
Vol.:(0123456789)

Water Resources Management (2023) 37:3857–3874
https://doi.org/10.1007/s11269-023-03529-6

1 3

Assessing Sustainable Development of Deep Aquifers

Annette Dietmaier1 · Thomas Baumann1 

Received: 29 April 2022 / Accepted: 27 April 2023 / Published online: 16 May 2023 
© The Author(s) 2023

Abstract
Deep groundwater aquifers are exploited for a variety of purposes. In general, impermeable 
rock layers protect these aquifers from anthropogenic influences. As such, they are a last resort 
for groundwater in a pre-industrial state, and a crucial resource in cases of emergency, such as 
floods contaminating shallow groundwater. The EU Water Framework Directive (WFD) pro-
vides the regulatory framework to protect its quality and quantity. Recent monitoring of the 
hydrochemical state of Upper Jurassic wells in Bavaria and Austria has shown fluctuations that 
were connected to new exploitation activities and might indicate an unsustainable development 
of the aquifer. We propose a new workflow in accordance with the WFD which uses clustering 
algorithms to assess these fluctuations. Our data consists of 5 to 42 hydrochemical analyses 
per well with yearly sampling intervals spanning up to 30 years. From the cluster analysis we 
derived thresholds for two corridors: Natural Range Corridor (NC) and Action Corridor (AC). 
While the NC represents a well-specific natural variation range, the AC hints towards unsus-
tainable development and should trigger a detailed (re)assessment. To show the potential of the 
new method, the workflow was applied to two wells with different geological characteristics. 
Distinct fluctuation events were clearly recognized and can be used in the context of an early 
warning system, such that malign hydrochemical variations can be detected before they become 
legally problematic to well operators. Our workflow thus provides a novel, robust, and repro-
ducible method to assess the grade of sustainability at which a well is exploited and ensures a 
good status of a unique and important resource.

Keywords Sustainable exploitation · Cluster analysis · Deep groundwater · Early warning system

1 Introduction

Deep groundwater is protected from anthropogenic influences by hundreds of meters of 
rock matrix with limited permeability and high retardation potential. Under this premise, 
deep groundwater reservoirs constitute an extraordinary source of clean water, especially 
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during times in which more shallow and surface water bodies are contaminated or depleted. 
The importance and wide range of applications of this resource results in conflicts over 
concurrent exploitation, e.g. large net discharge for technical purposes, geothermal energy, 
and drinking water production (Wycisk et  al. 2003; Goldscheider  2005; Panagos et  al. 
2013; Baiocchi et al. 2013).

An aquifer is considered under stress if the cumulative withdrawal rate exceeds 20 % 
of the annual recharge rate (Arle et  al. 2017). This value primarily ensures quantitative 
sustainability. However, groundwater flow velocities in deep aquifers are usually very slow. 
Thus, any withdrawal will change the age structure of the water body as more recent water 
replaces the water withdrawn. Analyzing age structures among bottled waters and evidence 
of pesticides present in these waters, Baumann (2013) shows that the exploitation of deep 
groundwater can change the age of the produced water from more than 1000 years to less 
than 30 years. Thus, on human time scales, deep groundwater bodies should be considered 
as a non-renewable resource (Ungemach et  al. 2005). Nevertheless, aquifer-specific sus-
tainable management plans currently do not exist for many deep aquifers.

Using groundwater age as a direct input parameter to assess the impacts of local exploi-
tation schemes might seem intuitive. However, current age determination methods exhibit 
a range of uncertainties and therefore a lack of sensitivity when assessing small changes 
in the age structure, making groundwater age a questionable indicator for groundwater 
sustainability (Ferguson et  al. 2020). Instead, we propose to use the hydrochemical sig-
natures of individual wells and their changes as a sensitive indicator for (non-)sustainable 
well development. This premise assumes that over-exploitation of aquifers results in hydro-
chemical changes (Li et al. 2013).

The European Water Framework Directive (WFD; European Parliament and Council 
(2000)) sets the legal context for the assessment of groundwater bodies. It states that a 
“good quantity and quality status” must be reached for all specified groundwater bodies 
until 2027 (Foster and Custodio 2019). It also defines the good chemical status using elec-
tric conductivity (EC) to examine the effects of saline or other intrusions, and emphasizes 
anthropogenic influences and pollutants (European Parliament and Council 2000). These 
guidelines have had positive impacts on shallow groundwater bodies vulnerable to anthro-
pogenic activities (Foster and Custodio 2019). However, deep aquifers underlie vastly dif-
ferent stressors and are less affected by anthropogenic influences, given their location of 
150 m to 7000 m underground (Kang et al. 2019). Deep groundwater aquifers, such as the 
Upper Jurassic of the North Alpine Foreland Basin (NAFB), are at a small risk of receiving 
pollutants directly from anthropogenic sources. However, they may assume a “bad” chemi-
cal state (according to the WFD) e.g. through the intrusion of oil, gas or saline waters from 
higher or lower strata (European Parliament and Council 2000; Kang et al. 2019).

