated prediction model as well as
its usage. The main- and sub-steps of the methodology are
visualized in Fig. 3. In the modeling, we do not consider
the re-increase of the drag torque in Phase 3.

2.1 Step 1: Data generation

The developed methodology uses drag torque measure-
ments performed on a drivetrain test rig or component
test rig. For drag torque measurements, the SAE No. 2
component test rig [49] was already applied in various
investigations [3, 5, 14, 20, 39, 50]. Further investigations
applied test rigs with a similar set-up and function principle
[6, 51–53]. With test rigs of this design, one can consider
the influence of the interaction and axial movement of the
plates of the clutch pack on the drag loss behavior. Sin-
gle-disk test rigs are usually used for the verification and
validation of analytical and numerical calculation models
[44, 54–56]. As a result of the different test rig concepts,
different test procedures are sometimes selected for the
experimental studies [6, 12]. In this paper, only the genera-
tion and processing of experimental data is described. Also,
data from systematic CFD simulations can be processed
within the methodology to develop a surrogate model, e.g.
The experimental investigations require series parts or at
least prototype parts. If there are no series parts available,
especially SLA (stereolithography) is a suitable additive

Fig. 3 Methodology to build a data-driven model for the prediction of
the drag losses of wet clutches

manufacturing process to generate prototype parts out of
epoxy resin [18, 57].

2.1.1 Drag torque test rig

In this paper, we describe in detail the set-up and function-
ality of the LK-4 drag torque test rig [6]. The LK-4 drag
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Fig. 4 Graphical display (isometric view (top) and detail (bottom)) of
the LK-4 drag torque test rig, based on [6]

torque test rig was developed at the Gear Research Center
(FZG) of the Technical University of Munich to investigate
the drag loss behavior of wet clutches. Figure 4 shows the
set-up of the LK-4 test rig. The test rig is designed only
for drag torque measurements, which means that the clutch
cannot be engaged on this test rig. Compared to single-disk
test rigs, the LK-4 drag torque test rig enables investigations
to be carried out on a full clutch pack. As in real usage, the
plates are mounted in the respective carriers. Both carri-
ers can be driven independently of each other. This allows
investigations to be carried out in both brake and clutch
operating mode.

The outer carrier (1) is connected to the hollow shaft (2).
The inner carrier (3) is connected to the full shaft (5) via the
measuring shaft (4). The torque measurement is based on
the strain measurement principle. For this purpose, strain
gauges are applied to the measuring shaft. Due to the ar-
rangement of the measuring shaft between the inner carrier
and the full shaft, the measuring signal is free from sys-

tematic errors such as loss torques due to seals or bearings.
The hollow or full shaft is driven separately by a speed-con-
trolled asynchronous machine (not shown) via a V-ribbed
belt (6).

The clutch pack (7) is placed between the spacer ring (8)
and the closing cover (9). The total clearance of the clutch
pack is set by the position of the closing cover. Depending
on the clearance to be set, a spacer ring (10) is used to
position the closing cover.

The speeds of the two carriers are recorded by means
of inductive incremental encoders (11 and 12). The torque
signal is transferred via a telemetry system (13) from the ro-
tating full shaft. All measurement signals are processed and
visualized in the measurement program (FZGLab, Techni-
cal University of Munich, DE). The test rig is controlled by
a PLC (programmable logic controller).

For investigations with injection lubrication, the tem-
pered oil is injected via an oil nozzle (14) in radial di-
rection. Immediately before the oil enters the nozzle, the
feeding flow rate and the temperature are measured. De-
pending on the design of the carriers, the oil commonly
enters the gaps through slots in the inner carrier and leaves
through slots in the outer carrier.

For investigations with dip lubrication, the oil nozzle is
replaced by a distribution disk. Here, an oil sump with a de-
fined level is set in the housing (15). To ensure a constant oil
temperature, the sump is permanently supplied with tem-
pered oil. The oil is tempered to the feeding temperature in
an external oil unit. The oil sump temperature is measured
at one position [4].

The operating limits of the LK-4 drag torque test rig are
given in the publication of Groetsch et al. [11].

