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Abstract
We present a computer-assisted approach to prove the existence of Hopf bubbles and degen-
erate Hopf bifurcations in ordinary and delay differential equations. We apply the method to
rigorously investigate these nonlocal orbit structures in the FitzHugh–Nagumo equation, the
extended Lorenz-84 model and a time-delay SI model.

1 Introduction

The Hopf bifurcation is a classical mechanism leading to the birth of a periodic orbit in a
dynamical system. In the simplest setting of an ordinary differential equation (ODE), a Hopf
bifurcation requires the linearization at afixedpoint to have a single pair of complex-conjugate
imaginary eigenvalues. In this case, a perturbation by way of a scalar parameter would be
expected, but not guaranteed, to result in a Hopf bifurcation. To prove the existence of the
Hopf bifurcation, some non-degeneracy conditions must be checked. We refer the reader to
the papers [6, 9, 14, 22, 28] for some classical (and more recent) background concerning
the Hopf bifurcation in the context of infinite-dimensional dynamical systems. A standard
reference for the ODE case is the book of Marsden & McCracken [24].

If the non-degeneracy conditions of a Hopf bifurcation are not satisfied, the bifurcation
might not occur at all, or there could be other structures present that are not fully described
by the usual bifurcation diagram. We refer to such cases as degenerate Hopf bifurcations.
One way to capture these other structures is to consider the effect of varying more than a
single parameter. For most mathematical models, such an exercise is perfectly natural, since
few models depend on only one parameter. Moreover, distinguishing regions in parameter
space that support periodic orbits is important for a thorough qualitative understanding of a
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model. In the following two sub-sections, we will describe two degenerate Hopf bifurcations,
although there are others; see later Sect. 1.3.

1.1 Hopf Bubbles

In a Hopf bifurcation, a single pair of complex-conjugate eigenvalues must cross the imag-
inary axis, as the parameter varies, in a transversal way. If the eigenvalues do not cross,
the crossing is tangential, or there are other eigenvalues with zero real part, this can lead
to a degenerate Hopf bifurcaiton. One particular case is where the curve of eigenvalues has
a quadratic tangency with the imaginary axis. Before surveying some literature about this
bifurcation pattern, let us construct a minimal working example. Consider the ODE system

ẋ = βx − y − x(x2 + y2 + α2) (1)

ẏ = x + β y − y(x2 + y2 + α2). (2)

The reader familiar with the normal form of the Hopf bifurcation should find this familiar,
but might be be unnerved by the α2 term, which is not present in the typical normal form.
The linearization at the equilibrium (0, 0) produces the matrix

(
β − α2 −1

1 β − α2

)
,

which has the pair of complex-conjugate eigenvalues λ = β − α2 ± i . Treating α as being a
fixed constant, we have a supercritical Hopf bifurcation as β passes through α2. Conversely,
if β > 0 is fixed and we interpret α as the parameter, there are two supercritical Hopf
bifurcations: as α passes through±√β. However, something problematic happens if β = 0:
the eigenvalue branches α �→ −α2± i are tangent to the imaginary axis at α = 0 and do not
cross at all, so the non-degeneracy condition of the Hopf bifurcation fails.

More information can be gleaned by transforming to polar coordinates. Setting x = r cos θ

and y = r sin θ results in the equation for the radial component

ṙ = r(β − r2 − α2),

while θ̇ = 1. There is a nontrivial periodic orbit (in fact, limit cycle) if β − α2 > 0, with
amplitude

√
β − α2. Alternatively, there is a surface of periodic orbits described by the graph

of β = r2 + α2. For fixed β > 0, the amplitude r of the periodic orbit, as a function of α, is
α �→ √

β − α2, whose graph is half of an ellipse with semi-major axis 2
√

β and semi-minor
axis
√

β.
This non-local orbit structure, characterized by the connection of two Hopf bifurcations

by a one-parameter branch of periodic orbits, has been given several names in different
scientific fields. In intracellular calcium, it is frequently called a Hopf bubble [7, 17, 25,
30]. In infectious-disease modelling, where the bifurcation typically occurs at an endemic
equilibrium, the accepted term is endemic bubble [8, 18, 21, 26, 29]. Amore general definition
of a (parametrically) non-local structure called bubbling is given in [15]. In the present work,
we will refer to the structure as aHopf bubble, since that name is descriptive of the geometric
picture, the bifurcation involved, and is sufficiently general to apply in different scenarios in
a model-independent way.

Hopf bubbles can, in many instances, be understood as being generated by a codimension-
two bifurcation; see Sect. 1.3. However, this is not to say that they are rare. Aside from the
applications in calciumdynamics and infectious-diseasemodelling in the previous paragraph,
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they have been observed numerically in models of neurons [1], condensed-phase combustion
[23], predator–preymodels [3], enzyme-catalyzed reactions [13], and aplant-water ecosystem
model [36]. A recent computer-assisted proof also established the existence of a Hopf bubble
in the Lorenz-84 model [33]. We will later refer to the degenerate Hopf bifurcation that gives
rise to Hopf bubbles as a bubble bifurcation. The literature seems to not have an accepted
name for this bifurcation, so we have elected to give it one here.

1.2 Bautin Bifurcation

Bubble bifurcations are one type of degenerate Hopf bifurcation. Another is the Bautin
bifurcation, which occurs at a Hopf bifurcation whose first Lyapunov coefficient vanishes
[16]. Like the bubble bifurcation, the Bautin bifurcation is a codimension-two bifurcation of
periodic orbits. To illustrate this bifurcation, consider the planar normal form

ẋ = βx − y − x(x2 + y2)(α − x2 − y2) (3)

ẏ = x + β y − y(x2 + y2)(α − x2 − y2). (4)

Transforming to polar coordinates, the angular component decouples producing θ̇ = 1, while
the radial component gives

ṙ = r(β + αr2 − r4).

Nontrivial periodic orbits are therefore determined by the zero set of r �→ β + αr2 − r4,
which defines a two-dimensional smooth manifold. See later Fig. 15 for a triangulation of
(part of) this manifold.

1.3 Degenerate Hopf Bifurcations andMulti-Parameter Continuation

The Hopf bubble and the Bautin bifurcation are far from the only degenerate Hopf bifur-
cations. Indeed, the class includes also the Bogdanov–Takens bifurcation, singular Hopf
bifurcations [12], the Hamiltonian-Hopf bifurcation [35] and Hopf bifurcations without
parameters [20], among others. The bubble bifurcation has been fully characterized by
LeBlanc [18], using the center manifold reduction and normal form theory for functional
differential equations [9] and a prior classification of degenerate Hopf bifurcations for ODEs
by Golubitsky and Langford [11]. The study of the Bautin bifurcation goes back to 1949 with
the work of Bautin [2], and a more modern derivation based on normal form theory appears
in the textbook of Kuznetsov [16].

Normal form theory and centremanifold reduction are incredibly powerful, providing both
the direction of the bifurcation and criticality of bifurcating periodic orbits. The drawback is
that they are inherently local: it is difficult to obtain information about the persistence of limit
cycles as a function of the parameter, away from the bifurcation point. In the present work,
we advocate for an analysis of degenerate Hopf bifurcations in ODE and delay differential
equations (DDE) by way of two-parameter continuation, desingularization and computer-
assisted proofs. We will discuss the latter topic in the next section.

The intuition behind our continuation idea can be pictorially seen in Fig. 1, and understood
analytically by way of our minimal working example, (1)–(2), and its surface of periodic
orbits described by the equation β = α2 + r2. There is an implicit relationship between two
scalar parameters (α and β) and the set of periodic orbits of the dynamical system. At a Hopf
bifurcation, one of these periodic orbits should retract onto a steady state. In other words,
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Fig. 1 Near a Hopf bifurcation, the bifurcating periodic orbit is close to a pure cosine (red solution) with small
amplitude. Far from the bifurcation, the amplitude tends to grow and more Fourier modes are represented
(blue solution). In a Hopf bubble, the amplitude grows from zero and then decreases to zero as a parameter
(α in this figure) is varied montonically. Variation of a control parameter (β) can result in a smaller range of
amplitudes and admissible interval over which the periodic orbit persists. If variation of the control parameter
ultimately results in a collapse of the amplitude to zero, while the admissible interval (for the periodic orbit)
converges to a point, the result is a bubble bifurcation (Color figure online)

their amplitudes (relative to steady state) should become zero. Using a desingularization
technique to topologically separate periodic orbits from steady states that they bifurcate
from, we can use two-parameter continuation to numerically compute and continue periodic
orbits as they pass through a degenerate Hopf bifurcation. With computer-assisted proof
techniques, we can prove that the numerically-computed objects are close to true periodic
orbits, with explicit error bounds. Further a posteriori analysis can then be used to prove
the existence of a degenerate Hopf bifurcation based on the output of the computer-assisted
proof of the continuation.

1.4 Rigorous Numerics

Computer-assisted proofs of Hopf bifurcations have been completed in [33] using a desin-
gularization (sometimes called blow-up) approach, in conjunction with an a posteriori
Newton–Kantorvich-like theorem. We lean heavily on these ideas in the present work. The
former desingularization idea, which we adapt to delay equations in Sect. 3.1, is used to
resolve the fact that, at the level of a Fourier series, a periodic orbit that limits (as a parameter
varies) to a fixed point at a Hopf bifurcation is, itself, indistinguishable from that fixed point.
Our methods of computer-assisted proof are based on contraction mappings, and it is critical
that the objects we prove are isolated. The desingularization idea exploits the fact that an
amplitude-based change of variables can be used to develop an equivalent problem where
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the representative of a periodic orbit consists of a Fourier series, a fixed point and a real
number. The latter real number represents a signed amplitude. This reformulation results in
fixed points being spatially islolated from periodic orbits, thereby allowing contraction-based
computer-assisted proofs to succeed.

The other point of inspiration in this work is validated multi-parameter continuation. The
technique was developed in [10] for continuation in general Banach spaces, and applied to
some steady state problems for PDEs. We will overview this method in Sect. 2.

1.5 Contributions and Applications

The main contributions of the present work are

1. A general-purpose code for computing and proving two-parameter families of periodic
orbits in polynomial delay differential equations;

2. Theoretical foundations behind this code, and approaches to proving Hopf bifurcation
curves, bubble bifurcations, and amore broad class of degenerateHopf bifurcations based
on outputs of the computer-assisted proof;

3. Applications of this code to proving two-parameter families of periodic orbits, both far
from and at degenerate Hopf bifurcations.

Equations of advanced or mixed-type delay can similarly be handled; there is no restriction
whether delays are positive or negative. Ordinary differential equations can also be handled
as a special case. Orbits can be proven in the vicinity of (and at) Hopf bifurcations, whether
these are non-degenerate or degenerate. The first major release of the library BiValVe
(Bifurcation Validation Venture, [5]) is being made in conjunction with the present work,
and builds on an earlier version of the code associated to the work [33, 34]. Some non-
polynomial delay differential equations can be handled using the polynomial embedding
technique. The existence of Hopf bifurcation curves and degenerate Hopf bifurcations can
then be completed by post-processing of the output of the computer-assisted proof.

To explore the applicability of our validated numerical methods, we explore Hopf bifur-
cations and degenerate Hopf bifurcations in

• The extended Lorenz-84 model (ODE)
• A time-delay SI model (DDE)
• The FitzHugh–Nagumo equation (ODE)
• An ODE with complicated branches of periodic orbits (ODE)

The first two examples replicate and extend some of the analysis appearing in [18, 33] using
our computational scheme. The third examples provides, to our knowledge, the first analyti-
cally verified results on degenerate Hopf bifurcations and Hopf bubbles in that equation. The
final example is a carefully designed ODE that exhibits the degenerate Hopf bifurcation in
addition to folding and pinching in some projections of the periodic orbit 2-manifold.

1.6 Overview of the Paper

Section 2 serves as an overview of two-parameter continuation, both in the finite-dimensional
and infinite-dimensional case. We introduce the continuation scheme for periodic orbits near
Hopf bifurcations in Sect. 3 in the general case of delay differential equations. Technical
bounds for the computer-assisted proofs are derived in Sect. 4. A specification to ordinary
differential equations is presented in Sect. 5. In Sect. 6, we connect the computer-assisted
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proofs of the manifold of periodic orbits to analytical proofs of Hopf bifurcation curves,
Hopf bubbles, and degenerate Hopf bifurcations. Our examples are presented in Sect. 7, and
we complete a discussion and comment on future research directions in Sect. 8.

1.7 Notation and Important Notes

In this section, we introduce some notation and conventions that will be used throughout the
paper. The reader is encouraged to consult this section should they encounter an unfamiliar
symbol, as there is a strong likelihood it is defined herein.

Given n ∈ N, denote C
Z
n the vector space of Z-indexed sequences of elements of Cn .

Denote Symm(CZ
n ) the proper subspace of CZ

n consisting of symmetric sequences; z ∈
Symm(CZ

n ) if and only if z ∈ C
Z
n and zk = z−k for all k ∈ Z. For any subspace U ⊂ C

Z
n

closed under (componentwise) complex conjugation, denote Symm(U ) = U ∩ Symm(CZ
n ).

We will sometimes drop the subscript n on C
Z
n when the context is clear.

Given ν > 1, we denote �1ν(C
n) the subspace of CZ

n whose elements z satisfy ||z||ν def=∑
k∈Z |zk |ν|k| < ∞. The symbol | · | will always be taken to be the norm on C

n induced
by the standard inner product. Denote Kν(C

n) the subspace of CZ
n whose elements z satisfy

||z||ν,K
def= |z0| +∑|k|>0(ν

|k|/|k|)|zk | <∞. Introduce a bilinear form on 〈·, ·〉 on �1ν(C) as
follows:

〈v,w〉 =
∑
k∈Z

vkwk .

For v,w ∈ C
Z

1 , define their convolution v ∗ w by

(v ∗ w)k =
∑

k1+k2=k
vk1wk2 (5)

whenever this series converges. Convolution is commutative and associative for sequences
in �1ν(C). In this case, we define multiple convolutions (e.g. triple convolutions a ∗ b ∗ c)
inductively, by associativity.

A function g : �1ν(Cn)→ �1ν(C) is a convlution polynomial of degree q if

g(z) = c0 +
q∑

k=1

∑
p∈Mk

cp(z p1 ∗ · · · ∗ z pk ),

for cp ∈ C, whereMk denotes the set of k-element multisets of {1, . . . , n}, and each multiset
p is identified with the unique tuple (p1, . . . , pk){1, . . . , n}k such that pi ≤ pi+1 for all
i = 1, . . . , k− 1. Analogously, g : �1ν(Cn)→ �1ν(C

m) is a convolution polynomial of degree
q if z �→ g(z)·, j ∈ �1ν(C) is a convolution polynomial of degree q , for j = 1 . . . ,m.

If X is a vector space, 0X will denote the zero vector in that space. If X is a metric space
and U ⊂ X , we denote U ◦ its interior, ∂U its boundary, and U its closure.

In this work, any reference to a norm onRk orCk for some k ≥ 1 should always be under-
stood to be aweighted supremumnormwith respect to the standard ordered basis. That is, in all
cases, therewill existw1, . . . , wk > 0 such that ||(x1, . . . , xk)|| = max{w1|x1|, . . . , wk |xk |}.
These weights will either be specified, or it will be clear from context that they are to be
selected as part of a computer-assisted proof.

An interval vector inRk for some k ≥ 1 is a subset of the form v = [a1, b1]×· · ·×[ak, bk]
for real scalars a j , b j ∈ R, j = 1, . . . , k. We define ||v|| = supw∈v ||w|| (see the previous
paragraph; the norm on the right side is a weighted supremum norm). Similarly, an interval
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vector in Ck is a product v = A1× · · · × Ak , where each A j is a closed disc in C. We define
the norm of a complex interval vector as ||v|| = supw∈v ||w||.