Examples of national industry standards implementing the WFD’s core ideas are the EU 
mineral water directive (European Parliament and Council 2000) or the German Spa Asso-
ciation’s (GSA) “Definitions and quality standards for the nomination of health resorts, 
resort towns and curative sources” (Deutscher Heilbäderverband and Deutscher Touris-
musverband  2016). There are other national equivalents of WFD implementations with 
similar shortcomings. The characteristics discussed here are thus not limited to this Ger-
man legal framework but can be extrapolated internationally. The GSA framework denotes 
threshold values for ingredients with balneo-therapeutical use, and allows

a ± 20 % and ± 50 % variation in the concentrations of characteristic ingredients and 
of ingredients with a concentration of< 20 mg/L, respectively. However, these thresholds 
are detached from a well’s natural variability. Hence, fluctuation characteristics which 
are clearly not part of the well’s natural fluctuation, might go unnoticed in the mandatory 
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yearly hydrochemical analysis, if they lie within the allowed corridors. Thus, the generic 
value of ± 20 % fails to detect unsustainable well developments.

Temporal variations in hydrochemical parameters indicate the response of a heteroge-
neous inflow regime to varying withdrawal rates. This might be caused by, among other 
factors, seasonal fluctuations in heating demand or in the number of guests in balneologi-
cal treatments, unpredictable events such as lock-downs during the COVID-19 pandemic, 
or pump malfunctions. Furthermore, reinjection of cooled-off waters or lack thereof must 
be considered. Most yearly sampling campaigns are scheduled within a ± 2 - 3 week time 
window during the calendar year, hence the sampling takes place at a similar operational 
state of the well.

The paramount importance of maintaining the quantitative and qualitative integrity of 
deep groundwater aquifers stands in contrast to a lack of suitable monitoring and man-
agement solutions. The result of this contradiction is the need for sound and reproducible 
methods to assess malign changes of a well’s hydrochemical signature whilst determining 
its natural fluctuation range. These methods must also be robustly applicable to rudimen-
tary data sets at unequal time intervals.

Determining the natural range must be achieved through clustering data points represent-
ing the well’s natural fluctuation. Clustering algorithms follow the premises of pattern recog-
nition, grouping data points with similar characteristics, and subdividing large data sets into  
smaller clusters in an unbiased fashion (Fu et al. 1976; Kaufman and Rousseeuw 1990). Dif-
ficulties arise when applying clustering methods on sparse training data. In other words, one 
aims to group data into homogeneous clusters without using any information pertaining to the 
groups of the samples (Lee 1981). Thus, having good knowledge of the data structure and the 
purpose of clustering is imperative. Two clustering algorithms from opposite sides of the clus-
tering algorithm spectrum are DIvisive ANAlysis (DIANA) and k-means. DIANA is a hier-
archical (top-down) clustering approach. It splits the initial data set into two clusters defined 
by their Euclidian distance to the most different data points. The resulting clusters are split up 
until each remaining cluster contains only one single data point (Patnaik et al. 2016).

K-means analysis, an agglomerative, bottom-up algorithm, approaches the clustering 
process in the reverse order (Kaufman and Rousseeuw 1990; Patnaik et al. 2016). As one 
of the simplest unsupervised learning algorithms (Kodinariya and Makwana 2016), it par-
titions a data set into k groups, k being set by the user (Wagstaff et al. 2001). This requires 
the investigator to have good prior knowledge off the data’s structural characteristics. The 
locations of these k cluster centers are then iteratively refined using the Euclidian distance 
of the instances to the respective cluster center (Wagstaff et al. 2001).