2.1.2 Test procedure

For the experimental determination of the steady drag
torque, the stepwise adjustment of the differential speed
has proven to be reliable [4, 6, 11, 17, 58] and is therefore
used in the presented methodology.

Here, the speed of the carriers is increased synchronously
in steps up to a maximum speed and then reduced again to
zero. The step size and step duration are selected depending
on the test phase and usually range from 25 to 150rpm and
from 30 to 120s, respectively. For investigations in brake
operating mode, one of both carriers is stationary, while
in clutch operating mode both carriers rotate at any given
speed ratio relative to each other. Figure 5 shows an ex-
ample of a test procedure for a brake operating mode with
a rotating inner carrier and increasing as well as decreasing
speed steps. The resulting drag torque Td as well as the oil
injection temperature ϑ are also shown in Fig. 5. The dif-
ferential speed between the clutch plates in this operating
mode is equal to the absolute speed of the inner carrier nIC.
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Fig. 5 Example of test procedure and measured data for the brake operating mode with a rotating inner carrier and injection lubrication. (Note:
The marked time interval is shown in Fig. 6)

Depending on the objective of the investigation, the test
procedure can also contain only increasing or decreasing
speed steps [4, 6, 12, 59]. In the case of only increasing
speed steps, the test is completed after the maximum speed
has been reached. In the case of only decreasing speed steps,
the two carriers are each first accelerated to a specific max-
imum speed. Their speed is then reduced stepwise. The
maximum speed, step sizes, and step durations mainly de-
pend on the plate size, the operating conditions, and the test
phase. The test duration depends on the parameters men-
tioned above and usually ranges between 45 and 90min [4,
6]. After mounting the plates, the total clearance is com-
monly not evenly distributed among the gaps. It should be
considered that an uneven distribution of the total clear-
ance leads to a higher drag torque [21, 59, 60]. In order
to minimize this specific influence on the drag torque, we
suggest to perform a speed ramp after each mounting to
force a more even distribution of the clearance.

Depending on the test rig concept, an additional torque
caused by the acceleration of the clutch components can
be avoided by the stepwise speed adjustment. Furthermore,
compared to a continuous speed ramp [12, 61], influences
of transient effects due to a speed change are prevented.

2.1.3 Evaluation methodology

We adapt the evaluation methodology according to Draexl
et al. [6] to evaluate the tests performed. The evaluation
methodology basically transforms the drag torque measured
over time into the mean shear stress over the speed differ-
ence of the outer and inner carrier.

Due to the temperature controlling of the external oil
unit, the oil injection temperature varies around its set point.
Depending on the operating conditions, the temperature

variation can reach approximately ±2K [11]. This tem-
perature variation, in turn, affects the drag torque due to
the associated change of the oil viscosity. Therefore, we
extend the evaluation methodology of Draexl et al. [6] to
compensate for the abovementioned temperature variation.
We correct the measured drag torque curve according to
Eq. 1 by means of the ratio of the actual viscosity and the
target viscosity. We calculate both viscosity values for the
actual and target temperature according to DIN 51563 [62]
and DIN 51757 [63]. Hence, the corrected drag torque is
related to the constant set temperature and is therefore free
from variations induced by temperature changes.

Td;corr.t/ = Td.t/ � �.ϑ.t//

�.ϑtgt/
(1)

Compensation of temperature variations is only per-
formed for evaluations of tests with injection lubrication,
since in this case the feeding temperature is known from the
measurements. In the case of dip lubrication, the compen-
sation is not applied. In this case, the temperature variations
caused by the external oil unit have a negligible influence
on the drag torque because of the different test set-up and
oil supply [4]. Further, it is challenging to measure a rep-
resentative actual temperature of the oil in the gaps. Using
the temperature of the surrounding oil in the housing is
also not appropriate due to layering effects in the oil sump.

The shearing of the oil in the gap causes an increase in
temperature and consequently a decrease in viscosity [2, 5].
This decrease in viscosity due to the temperature increase
is not considered in the evaluation. Each drag torque mea-
surement is corrected and referenced to the target injection
temperature.
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Fig. 6 Exemplary time interval of corrected drag torque (red), speed
of inner carrier (green), and oil temperature (black). The shaded areas
mark the last 30% of the points measured at each speed step

The mean drag torque is determined for each differential
speed step from the temperature-compensated drag torque
curve. We do not consider the first 70% of the step length in
the averaging. In this way, amongst others, transient effects
that occur during and immediately after the speed changes
can be excluded. In Fig. 6, the time intervals used for the
evaluation are marked and correspond to the last 30% of
the step length in each case.