2 Validated Two-Parameter Continuation

In this section,we reviewvalidated two-parameter continuation.Our presentationwill loosely
follow [10]. Some noteworthy changes compared to the references are that we work in a
complexified (as opposed to strictly real) vector space, which causes some minor difficulties
at the level of implementation.

We first review the continuation algorithm as it applies to finite-dimensional vector spaces
in Sect. 2.1. We make comments concerning implementation in Sect. 2.2. We then describe
how it is extended to generalBanach spaces inSect. 2.3.Validated continuation (i.e. computer-
assisted proof) is discussed in Sect. 2.4.

2.1 Continuation in a Finite-Dimensional Space

Let X and Y be finite-dimensional vector spaces over the field R, with dimX = dimY + 2,
and consider a map G : X → Y . We are interested in the zero set of G. Given the codimension
of G, we expect zeroes to be in a two-dimensional manifold in X .

Let x̂0 ∈ X satisfy G(x̂0) ≈ 0, and suppose DG(x̂0) has two-dimensional kernel. This
property is generic. Let {	̂1, 	̂2} span the kernel. The (approximate) tangent plane Tx̂0M
at x̂0 of the two-dimensional (approximate) solution manifold M is therefore spanned by
{	̂1, 	̂2}. If ε1, ε2 are small, we have

G(x̂0 + ε1	̂1 + ε2	̂2) = G(x̂0)+ ε1DG(x̂0)	̂1 + ε2DG(x̂0)	̂2 + o(|ε|) = G(x̂0)+ o(|ε|)
by Taylor’s theorem, provided G is differentiable at x̂0. We would hope that the error of
G(x̂0) ≈ 0 is smaller than the residual o(|ε|) terms. If G is twice continuously differentiable,
the error is improved to O(|ε|2). Therefore, new candidate zeroes of G can be computed
using x̂0 and a basis for the tangent space. This idea is at the heart of the continuation.

The continuation from x̂0 is done by way of iterative triangulation of the manifold M.
First, we compute an orthonormal basis of Tx̂0M by applying the Gram-Schmidt process
to {	̂1, 	̂2}; see Sect. 2.2 for some technical details. Using this orthonormal basis to define
a local coordinate system, six vertices of a regular hexagon are computed around x̂0 at a
specified distance σ from x̂0; see Fig. 2. Let these vertices be denoted x̂1 through x̂6, arranged
in counterclockwise order (relative to the local coordinate system) around x̂0. Note that this
means

x̂i = x̂0 + ε j,1	̂1 + ε j,2	̂2

for some small ε j,1, ε j,2, which means that G(x̂ j ) ≈ 0 for j = 1, . . . , 6. Each of these
candidate zeroes x̂ j are then refined by applying Newton’s method to the map

x �→ G j (x) =
⎛
⎝ G(x)
〈	̂1, x − x̂ j 〉
〈	̂2, x − x̂ j 〉

⎞
⎠ . (6)

The two added inner product equations ensure isolation of the solution (hence quadratic
convergence of the Newton iterates) and that the Newton correction is perpendicular to the
tangent plane. This map can similarly be used to refine the original zero x̂0.
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Fig. 2 The hexagonal patch with normal vector indicated by an arrow. In this initial configuration, every node
except for x̂0 is a boundary node. The boundary edges are blue (Color figure online)

This initial hexagonal “patch” is itself formed by six triangles; see Fig. 2. The continuation
algorithm proceeds by selecting one of the boundary vertices (i.e. one of the vertices x̂1
through x̂6) and attempting to “grow” the manifold further. We describe this “growth” phase
below. However, first, some terminology. The vertices will now be referred to as nodes. An
edge is a line segment connecting two nodes, and they will be denoted by pairs of nodes:
{x̂i , x̂ j } for node x̂i connected to x̂ j . Two nodes are incident if they are connected by an edge.
A simplex is the convex hull of three edges that form a triangle. Once the hexagonal patch is
created, the data consists of:

• The nodes x̂0, . . . , x̂6;
• The “boundary edges” {x̂1, x̂2}, . . . , {x̂5, x̂6}, {x̂6, x̂1};
• The six simplices formed by triangles with x̂0 as one of the nodes.

Two simplices are adjacent if they share an edge. An internal simplex is a simplex that is
adjacent to three other simplices, and it is a boundary simplex otherwise. Therefore, the six
simplices of the initial patch are all considered boundary since they are adjacent to exactly
two others. Similarly, an edge of a simplex can be declared boundary or internal; internal
edges are those that are sharedwith another simplex, and boundary edges are not. A boundary
node is any node on a boundary edge, a frontal node is a boundary node on an edge shared
by two simplices, and an internal node is a node that is not a boundary node.

Let x be a chosen frontal node (see Sect. 2.2.3 for a general discussion on frontal node
selection). By construction, x is part of (at least) three distinct edges, two of which connect
to boundary nodes, and at least one that connects to an internal node. The algorithm to grow
a simplex is as follows. See Fig. 3 for a visualization.

1. Compute an orthonormal basis for the tangent space TxM.
2. Compute the (average) gap complement direction. Let x◦1 , . . . , x◦m denote the list of inter-

nal nodes nodes incident to x . The gap complement direction is yc = −x + 1
m

∑m
i=1 x◦i .

3. Let x1 and x2 denote the boundary nodes incident to x ; form the edge directions y1 =
x1 − x and y2 = x2 − x .

4. Orthogonally project yc, y1 and y2 onto the tangent plane TxM. Let these projections be
denoted Pyc, Py1 and Py2. Introduce a two-dimensional coordinate system on TxM by
way of a “unitary” (see Sect. 2.2) transformation to R

2. Let P̃ yc, P̃ y1 and P̃ y2 denote
the representatives in R2.

5. In the local two-dimensional coordinate system, compute the counter-clockwise (posi-
tive) angle θ1 required to complete a rotation from P̃ yc to P̃ y1, and the counter-clockwise
(positive) angle θ2 required for rotation from P̃ yc to P̃ y2. The gap angle γ and orientation
ρ is
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Fig. 3 Cartoon diagram of the simplex growth phase. For visualization purposes, we think of x1 and x2 as being
in the tangent space TxM; in reality, these should be close to the tangent space but not strictly contained in
it. The boundary edges {x, x1} and {x, x2} are blue, and these form a simplices with the interior edge {x, x◦}
that generates the gap complement direction. The predictor “fan”, after being mapped back to the tangent
space, consists of the vertices x̂1, x̂2 and x̂3. The four new simplices that can be formed, namely {x, x̂1, x̂2},
{x, x̂2, x̂3}, {x, x̂1, x2} and {x, x̂3, x1}, share the same angle at the x vertex

γ = max{θ1 − θ2, θ2 − θ1}, ρ =
{
1, θ2 > θ1
2 θ2 < θ1

6. If γ < π
6 then close the gap: add the the triangle formed by the nodes {x, x1, x2} to the

list of simplices, flag it as a boundary simplex, flag x as an internal node, and conclude
the growth step. Otherwise, proceed to step 7.

7. Generate the predictor “fan” in R2: let k = min {1, �3θ/π�} and define the predictors
P̃ ỹ j = R( jγ /k)P̃ yρ, j = 1, . . . , k,

for R(θ) the 2× 2 counterclockwise rotation matrix through angle θ .
8. Invert the unitary transformation and map P̃ ỹ j into the tangent plane TxM; let the result

be the vectors P ỹ j , j = 1, . . . , k.
9. Define predictors x̂ j = x + σ P ỹ j for j = 1, . . . , k, where σ is a user-specified step

size. Refine them using Newton’s method applied to (6), where 	̂1 and 	̂2 are now the
orthonormal basis for TxM.

10. Add the triangles formed by nodes {x, x̂1, x̂2}, {x, x̂2, x̂3}, . . . , {x, x̂k−1, x̂k}. To the list
of simplices, flag them as boundary simplices, and flag x as an internal node. Do the
same with the triangles formed by {x, x̂1, ∗} and {x, x̂k, ∗}, where ∗ denotes ones of x1
and x2, depending on orientation ρ.

At the end of the simplex growth algorithm, one or more boundary simplices is added
to the dictionary, and one additional node will be flagged as internal. The structure of this
algorithm ensures that each simplex added to the dictionary will be adjacent to exactly two
others, indicating that our convention of internal vs. boundary simplices is effective. Once
the growth algorithm is complete, another frontal node is selected and the growth phase is
repeated. This continues until a sufficient portion of the manifold has been computed (i.e. a
user-specified exit condition is reached), or until a Newton’s method correction fails.

2.2 Comments on Implementation

Here we collect some remarks concerning implementation of the finite-dimensional con-
tinuation. These comments may be applicable for general continuation problems, but we
will often emphasize our specific situation which is continuation of periodic orbits in delay
differential equations.
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2.2.1 Complex Rotations for the Kernel of DG(x)

First, generating the kernel elements {	̂1, 	̂2} of DG(x̂) for an approximate x̂ must be
handled in away that is appropriate to the spaceX . In our problem,X has additional structure:
it is a subset of a complexified real vector space equippedwith a discrete symmetry. However,
in our implementation (that is, in the environment of MATLAB) we work on a generic
complex vector space without this symmetry, so when we compute kernel elements using
QR decomposition, the computed vectors are not necessarily inX . We fix this by performing
a complex rotation to put the kernel back into X . This can always be done because 	̂1 and
	̂2, as computed using QR, are always C-linearly independent.

2.2.2 Orthonormal Basis for the Tangent Space

The next point concerns the “orthonormal basis” of Tx̂M. Let us be a bit more pre-
cise. In our problem, X is a product of the form R

n × V , where V ⊂ C
2M+1

consists of vectors v = (v−M , v−M+1, . . . , vM−1, vM ) such that v = Sv, where Sv =
(vM , vM−1, . . . , v−M+1, v−M ). Consider the standard inner product 〈·, ·〉 onCn+2M+1. Once
a basis {	̂1, 	̂2} of Tx̂M has been computed, these basis vectors can be interpreted as being
elements of Cn+2M+1, and we say that they are orthogonal if 〈	̂1, 	̂2〉 = 0. It is straight-
forward to verify that the Gram-Schmidt process applied to this basis produces yet another
basis of Tx̂M (that is, it does not break the symmetry), and that the new basis is orthonormal
with respect to 〈·, ·〉.

2.2.3 Node Prioritization for the Simplex Growth Algorithm

A suitable selection of a frontal node for simplex growth might not be obvious. First, nodes
that are more re-entrant (i.e. have many edges incident to them) are generally given higher
priority. This is because such nodes are more likely to have the simplex growth algorithm
perform the close the gap sub-routine.Wewant to avoid having thin simplices, so prioritizing
the closing off of re-entrant nodes takes priority. After this, we typically grow from the
“oldest” boundary node.

2.2.4 Local Coordinate System inR2 for the Tangent Space

Finally, we must discuss the generation of a two-dimensional coordinate system for TxM. If
	̂1 and 	̂2 are an orthonormal basis for the tangent space, then the map

y �→ Ly = (	̂∗1y, 	̂∗2y)

is invertible, where 	̂∗i denotes the conjugate transpose of 	i . Writing Ly = (u, v) ∈ C
2

for y ∈ X , one can verify that (u, v) is the unique solution of

y = 	̂1u + 	̂2v.

In particular, the range of this map is R2 (that is, each of u and v is real) for our specific
problem, where the spaceX isRn×V , withV having the symmetry described two paragraphs
prior. The inverse map is

(u, v) �→ L−1(u, v) = 	̂1u + 	̂2v.
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Moreover, this map is unitary in the sense that 〈Ly, Lw〉 = 〈y, w〉 for y, w ∈ X , where
on the left-hand side we take the standard inner product on R

2. It is for these reasons that
rotations on R

2 performed after the action of L are consistent with rotations in the tangent
space relative to the gap complement direction.

2.3 Continuation in a Banach Space

Two-parameter continuation can be introduced generally in a Banach space. LetG : X → Y ,
with X and Y being Banach spaces. To connect this formulation with the one of Sect. 2.1,
we suppose that there exist projection operators πX : X → X , πY : Y → Y , and associated
embeddings iX : X ↪→ X , iY : Y ↪→ Y , such that G = πYG ◦ iX . In other words, we
interpret G : X → Y to be a finite-dimensional projection of G : X → Y . In what follows,
wewill present a connection between the approximate zeroes of G (i.e. obtained by numerical
continuation) and approximate zeroes of G.

Abstractly, let x̂0, x̂1, x̂2 ∈ X be the three nodes of a simplex obtained by the numerical
continuation scheme for zeroes of G. Then we may introduce a coordinate system on this
simplex as follows: write each element x̂s of this simplex as a unique linear combination

x̂s = x̂0 + s1(x̂1 − x̂0)+ s2(x̂2 − x̂0) (7)

for s = (s1, s2) ∈ � = {(a, b) ∈ R
2 : 0 ≤ a, b ≤ 1, 0 ≤ a + b ≤ 1}. Let {	̂ j,1, 	̂ j,2}

for j = 0, 1, 2 denote an orthonormal basis for the kernel of DG(x̂ j ). We can then form the
interpolated kernels

	̂s,i = 	̂0,i + s1(	̂1,i − 	̂0,i )+ s2(	̂2,i − 	̂0,i )

for i = 1, 2. We introduce a nonlinear map Gs : X → Y × R
2,

Gs(x) =
⎛
⎝ G(x)
〈	̂s,1, πX x − x̂s〉
〈	̂s,2, πX x − x̂s〉

⎞
⎠ . (8)

The objective is to prove that Gs has a unique zero close to x̂s for each s ∈ �. If this can
be proven, and in fact Gs is Ck for some k ≥ 1, then one can prove [10] that the the zero
set of G is a Ck , two-dimensional manifold. If this same can be proven for a collection of
simplices, then the zero set is globally (i.e. on the union of the cobordant simplicial patches) a
Ck manifold over all patches that can be proven; that is, the transition maps between patches
are Ck .

Remark 1 There is a subtle point concerning the relative orientations of the individual kernel
elements 	̂0,i , 	̂1,i and 	̂2,i that are used to define the interpolation 	̂s,i . The validated con-
tinuation (see Sect. 2.4) is unstable, and can even fail outright, if the interpolated kernels 	̂s,i

vary too much over s ∈ �. If these vectors all lived in the exact same two-dimensional
tangent space, this would be very straightforward; we could simply (real) rotate and/or
reflect each basis {	̂1,i , 	̂2,i } for i = 1, 2 so that they matched {	̂1,0, 	̂2,0} exactly. How-
ever, these vectors live in different tangent spaces, so it is not as easy. The more consistent
differential-geometric way to solve the problem would be to parallel transport the tangent
basis {	̂1,0, 	̂2,0} to the other two nodes and use these as bases for the tangent spaces
there. We do nothing so sophisticated. We merely perform (real) rotations or reflections of
the orthonormal bases {	̂1,i , 	̂2,i } in their respective tangent spaces (two-dimensional) for
i = 1, 2 in such a way that, in norm, these are as close as possible to {	̂1,0, 	̂2,0}. In practice,
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this has the effect of promoting enough alignment of the bases that proofs are feasible. We
emphasize that this alignment process is only needed for the validated continuation; using
misaligned tangent bases is not a problem for the steps described in Sect. 2.1.

2.4 Validated Continuation and the Radii Polynomial Approach

In order to prove the existence of a zero of a map F : X → Y or, more generally, a
family of zeroes of a parameterized map Fs : X → Y for parameter s, some analytical
machinery is needed. If an approximate zero is available, one approach is to use a contraction
mapping argument, applied to a Newton-like operator initialized in a neighbourhood of the
approximate zero. The radii polynomial approach is one such general-purpose proof strategy.
It is essentially a Newton–Kantorovich theoremwith an approximate derivative, approximate
inverse, and domain parametrization. It will be used to connect the approximate zeroes of
G with exact zeroes of G from the previous section. We state it generally for a family of
s ∈ �-dependent maps Fs : X1 → X2. We include a short proof for completeness. Some
general background and applications of this method can be found in [32] and references cited
therein.