Cluster analysis in combination with hydrogeochemical analyses have been established in 
examining spatial and temporal patterns of groundwater chemistry (Yang et al. 2020; Heine 
et al. 2021; Kim et al. 2003; Wang et al. 2015). Most studies, including recent investigations, 
utilizing this approach, focus on spatial hydrogeochemical zonation and use temporal aver-
ages representing the entire sampling period (Yang et al. 2020), neglecting temporal dynamics 
(Sayemuzzaman et al. 2018; Heine et al. 2021). Studies which focus on temporal analysis tend 
to apply cluster analysis to data of separate sampling periods in order to track changes between 
these periods over a larger geographic area, rather than at individual well sites (Pacheco Castro 
et al. 2018; Yang et al. 2020; Thyne et al. 2004; Hussain et al. 2008). Cluster analysis has also 
been used in groundwater monitoring programs. Ribeiro and Macedo (1995) employ a hierar-
chical cluster analysis (HCA) in order to establish groups of stations characterized by similar 
temporal patterns, after applying principal component analysis to the data set in order to define 
intercorrelation structures between the variables, and then analysing temporal variations of 
the resulting indices by the Mann-Kendall test. Daughney and Reeves (2006) apply HCA on 
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the temporal trends in groundwater chemistry which they previously determined by using the 
Mann-Kendall test. They emphasize the importance of defining baseline rates of changes in 
groundwater quality at the national scale, since a given well “cannot be defined as ’affected’ 
or ’abnormal’ unless the threshold limit of normality (baseline) has been previously defined” 
(Daughney and Reeves, 2006). Considering the range of conditions groundwater may encoun-
ter in natural systems, e.g. aquifer lithology, confinement, recharge source and age, it is impor-
tant to define baselines as ranges of values rather than as single numbers. In their study, they 
define these ranges using percentiles (5th, 25th, 75th and 95th (Daughney and Reeves 2006)). 
At the time of writing (April 2022), we are not aware of any attempts to utilize clustering anal-
ysis methods to define dynamic natural temporal ranges of water quality at individual wells, 
rather than on aquifer level or through arbitrary value ranges.

Thus, based on data gathered in the Lower Bavarian and Upper Austrian part of the 
NAFB, the primary research question for this study was to define a well’s natural state 
(considering its total concentration of main ions and trace substances), using reproduc-
ible statistical analysis methods and rudimentary data sets. Further, we test the function-
ality of the developed framework as an early warning system for changes in the well’s 
hydrochemistry.

This study offers a novel approach of determining the typical inherent fluctuation ranges 
at each individual well in the NAFB, rather than employing an arbitrary value. Know-
ing this characteristic fluctuation is at the heart of our understanding of how sustainable  
geothermal groundwater exploitation is and how competing well operators using the same 
aquifer can coexist sustainably.

2  Methods

2.1  Study Area and Data

We selected 8 out of 22 geothermal wells (Fig.  1) exploiting the Upper Jurassic in the 
Northern Alpine Foreland Basin (NAFB) in Germany and Austria for analysis (Fig.  1). 
Previous studies (Mayrhofer et al. 2014; Heine et al. 2021; Birner et al. 2012) have shown 
that these carbonates are connected and constitute one deep groundwater body.

The selected wells produce hot water for balneological, district heating, and power gen-
eration purposes. The number of available analyses ranges from 5 to 42. While the earliest 
analysis was sampled in 1939 at BF1, only a few historic analyses were available. Yearly sam-
pling started in the 1990s. Data include physical parameters (such as flow rate, electric con-
ductivity (EC), temperature and pH) and hydrochemical parameters (main ions and trace ions 
relevant for balneotherapy). While most analyses at the German wells were performed by the 
Institute of Hydrochemistry at the Technical University of Munich, various other laboratories 
were involved. All data were stored in a PostgreSQL database and connected to QGIS through 
PostGIS for spatial representation (PostgreSQL Global Development Group (2021); PostGIS 
Project Steering Committee (PSC) (2021); QGIS Development Team (2021)).

2.2  Descriptive Statistics

Descriptive statistics were calculated using R (R Core Team 2020) for total dissolved sol-
ids (TDS), main ions, ions with relevance for balneotherapy and physical parameters. For 
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all following analyses, we define TDS as the sum of the eight main ions and characterizing  
trace ions  (Na+,  K+,  Ca2+,  Mg2+,  F-,  CI-,  SO4

2- and  HCO3
-). An aggregated Schoeller dia-

gram and two Piper diagrams (Online Resource 1) describe the wells’ general hydrochemi-
cal characters. In order to describe the hydrochemical signatures in more detail, we must 
consider the inflow pathways affecting hydrochemical processes in the rock matrix and 
thereby TDS and individual parameter concentrations.

2.3  Cluster Analysis

This study employs two clustering algorithms: DIANA and k-means. By employing two 
methods from opposite ends of the clustering methods spectrum (bottom-up vs. top-
down, unconditioned vs. preconditioned), we cover a broad array of approaches. Both 
methods were performed using the R packages “stats”, “factoextra” (Kassambara and 
Mundt  2020),  “cluster” implementing methods developed by Kaufman and Rousseeuw 
(1990) and Maechler et al. (2021), and “gridExtra” (Auguie and Antonov 2017).

Aiming to discern data points characterized by low TDS, those with TDS values higher 
than usual, and a value range between these two extremes, we grouped the data sets into 
three clusters (k = 3) for the k-means analysis. DIANA presents its results in a dendrogram 
which displays the similarity between two clusters. The larger the vertical distance between 
two clusters, the more dissimilar they are to each other (Kaufman and Rousseeuw 1990). 
The number of clusters thus depends on the vertical height value defined as a cut-off. Thus, 
we determined an appropriate height value for each well.