In order to compare different plate sizes and numbers of
gaps, the drag torque is related to the mean diameter and
the total friction surface according to Eq. 2 [6]. This gives
the mean shear stress acting on the plates.

Fig. 7 Evaluated test from Fig. 5 for the increasing speed steps

�m =
2 � Td

dm � N � A
=

2 � Td

dm
3 � � � N

� .do=di + 1/

.do=di–1/
(2)

The mean shear stress will be referred to only as shear
stress in the following for ease of reading in this paper.

Figure 7 shows the evaluated test from Fig. 5 for the
increasing speed steps.

The graphical visualization of the shear stress curve (see
Fig. 7) provides detailed information on the drag loss behav-
ior of the clutches investigated. However, the graphical vi-
sualization of the results is not suitable for a more compre-
hensive evaluation, and especially to quantitatively compare
the effects of the influencing parameters on drag loss behav-
ior. Hence, characterizing parameters are often evaluated,
which describe the drag loss behavior comprehensively and
still allow easy comparability [4, 6, 11]. The determination
of the characteristic parameters is part of Step 2.

In data-driven modeling, data quality is of high impor-
tance. Erroneous or biased data may lead to erroneous mod-
els [48].

2.1.4 Design of experiments

The geometry and operating parameters investigated in the
test series represent the model parameters in the subsequent
built model and thus specify the model depth. In general,
a higher model depth requires more extensive test series
[64]. The range of validity of the model is specified by the
maximum distances between the levels of the test param-
eters. In the case that the influencing parameters are not
known initially, they can be identified by means of prior
screening tests [65].

We note that the final choice of the experimental design
mainly depends on the expected effects and the number of
parameters to be investigated. Using a two-level factorial
design, for example, a linear model can be determined [64].
For the detection of curvature effects, the test plan needs to
be augmented to at least a three-level design [66]. However,
in the case of a high number of influencing parameters, this
may be unfeasible [66]. Fractional factorial designs like the
central composite design or the Box-Behnken design re-
quire only a fraction of the tests of a full factorial design
[66]. Both designs can be used to detect quadratic effects
[66]. For more complex models, space-filling designs like
Latin hypercubes offer an evenly distribution of the test
points on the design space in order to gather as much in-
formation as possible [64, 66, 67]. However, in the case
of drag torque measurements it is not always possible to
set the test parameters at any desired value. In particular,
geometry parameters can normally only be varied between
specific variants. Therefore, the application of space-fill-
ing designs is not always feasible in terms of experimental
drag loss testing. With abovementioned designs, the test
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Fig. 8 Characteristic points of the shear stress curve: Maximum (×) at
τm,max and �nmax as well as the beginning of Phase 2 (+) at τm,1–2 and
�n1–2

plan is determined before the measurements are performed.
Consequently, the test plan cannot adapt to effects that are
identified during the testing [64].

In contrast, adaptive sequential sampling, also known as
active learning, chooses the location of the next test point
based on previously observed behavior [64, 68]. With adap-
tive sampling, a targeted testing and model building can
be carried out. However, the continuous interaction of ex-
perimental testing and model building may not always be
suitable in the case of drag loss investigations. With adap-
tive sampling, usually non-parametric models can be deter-
mined [64].

2.2 Step 2: Evaluation of characteristic drag loss
values

The machine learning algorithms require continuous numer-
ical targets to solve the given regression problem. There-
fore, we define characteristic points of the shear stress
curve, which can be used to quantify the drag loss behav-
ior. We identified the maximum (transition from Phase 1a
to Phase 1b) and the beginning of the quasi-steady Phase 2
(transition from Phase 1b to Phase 2) as robust and repre-
sentative characteristic points of the shear stress curve. As
an example, the characteristic points are shown in Fig. 8.
Each characteristic point is described by a shear stress value
and a differential speed value. This results in four charac-
teristic values. We also define an approximation function to
model the full drag torque curve based on the characteristic
values.