Theorem 1 Suppose Fs : X1 → X2 is differentiable for each s ∈ �, where X1 and X2 are
Banach spaces. Let x̂s ∈ X1 for all s ∈ �. Suppose there exist for each s ∈ � a bounded
linear operator A†

s : X1 → X2, a bounded and injective linear operator As : X2 → X1,
and non-negative reals Y0, Z0, Z1 and Z2 = Z2(r) such that

||As Fs(x̂s)|| ≤ Y0 (9)

||I − As A
†
s ||B(X1,X1) ≤ Z0 (10)

||As(DFs(x̂s)− A†
s )||B(X1,X1) ≤ Z1 (11)

||As(DFs(x̂s + δ)− DFs(x̂s))||B(X1,X1) ≤ Z2(r), ∀δ ∈ Br (x̂s) ⊂ X1, (12)

for all s ∈ �, where Br (x̂s) is the closed ball of radius r centered at x̂s , and || · ||B(X1,X1)

denotes the induced operator norm on X1. Suppose there exists r0 > 0 such that the radii
polynomial

p(r) = r Z2(r)+ (Z1 + Z0 − 1)r + Y0

satisfies p(r0) < 0. Then for each s ∈ �, there is a unique xs ∈ Br0(x̂s) such that Fs(xs) = 0.
If (s, x) �→ Fs(x) and s �→ As are Ck, then the same is true of s �→ xs .

Proof Define the Newton-like operator Ts(x) = x − As Fs(x). We will show that Ts is a
contraction on Br0(x̂s), uniformly for s ∈ �. First, write x ∈ Br0(x̂s) in the form x = x̂s + δ

for some ||δ||X ≤ r . Then

||DTs(x)|| = ||I − AsDFs(x)||
≤ ||I − As A

†
s || + ||As(A

†
s − DFs(x̂s))|| + ||As(DFs(x̂s)− DFs(x̂s + δ))||

≤ Z0 + Z1 + Z2(r),

Now, using the triangle inequality and the mean-value inequality,

||Ts(x)− x̂s || ≤ ||Ts(x̂s + δ)− Ts(x̂s)|| + ||Ts(x̂s)− x̂s ||
≤ r sup

t∈[0,1]
||DTs(x̂s + tδ)||B(X1,X1) + ||As Fs(x̂s)||

≤ (Z0 + Z1 + Z2(r))r + Y0.
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Choosing r = r0, the inequality p(r0) < 0 implies ||Ts(x) − x̂s || < r , so Ts is a self-map
on Br0(x̂s) with its range in the interior. Moreover, since p(r0) < 0, we get that Z0 + Z1 +
Z2(r0) < 1, which proves that Ts : Br0(x̂s)→ Br0(x̂s) is a contraction (uniformly in s ∈ �).
By the Banach fixed point theorem, Ts has a unique fixed point xs ∈ Br0(x̂s) for each s ∈ �,
and s �→ xs is Ck provided the same is true of (s, x) �→ Ts(x). Since As is injective, Fs has
a unique zero in Br0(x̂s) if and only if Ts has a unique fixed point there. ��
Remark 2 For our problem, injectivity of As will always follow from a successful verification
of p(r0) < 0. See Lemma 4.

In order to apply the theorem, the left-hand sides of the inequalities (9)–(12) are typically
majorized using functional-analytic machinery. Ideally, one wants a quantity that is explic-
itly computable. Such upper bounds are then rigorously computed with interval arithmetic,
yielding the bounds Y0 through Z2(r). In our codes, we use the INTLAB [27] interval arith-
metic library. The computer-assisted proof then consists of a certificate: the radius r0, and
the bounds Y0 through Z2(r0), such that p(r0) < 0.

Let x̂s be the convex combinationdefinedby (7) for the simplexnodes x̂0, x̂1 and x̂2.Wewill
say this simplex has been validated if we successfully find a radius r0 such that the conditions
of the radii polynomial theorem are successful for the nonlinear map Gs : X → Y × R

2.
In our implementation, we generate simplices “offline” first. This allows the workload to

be distributed across several computers, since the validation step can be restricted to only a
subset of the computed simplices.Wedo not implement a typical refinement procedure,where
simplices that fail to validated are split, with more nodes added and corrected with Newton.
Rather, we implement an adaptive refinement step, which can help with the validation if
failure is primarily a result of interval over-estimation. See Sect. 4.2.1.

Remark 3 The operators As and A†
s have standard interpretations in terms of the nonlinear

map Fs . The operator A
†
s : X1 → X2 is expected to be an approximation of DFs(x̂s), which

means that Z1 is a measure of the quality of the approximation. Conversely, As : X2 → X1

is expected to be an approximation of the inverse of A†
s , so that Z0 measures the quality of

this approximation. Indirectly, As acts as an appoximation of DFs(x̂s)−1.

2.5 Globalizing theManifold

Theorem 1 guarantees that the map from the standard simplex to the zero set of Gs(·) is C1.
There is then a natural question as to the smoothness of the manifold obtained by gluing
together the images of the C1 maps. This is answered in the affirmative in [10], and is
primarily a consequence of the numerical data being equal on cobordant simplices.

3 Continuation of Periodic Orbits Through (Degenerate) Hopf
Bifurcations

In this section, we construct a nonlinear map whose zeroes will encode periodic solutions of
a delay differential equation

ẏ(t) = f (y(t + μ1), . . . , y(t + μJ ), α, β) (13)

for f : (Rn)J+1 × R
2 → R

n , with some (positive, negative or zero) constant delays
μ1, . . . , μJ , and distinguished system parameters α, β. We will briefly consider ordinary

123



Journal of Dynamics and Differential Equations

differential equations in Sect. 5 as a special case. We assume that f is sufficiently smooth to
permit further partial derivative computations.

Following [33], we use the desingularization approach to isolate periodic orbits from
(potentially) nearby steady states. This approach allows us to put a large distance (in the sense
of a suitable Banach space) between steady states and periodic orbits that arise from Hopf
bifurcations. This is exposited in Sect. 3.1, where we also discuss some details concerning
non-polynomial nonlinearities.

The next Sect. 3.2 is devoted to the development of a nonlinear map whose zeroes encode
periodic orbits of our delay differential equation. In this map, periodic orbits are isolated
from fixed points. We present the map abstractly at the level of a function space, and then
with respect to a more concrete sequence space.

In Sect. 3.3, we lift the map of the previous section into the scope of two-parameter
continuation. We develop an abstract template for the map on a relevant Banach space,
define an approximate Fréchet derivative near a candidate zero of this map, and investigate
some properties of the Newton-like operator. Specifically, we verify that numerical data
corresponding to an approximate real periodic orbit, under conditional contraction of the
Newton-like operator, will converge to a real periodic orbit.

3.1 Desingularization, Polynomial Embedding and Phase Isolation

We begin by doing a “blowup” around the periodic orbit. Write y = x+az, for x a candidate
equilibrium point and a being an auxiliary real scale parameter. Then we get the rescaled
vector field

f̃ (z1, . . . , z J , x, a, α, β)

=
{
a−1( f (x + az1, . . . , x + azJ , α, β)− f (x, . . . , x, α, β)), a �= 0∑J

j=0 dy j f (x, . . . , x, α, β)z j , a = 0.

We impose ||z|| = 1, so that a behaves like the relative norm-amplitude of the periodic orbit.
The vector field above is Ck provided the original function f is Ck and x is an equilibrium
point; that is, f (x, . . . , x, α, β) = 0. At this stage we can summarize by saying that our goal
is to find a pair (x, z) such

f (x, . . . , x, α, β) = 0

ż(t) = f̃ (z(t + μ1), . . . , z(t + μJ ), x, a, α, β),

||z|| = 1

where z is ω-periodic for an unknown period ω; equivalently, the frequency of z is ψ = 2π
ω
.

Remark 4 It is a common strategy in rigorous numerics, especially for periodic orbits, that
time is re-scaled so that the period appears as a parameter in the differential equation. We do
not do that here, since this would have the effect of dividing every delay μ j by the period.
This causes its own set of problems.

In what follows, it will be beneficial for the vector field f̃ to be polynomial. This is
because we will make use of a Fourier spectral method, and polynomial nonlinearities in
the function space translate directly to convolution-type nonlinearities on the sequence space
of Fourier coefficients. While we can make due with non-polynomial nonlinearities, it is
greatly simplifies the computer-assisted proof if they are polynomial. To fix this, we generally
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advocate the use of the polynomial embedding technique. The idea is that many analytic, non-
polynomial functions are themselves solutions of polynomial ordinary differential equations.
The reader may consult [31] for a brief survey of this idea in the context of delay differential
equations. See Sect. 7.2 for a specific example.

Applying the polynomial embedding procedure always introduces additional scalar differ-
ential equations. If we need to introduce m extra scalar equations to get a polynomial vector
field, this will also introduce m natural boundary conditions that fix the initial conditions of
the new components. As a consequence, we need to bring in m unfolding parameters to bal-
ance the system. This is accomplished in a problem-specific way; see [31] for some general
guidelines and a discussion on the need of these extra unfolding parameters. By an abuse of
notation, we assume f̃ is polynomial (that is, the embedding has already been performed),
and we write it as

f̃ (z1, . . . , z J , x, a, α, β, η),

where η ∈ R
m is a vector representing the unfolding parameter, and we now interpret

f̃ : (Rn+m)J+1×R
2 → R

n+m . We then write the natural boundary condition corresponding
to the polynomial embedding as

θBC (z(0), x, a, α, β, η) = 0 ∈ R
m .

It can also be useful to eliminate non-polynomial parameter dependence from the vector
field, especially if the latter has high-order polynomial terms with respect to the state variable
z. This can often be accomplished by introducing extra scalar variables. For example, if f̃ is

αe−px z1 − βz22 + η1

and we want to eliminate the non-polynomial term e−px from the vector field, then we can
introduce a new variable η2 and impose the equality constraint 0 = η2 − e−px . The result is
that the vector field becomes

αη2z1 − βz22 + η1.

Since this operation introduces new variables and additional constraints, we incorporate the
constraints as extra components in the natural boundary condition function θBC of the poly-
nomial embedding. Since this type of operation will introduce an equal number of additional
scalar variables and boundary conditions, we will neglect them from the dimension counting.

Remark 5 If we want to formalize the embedding process for parameters, we can introduce
differential equations for them. Indeed, in the example above, we have η̇2 = 0, and this dif-
ferential equation can be added to the list of differential equations that result from polynomial
embeddings of the original state variable z. In this way, we can understand m as the total
embedding dimension. It should be remarked, however, that in numerical implementation,
objects like η2 really are treated as scalar quantities.

The final thing we need to take into account is that every periodic orbit is equivalent to
a one-dimensional continuum by way of phase shifts. Since our computer-assisted approach
to proving periodic orbits is based on Newton’s method and contraction maps, we need to
handle this lack of isolation. This can be done by including a phase condition. In this paper
we will make use of an anchor condition; we select a periodic function ẑ having the same
period as z, and we require that ∫

〈z(s), ẑ′(s)〉ds = 0.
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3.2 Zero-Finding Problem

We are ready to write down a zero-finding problem for our rescaled periodic orbits. First,
combining the work of the previous sections, we must simultaneously solve the equations
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ż = f̃ (z(t + μ1), . . . , z(t + μJ ), x, a, α, β, η), (delay differential equations)

‖z‖ = 1, (amplitude condition of scaled orbit)∫ 〈z(s), ẑ′(s)〉ds = 0, (anchor condition)

f (x, . . . , x, α, β) = 0, (x is a steady state)

θBC (z(0), x, a, α, β, η) = 0. (embedding boundary condition)
(14)

At this stage, the period ω of the periodic orbit is implicit. In passing to the spectral repre-
sentation, we will make it explicit. Define the frequency ψ = 2π

ω
and expand z in Fourier

series:

z(t) =
∑
k∈Z

zke
ikψ t . (15)

Recall that for a real (as opposed to complex-valued) periodic orbit, zk ∈ C
n+m will satisfy

the symmetry zk = z−k . To substitute (15) into the differential equation in (14), we must
examine how time delays transform under Fourier series. Observe

z(t + μ) =
∑
k∈Z

zke
ikψμeikψ t ,

which means that at the level of Fourier coefficients, a delay of μ corresponds to a complex
rotation

zk �→ (ζμ(ψ)z)k
def= eikψμzk . (16)

Note that this operator is linear on CZ
n+m and bounded on �1ν(C

n+m).
Define ζ(ψ) : �1ν(Cn+m)→ �1ν(C

n+m)J by

ζ(ψ)z = (ζμ1(ψ)z, . . . , ζμJ (ψ)z).

Similarly, we define the derivative K on CZ as (Kz)k = kzk . We extend this operator to CZ
n

componentwise. Since f̃ is polynomial, subsituting (15) into the first equation of (14) will
result in an equation of the form

ψi K z = f(ζ(ψ)z, x, a, α, β, η)

for a function f : (CZ
n+m)J × R

n × R × R
2 × R

m → (CZ
n+m) being a (formal) vector

polynomial with respect to Fourier convolution, in the arguments (CZ
n+m)J . Observe that

we have abused notation and identified the function z in (15) with its sequence of Fourier
coefficients. As an example, the nonlinearity z �→ z(t)2z(t +μ) is transformed in Fourier to
the nonlinearity

z �→ (z ∗ z) ∗ (ζμ(ψ)z).

Now, let ẑ be an approximate periodic orbit. We can define new amplitude and phase
conditions as functions of z and the numerical data ẑ; see [33]. Then, define a map G : X ×
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R
2 → U , with X = �1ν(C

n+m)×Rn×R×R×Rm , andU = Kν(C
n+m)×Rn×C×C×Cm ,

by

G(z, x, a, ψ, η, (α, β)) =

⎛
⎜⎜⎜⎜⎝

−ψi K z + f(ζ(ψ)z, x, a, α, β, η)

f (x, . . . , x, α, β)

〈z, K 2 ẑ〉 − 1
〈z, i K ẑ〉

θBC (
∑

k zk, x, a, α, β, η)

⎞
⎟⎟⎟⎟⎠ . (17)

Let X be equipped with the norm

||(z, x, a, ψ, η)|| = max{||z||ν, |x |, |a|, |ψ |, |η|}, (18)

where all space norms are selected a priori and could be distinct. That is, we allow for the
possibility of a refined weighting1 of the norms being used. Then X is a Banach space, and
the same is true forU when equipped with an analogous norm, replacing || · ||ν with || · ||ν,K .

It will sometimes be convenient to compute norms on theRn+m+4-projection of X . In this
case, if u = (z, y) ∈ X and y ∈ R

n+m+4 is represented (ismorphically) as y = (x, a, ψ, η) ∈
R
n × R × R × R

m , then we define ||y|| = max{|x |, |a|, |ψ |, |η|}, where any weighting is,
again, implicit. Then ||(z, y)|| = max{||z||ν, ||y||}.

Introduce V = Symm(�1ν(C
n+m)) × R

n × R × R × R
m . Any zero of F in the space V

uniquely corresponds to a real periodic orbit of (13) by way of the Fourier expansion (15)
and the blow-up coordinates y = x + az. Moreover, the restriction of F to V has range in
W = Symm(Kν(C

n+m)) × R
n × R × R × R

m . Each of V and W are Banach spaces over
the reals, and so from this point on we work with the restriction F : V → W .

3.3 Finite-Dimensional Projection

To set up the rigorous numerics and the continuation, we need to define projections of V and
W onto suitable finite-dimensional vector spaces. Let πM : �1ν(Cn+m)→ �1ν(C

n+m) denote
the projection operator

(πMz)k =
{
zk, |k| ≤ M
0 |k| > M,

and π∞ = I�1ν (Cn+m ) − πM its complementary projector. Consider the finite-dimensional
vector space

V M def= πM(Symm(CZ

n+m)
)× R

n × R× R× R
m,

and extend the projection to a map πM : V → V M as follows:

πM (z, x, a, ψ, η) = (πMz, x, a, ψ, η).