Fig. 1  Study area: DEGK1110 in Lower Bavaria and GK100158 in Upper Austria. The size of the pie 
charts representing the hydrochemical characteristics of the examined wells indicates TDS
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We ran both clustering algorithms on data without prior normalization because the 
absolute concentration is an important feature on which local implementations of water 
regulation standards are based (Länderarbeitsgemeinschaft für Wasser (LAWA)  1998). 
Additionally, we aimed at detecting changes in the hydrochemistry including dilution pro-
cesses. If the relative concentrations of cations and anions does not change, but the total 
concentration does, these would go unnoticed using normalized data.

We compared the results of both clustering methods and assessed the congruence 
between them by comparing how many data points are grouped in the same cluster by both 
clustering methods. Both methods were tested for their sensitivity by removing one of the 
eight ions at a time before running the clustering algorithm with the remaining data.

The resulting workflow groups yearly data points into a natural state before defining 
corridors which represent “within the natural fluctuation range”, and “outside of the natu-
ral fluctuation range” based on the mean and standard deviation (SD) of the cluster repre-
senting the natural state. Once the proposed workflow was checked to detect the outliers  
of distinct fluctuation events, we tested it for its suitability as an early warning system. 
To do so, we applied the workflow to a discernible fluctuation event in three iterations, 
increasing the data points available to the clustering algorithm with each iteration. We then 
assessed whether the proposed corridors would have allowed the distinction of the fluctua-
tion event before and during its occurrence.

3  Results

3.1  General Hydrochemical Characteristics

Figure  2 presents the hydrochemical composition of all 8 wells in an aggregated Schoe-
ller diagram. Waters with identical characteristics but varying concentrations plot in parallel 
lines. The concentrations of the individual ions differ by one order of magnitude. While the 
general characteristics seem to be fairly similar, there are significant differences where lines 
cross and/or the slope of the lines deviates strongly from the general trends. Water from 
BS1 shows low TDS and a dominance of sodium over chloride, indicating ion exchange 
processes along the flow path and little contact to saline waters. In contrast, STR show high 
concentration values with sodium concentrations almost matching chloride concentrations. 
This suggests a contribution of saline waters and little ion exchange.

In general, SD is low except for sulfate, pointing towards analysis errors rather than 
changes in the reservoir. Most thermal waters contain reduced sulfur (HS-, H2S) in signifi-
cant concentrations. These species can oxidize during sampling and sample transfer unless 
special treatment is applied (Mayrhofer et al. 2014).

STM, HAA and ALT produce sodium-bicarbonate-chloride thermal waters. Relative 
equivalent concentrations of chloride decrease from west to east. BS1 stands out with rela-
tive chloride concentrations of less than 20 % and very low TDS.

The hydrochemical characteristics show that the waters from DEGK1110 and 
GK100158 differ significantly. This suggests different lithostratigraphic settings and local 
flow paths to the wells, which might include contact with aquifers above and below the 
main flow path. Regional residence times are long compared to reaction kinetics in the car-
bonate matrix. Thus, local effects influence the hydrochemical stability more strongly than 
the regional flow regime.
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3.2  Inflow Path Types

Based on drilling logs (Baumann and Nießner 2012; Institut für Wasserchemie TUM 1999, 
Elster et  al. 2016) and the hydrochemical characteristics, we propose three inflow path 
types (Fig. 3). These simplified types experience effects of residence times, extraction vol-
umes and pressure regime in different ways. Type A aquifers are enclosed between imper-
meable layers. Regardless of the withdrawal rates and hydraulic potential, the water flows 
only in the host rock of the aquifer. In Type B aquifers, hydraulic contact with adjacent lay-
ers is possible. The magnitude of this influx is a function of the permeability of the main 
aquifer and its neighboring strata, and the hydraulic potential in each layer. Type C repre-
sents a technical connection of different aquifers in strata which are otherwise separated. 
Here, the amount of mixing from the different aquifers is a function of the transmissivity of 
the different layers, the hydraulic potential and the production rates. While this exploration 
strategy is deprecated, some wells of this type still exist. These three inflow types provide 
a quick method for a first assessment of the robustness of the wells’ exploitation. Out of 
all the wells in this study, 2 (SB2 and STR) belong to Type A, 4 (BF1, ALT, BS1, SB2) 
are Type B wells and 2 (BB3, HAA) are Type C wells. The majority of Type B wells are 
observed in the central part of the NAFB.