We validate and evaluate the methods to determine the
characteristic values and the approximation function using
a test dataset. The test dataset originates from the research
project FVA 671 II [16] and includes 254 measurements.

2.2.1 Maximum shear stress

The characteristic value τm,max can be easily determined as
the maximum value of the shear stress curve (see Fig. 9a, b).

a

b

c Detail of a d 

e

Detail of b

Fig. 9 Determination of the maximum using two different methods for
shear stress curves with definite (a) and plateau-like (b) maxima; De-
tails of the two maxima (c,d); Difference between both methods for all
measurements of the test dataset (e)

For the determination of the characteristic value �nmax,
we considered two different methods. At the first method
(Method 1; index g, global), we evaluate the differential
speed �nmax,g associated with the global maximum shear
stress τm,max (see Fig. 9a–d). When performing the test, the
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size of the speed steps is usually adjusted depending on
the plate size and the test parameters. As a consequence,
and generally because of the stepwise test procedure, there
is a systematic variance of the characteristic value �nmax

across the dataset. This induced variance could be reduced
by a smaller size of the speed steps in the region of the
maximum shear stress leading to a finer resolution of the
shear stress curve in this region. Considerably longer test
runtimes would be the consequence.

As the exemplary measurement in Fig. 9d further shows,
the maximum may also form a plateau. In such cases, the
evaluation of the global maximum does not provide ro-
bust and representative results for the characteristic value
�nmax. To prevent this, we determine the characteristic value
�nmax as follows (Method 2; index c, centroid): For the area
enclosed between the shear stress curve and a horizontal
boundary line at 80% of the maximum shear stress τm,max

(see red shaded area in Fig. 9a–d), we determine the cen-
troid thereof and use the x-coordinate as �nmax,c. For curves
with a definite maximum (see Fig. 9a, c), the characteris-
tic value �nmax is not significantly corrected. In contrast,
for plateau-like maxima (see Fig. 9b, d) there is a signifi-
cant correction of the characteristic value �nmax. We applied
both methods on the test dataset. Figure 9e illustrates the
difference between both methods. Lastly, the characteristic
value �nmax is determined according to Method 2.

The maximum torque respectively the maximum shear
stress is used as a characteristic in various investigations [5,
6, 13]. But here the global maximum is used.

2.2.2 Modeling of shear stress curve in phase 1a

To model the shear stress curve in Phase 1a, we use the char-
acteristic maximum and the zero point as support points for
the approximation function. According to Newton’s law of
viscosity and for completely filled gaps, the shear stress in-
creases linearly with the differential speed. This behavior
can be commonly observed in the lower differential speed
region of Phase 1a [4, 6, 12]. However, a further increase
of the differential speed closer to the maximum shear stress
often shows a degressive behavior [4, 6, 12]. Consequently,
the approximation of Phase 1a by a linear function is not
suitable. Therefore, we choose a quadratic function to ap-
proximate Phase 1a, with the vertex at the maximum shear
stress τm,max and crossing zero. The approximation is shown
in Fig. 10a, b.

Figure 10c quantifies the quality of approximation for
all measurements of the test dataset. For about 90% of all
measurements, a coefficient of determination R2 of more
than 0.9 can be shown. The high quality of approximation
supports the choice of the quadratic function.

a

b

c

Fig. 10 Approximation of Phase 1a using a quadratic function for two
exemplary shown shear stress curves (a,b); Distribution of coefficient
of determination R2 for all measurements of the test dataset (c)

2.2.3 Modeling of shear stress curve in phase 1b and
phase 2 and beginning of steady phase

The characteristic drop of the shear stress in Phase 1b and
the subsequent quasi-steady state in Phase 2 are interpolated
by a Gaussian function (also Gaussian bell curve) according
to Eq. 3. For interpolation, we only use the section �n≥ a2

(to the right of the maximum). The interpolation is shown
in Fig. 11a, b.