Now define a map G : V M × R
2 → V M

G(z, x, a, ψ, η, (α, β)) = πMG(z, x, a, ψ, η, (α, β)). (19)

G is well-defined and smooth, and we have G = πMG ◦ iV M , where iV M : V M ↪→ V is the
natural inclusion map. Therefore, this definition of the projection of G is consistent with the
abstract set-up of Sect. 2.3.

1 It becomes notationally cubmersome to include references to weights, or to explicitly label the different
norms, so we will refrain from doing so unless absolutely necessary.
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3.4 A Reformulation of the ContinuationMap

It will be convenient to identify V ×R
2 and V M ×R

2 respectively with isomorphic spaces

V × R
2 ∼ πM(Symm

(
�1ν(C

n+m)
))× R

n+m+4 × π∞
(
Symm

(
�1ν(C

n+m)
)) def= �

V M × R
2 ∼ πM(Symm

(
�1ν(C

n+m)
))× R

n+m+4 def= �M

There is a natural embedding (zM , ρ) �→ (zM , ρ, 0) of �M into �. The isomorphism of V
with � is given by

(z, x, a, ψ, η, (α, β)) �→ (
πMz, (x, a, ψ, η, α, β), π∞z

)
.

�M is finite-dimensional, and as such our language will sometimes reinforce this by
describing matrices whose columns are elements of �M . This should be understood “up
to isomorphism”. The purpose of the isomorphism of V × R

2 with � is to symbolically
group all of the finite-dimensional objects together.

Given û j = (ẑ j , ρ̂ j ) ∈ �M for j = 0, 1, 2, let 	̂ j be a matrix whose columns are a basis
for the kernel of DFM (ẑ j , ρ̂ j ), and are therefore elements of V M × R

2 ∼ �M . For s ∈ �,
let ûs and 	̂s be the usual interpolations of the elements û j and bases 	̂ j for j = 0, 1, 2.

The continuation map Gs of (8) could now be defined for our periodic orbit function G.
However, it will be convenient in our subsequent discussions concerning the radii polynomial
approach to re-interpret the codomain of Gs as being

�̃
def= πMSymm(Kν(C

n+m))× R
n+m+4 × π∞Symm(Kν(C

n+m)).

Specifically, this will make it a bit easier to define an approximate inverse of DGs(ûs). The
codomain of Gs is

W × R
2 = (Symm(Kν(C

n+m))× R
n × R× R× R

m)× R
2

∼ Symm(Kν(C
n+m))× R

n+m+4

∼ �̃,

where the isomorphisms can be realized by permuting the relevant components of Gs and
splitting the Fourier space into direct sums. For (zM , ρ, z∞) ∈ �, a suitable isomorphic
representation of Gs is given by Fs : �→ �̃,

Fs(z
M , ρ, z∞) =

⎛
⎝−ψi K zM + πM f(ζ(ψ)(zM + z∞), ρ)

Js(zM , ρ, z∞)

−ψi K z∞ + π∞f(ζ(ψ)(zM + z∞), ρ)

⎞
⎠ def=

⎛
⎜⎝

F (1)
s

F (2)
s

F (3)
s

⎞
⎟⎠ , (20)

Js(zM , ρ, z∞) =

⎛
⎜⎜⎜⎜⎜⎜⎝

f (x, . . . , x, α, β)

〈zM , K 2ûs〉 − 1
〈zM , i K ûs〉

θBC (
∑

k(z
M
k + z∞k ), x, a, α, β, η)

〈	̂s,1, uM 〉 − ĉs,1
〈	̂s,2, uM 〉 − ĉs,2

⎞
⎟⎟⎟⎟⎟⎟⎠

, uM =
(
zM

ρ

)
∈ �M , (21)

where ρ = (x, a, ψ, η, α, β), and the ĉs, j for j = 1, 2 are interpolations

ĉs, j = 〈	̂0, j , û0〉 + s1(〈	̂1, j , û1〉 − 〈	̂0, j , û0〉)+ s2(〈	̂2, j , û2〉 − 〈	̂0, j , û0〉). (22)

123



Journal of Dynamics and Differential Equations

Remark 6 Strictly speaking, the final two components of Js are not the “standard” ones from
(8). The inner product 〈	s, j , πX x − x̂s〉 in the latter results in quadratic terms in s, while
the ones in (21) are s-linear. The impact of this change is that, theoretically, the Newton
correction is not strictly in the direction orthogonal to the interpolation of the tangent planes.
This change has no theoretical bearing on the validated continuation, and is done only for
ease of computation: it is easier to compute derivatives of linear functions than nonlinear
ones.

Remark 7 We have abused notation somewhat, since now we interpret f as a map

f : Symm(�1ν(C
n+m))× R

n+m+4 → Symm(Kν(C
n+m)).

It acts trivially with respect to the variable ψ . Also, we emphasize that Gs depends on the
numerical interpolants ûs and 	̂s .

SinceTheorem1 is statedwith respect to generalBanach spaces, the validated continuation
approach applies equally to the representation Fs : �→ �̃ of Gs : V → W . The only thing
weneed to do is specify a compatible normon�. This is straightforward: for (zM , ρ, z∞) ∈ �

and ρ = (x, a, ψ, η, α, β), a suitable norm is

||(zM , ρ, z∞)||� = max{||zM + z∞||ν, |x |, |a|, |ψ |, |η|, |α|, |β|},
where the norms on the components of ρ are the same2 as the ones appearing in (18). With
this choice, || · ||� is equivalent to the induced max norm on X ×R

2, with X equipped with
the norm (18) and R

2 the∞-norm.

3.5 Construction of A†s and As

Write ûs = (ẑs, x̂s, ψ̂s, âs, α̂s, β̂s), for s ∈ �. Denote the three vertices of � as s0 = (0, 0),
s1 = (1, 0) and s2 = (0, 1). Introduce an approximation of Fs as follows:

F̃s(z
M , ρ, z∞) =

⎛
⎝−ψi K zM + πM f(ζ(ψ)zM , ρ)

Js(zM , ρ, z∞)

−ψi K z∞

⎞
⎠ def=

⎛
⎜⎝

F̃ (1)
s

F̃ (2)
s

F̃ (3)
s

⎞
⎟⎠ . (23)

Formally, F̃s approximates Fs in the Fourier tail by neglecting the nonlinear terms, leaving
only the part coming from the differentiation operator.

Proposition 2 DF̃s(ûs) has the representation

DF̃s(ûs) =
⎛
⎜⎝

D1F̃ (1)
s (ûs) D2F̃ (1)

s (ûs) 0
D1F̃ (2)

s (ûs) D2F̃ (2)
s (ûs) D3F̃ (2)

s (ûs)

0 0 D3F̃ (3)
s (ûs)

⎞
⎟⎠ def= A†

s . (24)

Proof Since F (1)
s does not depend on z∞, the upper-right block of DFS(ûs) is the zero map.

Similarly, F (3)
s does not depend on either zM or ρ, so the finite-dimensional blocks in the z∞

(bottom) row are zero. ��

2 Including any weighting, which we recall is implicit.

123



Journal of Dynamics and Differential Equations

Theupper left 2×2block is equivalent to afinite-dimensionalmatrix operator. In particular,
D2F̃ (2)

s (ûs) is real. Also,

D3F̃ (3)
s (ûs) = −ψ̂s i Kπ∞

is invertible, with

D3F̃ (3)
s (ûs)

−1 = i(ψ̂s)
−1(Kπ∞)−1,

where ((Kπ∞)−1z)k
def= 1

k zk for |k| ≥ M + 1. Suppose we can explicitly compute S j ∈
R

(m+n+4)×(m+n+4) and Pj , Q j , R j complex matrices for j = 0, 1, 2 such that

(
Pj Q j

R j S j

)(
D1F̃ (1)

s j (ûs j ) D2F̃ (1)
s j (ûs j )

D1F̃ (2)
s j (ûs j ) D2F̃ (2)

s j (ûs j )

)
≈ I�M . (25)

We can then prove the following lemma.

Lemma 3 For s = (s(1), s(2)) ∈ �, define matrix interpolants Ps = P1 + s(1)(P2 − P1) +
s(2)(P3 − P1), and analogously define interpolants Qs, Rs and Ss . Introduce a family of
operators As as follows:

As =
⎛
⎜⎝

Ps Qs −QsD3F̃ (2)
s (ûs)i(ψ̂s)

−1(Kπ∞)−1
Rs Ss −Ss D3F̃ (2)

s (ûs)i(ψ̂s)
−1(Kπ∞)−1

0 0 i(ψ̂s)
−1(Kπ∞)−1

⎞
⎟⎠ . (26)

Suppose for j = 1, 2, 3, S j is real and, as maps, Pj , Q j and R j are equivalent to

Pj : πM (Symm(CZ

n+m))→ πM (Symm(CZ

n+m))

Q j : Rm+n+4 → πM (Symm(CZ

n+m))

R j : πM (Symm(CZ

n+m))→ R
n+m+4.

Then As : �̃→ � is well-defined.

Proof One can show As : �̃→ � is well-defined using the fact that each of Ps , Qs and Rs

is a real convex combination of maps to/from appropriate symmetric spaces, and noticing
that i Kπ∞ (and hence its inverse) satisfy the symmetry (i Kπ∞z)k = (i Kπ∞z)−k ��

The point here is that, due to (25), we have

As j ≈ DF̃s j (ûs j )
−1 ≈ (A†

s j )
−1

for j = 0, 1, 2, and if the interpolation points û j are close together, we expect DF̃s(ûs j ) to

be invertible for all s ∈ �, and DF̃s(ûs j )
−1 ≈ As .

Remark 8 Checking the conditions ofLemma3amounts to verifying conjugate symmetries of
thematrices Pj , Q j and R j . Numerical roundingmakes this a nontrivial task, so we generally
post-process the numerically computed matrices to impose these symmetry conditions.
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4 Technical Bounds for Validated Continuation of Periodic Orbits

Based on the previous section, we define a Newton-like operator Ts : �→ �

Ts(u) = u − AsFs(u), (27)

for s ∈ �. As described in Sect. 2.4, our goal is to prove that Ts is a uniform (for s ∈ �)
contraction in a closed ball centered at ûs using Theorem 1. If As can be proven (uniformly
in s) injective, this will prove the existence of a unique zero of Fs(·) close to ûs , thereby
validating the simplex and proving the smooth patch of our manifold.

In Sect. 4.1, we will demonstrate how the bound Z0 of the radii polynomial approach can
be used to obtain a proof of uniform (in s) injectivity of the operator As . We then provide
some detailed discussion concerning general-purpose implementation of the bounds Y and
Z in Sect. 4.2 through to Sect. 4.5.

4.1 Injectivity of As

The injectivity of As is a consequence of the successful identification of bounds Z0 of
Theorem 1 and the negativity of the radii polynomial. In particular,

Lemma 4 Suppose ||I − As A
†
s ||B(�,�) ≤ Z0 for all s ∈ �, with the operators As and A†

s of
Sect. 3.5. If Z0 < 1, then As is injective for s ∈ �.

Proof First, observe As has non-trivial kernel if and only if there exists u ∈ �M such
that Asu = 0. This is a consequence of the structure of the operator and injectivity of
(Kπ∞)−1. Therefore, it suffices to verify the injectivity of the restrictionAs = As |�M . Define
A†
s = A†

s |�M . By definition of the norm on �, we have ||I −AsA
†
s ||B(�M ,�M ) ≤ Z0 < 1 for

all s ∈ �. By Neumann series, it follows that AsA
†
s is boundedly invertible, which implies

As is surjective. Since �M is finite-dimensional, As is also injective. ��
Corollary 5 If the radii polynomial satisfies p(r0) < 0 for some r0 > 0, then As is injective
for s ∈ �.

4.2 The Bound Y0

To begin, expand the product AsFs(ûs). We get

AsFs(ûs) =
⎛
⎜⎝

PsF (1)
s (ûs)+ QsF (2)

s (ûs)− QsD3F̃ (2)
s (ûs)i(ψ̂s)

−1(Kπ∞)−1F (3)
s (ûs)

RsF (1)
s (ûs)+ SsF (2)

s (ûs)− Ss D3F̃ (2)
s (ûs)i(ψ̂s)

−1(Kπ∞)−1F (3)
s (ûs)

i(ψ̂s)
−1(Kπ∞)−1F (3)

s (ûs)

⎞
⎟⎠

Remark that F (3)
s (ûs) has range in a finite-dimensional subspace of �; specifically, it will

be in the part of � such that the components in CZ
n+m with index (in absolute value) greater

than Md + 1 are zero, where d is the maximum degree of the (convolution) polynomial f .
As such, AsFs(ûs) is explicitly computable.

In practice, we must compute an enclosure of the norm ||AsFs(ûs)|| for all s ∈ �. This is
slightly less trivial. We accomplish this using a first-order Taylor expansion with remainder.
For the function (s, u) �→ Fs(u), denote by ∂s the Fréchet derivative with respect to s, and D
the derivative with respect to u. Given the interpolants ûs = (v̂s, ρ̂s) and 	̂s, j , let û′ and 	̂′j
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denote their Fréchet derivatives with respect to s. Also, denote ĉ′s, j = ∂s ĉs, j , for ĉs, j defined
in (22). Note that these derivatives are constant, since the interpolants are linear in s. Then

Fs(ûs) = Fs0(û0)+
(
∂sFs0(û0)+ DFs0(û0)û

′)s + 1

2
R,

where the remainder termRwill be elaborated upon momentarily. The product of the linear-
order terms with As results in a function that is componentwise quadratic in s ∈ �, for
which we can efficiently compute an upper bound on the norm. The derivative DFs(ûs) is
implementable, and will be further discussed in Sect. 4.3. As for the ∂s term,

∂sFs(u) =
⎛
⎝ 0

∂sJs(u)

0

⎞
⎠ , ∂sJs(u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
〈z, K 2 ẑ′〉
〈z, i K ẑ′〉

0
〈	̂′1, u〉 − ĉ′s,1
〈	̂′2, u〉 − ĉ′s,2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where u = (z, ρ) and ûs = (ẑs, ρ̂s).
The remainderR is bounded by the norm of the second Fréchet derivative of s �→ Fs(ûs),

uniformly over s ∈ �. For each s ∈ �, let this second derivative be denotedD2Fs(ûs). Then

D2Fs(ûs) = ∂2s Fs(ûs)[e1, e2] + ∂s DFs(ûs)[û′e1, e2] + D∂sFs(ûs)[e1, û′e2]
+ D2Fs(ûs)[û′e1, û′e2]. (28)

where e1 and e2 denote the first and second (factor) projection maps on R
2 × R

2. The
derivative D2Fs will be discussed in Sect. 4.3. At this stage, we need only mention that it
acts bilinearly on û, and the latter is proportional in norm to the step size σ of the continuation
scheme, so the D2Fs term will be order σ 2. As for the derivatives involving ∂s , most of the
components are zero as evidenced by the previous calculation of ∂sFs(z, ρ), and it suffices
to compute the relevant derivatives of Js . We have

∂2s Js(ûs)[t1, t2] = 0, D∂sJs(ûs)[t, h] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
〈hz, K 2 ẑ′t〉
〈hz, i K ẑ′t〉

0
〈	̂′1t, h〉
〈	̂′2t, h〉

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with (t, h) ∈ R
2 × �, h = (hz, hρ). In terms of the step size, ∂2s Js(ûs) is order σ 2, while

D∂sFs(ûs) is orderσ . However, in (28), the latter term ismultiplied by ẑ′ = O(σ ). Therefore,
as expected, the remainder R is quadratic with respect to step size. We therefore compute

Y0 ≥ ||As(Fs(ûs)− 2−1R)|| + 1

2
||AsR||.