3.3  Well Specific Characteristics

For the remainder of this study, we will focus on two wells: BF1 (Type B) and SB2 (Type 
A), covering both variability in inflow types and the robustness of hydrochemical condi-
tions. BF1 is used for heating and balneological purposes. It belongs to a group of wells 

Eq
ui

va
le

nt
s,

 m
eq

/L

Mg2� Ca2� �Ca2� Mg2� �Na� K� Cl� HCO3
� SO4

2�

0.001

0.01

0.1

1

10

100

BB3
BF1
SB2
STR

ALT
BS1
HAA
STM

Fig. 2  Schoeller Diagram of all eight assessed wells. Connected points are the arithmetic mean of all analy-
ses at this well, error ars show one standard deviation



3864 A. Dietmaier, T. Baumann 

1 3

with a net discharge and no injection wells. SB2 exclusively generates heat for local district 
heating and is connected to an injection well to maintain the water balance.

On the left side of Fig. 4, selected ions and parameters for BF1 at all available sampling 
dates are shown. The temperature is constant without any discernible trend. The few low 
temperature data points were likely not measured at the well-head but elsewhere along the 
surface level production line.

Sodium and bicarbonate develop similarly over time. Between 1998 and 2011, sodium 
and bicarbonate display a highly dynamic behaviour, starting with an increase in concen-
tration reaching maximum values of 296.5  mg/L and 646.8  mg/L, respectively. During  
the following years, the concentration values decrease until they reach minimum values  
of 260  mg/L and 515  mg/L, respectively, in 2006. After this development, sodium and 
bicarbonate values level off around a stable mean value with no apparent short-term trends.

Overall, BF1 is characterized by relatively large fluctuations in its chemical composi-
tion. This corresponds with its inflow path type (Type B). Here, the main inflow stems 
from the Upper Jurassic’s carbonates, with contributions from the overlying Coniac/
Cenoman carbonate formations. Figure 4 suggests a similar hydrochemical character with 
slightly lower mineralization for these two aquifers.

Since BF1 ion concentrations lie mostly within allowed limits, one might certify a good 
status for the aquifer. However, the dynamic behaviour around 2006 is striking (Fig.  4). 
The threshold of 1 g/L TDS was almost undercut and the concentration of sulfide undercut 
the allowed fluctuation range once. This illustrates that the criteria set by the current legal 
framework are not sensitive enough to detect changes possibly indicating unsustainable 
well development.

On the right side, Fig. 4 depicts the same selection of parameters as above for all avail-
able sampling dates at SB2. Most parameters are constant without any trend. Although 
TDS occasionally drops below 1000 mg/L, this is negligible because the water is not used 
for balneological purposes.

Fig. 3  Inflow path types in the study area
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In general, SB2 shows a stable development. TDS fluctuates only at the beginning of the 
recorded data and levels off at approximately 1000 mg/L. Calcium and chloride show the 
strongest variability, with their largest fluctuations occurring during the first ten years of 
the timeline. Their initial values are 16.3 mg/L and 215 mg/L, respectively. Within a dec-
ade, they decrease to minimum values of 9.3 mg/L in 2005 and 138 mg/L in 2003, before 
they settle on stable values at around 13 mg/L and 160 mg/L, respectively. Except for chlo-
ride, none of the parameters exceeds or undercuts the permissible fluctuation ranges.

SB2 generally presents a stable well representing its assigned inflow path type (Type  
A). Main inflow stems from the Upper Jurassic, which is shielded from the influence of 
waters from adjacent formations by impermeable layers. Thus, even increased production 
rates are unlikely to result in major changes in TDS or individual ion concentrations.

3.4  A New Workflow for Defining Baseline Fluctuations

It is in the interest of well operators and authorities to establish an early warning system 
with a high sensitivity to changes in the the overall state of the aquifer, such as presented 
in Fig. 4. It is not within the scope of this study to determine whether these changes are 
caused by additional exploration activities, over-use, or long-term changes of the hydraulic 
regime. The focus here lies on detecting fluctuations before they become legally relevant 
(e.g. by undercutting a minimum TDS threshold of 1000 mg/L), which is why our proposed 

Fig. 4  Time series of characteristic ions at BF1 and SB2. The boxes show the allowed ± 20 % variation 
intervals (± 50 % for parameters with a relative concentration below 20 %) according to the legal frame-
work (grey boxes: parameters not relevant to the hydrochemical characterization). The lines show the refer-
ence value (last official analysis; blue), the NC (green), and the AC (red)
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framework must function as an early warning system. We suggest a workflow which pro-
duces two corridors which shall be referred to as natural corridor (NC), representative for 
natural variations at sustainable use, and action corridor (AC) indicating unsustainable use, 
respectively. The latter should trigger further investigations and/or measures to retain a 
good state of the aquifer.

Both corridors are based on a specific well’s hydrochemical character, including, where 
applicable, trace ingredients relevant to balneotherapy. We assume that every well has a 
natural hydrochemical variance which reflects its lithostratigraphic setting and inflow type. 
This natural variance includes production from the well, as there are usually no prior data 
from the aquifer itself.