�m.ΔnjΔn � a2/ = a1 � e
–.
Δn–a2
a3

/2 + a4 (3)

We determine the characteristic transition point to the
steady shear stress zone iteratively in two steps. The inter-
polation is constrained by three boundary conditions (BC)
according to Eq. 4. In the first iteration step (index k= 1),
we set the horizontal asymptote of the interpolation func-
tion to the local minimum of Phase 2 (see BC I). The peak
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of the interpolation function has to be located in the previ-
ously determined maximum (see BC II). The interpolation
function is bounded by the maximum and the asymptote
(see BC III) in vertical direction. Thus, only the coefficient
a

.1/
3 is fitted in the interpolation.

BC I W a
.1/
4 = �m;min (4a)

BC II W a
.1/
2 = Δnmax;c (4b)

BC III W a
.1/
1 = �m;max–�m;min (4c)

Figure 11c quantifies the quality of approximation for all
measurements of the test dataset. For about 92% of all mea-
surements, a coefficient of determination R2 of more than
0.95 can be found. About 97% of all measurements achieve
a coefficient of determination R2 of more than 0.9. The high

a

b

c

Fig. 11 Iteration step k= 1 to determine the transition from Phase 1b to
Phase 2 using an interpolation function shown for shear stress curves
with constant (a) and decreasing (b) Phase 2; Distribution of the coef-
ficient of determination R2 of the interpolation for all measurements of
the test dataset (c)

quality of approximation demonstrates the suitability of the
Gaussian function to model Phase 1b and Phase 2.

The transition from Phase 1b to Phase 2 is defined as
a point on the determined interpolation function accord-
ing to Eq. 5. After the first iteration step, the transition is
described by the characteristic values Δn

.1/
1–2 and �

.1/
m;1–2.

a

b

c Detail of b

d

Fig. 12 Iteration step k= 2 to determine the transition from Phase 1b to
Phase 2 using an interpolation function shown for shear stress curves
with constant (a) and decreasing (b) Phase 2; Detail of the transi-
tion (c); Distribution of coefficient of determination R2 of the inter-
polation for all measurements of the test dataset (d)

K



Forsch Ingenieurwes (2023) 87:555–570 565

�
.k/
m;1–2 = 0.05 � a

.k/
1 + a

.k/
4 (5a)

�
.k/
m;1–2 = a

.k/
1 � e

–.
Δn.k/

1–2 –a
.k/
2

a
.k/
3

/2

+ a
.k/
4 (5b)

Figure 11a, b shows the determination of the transition
from Phase 1b to Phase 2.

The shear stress may continue to decrease slightly (see
Fig. 11b) or increase again in Phase 2 [3]. Also, varia-
tions around a quasi-steady value can be observed. Conse-
quently, the local minimum shear stress τm,min of Phase 2
neither serves as a robust boundary condition (see BC I and
BC III) according to Eq. 4 nor represents a robust param-
eter to determine the characteristic values Δn

.1/
1–2 and �

.1/
m;1–2

according to Eq. 5.
We use the characteristic value �n

.1/
1–2 as the starting

point of Phase 2 to calculate the average of the shear stress

a

b

c

Fig. 13 Approximation of a full shear stress curve using a quadratic
function (Phase 1a) and Gaussian function (Phase 1b and Phase 2)
as well as finally used characteristic values shown for two exemplary
shear stress curves (a,b); Distribution of coefficient of determina-
tion R2 for all measurements of the test dataset (c)

values �m;min;avg in this phase. In the second iteration step
(index k= 2), we use the more robust average �m;min;avg for
the boundary conditions according to Eq. 6 (see BC I and
BC III). BC II is not affected.

BC I W a
.2/
4 = �m;min;avg (6a)

BC II W a
.2/
2 = Δnmax;c (6b)

BC III W a
.2/
1 = �m;max–�m;min;avg (6c)

The more robust boundary conditions show up in
a higher quality of approximation of the interpolation
function, see Fig. 12d. For all measurements of the test
dataset, a coefficient of determination R2 of more than 0.9
can be found. Almost 97% of all measurements achieve
a coefficient of determination R2 of more than 0.95.

The characteristic values Δn
.2/
1–2 and �

.2/
m;1–2 are calculated

according to Eq. 5 using the boundary conditions of the
second iteration step. The characteristic values are shown
in Fig. 12a, b and in detail in Fig. 12c.