Since ||R|| = O(σ 2), the bound can be tempered quadratically by reducing the step size.
The caveat is that if ||As || and/or Fs has large quadratic terms, it might still be necessary to
take small steps.

Remark 9 Directly computing the norm ||AsR||would require a general-purpose implemen-
tation of the second derivative D2Fs(ûs); see (28). As we have stated previously, such an
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implementation would be rather complicated. Therefore, in practice, we perform another
level of splitting; namely, we use the bound

||AsR|| ≤ ||As
(
D2Fs(ûs)− D2Fs(ûs)[û′e1, û′e2]

) || + ||AsD
2Fs(ûs)[û′e1, û′e2]||.

The first term on the right of the inequality is explicitly implementable using only the
derivatives of Js and the finite blocks of As . For the second term, we use the bound
||As ||·||D2Fs(ûs)[û′e1, û′e2]||which, while not optimal, is implementable and good enough
for our purposes.

4.2.1 Adaptive Refinement

In continuation, the size of the Y0 bound is severely limited by the step size. To distribute
computations, we often want to compute the manifold first and then validate patches a
posteriori. However, once the manifold has been computed, adjusting and re-computing
patches of the manifold with smaller step sizes becomes complicated due to the need to
ensure that cobordant simplices have matched data, as discussed in Sect. 2.5. When the Y0
bound is too large due to interval arithmetic over-estimation, we can circumvent this by using
adaptive refinement on the relevant simplex. Formally, we subdivide the simplex into four,
using the interpolated zeroes at the nodes of the original simplex to define the data at the
nodes of the four new ones. The result is that cobordant data still matches, allowing for
globalization of the manifold. The advantage of this approach is that it can be safely done in
a distributed manner; adaptively refining one simplex does not require re-validating any of
its neighbours.

4.2.2 The Bound Z0

The product As A
†
s is block diagonal. Indeed, (I − As A

†
s )|π∞� = 0, whereas

(I − As A
†
s )|�M = I�M −

(
Ps Qs

Rs Ss

)(
D1F̃ (1)

s (ûs) D2F̃ (1)
s (ûs)

D1F̃ (2)
s (ûs) D2F̃ (2)

s (ûs)

)
.

Therefore, to compute Z0 it suffices to find an upper bound, uniformly in s, for the norm
of the above expression as a linear map from �M → �M . Interpreted as matrices, Ps , Qs ,
Rs and Ss are interpolants of other explicit matrices. However, the derivatives Di F̃ ( j)

s (ûs),
while evaluated at interpolants, are themselves “nonlinear” in s.

Remark 10 The implementation of ||(I − As A
†
s )|�M || is influenced by the way in which the

dependence on s is handled. For example, s can be treated as a vector interval and the norm
can be computed “in one step” using interval arithmetic, then we take the interval supremum
to get a bound. This can result in some wrapping (over-estimation). One way to control the
wrapping is to cover� in a mesh of balls, compute the norm ||(I− As A

†
s )|�M || for s replaced

with each of these interval balls, and take the maximum. Still another way is to carefully
compute a Taylor expansion with respect to s, although this task has a few technical issues
due to the fact that Fs(·) is generally only C1. We therefore only consider the “in one step”
approach in our implementation.
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4.3 A Detour: Derivatives of Convolution-Type Delay Polynomials, and Implications
to the Regularity ofFs

In our implementation of the Z1 and Z2 bounds, we will need to represent various partial
derivatives of the map (z, ρ) �→ f(ζ(ψ)z, ρ), where ρ = (x, a, ψ, η, α, β). This can quickly
become notationally cumbersome. Therefore, in this sectionwewill elaborate on the structure
of the derivatives of convolution terms of the following map:

�(z, ρ)
def= ρm

d∏
p=1

(
eiψ(ρ)μ jp K zcp

)
(29)

for z ∈ �1ν(C
n+m) and ρ ∈ R

m+n+4. Here, ψ(ρ) denotes the frequency component of ρ. In
this section, z will be indexed with the convention z = (z1, . . . , zn+m), where zq ∈ �1ν(C)

for q = 1, . . . , n + m. The objects (29) can be interpreted as individual terms of f1 through
fn+m . The product symbol indicates iterated convolution, while we remind the reader that
(eiψμK z)k = eiψμk zk . Here, d ∈ N is the (polynomial power) order of the term, the indices
cp ∈ {1, . . . , n + m} specify which factors of �1ν(C

n+m) are involved in the multiplication,
while jp ∈ {1, . . . , J } indicates which delays are associated to each of them. Finally, there
is a multi-indexm for multi-index power ρm. Importantly, the multi-indexm is trivial in the
frequency (ψ) component, and the latter only enters f in the form of the delay mapping ζ(ψ).

4.3.1 On the Codomain of2

The range of � is �1ν(C), but we will take an alternate codomain, explicitly defining � :
�1ν(C

n+m) × R
n+m+4 → Kν(C). This is a very deliberate choice, which we make for the

following reasons. First, recall thatFs has range in �̃, which has (in the Fourier components)
factors of Kν(C) due to the presence of the differentiation operator. Therefore, in the scope
of the Z1 and Z2 bounds, it is correct to expand the codomain of � to the larger space
Kν(C). Second, if the codomain of � is instead taken to be �1ν(C), then � would not be
differentiable. Indeed, as a simple example, consider the nonlinear map g(z, ρ) = eiψ(ρ)K z
with g : �1ν(C)× R→ �1ν(C) and ψ(ρ) = ρ. This function is an instance of the class �. If
g were differentiable, then necessarily we would have

DG(z, ρ)h = eiψ(ρ)K h1 + Keiψ(ρ)K zh2

for h = (h1, h2) ∈ �1ν(C) × R. However, DG(z, h) : �1ν(C) × R → �1ν(C) is generally
unbounded, since one can select h = (0, 1) and construct z such that ||Kz||ν = ∞ (note that
||Kz||ν = ||Keiψ(ρ)K z||ν).

4.3.2 On the Regularity of2

Before proceeding to the main result on differentiability of �, we need one preliminary
result about the existence of the convolution product z ∗ Kz for z ∈ �1ν(C). While the result
is elementary (it is closely related to the Leibniz law) and simple to prove, we were unable
to find a complete rigorous proof in the literature, so we provide one here.

Lemma 6 If z ∈ �1ν(C), then z ∗ Kz ∈ Kν(C) with ||z ∗ Kz||ν,K ≤ 1
2 ||z||2ν .
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Proof For each k ∈ Z, (z∗Kz)k exists. This is a consequence of Kz being summable. Indeed,
assume without loss of generality that ||z||ν = 1. Then |z j | ≤ ν−| j | ≤ 1 for each j , and

(z ∗ Kz)k =
∞∑

j=−∞
j z j zk− j ,

which converges uniformly since | j z j zk− j | ≤ | j |ν−| j | and ν > 1. It is then straightforward to
verify using the definition of the convolution that (z∗Kz)k = k(z∗z)−(z∗Kz)k , fromwhich
it follows that (z∗Kz) = k

2 (z∗z), and therefore ||(z∗Kz)||ν,K ≤ 1
2 ||z∗z||ν ≤ 1

2 ||z||2ν <∞.
��

The following lemmacannowbeprovenbymeans of a long, tedious bookkeeping exercise,
which we omit.

Lemma 7 If q ∈ {1, . . . , n + m}, then for z ∈ �1ν(C
n+m) and h ∈ �1ν(C),

d

dzq
�(z, ρ)h = ρm

d∑
r=1
cr=q

(eiψ(ρ)μ jr K h) ∗
d∏

p=1
p �=r

eiψ(ρ)μ jp K zcp

d

dψ(ρ)
�(z, ρ) = ρm

d∑
r=1

⎛
⎜⎜⎝

d∏
p=1
p �=r

eiψ(ρ)μ jp K zcp

⎞
⎟⎟⎠ ∗

(
i Kμ jr e

iψ(ρ)μ jr K zcr
)

d

dzq

[
d

dψ(ρ)
�(z, ρ)

]
h = ρm

d∑
r=1
cr=q

(i Kμ jr e
iψ(ρ)μ jr K h) ∗

d∏
p=1
p �=r

eiψ(ρ)μ jp K zcp

+ ρm
d∑

r=1
cr=q

(eiψ(ρ)μ jr K h) ∗
d∑

p=1
p �=r

⎛
⎜⎜⎝

d∏
ξ=1

ξ �=r ,p

eiψ(ρ)μ jξ K zcξ

⎞
⎟⎟⎠

∗ (i Kμ jp e
iψ(ρ)μ jp K zcp )

Also, d
dψ(ρ)

[
d
dzq

�(z, p)h
]
= d

dzq

[
d

dψ(ρ)
�(z, ρ)

]
h. If z ∈ C

n+m
Z

is band-limited,

d2

dψ(ρ)2
�(z, ρ) exists and

d2

dψ(ρ)2
�(z, ρ) = ρm

d∑
r=1

⎛
⎜⎜⎝

d∑
p=1
p �=r

⎛
⎜⎜⎝

d∏
q=1
q �=p,r

eiψ(ρ)μ jq K zcq

⎞
⎟⎟⎠ ∗ (i Kμ jp e

iψ(ρ)μ jp K zcp )

∗(i Kμ jr e
iψ(ρ)μ jr K zcr )

)

+ ρm
d∑

r=1

⎛
⎜⎜⎝

d∏
p=1
p �=r

eiψ(ρ)μ jp K zcp

⎞
⎟⎟⎠ ∗

(
−K 2μ2

jr e
iψ(ρ)μ jr K zcr

)
.
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Finally, if q1, q2 ∈ {1, . . . , n + m} and h1, h2 ∈ �1ν(C), then

d2

dzq2dzq1
�(z, p)[h1, h2]

= ρm
d∑

r=1
cr=q1

(eiψ(ρ)μ jr K h1) ∗

⎛
⎜⎜⎜⎜⎝

d∑
p=1

cp=q2
p �=r

(eiψ(ρ)μ jp K h2) ∗
d∏

ξ=1
ξ �=r ,p

eiψ(ρ)μ jξ K zcξ

⎞
⎟⎟⎟⎟⎠

Remark 11 The requirement that z be band-limited really is necessary for the existence of
d2

dψ(ρ)2
�(z, p). Indeed, if z ∈ �1ν(C

n+m), then Kz j ∈ Kν(C) but K 2z is not, and the latter
terms appear in the second derivative.

4.3.3 On the Regularity ofFs and invertibility of DFs

Before moving on to the Z1 and Z2 bound calculations, let us remind ourselves of the
following corollary to Theorem 1, which we state somewhat informally: if the hypotheses of
theorem are satisfied for the map Fs : X → Y (whose zeroes, parameterized by s, we wish
to prove), then DFs(xs) is boundedly invertible. This can be proven by means of a Neumann
series argument; see later the proof of Proposition 12 where this is done. In other words, if
the computer-assisted proof is successful, then DFs(xs) must be boundedly invertible.

Now, recall that our map of interest, Fs : � → �̃, has domain � whose “Fourier
series sequences” are in �1ν(C), and codomain �̃ with “Fourier series sequences” in Kν(C).
Importantly, the range of Fs is not in �, because Fs contains a differentiation operator. By
Lemma 7 and the subsequent remark, we know that Fs is C1, but is not twice differentiable.
As will be demonstrated in subsequent sections, this formulation of the map Fs results in
successful computer-assisted proofs, which implies that DFs(xs) : � → �̃ is boundedly
invertible.

We might now ask what happens if we embed the codomain of Fs into a space of “lower
regularity”. For example, consider an embedding jp : �̃ ↪→ �p , where

�p = πMSymm(K p
ν (Cn+m))× R

n+m+4 × π∞Symm(K p
ν (Cn+m)),

and the space K p
ν (Cn+m) is the subspace ofCZ

n+m whose elements z satisfy ||z||ν,p
def= |z0|+∑

|k|>0(ν
|k|/|k|p)|zk | < ∞. Note that � = �0, �̃ = �1, the strict inclusion �p ⊂ �p+1

holds, and at the level of the Fourier space factors, K p
ν can be interpreted as the “space of

pth derivatives” of �1ν . It is possible to prove the following.

Lemma 8 jp ◦ Fs is C p, for any p ≥ 1.

However, if p > 1, previous remarks demonstrate that Djp ◦ Fs(xs) : �0 → �p will
generally not be boundedly invertible. In other words, at the level of the computer-assisted
proof, nothing can be gained by embedding the codomain ofFs in a space of lower regularity.

4.4 The Bound Z1

To have a hope at deriving a Z1 bound, we will first determine the structure of the operator
DFs(ûs) − A†

s . Represented as an “infinite block matrix”, most blocks are zero. One can
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verify that

DFs(ûs)− A†
s =

⎛
⎝ 0 0 Z(1,3)

1
0 0 0

Z(3,1)
1 Z(3,2)

1 Z(3,3)
1

⎞
⎠ , (30)

with the individual terms Z(i, j)
1 being the operators

Z(1,3)
1 = πMD1f(ζ(ψ̂s)ẑs, ρ̂s)ζ(ψ̂s)π

∞

Z(3,1)
1 = π∞D1f(ζ(ψ̂s)ẑs, ρ̂s)ζ(ψ̂s)π

M

Z(3,2)
1 = π∞D1f(ζ(ψ̂s)ẑs, ρ̂s)ζ

′(ψ̂s)ẑsψ(·)+ π∞D2f(ζ(ψ̂s)ẑs, ρ̂s)

Z(3,3)
1 = π∞D1f(ζ(ψ̂s)ẑs, ρ̂s)ζ(ψ̂s)π

∞,

andψ : Rn+m+4 → R once again denoting the frequency component projection. Computing
Z1 requires precomposing (30) with As , which has the structure (26).

The development of general-purpose, implementable Z1 bounds (and, subsequently, the
Z2 bounds) will be made easier if we introduce interval unit vectors. In one of the spaces Rk

or Ck (for some dimension k), the interval unit vector is the unique interval vector V with
the property that ||V || = 1, and for any other interval vector v with ||v|| = 1, the inclusion
v ⊆ V is satisfied. We remind the reader that the norm on R

k or Ck is always taken to be a
weighted supremum norm, so the unit interval vector will depend on the weights.

4.4.1 Virtual Padding

For h ∈ � with ||h||� ≤ 1, denote

g = As(DFs(ûs)− A†
s )h, g = (gM , gρ, g∞). (31)

Computing Z1 is equivalent to a uniform (in h) bound for ||g||�. The tightness of this bound
is determined by two levels of computation:

• Some finite norm computations that are done on the computer;
• Theoretical bounds, which are inversely proportional to the dimension of the object on

which the finite norm computations are done.

By default, the size of the finite computation is linear in M , the number of modes. This
might suggest that explicitly increasing M – that is, padding our solution with extra zeros
and re-computing everything with more modes – is the only way to improve the bounds.
Thankfully, this is not the case.