The corridors are defined as 3 times (NC) and 6 times (AC) the SD around the Blank 
(mean values of the analyses representative for a natural state; Fig. 5c). This delineation 
of the corridors picks up the definitions of the limit of detection ( ̄xb + 3𝜎 ) and the limit 
of quantification ( ̄xb + 6𝜎 ) (Armbruster and Pry 2008). Here x̄b is the mean of all samples 

Fig. 5  Clustering workflow identifying the natural fluctuation range and action corridor of a given well
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representing the natural fluctuation range and � their SD. Following the three-sigma rule 
(or 68-95-99.7 rule) in probability theory (Hao et  al. 2015) for a random variance with 
normal distributed values, 3 � cover 99.73 %, while 6 � cover 99.999998 % of the values.

This definition seems straightforward under the premise that the natural state of the well 
is known. If the hydrochemical signature of a given water is as constant as shown in Fig. 4, 
the natural state is evident. However, BF1 shows some features which apparently do not 
result from natural variation (Fig. 4). Therefore, the definition of the corridors requires the 
additional step of delineating the natural state first.

Using clustering algorithms (DIANA and k-means; Fig. 5a), we divide the data set into 
several groups of analyses. Historic data of all wells in the study area support the assump-
tion that the natural state is represented by the largest resulting cluster (Fig. 5b).

Preliminary tests on whether there are any direct effects of the production rate on the 
hydrochemical characteristics are mandatory and can be obtained during pumping tests. 
Effects of the pumping rates and/or changes in the hydraulic potential on the hydrochemi-
cal composition are likely in inflow types B and C. Here, the concept of determining the 
natural variation is going to fail if the yearly samples are taken at different pumping rates. 
Table 1 and Fig. 4 display the results of the proposed workflow for all eight wells.

The mean of the NC and the mean of all data points available often lie close together. 
Differences arise in SD values which are typically much smaller for the NC than those of 
the entire data set. This underlines the importance of selecting the data points making up 
the well’s natural range in the attempt of defining its baseline fluctuation.

Table 1 further shows the congruence of DIANA and k-means. K-means was run with 
n = 3 classes. Generally high congruence values are observed. ALT shows the lowest 
congruence value (64  %). For this data set, the k-means cluster analysis resulted in two 
equally large clusters. Increasing the number of clusters from three to four classes for both 
algorithms would increase the congruence value for ALT to 100 %. Excluding ALT, the 
minimum congruence value for all other wells is 77 % and the average congruence value, 
excluding ALT, is 94.57 %.

Table 1  Congruence of cluster assignment to each data point between DIANA and k-means and clustering 
results for DIANA

Well name Available 
analyses

Sampled 
period

Congruence Mean 
(NC)

Mean 
(total)

SD (NC) SD (total) n within 
NC

BB3 28 1973 - 
2019

96 1457.99 1423.70 19.33 48.73 15

BF1 26 1939 - 
2019

89 1106.10 1112.84 12.17 40.55 14

SB2 16 1999 - 
2019

100 1024.80 1029.17 21.87 30.18 14

STR 26 1990 - 
2019

77 1269.35 1236.55 39.55 50.79 14

ALT 11 1990 - 
2010

64 1230.97 1236.55 7.48 50.79 10

BS1 5 1922 - 
2003

100 527.77 502.15 27.40 40.15 3

HAA 5 1992 - 
2009

100 1457.80 1432.14 48.47 71.09 4

STM 9 1999 - 
2011

100 1096.97 1093.28 11.04 24.82 5
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The results of the clustering were robust to the removal of most single ions from the data 
(Online Resources 3 and 4). The NC did not change when excluding Ca2+,K+,Mg2+,F− , 
and SO42− . Excluding Na+ or HCO3- did change the results because these ions are the main 
constituents of the water at these wells. K-means was sensitive to the removal of Cl- at BF1, 
which is attributed to the predefined number of clusters in k-means (SI). The two clustering 
algorithms are in accordance regarding the definition of the NC, and the absence of Na+ 
affects both clustering algorithms in the same way. In SB2, the number of data points in the 
largest cluster did not change when using DIANA. Using k-means, it changed from 16 to 11 
when excluding Cl-, and to 10 when excluding HCO3-. Using k-means on BF1, the numbers 
of data points in the largest cluster increased from 14 to 16 when Cl- was excluded, and to 19 
when Na+ was excluded. When using DIANA on BF1, these numbers changed from 14 to 19 
when excluding Na+, and to 21 when excluding HCO3-.