2.2.4 Approximation of shear stress curve

The shear stress curve is finally approximated by a quadratic
function in Phase 1a and a Gaussian function in Phase 1b
and Phase 2, see Fig. 13a, b. Figure 13c proves the high
quality of approximation of the combined function.

For about 90% of all measurements, a coefficient of de-
termination R2 of more than 0.95 can be demonstrated.
About 98% of all measurements achieve a coefficient of
determination R2 of more than 0.9. This result illustrates
the suitability of the identified approximation function to
model the shear stress curve.

To complete Step 2, the characteristic values for each
measurement in the dataset have to be evaluated.

2.3 Step 3: Data analysis and preparation

The structure of the dataset used to build the model is basi-
cally known from the design of the experiments in Step 1.
When combining multiple datasets from several investiga-
tions, we recommend analyzing the structure of the total
dataset to identify any missing data. Furthermore, in Step 3
the input and output parameters of the model are defined.
Depending on the subject area, the input parameters are
also named features or independent variables. For the out-
put parameters, the terms targets or dependent variables are
common. The investigated influencing parameters represent
the features for the model training. As targets, the four char-
acteristic values are used. Each data sample of the dataset
is described by a set of features and the targets.
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2.4 Step 4: Data-driven modeling

The aim of Step 4 is to determine the relationships between
the influencing parameters (input) and their dependent char-
acteristic values (output) through supervised machine learn-
ing algorithms. Based on the modeling of the underlying
causal relationships in the given dataset, predictions for un-
known target values can then be calculated. Even if fun-
damental relationships are already known from various ex-
perimental and theoretical investigations, the mathematical
relationships between the influencing parameters and the
characteristic values are usually unknown. In many com-
mon algorithms, such as linear regression, the mathemati-
cal form of the model is defined [69]. Such algorithms can
considerably limit the prediction performance of the model
when making incorrect assumptions. After examination of
the suitability of different algorithms, we recommend the
symbolic regression and the Gaussian process regression to
build the model, mainly because they are easy to interpret
and highly flexible at the same time. We note, however, that
the final choice of algorithm depends, among other things,
on the size and structure of the dataset, the general com-
plexity of the correlations, the number of features, or the
variance of the targets.

With symbolic regression, a mathematical function is
searched to describe the relationships using genetic pro-
gramming [70]. At initialization of the algorithm, a set of
mathematical operations and functions has to be defined.
This gives the opportunity to bring in prior knowledge. In
the subsequent selection and evolution steps, the best func-
tion is determined in an evolutionary process until a stop-
ping criterion is reached. A key advantage of the symbolic
regression is the easy interpretability of the result func-
tion. However, the comparatively long training time may
be a disadvantage. In addition, the random choice of the
first generation of the model population may affect the out-
come. For a detailed explanation of the symbolic regression
and genetic programming, we refer to the corresponding lit-
erature [70, 71]. If implementing in Python, we recommend
to use package gplearn [72].

We consider the non-parametric models of the Gaus-
sian process regression as the most suitable. Gaussian pro-
cess regression can also include expert knowledge in model
building through the selection and specification of kernel
functions. In addition, the variance of drag torque from re-
peated measurements can be considered when training the
model. A major advantage of the Gaussian process regres-
sion is the specification of the prediction uncertainty in
terms of a confidence interval. This allows simultaneously
checking if the model is based on sufficient data for the cur-
rent prediction. For a detailed explanation of the Gaussian
process regression, we refer to corresponding literature [69,

Fig. 14 Example of typical input parameters and output parameters of
the prediction model and approximated drag torque curve

73–76]. If implementing in Python, we recommend to use
package GPflow [77] or GPy [78].

The validation of the prediction models uses measure-
ments. When running the tests, combinations of test param-
eters are selected which are not represented in the training
dataset.

2.5 Step 5: Prediction of characteristic drag loss
values

Using the models, the characteristic values are predicted.
For both shear stress characteristic values, the back calcu-
lation to the drag torque is performed according to Eq. 2.
Figure 14 shows an example of typical input parameters
and the output parameters of the model.

2.6 Step 6: Approximation of drag loss behavior

The approximation function defined in Step 2 is used to
model the entire drag torque curve. The approximation
function is composed of a quadratic function (Phase 1a)
and a Gaussian function (Phase 1b and Phase 2). The co-
efficients of the approximation function are given by the
characteristic values. Figure 14 shows the approximation
of the drag torque curve based on the characteristic points.