Intuitively, As(DFs(ûs − A†
s ) is an “infinite matrix”, for which we have a canonical

numerical center determined by the pre- and post- composition with the projection operator
onto πM Symm(�1ν(C

n+m)) × R
n+m+4. This is determined by the number of modes M we

have specified in our numerical zero. However, there is no reason to only compute this
much of the infinite matrix explicitly; we could instead choose M ≥ M and compute the
representation of this operator onπM Symm(�1ν(C

n+m))×Rn+m+4. The result is that a larger
portion of As(DFs(ûs − A†

s ) is stored in the computer’s memory. The advantage of doing
this is that the explicit computations of norms are generally much tighter than theoretically
guaranteed estimates, while the theoretical bounds related to the tail will be proportional to

1
M+1 . See Fig. 4 for a visual representation.
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Fig. 4 Visual depiction of the virtual padding process as it applies to the operators DFs and As , left and right.
When we do not do virtual padding (M = M), the size of the objects we store in memory on the computer for
matrix operations are strictly determined by the dimension of the numerical zero. These objects are the inner
boxes in the infinite matrices above, and are depicted in pale yellow. The part outside of this box is controlled
analytically. When we use nontrivial virtual padding (M > M), we store a larger amount of information in
the computer for matrix operations; this is the outer dashed line box. Once again, the region outside the box is
controlled analytically. Regions in white represent zeroes, while dark green represents the infinite part of the
matrix, and light green a finite part of the matrix that is analytically controlled if there is no virtual padding
(Color figure online)

To exploit these observations, we decompose �1ν(C
n+m) (and hence the symmetric sub-

space) as a direct sum

πM(�1ν(C
n+m))⊕ πM+1,∞(�1ν(C

n+m)),

whereM ≥ M , and πM+1,∞ is now interpreted as the complementary projector to πM. In the
subsections that follow, M will be the virtual padding dimension. We therefore re-interpret
h = (hM, hρ, h∞) and g = (gM, gρ, g∞) as being in the product space

πM Symm(�1ν(C
n+m))× R

n+m+4 × πM+1,∞ Symm(�1ν(C
n+m)),

which remains (isometrically) isomorphic to �. Remark that the finite blocks Ps, Qs and Rs

coming from As must now be re-interpreted as linear maps involving πM Symm(�1ν(C
n+m)),

as appropriate. Similarly, the B blocks can be replaced by

Z(1,3)
1 = πMD1f(ζ(ψ̂s)ẑs, ρ̂s)ζ(ψ̂s)π

M+1,∞

Z(3,1)
1 = πM+1,∞D1f(ζ(ψ̂s)ẑs, ρ̂s)ζ(ψ̂s)π

M

Z(3,2)
1 = πM+1,∞D1f(ζ(ψ̂s)ẑs, ρ̂s)ζ

′(ψ̂s)ẑsψ(·)+ πM+1,∞D2f(ζ(ψ̂s)ẑs, ρ̂s)

Z(3,3)
1 = πM+1,∞D1f(ζ(ψ̂s)ẑs, ρ̂s)ζ(ψ̂s)π

M+1,∞,

In our implementation, this virtual padding is implemented automatically on an as-needed
basis.

Related to this virtual padding are the block projection operators π j1, j2 : �1ν(Cn+m) →
�1ν(C

n+m) defined according to

(π j1, j2 z)k =
{
zk, j1 ≤ |k| ≤ j2
0 otherwise.

These will be needed in subsequent sections, since the padding dimension and the degree of
the polynomial nonlinearities will play a role in the amount of data that must be stored to
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capture the Z1 and Z2 bounds. We define a related interval sequence 1 j1, j2 ⊂ �1ν(C
n+m) as

(1 j1, j2)k =
{ [1C]n+mν−|k|, j1 ≤ |k| ≤ j2
0 otherwise,

where [1C]n+m ⊂ C
n+m is the unit interval vector in C

n+m . This sequence generates an
implementable enclosure of the image of the closed unit ball in �1ν(C

n+m) under π j1, j2 .

4.4.2 The Norm ||gM + g∞||

Recall that the quantity g that we must bound to obtain Z1 is decomposed into three parts:
g = (gM, gρ, g∞); see (31) and the subsequent discussion. Here we compute the bound of
the Fourier part.

Before we begin deriving the bound, note that the sum gM + g∞ can be written

gM + g∞ = PsZ
1,3
1 h∞ + iψ̂−1s (I − QsD3F̃ (2)

s (ûs))(KπM+1:∞)−1

(Z3,1
1 hM + Z3,2

1 hρ + Z3,3
1 h∞)

= PsZ
1,3
1 h∞ + iψ̂−1s (I − QsT (ûs, ·))(KπM+1:∞)−1

(Z3,1
1 hM + Z3,2

1 hρ + Z3,3
1 h∞) (32)

where T is defined as

T (u, w) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0Rm

0R
0R

D1θBC
(∑

k zk, x, a, α, β, η
)∑

j w j

0R
0R

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and u = (z, (x, a, α, β, η)) ∈ �1ν(C
n+m)× R

n+m+4.

Lemma 9 Let z �→ f(z, ·) be a convolution polynomial of degree q. Let3 ψ1 = [−1, 1] ·
||(0, (0, 0, 1, 0, 0))||�M . Then

||gM + g∞|| ≤ ||PsπMD1f(ζ(ψ̂s)ẑs, ρ̂s)1M+1,qM||
+ 1

M+ 1
|ψ̂s |−1||I − QsT (ûs, vs + ws)||,

where the finitely-supported interval sequences vs,ws ⊂ �1ν(C
n+m) are defined according

to

ws = πM+1,qM(D1f(ζ(ψ̂s)ẑs, ρ̂s)ζ
′(ψ̂s)ẑsψ

−1
1 + D2f(ζ(ψ̂s)ẑs, ρ̂s)[1R]n+m+4

)

(vs) j,k =
{

([1C]n+m) j ||D1f j (ζ(ψ̂s)ẑs, ρ̂s)||L(�1ν (Cn+m ),�1ν (C)), j = 1, . . . ,m + n, k = 0
0 j = 1, . . . ,m + n, k �= 0

Proof Recall the decomposition (32). Since z �→ f(z, ·) is a convolution polynomial of degree
q , we have (D1f(ζ(ψ̂s)ẑs, ρ̂s)ek) j = 0 for all | j | ≤ M whenever |k| > qM. It follows that

3 The absolute value of ψ1 is precisely the weight attributed to the frequency component, relative to the
absolute value norm on R.
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the support of w �→ πMD1f(ζ(ψ̂s)ẑs, ρ̂s)w is contained in the range of π0,qM. Restricting
to the range of πM+1,∞,

||PsZ1,3
1 h∞|| ≤

∣∣∣
∣∣∣PsπMD1f(ζ(ψ̂s)ẑs, ρ̂s)1M+1,qM

∣∣∣
∣∣∣ .

Next, the range of hρ �→ Z(3,2)
1 hρ is contained in that of π0,qM (recall that while we have

used a different padding dimension M for the computation of norms, our data ẑs is still
band-limited to M modes). We have

||Z3,1
1 hM + Z3,3

1 h∞|| = ||D1f(ζ(ψ̂s)ẑs, ρ̂s)ζ(ψ̂s)(h
M + h∞)|| ≤ ||vs ||,

Z3,2
1 hρ = πM+1,∞(D1f(ζ(ψ̂s)ẑs, ρ̂s)ζ

′(ψ̂s)ẑsψ(·)+ D2f(ζ(ψ̂s)ẑs, ρ̂s)
)
hρ ∈ ws

Using these bounds/inclusions, the fact that vs is supported on the zeroth Fourier index, and
the properties of the map T , we get

||(I − QsT (ûs, ·))(KπM+1:∞)−1(Z3,1
1 hM + Z3,2

1 hρ + Z3,3
1 h∞)||

≤ ||I − QsT (ûs, vs + ws)||
M+ 1

.

Combining the previous bounds, we get the result claimed in the lemma. ��

Remark 12 While perhaps symbolically intimidating, all of the quantities appearing in the
statement of Lemma 9 are explicitly machine-computable, so a rigorous uniform (in s and
h) bound for ||gM + g∞|| can indeed be computed.

4.4.3 The Norm ||g�||

In this section, the norm || · || on R
n+m+4 is identified with x �→ ||(0, x, 0)||�. The bound

for ||gρ || bears a lot of similarity to the one for ||gM+ g∞||, and its derivation is similar. We
omit the proof of the following lemma.

Lemma 10 With the same notation as in Lemma 9, we have the bound

||gρ || ≤ ||Rsπ
MD1f(ζ(ψ̂s)ẑs, ρ̂s)1M+1,qM|| + 1

M+ 1
|ψ̂s |−1||SsT (ûs, vs + ws)||.

4.4.4 Summary of the Z1 Bound

Combining the results of Lemma 9 and Lemma 10, it follows that if we choose Z1 such that

Z1 ≥ max

{
||PsπMD1f(ζ(ψ̂s)ẑs, ρ̂s)1M+1,qM|| + 1

M+ 1
|ψ̂s |−1||I − QsT (ûs, vs + ws)|| ,

||Rsπ
MD1f(ζ(ψ̂s)ẑs, ρ̂s)1M+1,qM|| + 1

M+ 1
|ψ̂s |−1||SsT (ûs, vs + ws)||

}

for all s ∈ �, then Z1 will satisfy the bound (11) for our validated continuation problem.
In the above bound, one must remember that the norms || · || are actually restrictions of the
norm || · ||� to various subspaces; see the preamble before Lemma 9 and Lemma 10.
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4.5 The Bound Z2

It is beneficial to perform a further splitting of the expression that defines the Z2 bound.
Recall that Z2(r) should satisfy

||As(DFs(ûs + δ)− DFs(ûs))||B(�,�) ≤ Z2(r) (33)

uniformly for s ∈ � and δ ∈ Br (ûs). From Remark 11, DFs(·) is not itself differentiable, so
appealing to a “typical” second derivative estimate for this Z2 bound is not going to work.
To handle this, we use the strategy of [31] and split the norm to be computed using a triangle
inequality. Given δ ∈ Br (ûs), split it as δ = δ1+ δ2, where the components of δ1 are all zero
except for the frequency component, ψ , and δ2 has zero for its frequency component. This
decomposition is uniquely defined. Then, consider two new bounds to be computed:

||As(DFs(ûs + δ1)− DFs(ûs))||B(�,�) ≤ Z2,1(r)

||As(DFs(ûs + δ1 + δ2)− DFs(ûs + δ1))||B(�,�) ≤ Z2,1(r)

uniformly for s ∈ � and δ ∈ Br (ûs). If we define Z2(r)
def= Z2,1(r)+ Z2,2(r), then (33) will

be satisfied. It turns out that this decomposition is effective. We will elaborate on this now.

4.5.1 The Bound Z2,1

The partial derivative d
dψ(ρ)

DFs(ẑMs , ρ̂s, 0) exists and is continuous. This is a consequence
of Lemma 7 (n.b. the inputs are band-limited) and the structure of Fs ; see (20). As As is
bounded, we can use the fundamental theorem of calculus (in Banach space) to obtain

||As(DFs(ûs + δ1)− DFs(ûs))h||� ≤ sup
t∈[0,1]

∣∣∣∣
∣∣∣∣As

(
d

dψ(ρ)
DFs(ûs + tδ1)h

)
ψ(δ1)

∣∣∣∣
∣∣∣∣
�

(34)

for any h ∈ �, ||h||� ≤ 1. Due to the structure of Fs , the derivative term in the large
parentheses will have

• In the �1ν(C
n+m) components: convolution polynomials of the form (29) involving Fourier

components coming from the set

{ζ(ψ̂s + ψ(δ1))ẑs} ∪ {iζ(ψ̂s + ψ(δ1))K ẑs} ∪ {−ζ(ψ̂s + ψ(δ1))K
2 ẑs} ∪ {h}

with coefficients in ρ̂s ;
• In the scalar components: finite-dimensional range functions of

∑
|k|≤M (ẑs)k andψ(δ1).

To obtain the tightest possible upper bound for (34), one would want to exploit as much
structure of DFs (and the directional derivative in the frequency direction) as possible. How-
ever, to get a general-purpose implementable bound, we can apply the following operations
to d

dψ(ρ)
DFs(ûs + tδ1)hψ(δ1).

1. Replace all instances of ζ(ψ̂s + ψ(δ1)) with the interval [−1, 1];
2. Replace the component of h in R

n+m+4 with the unit interval vector4 in ×Rn+m+4;

4 Note that the components of this “unit” interval vector might be uneven due to weighting.
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3. Replace all other variables5 described in the bulleted list above with bounds for their
norms, multiplied by the zero-supported basis element of the relevant space (e.g. for �1ν
elements, the identity e0 of the Banach algebra; for �1ν(C

n+m), the vectorized version of
e0), multiplied by the interval [−1, 1];

4. Compute operator norms of the blocks of As in (26);
5. Complete block multiplications, taking the norm of the result, followed by an interval

supremum (note, t ∈ [0, 1] is also replaced by an interval).

We emphasize in the algorithm above, every object is a finite-dimensional quantity, so oper-
ations can indeed be performed in a suitable complex vector space on the computer. This
strategy produces a true bound for (34) largely because of the Banach algebra and the interval
arithmetic. For example, consider the impact of this computation on the quantity

−ẑs ∗ h + (eiK (ψ̂s+ψ(δ1)) ẑs) ∗ (i K eiK (ψ̂s+ψ(δ1) ẑs) ∗ h
in �1ν . From the Banach algebra, if ||h||ν ≤ 1, then a triangle inequality produces

||ẑs || + ||eiK (ψ̂s+ψ(δ1) ẑs ||ν · ||i K eiK (ψ̂s+ψ(δ1) ẑs ||ν = ||(ae0) ∗ (ce0)||ν
+ ||(ae0) ∗ (be0) ∗ (ce0)||
= ac + abc,

where a = ||ẑs ||ν , b = ||i K ẑs ||ν , c = ||h||ν = 1, and e0 is the identity element in the Banach
algebra �1ν . Now, define 1 = [−1, 1] and compare the result to

−(1ae0) ∗ (1ce0)+ (1ae0) ∗ (1be0) ∗ (1ce0),

which is what our algorithm would produce. The support of this sequence is the zeroth index,
and we can explicitly compute the resulting interval. It is precisely 1 · (ac + abc)e0. The
supremum of this interval is ac + abc, which matches the analytical triangle inequality /
Banach algebra bound computed previously.

Remark 13 The bound obtained by applying the strategy above is incredibly crude; in effect,
we use the triangle inequality for everything. However, producing fully general code to
compute the second derivatives for this class of problems (polynomial delay differential
equations with arbitrary numbers of delays) would be a messy programming task. Even with
the present implementation, where we need only compute second derivatives evaluated at
sequences that are supported on the zeroth Fourier mode, the implementation was far from
trivial. Long term, it would be beneficial to implement second derivatives, as this would also
allow for improvements to the Y0 bound; see Sect. 4.2. The good news is that, theoretically,
the computed bound will be O(r) for r small enough, due to the linear multiplication of
ψ(δ1) = O(r) appearing in (34).

4.5.2 The Bound Z2,2

Let dδ2 denote the Gateaux derivative of DFs(·) in the direction δ2. We claim

dδ2DFs(ûs + δ1 + tδ2)

exists and is continuous for t ∈ [0, 1]. To see why, observe that that DF (2)
s is continuously

differentiable, so we need only worry about the part in �1ν(C
n+m), namely the components

5 Note that if the norm on Cn+m associated to �1ν(Cn+m ) is itself weighted, this must be taken into account.
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DF (1)
s and DF (3)

s that come from the vector field. The result now follows from Lemma 7.
Indeed, a band-limited input is only required for the double derivative with respect to the
frequency variable, and δ2 has zero for its frequency component. By the fundamental theorem
of calculus,

||As(DFs(ûs + δ1 + δ2)− DFs(ûs + δ1))h||�
≤ sup

t∈[0,1]
∣∣∣∣As

(
dδ2DFs(ûs + δ1 + tδ2)h

)∣∣∣∣
�

(35)

where we take h ∈ �, ||h||� ≤ 1.
To bound (35), we make use of a very similar strategy to the one from Sect. 4.5.1 for Z2,1.

The difference here is that the convolution polynomials in the �1ν(C
n+m) part of the Gateaux

derivative have a more difficult structure. The main problem is in the mixed derivatives with
respect to frequency and Fourier space; see the derivatives d

dzq
d

dψ(ρ)
in Lemma 7. These

derivatives involve the action of the derivative operator K on the sequence part of h, which
is not necessarily band-limited. If h = (hz, hρ) for hz ∈ �1ν , and this sequence is not band-
limited, then generally Khz will not have a finite �1ν-norm. To combat this problem, we
remark that only one such term can appear in any given convolution polynomial. This can
be exploited as follows.