3.5  Workflow Application

Figure 4 shows the resulting corridors for the two wells BF1 and SB2 based on DIANA 
clustering. Since 1939, TDS at BF1 was outside the NC with ten analyses, two data points 
are even outside the AC. For SB2, only one TDS data point is outside the NC and no data 
points cut the AC. With a TDS of 1112.8 ± 40.6  mg/L, BF1 generally reveals a larger 
variance compared to SB2 (TDS = 1029.17 ± 30.2 mg/L). However, their respective larg-
est clusters reveal a different statistical signature: BF1’s largest cluster exhibits a TDS of 
1106.1 ± 12.2 mg/L, while SB2’s largest cluster has a TDS of 1024.8 ± 21.9 mg/L. In 
BF1, the values attributed to the NC cluster lie much closer together. In SB2, there are only 
two values different enough from the other data points to form their own clusters. Thus, 
the entire remainder of the data set is grouped into one cluster, resulting in a larger NC 
for SB2. Our cluster analysis-based corridors are much narrower than the state of the art 
± 20 % corridors around the last measurement. On the other hand, our corridors for single 
parameters, such as magnesium in BF1, might be more lenient than the ± 50 % corridors. 
This is because instead of relying on a single value, our corridors take into account the 
entire time series, providing a more robust assessment.

In order to address whether this workflow is apt to function as an early warning sys-
tem, we assessed the development of corridors with increasing amounts of available data 
points for BF1 (SI), beginning with five data points covering the period from 1987 to 1995 
(Online Resource 4). The DIANA clustering algorithm was chosen for this purpose because 
it allows insight into the development of the clustering structure through its visualization of 
dendrograms. The largest cluster contains four out of these five initial data points. By add-
ing five more data points leading up to the fluctuation event (distinct and sudden decrease 
in total mineralization values in the early 2000s), the new thresholds based on now ten data 
points delineate slightly narrower corridors due to a lower SD in the newly formed largest 
cluster (Online Resource 4). After ten measurements we observe two data points exceeding 
the NC in 1994 and 2000. During the entire iteration, varying data points are clustered in 
the natural range, which explains the changes in SD and the NCs. When running the clus-
tering workflow on 14 measurements, the data set covers the entire aforementioned sudden 
dip in TDS values observed between 2005 and 2007. The widths of the corridors change 
again very slightly, based on a new set of analysis data now making up the largest cluster. 
While the largest cluster’s SD changes noticeably, the respective mean values, representing 
the well’s range of TDS, stay relatively constant throughout the three scenarios. Both cor-
ridors based on the first and last scenarios would have managed to detect this fluctuation 
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event with their respective thresholds, proving the applicability of the proposed workflow 
for early warning purposes.

4  Discussion

The Upper Jurassic deep geothermal aquifer in the NAFB is an important source of geo-
thermal water. Multiple well operators exploit it for both balneological and geothermal 
purposes. Even though this groundwater constitutes a non-renewable resource, the WFD is 
not an adequate tool to protect the Upper Jurassic aquifer, since the directive was designed 
to be used on shallow aquifers. Local implementations to monitor an aquifer’s water qual-
ity (Deutscher Heilbäderverband and Deutscher Tourismusverband  2016; Daughney and 
Reeves 2006) are faced with the major problem of their application being based on arbi-
trary and generic thresholds in order to indicate problematic exploitation procedures. 
Daughney and Reeves (2006) stress the importance of defining the baseline fluctuation 
range in order to determine unnatural developments. Despite its easy and straight forward 
approach, the Begriffsbestimmungen (Deutscher Heilbäderverband and Deutscher Tour-
ismusverband  2016) fail to delineate a given well’s specific inherent and natural hydro-
chemical fluctuation range. Further, it offers no quantitative analysis of sudden changes in 
the hydrochemical signature as long as these, sometimes even distinct, events do not cross 
the aforementioned generic thresholds. Thus, significant yet not large enough fluctuations, 
which might indicate an unsustainable use of a well, remain unnoticed.

This study offers a new statistical approach to define a well’s natural state. We propose a 
framework which, while slightly more time-consuming and complex than applying a generic 
percentage to a single data point, offers various advantages. By using clustering analysis, we 
found that we can robustly identify the specific natural fluctuation range of a well’s hydrochem-
ical signature, and detect changes in a well’s hydrochemical composition which are not part of 
the natural fluctuation range. We identify these as data points that leave the previously defined 
NC. By applying well-specific corridors, it is no longer necessary for these unnatural events to 
exceed a threshold disconnected from the inherent natural fluctuation range of a well.