3 Limitations und outlook

In the presented methodology, one can only use measure-
ments that show the characteristic drag loss behavior (see
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Fig. 15 Exemplary discretization of a shear stress curve into 21 equidis-
tant intervals

Fig. 7). Drag torque curves, which differ from this, cannot
be processed. So far, the model is limited to the prediction
of drag losses caused by the shearing of the oil. In the cur-
rent modeling, we do not consider the re-increase of the
drag torque due to plate tumbling at very high speeds. The
occurrence and onset of plate tumbling, for example, could
be modeled using classification and regression algorithms.
This would extend the scope of application of the predic-
tion model to very high speeds. For user-friendly handling,
we suggest embedding the model into a graphical user in-
terface. It is also possible to use the prediction model as
a block in a full powertrain simulation. As part of a further
development of the presented methodology, further charac-
teristic values should also be considered, such as the max-
imum power loss or the dissipated energy [6, 13]. At the
current state, the model predicts four characteristic values
related to the drag loss behavior. Based on the predictions,
we approximate the shear stress curve. Alternatively, to pre-
dict the shear stress curve directly, each curve would first
have to be discretized. Figure 15 shows an example of the
discretization.

A model is then trained for each of the discrete dif-
ferential speeds. The interpolated shear stress values are
used as targets. While the presented methodology requires
only four models, this approach requires considerably more
models to be trained, depending on the discretization. How-
ever, a disadvantage of this approach is that the models are
not coupled and may predict a non-monotonic drag torque
behavior in the respective phases.

4 Conclusion

This paper describes a methodology for data-driven model-
ing and prediction of drag losses of wet clutches. As input,
we use drag torque measurements obtained from system-
atic investigations on the influence of various geometry and
operating parameters on drag loss behavior. Supervised ma-
chine learning algorithms are used to determine the relation-
ships between the influencing parameters and characteristic

values of the drag loss behavior. The main time effort is re-
quired for preparing (collecting, cleaning, analyzing, visu-
alizing) the data [79]. This requires a suitable test rig and at
least prototype parts. The test effort depends in particular on
the desired model depth. As complementary investigations
showed, a high prediction accuracy can be achieved with
flexible and powerful regression models. We recommend
the symbolic regression and Gaussian process regression to
build the models mainly because they are easy to interpret
and highly flexible. Since the model is based on drag torque
measurements performed on complete clutch systems, it al-
lows practice-oriented predictions to be made. A major ad-
vantage of the presented methodology is that all different
types of influencing parameters can be considered in the
model building, irrespective of the complexity of their ef-
fect. For instance, even the influences of the material prop-
erties of the friction lining, a complex groove geometry, and
an uneven distribution of the total clearance can be mod-
eled without restrictions. With an adequate dataset, a high
model depth can be realized. Only training the model usu-
ally requires increased computing power, depending on the
chosen machine learning algorithm. The drag torque predic-
tions require low computational effort. Through the data-
driven modeling, a high model accuracy can be achieved, ir-
respective of the complexity of the flow and physical effects
acting. The achievable model accuracy eventually depends
on the quality of the drag torque measurements.

5 Nomenclature

The nomenclature is shown in Table 1.

Table 1 Nomenclature

Symbol Unit Meaning

a kPa or rpm Coefficients Gaussian function

A mm2 Friction area

d mm Diameter

h mm Clearance

k – Iteration step 1, 2, x

n rpm Speed

N – Number of gaps

R2 – Coefficient of determination

t s Time

Td Nm Drag torque

v mm3/s/mm2 Specific feeding flow rate

�n rpm Differential speed

ϑ °C Temperature

µ mPa · s Dynamic viscosity

τm kPa Mean shear stress
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Table 2 Indices

Symbol Meaning

1 Phase 1

1a Phase 1a

1b Phase 1b

1–2 Transition Phase 1 to Phase 2

2 Phase 2

c Centroid of an area

corr Corrected

g Global

i Inner

IC Inner carrier

m Mean

max Maximum

min Minimum

o Outer

tgt Target

6 Indices

The indices are shown in Table 2.
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