To begin, we factor As as follows.

As =
⎛
⎜⎝

(M + 1)Ps Qs V (1)
s

(M + 1)Rs Ss V (2)
s

0 0 V (3)
s

⎞
⎟⎠
⎛
⎝ I 1

M+1 0 0
0 I 0
0 0 (Kπ∞)−1

⎞
⎠ def= AsK−1.

Note thatAs is obtained from As by multiplying (on the right) the first “column” by (M+1),
and the last “column” by Kπ∞. The following lemma is a specific case of a lemma of van
den Berg, Groothedde and Lessard [31].

Lemma 11 Define an operator K̃−1 = 1
M+1π

M + K−1π∞ on �1ν . Let u, v,∈ �1ν . Then

||K̃−1(Ku ∗ v)||ν ≤ Cν ||u||ν ||v||ν, Cν =
{

ν2M+2
e log ν2M+2 , ν2M+2 < e

1, ν2M+2 ≥ e.

Now consider the product K−1dδ2DFs(ûs + δ1 + tδ2)h. The part in �1ν(C
n+m) of the

Gateaux derivative dδ2DFs(ûs + δ1 + tδ2)h will be multiplied by the diagonal operator
(K̃−1, . . . , K̃−1). So consider how we might bound a term of the form

K̃−1
⎛
⎝αi Khz ∗

∏
j

ei Kψ(ρ̂s+ψ(δ1))μ j (ẑs + t z(δ2)) j

⎞
⎠ ∈ �1ν(C) (36)

in a given convolution polynomial that contains a factor Khz , for hz ∈ �1ν and ||hz ||ν ≤ 1.
Here, α is a scalar that could depend on ρ̂s , the scalar components of tδ2, and the delays, while
z(δ2) is the part of δ2 in �1ν(C

n+m). Note that by permutation invariance of the convolution,
we may assume that Khz appears as the first term on the left, as we have done here. By
Lemma 9, the above is bounded above by

Cν

∣∣∣∣∣∣

∣∣∣∣∣∣α
∏
j

ei Kψ(ρ̂s+ψ(δ1))μ j (ẑs + t z(δ2)) j

∣∣∣∣∣∣

∣∣∣∣∣∣
ν

.
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We can achieve the same effect by replacing Khz in (36) with Cνe0, for e0 being the identity
in the convolution algebra, and taking the �1ν-norm. When K̃−1 is multiplied by a polyno-
mial term that does not contain a factor Khz , then a straightforward calculation shows that
||K̃−1||B(�1ν ,�1ν ) = (M+1)−1. The net result is that the impact on the norm of the polynomial

term is a scaling by (M + 1)−1. Therefore, adapting the algorithm from the Z2,1 bound
calculation, it suffices to apply the following operations to dδ2DFs(ûs + δ1 + tδ2)h.

1. Multiply the part of dδ2DFs(ûs + δ1 + tδ2)h in �1ν(C
n+m) by 1

M+1 ;
2. Replace all instances of ζ(ψ̂s + ψ(δ1)) with the interval [−1, 1];
3. Replace all (remaining) instances of K with (M + 1)Cνe0 · [−1, 1];
4. Replace the component of h in R

n+m+4 with the unit interval vector6 in R
n+m+4;

5. Replace all other variables (ẑs , ρ̂s , δ1, δ2, the part of h in �1ν(C
n+m), and their relevant

projections7) with bounds for their norms,multiplied by the zero-supported basis element
of the relevant space, multiplied by the interval [−1, 1];

6. Compute operator norms of the blocks of As ;
7. Complete block multiplication of As on the left, take the �-norm of the result, followed

by an interval supremum (note: t ∈ [0, 1] is also replaced by an interval).

The result is a (crude) upper bound of supt∈[0,1] ||Asdδ2DFs(ûs+δ1+tδ2)h||� for ||h||� ≤ 1.
This bound is expected to be O(r) for r small, since the Gateaux derivative dδ2DFs(ûs +
δ1 + tδ2)h is O(||δ2||) for ||δ2|| ≤ r small.

Remark 14 In step 3, the variable replacement negates (by multilinearity of the convolution)
the multiplication of the relevant polynomial term by (M + 1)−1 that was done in step 1,
while propagating forward the correct bound Cν that results from the interaction between
K̃−1 and the Kzh ∗∏ j (· · · ) polynomial term. This somewhat roundabout way of introducing
the bound Cν in the correct locations is done in order to make the process implementable in
generality.

5 Specification to Ordinary Differential Equations

In Sect. 3, we demonstrated how rigorous two-parameter continuation of periodic orbits in
delay differential equations can be accomplished in such a way that the continuation can pass
through degenerate Hopf bifurcations. As ordinary differential equations are a special case—
that is, where any delays are identically zero—the theory of the previous sections naturally
applies equally to them. However, the formulation of the map (17) can be greatly simplified.
Indeed, the reader familiar with numerical methods for periodic orbits has likely noticed that
we have not performed the “usual” scaling out by the frequency, so that the period can be
abstractly considered as 2π . With delay differential equations, this is not beneficial because
it merely moves the frequency dependence into the delayed variables. Additionally, it is the
presence of the delays that requires a more subtle analysis of the Z2 bound; see Sect. 4.5.

To compare, with ordinary differential equations without delays, the technicalities with
the Z2 bound are absent. At the level of implementation, computing second and even third
derivatives of the vector field in the Fourier representation is also much easier. In this section,
we will present an alternative version of the zero-finding problem of Sect. 3.2 and analogous
map G from (17). However, we will not discuss the general implementation of the technical

6 Note that the components of this “unit” interval vector might be uneven due to weighting.
7 See footnote 5 concerning the projections of h in �1ν(Cn+m ).
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bounds Y and Z , since they are both simpler than the ones we have previously presented for
the delay differential equations case, and can be obtained by fairly minor modifications of
the bounds from [33]. We have implemented them in general in the codes at [5].

5.1 Desingularization, Polynomial Embedding and Phase Isolation

The set-up now starts with an ordinary differential equation

ẏ(t) = f (y(t), α, β) (37)

again depending on two real parameters α and β. Performing the same blowup procecure as
we did for the delay equations, we define

f̃ (z, x, a, α, β) =
{
a−1( f (x + az, α, β)− f (x, α, β)), a �= 0
dy f (x, α, β)z, a = 0.

The goal is therefore to find a pair (x, z) such that

f (x, . . . , x, α, β) = 0

ż(t) = f̃ (z(t), x, a, α, β),

||z|| = 1

where z is ω-periodic for an unknown period ω; equivalently, the frequency of z is ψ = 2π
ω
.

Letμ = ψ−1 denote the reciprocal frequency. Define z̃(t) = z(tμ). Then z̃(t) is 2π-periodic.
Substituting this into the differential equation above and dropping the tildes, we obtain the
modified vector field

ż(t) = μ f̃ (z(t), x, a, α, β),

where now the scope is that z should be 2π -periodic.
If a polynomial embedding is necessary to eliminate non-polynomial nonlinearities, we

allow the inclusion of m additional scalar equations that must be simultaneously solved,
where we introduce an appropriate number m of unfolding parameters, η ∈ R

m , to balance
them. We again use the symbol θBC to function that defines these boundary conditions, with
the equation being θBC (z(0), x, a, α, β, η) = 0. We use the same anchor condition to handle
the lack of isolation from phase shifts.

5.2 Zero-Finding Problem

Abusing notation and assuming now that f̃ is polynomial after the embedding has been taken
into account, the zero-finding problem is⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ż = μ f̃ (z(t), x, a, α, β, η), (differential equations)

‖z‖ = 1, (amplitude condition of scaled orbit)∫ 〈z(s), ẑ′(s)〉ds = 0, (anchor condition)

f (x, α, β) = 0, (x is a steady state)

θBC (z(0), x, a, α, β, η) = 0. (embedding boundary condition)

(38)

where ẑ is understood to be a candidate numerical solution. Expanding z as a Fourier series
with period 2π , we have z(t) = ∑

k∈Z zkeikt for some complex vectors zk obeying the
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symmetry zk = z−k . If we now allow f(z, x, a, α, β, η) to be the representation of f̃ as a
convolution polynomial in the coefficients z = (zk)k∈Z, then an analogous derivativation to
the delay differential equations case produces the map

G(z, x, a, ψ, η, (α, β)) =

⎛
⎜⎜⎜⎜⎝

−i K z + μf(z, x, a, α, β, η)

f (x, α, β)

〈z, K 2 ẑ〉 − 1
〈z, i K ẑ〉

θBC (
∑

k zk, x, a, α, β, η)

⎞
⎟⎟⎟⎟⎠

defined on the same Banach spaces, with the same codomain. However, this time, one can
show that if f is Ck , then G is also Ck .

6 Proving Bifurcations and Bubbles

Modulo non-resonance conditions, we would generically expect Hopf bifurcations to occur
on the level curve at amplitude zero of the computed 2-manifolds of Sect. 3. Hopf bubbles
are equivalent to curves in the manifold that intersect the amplitude zero surface at two
distinct points. As for bubble bifurcations, we can describe these in terms of a the existence
of a relative local minimum of a projection of the computed 2-manifold, represented as the
graph over amplitude and a distinguished parameter. We develop these points in this section,
demonstrating how post-processing of data from the computer-assisted proofs can be used
to prove the existence of Hopf bifurcations, bubbles, and degenerate bifurcations.

We should emphasize that to prove the existence of a single Hopf bubble, it suffices to
identify a curve connecting two points at amplitude zero in the projection of the proven
manifold in α × β × amplitude space, for one of α or β being fixed. While this does require
verifying two Hopf bifurcations, the rest of the proof of an isolated bubble is fairly trivial,
requiring only determining a sequence of simplices that enclose the curve.

To simplify the presentation, we will assume throughout this section that the norm on �

is such that ||(0, (0, a, 0, 0, 0), 0)|| = |a|. That is, the amplitude component is unit weighted
relative to the absolute value.

6.1 Hopf Bifurcation Curves

In delay differential equations, the sufficient conditions for the existence of aHopf bifurcation
include the non-resonance check, which involves counting all eigenvalues all eigenvalues of
the lienarization on the imaginary axis. This is somewhat beyond the scope of our work here,
although there is literature on how this can be done using computer-assisted proofs [4, 19].
In this paper, we will consider the following related notion.

Definition 1 The delay differential Eq. (3) has a Hopf bifurcation curve �H ∈ � if there
exists a C1 parametrization � � s �→ (α(s), β(s), x(s), y(s)) such that x(s) is a steady state
solution and y(s) is a periodic orbit at parameters (α(s), β(s)), such that:

• �H (0) and �H (1) are on the boundary of �, and �H (t) is in the interior of � for
t ∈ (0, 1).
• x ◦�H = y ◦�H ; in other words, y is a steady state on restriction to the image of �H .
• For s ∈ � \ {�H (t) : t ∈ [0, 1]}, y(s) is not a steady state.
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Fig. 5 Briefly, the partial derivatives of the amplitude of the family of periodic orbits, with respect to the
simplex parametrization variables, have the same sign. From the assumptions of the proposition, the sign of
the amplitude along the edge connecting s1 to s2 is opposite to that of the amplitude at s0. Forming a ray
(dashed-dotted line) connecting s0 to some point s on the edge connecting s1 to s2, the mean-value theorem
guarantees the existence of a unique point along the ray at which the amplitude is zero. Parameterizing over
all s on the edge s1 to s2, the Hopf curve �H (blue) is constructed (Color figure online)

Contrary to the usual Hopf bifurcation, we do not reference the direction of the bifurcation,
even along one-dimensional curves in the manifold of periodic orbits.

The existence of a Hopf bifurcation curve can be proven using post-processing of a val-
idated contiuation on given simplex on which one expects a Hopf bifurcation to occur. The
idea is that on a simplex that encloses a Hopf bifurcation, the amplitude in the blown-up vari-
ables (see Sect. 3.1) is expected to cross through zero. Since we are working in two-parameter
continuation, such a crossing point should persist as a curve. A geometric construction based
on the partial derivatives of the amplitude with respect to the simplex paramaterization can
be used to construct this curve. See Fig. 5 for a visualization.

To establish a more constructive proof, we need to introduce a few projection maps.
Let u = (zM , ρ) ∈ �M , ρ = (x, a, ψ, η, α, β). Denote πau = a the projection to the
amplitude component, and π(α,β)u = (α, β) the projection onto the parameters. Similarly,
writeπaρ = a. Denote the three vertices of the standard simplex� as s0 = (0, 0), s1 = (1, 0)
and s2 = (0, 1).

Proposition 12 Suppose a simplex containing the interpolated numerical data ûs has been
validated, for s ∈ �. Let r > 0 be an associated validation radius from the radii polynomial.
Let c = Z0 + Z1 + Z2(r). Suppose the following are satisfied.

• For k = 1, 2,

[πa(ûs0)− r , πa(ûs0)+ r ] · [πa(ûsk )− r , πa(ûsk )+ r ] < 0,

where the multiplication is in the sense of interval arithmetic.
• The sign of the interval [πa(ûs)− r , πa(ûs)+ r ] is constant for s on the edge of � not

incident with s0; that is, on the edge connecting s1 with s2.
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• Let ∂s denote the Fréchet derivative operator with respect to the variable s ∈ �. For
h ∈ R

2, define

∂̃sa(s)h
def= πa (−Ss∂s[Js](ûs + δr )h

)
, ∂̃su(s)

def= −As∂s[Fs](ûs + δr ),

γ = c

1− c
sup
s∈�
||∂̃su(s)||, (39)

where δr = Br (0) ⊂ �M. That is, γ is a real interval and ∂̃sa(s) is an interval in (R2)∗.
Let γ̂ = sup γ . The components of ∂̃sa(s)+ γ̂ [−1, 1]2 have the same sign for s ∈ �.

Then there is a unique (up to parameterization) Hopf bifurcation curve �H : [0, 1] → �,
and each of �H (0) and �H (1) lie on the edges of � that are incident with s0.

Proof Suppose the radii polynomial proves the existence of us ∈ Br (ûs) such that Fs(us) =
0. The C1 parametrization of the steady state (x(s)), periodic orbit (y(s)) and amplitude
parametrization is a consequence of the computer-assisted proof. ∂sus exists, and ∂sFs(us)+
DFs(us)∂sus = 0. We claim DFs(y) is boundedly invertible for y ∈ Br (ûs). First,

I − AsDFs(y) = (I − As A
†
s )+ As(A

†
s − DFs(ûs))+ As(DFs(ûs)− DFs(y))

whose norm is bounded above by Z0 + Z1 + Z2(r) = c. Since the radii polynomial has
validated ûs , it follows that c < 1. By theNeumann series, AsDFs(y) is boundedly invertible,
with norm bounded by (1 − c)−1. Since As is boundedly invertible by its construction, the
same is true of DFs(y).

It follows that ∂sus = −DFs(us)−1∂sFs(us). Observe that

(As − DFs(us)
−1)∂sFs(ûs + δr ) = (ADFs(us))

−1(ADFs(us)− I )As∂sFs(ûs + δr )

By previous estimates, the above is bounded in norm by γ . Since ∂s[Fs](us) ∈ ∂s[Fs](ûs +
δr )—see Sect. 4.2—we have

∂sus ∈ −As∂sF(ûs + δr )+ Bγ (0). (40)

Note that ∂̃sa(t)h is precisely the amplitude component of ∂s(ush)|s=t .
Consider the line [0, 1] �→ t �→ s1 + t(s − s1), where s is any point on the edge

connecting s1 to s2 in �. Consider the function g(t) = πaus1+t(s−s1). By the assumptions of
the proposition and the inclusion (40), we have g(0)g(1) < 0 and d

dt g(t) �= 0 for t ∈ (0, 1).
By the mean-value theorem, there is a unique t∗ ∈ (0, 1) such that g(t∗) = 0. Moreover,
t∗ = t∗(s) depends continuously on s. Letting p : [0, 1] → � be a C1 parametrization of
the edge connecting s1 to s2, it follows by the definition of the map Fs that �H = t∗ ◦ p is
a Hopf bifurcation curve. ��

We emphasize that most of the sufficient conditions of Proposition 12 can be checked
using the output of the validation of a simplex. We also mention specifically that in the
second point, the sign of [πa(ûs)− r , πa(ûs)+ r ] need only be verified to match at s = s1
and s = s2, due to linearity of ûs . The exception is the computation of ∂̃sa and γ . The
former is a finite computation, and the latter can be bounded in a straightforward manner;
see Sect. 4.2 for details concerning the structure of ∂sFs .