We used two clustering methods (DIANA and k-means). The k-means algorithm is rela-
tively simple to implement and produces results that are easy to interpret. However, one 
has to have good knowledge of the data in order to choose the right value for k, a parameter 
on which the entire clustering mechanism then depends. Further, k-means tends to exhibit 
problems with defining clusters of varying densities (Likas et al. 2003) and the resulting 
clusters can be dragged by outliers (Wagstaff et al. 2001). DIANA, while being more com-
plex than agglomerative clustering, does not require the user to define any initial param-
eters. Divisive algorithms take into account the global data distribution at the beginning 
of the clustering process, making them more accurate than agglomerative algorithms. A 
value to define the clusters, namely the height value from which the clusters are derived, 
must be defined by the user. We found that DIANA and k-means had a high congruence 
in the resulting cluster structures, which suggests that both algorithms are adequate tools 
to define the set of analyses representative for the well’s naturals state. Four out of eight 
examined wells show a congruence of 100 %, and the lowest congruence is 64 %. Even 
this number can be improved once the number of clusters (k) is adjusted in the k-means 
clustering step. When assessing the robustness of the approaches regarding the absence of 
individual parameters, small changes in the resulting corridor widths were observed. The 
largest discrepancies occurred when leaving out HCO3-. Here, k-means includes a large 
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number of analyses values in the NC which seem to be part of fluctuation events. While 
both algorithms handle the data sets well, DIANA seems to be more robust compared to 
k-means. This is attributed to the fixed number of clusters in k-means. Although the clus-
tering was robust to the exclusion of single ions, this only shows that the assessed wells 
react to stress with a change in multiple hydrochemical parameters. Trace metals, polycy-
clic aromatic hydrocarbons and isotopes could constitute additional parameters to detect 
changes in the overall flow pattern, however, too few analyses that included these parame-
ters were available (regular intervals for the extended analyses were 10 years and are now 5 
years). As the total concentration of the ions is a feature of the hydrochemical composition, 
clustering on non-normalized data is preferred.

The sensitivity of the newly developed framework to detect changes in the flow regime 
to the wells was tested on the well BF1. This well exhibits a clear fluctuation event which 
previously went unnoticed using the generic approach described by the GSA (Deutscher 
Heilbäderverband and Deutscher Tourismusverband 2016). In contrast, the new workflow 
was able to establish an NC and AC which would have detected the fluctuation events  
based on just five prior yearly data points. This is significant because it shows that the 
event was not only discernible retrospectively, but that the proposed workflow would  
have detected it by the time it occurred. It is important to consider that each new data 
point hones the precision of the clustering workflow and may thus change the well’s natu-
ral fluctuation range slightly. This was observed when testing the workflow with differ-
ing amounts of data points at the same well. Nevertheless, this test produced significant 
conclusions regarding the minimum sample size of a data set which is to be used for this 
framework. According to our findings, a minimum of 5 yearly data points may offer a good 
base to establish a well’s natural fluctuation range. Regarding data quality, a certain vari-
ance and offset has to be expected due to updated sampling and analysis protocols, as well 
as improved analytical methods, when using older measurements, and/or from different 
laboratories. This must be considered in the quality of the clustering structure.

5  Conclusion

This paper set out to design a robust statistical workflow by which the natural state of 
an individual well’s hydrochemical signature can be defined and unsustainable opera-
tion strategies determined and avoided. A major goal was to discern unnatural fluctua-
tion events, which might hint towards unsustainable well development before it becomes 
legally problematic for the operators. We propose a cluster analysis-based workflow 
using agglomerative and divisive algorithms as a substitute for the state-of-the art 
generic approach of arbitrarily-set thresholds for allowed minimum and maximum con-
centrations of certain hydrochemical parameters. Our framework is a practical approach 
to address the conflict of intensive geothermal water extraction and deep groundwater 
being a limited resource, and offers the following key features: 

1. The proposed cluster analysis-based workflow offers well-specific identification of  
the natural hydrochemical fluctuation range focusing on total mineralization (sum of 
eight main ions and additional characterizing trace ions). In addition to the natural 
fluctuation range, it determines two corridors, delineated by a natural threshold and an 
action threshold. These thresholds can be utilized by surveyors tasked with assessing 
the sustainability of a well’s operation procedures.



3871Assessing Sustainable Development of Deep Aquifers  

1 3

2. The proposed framework proved to be successful in detecting unnatural fluctuation 
events that would have gone unnoticed by the state-of-the-art approach of setting generic 
minimum and maximum concentration values. It is thus sensitive to changes in a well’s 
hydrochemical signature while at the same time considering its natural fluctuation 
regime. Every newly added data point hones the accuracy of the determined natural 
fluctuation. This is particularly important because deep geothermal data is notoriously 
scarce and difficult to sample on high spatial and temporal resolutions.

3. The presented framework is suitable for the application as an early warning system. 
Based on the case study of a well whose waters exhibited a strong fluctuation event, 
the corridors produced by our workflow would have been able to detect the fluctuation 
before and while it occurred. This assessment also showed that the minimum data set 
size for this workflow is 5 yearly data points.

Finally, the results of the proposed workflow indicate that the wells exploiting the deep 
groundwater aquifers DEGK1110 and GK100158 are robust and previous exploration 
activities have not led to changes in the general state of the aquifers.
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