Remark 15 Proposition 12 is stated in such a way that we assume s0 and the edge connecting
s1 to s2 lie on the opposite sides of Hopf curve �H . This is done almost without loss of
generality. First, if the Hopf curve should bisect the simplex in such a way that s1 or s2 is
separated from its opposing edge, a suitable re-labeling of the nodes transforms the problem
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into the form of the proposition. Second, a problem can arise if the Hopf curve intersects one
of the vertices s j , j = 0, 1, 2. Similarly, numerical difficulties can arise if the intersections
of �H with the edges of � occur very close to the vertices. These problems can be alleviated
by a careful selection of numerical data.

Remark 16 AHopf bifurcation curve necessarily generates a continuumofHopf bifurcations.
Along any curve in �, one will find a Hopf bifurcation at each transversal intersection with
�H .

6.2 Degenerate Hopf Bifurcations

In this section, we consider how one might prove the existence of a degenerate Hopf bifur-
cation, be it a bubble bifurcation or otherwise. For a first definition, we consider the bubble
bifurcation.

Definition 2 A bubble bifurcation (with quadratic fold) occurs at (α∗, β∗) in (13) if there
exists a Hopf curve �H with (παu�H (t∗), πβu�H (t∗)) = (α∗, β∗) for some t∗ ∈ (0, 1), such
that

• The projection of �H into the (α, β) plane can be realized as a C2 graph β = β(α).
• β(α∗) = β∗, β ′(α∗) = 0, and β ′′(α∗) �= 0.
• There is aC2 diffeomorphism h : D→ h(D)definedon a neighbourhood D of�H (t∗) ∈

�, such that h(�H (t∗)) = (α∗, 0), and the periodic orbit y (see Definition 1) is a steady
state if and only if π2h(s) = 0, where π2 is the projection onto the second factor. Also,
the projection π1 onto the first factor satisfies π1h(s) = πaus for all s ∈ D.
• (α∗, 0) is a strict local extremum of the map (α, a) �→ πβuh−1(α,a).

Our perspective is that a bubble bifurcation is characterized by the existence of a manifold
of periodic orbits, parameterized in terms of amplitude and a parameter, such that at an
isolated critical point, the projection of the manifold onto the other parameter has a local
extremum. The parametrization of β near α∗ and the local minimum condition reflects the
observation that a fold in the curve of Hopf bifurcations is sufficient condition for the birth
of the bubble. That is, we have a family of bubbles (loops of Hopf bifurcations) that can be
parameterized by β in an interval of the form (β∗ − δ, β∗] or [β∗, β∗ + δ), for δ > 0 small.
This is a consequence of the (α, a)-parametrization of the simplex.

Remark 17 We include the adjective “quadratic” to describe the fold in the Hopf curve to
contrast with a related definition in Sect. 6.2.3, where the condition β ′′(α∗) �= 0 will be
weakened.

6.2.1 Preparations

It will facilitate the presentation of the bubble bifurcation if we are able to construct the first
and second derivatives of s �→ us , the zeroes of (20), with respect to the simplex parameter
s. This was partially done in the proof of Proposition 12, but we will elaborate further here.

To compute the derivatives, the idea is to formally differentiate s �→ Fs(us) with respect
to s twice, allowing for the introduction of ∂sus and ∂2s us . The result is a system of three
nonlinear equations, and solving for (us, ∂sus, ∂2s us) amounts to computing zeroes of a map

�3 � (us, ∂sus) �→ (Fs(us),F [1]s (us, ∂sus),F [2]s (us, ∂sus, ∂
2
s us)) (41)
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Remark 18 It may be unclear whether the second derivative of s �→ Fs(us) can be given
meaning. Indeed, aswehavepreviously explained inRemark11, the secondFréchet derivative
of u �→ Fs(u) does not, in general, exist. The (formal) second derivative of both sides of
Fs(us) = 0 produces

DFs(us)∂
2
s us + ∂2s Fs(us)+ 2∂s[DFs](us)∂sus + D2Fs(us)[∂sus, ∂sus] = 0,

and we can see that it is in fact possible to interpret D2Fs(us)[∂sus, ∂sus] as the Gateaux
derivative ofw �→ DFs(w)∂sus , atw = us and in the direction ∂sus . However, even thismay
not exist as an element of Kν(C

n+m), since the Fourier components of us are generally not
band-limited. It is therefore necessary to specify the codomain of (41) a bit more carefully.
We will not elaborate on this subtlety here; the ramifications of this will be the topic of some
of our future work. However, in the case of ordinary differential equations, there is no major
complication. When there are no delays (or when they are all zero), Fs is twice continuously
differentiable provided the same is true of f .

Regardless how the partial derivatives are enclosed, the following equivalent version of
Proposition 12 is available.

Proposition 13 Assume the existence of a family of zeroes of (41) parameterized by s ∈ �

and close to a numerical interpolant ûs = (ûs, ∂s ûs, ∂2s ûs) has been proven, in the sense
that we have identified r > 0 such that there is a unique zero of (41), for each s ∈ �, in the
ball Br (ûs). Assume the topology on this ball is such that the components âs = πaûs satisfy

||(â[1]s − a[1]s )h|| ≤ r (1)
a |h|,

for h ∈ R
2, and ||â[0]s − a[0]s || ≤ r (0)

a . Suppose

• For j = 1, 2, [â[0]s0 −r (0)
a , â[0]s0 +r (0)

a ]·[â[0]s j −r (0)
a , â[0]s j +r (0)

a ] < 0, where themultiplication
is in the sense of interval arithmetic.
• The sign of [â[0]s − r (0)

a , â[0]s + r (0)
a ] is constant for s on the edge of � not incident with

s0; that is, on the edge connecting s1 to s2.
• The components of the interval vector â[1]s + r (1)

a [−1, 1]2 in R
2∗ has the same sign for

s ∈ �.

Then there exists a Hopf bifurcation curve �H : [0, 1] → �, each of �H (0) and �H (1) lie
on the edges of � that are incident with s0, and �H is C2. ��

Comments analogous to those appearing in Remark 15 apply here as well. Note that
Proposition 13 requires only the first derivatives, which can be enclosed using (40). However,
if the existence of the second derivatives are in question, then �H can at best be proven to
be C1.

Definition 3 A triple of line segments (v1, v∗, v2) in � is s0-oriented if there exist points
t1, t∗, t2 on the edge (s1, s2), such that

• v1 is a subset of the line connecting s0 to t1;
• v∗ is a subset of the line connecting s0 to t∗;
• v2 is a subset of the line connecting s0 to t2;
• Under the total order on the edge (s1, s2) defined by a ≤ b⇔ ||s1 − a||2 ≤ ||s1 − b||2,

we have v1 ≤ v∗ ≤ v2.

In this case the associated wedge cover is the simplex in � with vertices s0, t1 and t2, and it
is denoted W (v1, v∗, v2).
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These s0-oriented line segmentswill be used to enclose potential bubble bifurcation points.
Some finer control can be specified with the following.

Definition 4 Let (v1, v∗, v2) be an s0-oriented triple in �. Let �H be a Hopf curve in �

associated to a family us of zeroes of Fs . A Hopf-bounding trapezoid in W (v1, v∗, v2) is a
trapezoid contained in W (v1, v∗, v2) whose edges include both v1 and v2, and such that the
other edges, denoted w+ and w−, satisfy πaus < 0 for s ∈ w−, and πaus > 0 for s ∈ w+.

It is straightforward to verify that, under the assumptions of Proposition 13, a trapezoid
in W (v1, v∗, v2) is Hopf-bounding provided two of its edges match v1 and v2, while

â[0]s + r (0)
a < 0, s ∈ w−

â[0]s − r (0)
a > 0, s ∈ w+.

6.2.2 Enclosure of a Bubble Bifurcation

The following proposition provides verifiable conditions for the existence of a bubble bifur-
cation. Some are more explicit than others.

Proposition 14 Let the hypotheses of Proposition 13 be satisfied. Let (v1, v∗, v2) be an
s0-oriented triple of line segments in �. Suppose the topology on Br (ûs) is such that the
components πα û[k]s = α̂

[k]
s , πβ û[k]s = β̂

[k]
s , πaû[k]s = â[k]s satisfy

||(α̂[k]s − α[k]s )[h1, . . . , hk]|| ≤ r (k)
α |h1| · · · |hk |

||(β̂[k]s − β[k]s )[h1, . . . , hk]|| ≤ r (k)
β |h1| · · · |hk |

||(â[k]s − a[k]s )[h1, . . . , hk]|| ≤ r (k)
a |h1| · · · |hk |

for k-tuples h1, . . . , hk ∈ R
2, and k = 0, 1, 2. With the empty tuple (k = 0), the norm

reduces to absolute value on R. Let rκ , for κ ∈ {α, β, a} be interval vectors in R
2 such that

(rκ ) j = [−1, 1]r (1)
κ , for j = 1, 2. Finally, given s ∈ �, denote by Vs the set

Vs = {v ∈ R
2 : (â[1]s + ra) · v = 0, ||v||2 = 1}.

Suppose the following are satisfied.

1. (α̂
[1]
s + rα) · vs is bounded away from zero, for all s ∈ � and all vs ∈ Vs.

2. inf â[0]vi
+ r (0)

a < 0 < sup â[0]vi
− r (0)

a for i = 1, 2.

3. inf â[0]v∗ + r (0)
a < 0 < sup â[0]v∗ − r (0)

a .

4. β̂
[0]
v∗ + r (0)

β < β̂
[0]
vi
− r (0)

β for i = 1, 2.

5. The components of â[1]s + ra are bounded away from zero for all s ∈ �.
6. The determinant of the 2× 2 interval matrix(

(α̂
[1]
s )1 + [−1, 1]r (1)

α (α̂
[1]
s )2 + [−1, 1]r (1)

α

(â[1]s )1 + [−1, 1]r (1)
a (â[1]s )2 + [−1, 1]r (1)

a

)
(42)

is bounded away from zero for s ∈ �.
7. Defining

cs = 1

||â[1]s + ra ||2
(β̂[1]s + rβ) · (â[1]s + ra), (43)
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it holds that the interval β̂[2]s [vs, vs]−cs â[2]s [vs, vs]+(r (2)
β +||cs ||2r (2)

a )[−1, 1] is bounded
away from zero for all s ∈ � and vs ∈ Vs.

8. The matrix (
β
[2]
s [∂αs, ∂αs] + β

[1]
s ∂2αs β

[2]
s [∂as, ∂αs] + β

[1]
s ∂a∂αs

β
[2]
s [∂as, ∂αs] + β

[1]
s ∂a∂αs β

[2]
s [∂as, ∂as] + β

[1]
s ∂2a s

)
(44)

is uniformly (for s ∈ �) definite, where defining h : � → R
2 by h(s) = (αs, as), the

partial derivatives in the matrix above are[
∂αs ∂as

] = Dh(s)−1

∂2αs = −Dh(s)−1D2h(s)[∂αs, ∂αs]
∂a∂αs = −Dh(s)−1D2h(s)[∂as, ∂αs]

∂2a s = −Dh(s)−1D2h(s)[∂as, ∂as].
Then, there exists a bubble bifurcation with quadratic fold at some (α∗, β∗) in the projection
of �H ∩W (v1, v∗, v2) onto the (α, β) plane.

Proof By a suitable reparametrization, we may assume that ||�′H (t)|| = 1 for all t ∈ (0, 1).
Denote a(s) = πaus . The definition of the Hopf curve is that a(�H (t)) = 0 or all t ∈ [0, 1].
As consequence, (∂sa)�′H = 0, so that �′H is dual to the orthogonal complement of ∂sa.
That is, �′H ∈ ∪sVs . Now,

d

dt
α
[0]
�H (t) = α

[1]
�H (t)�

′
H ∈

⋃
s∈�

⎛
⎝ ⋃

vs∈Vs
(α̂[1]s + rα) · vs

⎞
⎠ ,

which is bounded away fromzero by assumption (condition 1 of the proposition). It follows
that t �→ α

[0]
�H (t) is monotone, so�H can be parameterized by α, for α in the monotone range

of t �→ α
[0]
�H (t). Consequently, the projection of the Hopf curve �H in the (α, β) plane can

be represented as a graph β = β(α).
Conditions 2–4 of the proposition guarantee that each of the segments s1, s2 and t enjoy

the following properties:

• As one-dimensional manifolds, they enclose an intersection with the Hopf curve;
• The β-components of v1 and v2 are strictly greater than those of v∗.

As consequence, β = β(α) possesses an internal (to its domain, relative to the previously-

computed range) critical point which is a global minimizer. Let this point be α∗, so β(α∗) def=
β∗. Let the associated point on the simplex be �H (t∗).

We wish to show that β∗ is a strict, isolated minimum of β. We will do that by proving

β ′′(α∗) �= 0. It is enough to prove that d2

dt2
β
[0]
�H (t) �= 0 whenever d

dt β
[0]
�H (t) = 0. If the latter

is satisfied, then we have simultaneously

a[1]�H (t)�
′
H = 0

β
[1]
�H (t)�

′
H = 0.

Since �′H �= 0, it must be the case that α
[1]
�H (t) and β

[1]
�H (t) are colinear. By assumption 5,

α
[1]
�H (t) is bounded away from zero, so the quantity cs of (43) is well-defined and

β
[1]
�H (t) ∈ c�H (t)a

[1]
�H (t). (45)
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On its own, (45) might not seem particular useful. However, consider that

d2

dt2
β
[0]
�H (t) = β

[2]
�H (t)[�′H ,�′H ] + β

[1]
�H (t)�

′′
H

0 = a[2]�H (t)[�′H ,�′H ] + a[1]�H (t)�
′′
H ,

where the second equation comes from taking a second derivative of the definition
a(�H (t)) = 0 of the Hopf curve. Using the second equation together with (45), we can
get the inclusion

β
[1]
�H (t)�

′′
H ∈ −c�H (t)a

[2]
�H (t)[�′H ,�′H ],

thereby removing the dependence on the secondderivative�′′H of theHopf curve. Substituting
into the expression for the second derivative of t �→ β�H (t), we get

d2

dt2
β
[0]
�H (t) ∈ β

[2]
�H (t)[�′H ,�′H ] − c�H (t)a

[2]
�H (t)[�′H ,�′H ]

⊂
⋃
s∈�

⎛
⎝ ⋃

vs∈Vs
β̂[2]s [vs, vs] − cs â

[2]
s [vs, vs] + (r (2)

β + ||cs ||2r (2)
a )[−1, 1]

⎞
⎠ ,

which is bounded away from zero by condition 7. Therefore, β ′′(α∗) �= 0.
Next, we need to verify the local parametrization of the simplex near �H (t∗) in terms of

(α, a). This is a fairly direct consequence of the inverse function theorem, using the condition
6 of the proposition. This shows that the function h defined in condition 8 of the proposition
defines a local diffeomorphism near �H (t∗). The Hessian of � : (α, a) �→ βh−1(α,a) can
be computed by implicit differentiation; if h(s) = (α, a), then the Hessian is precisely the
2× 2 matrix of condition 8. Since this matrix is uniformly definite on the simplex �, every
critical point must be a local extremum. We already know that ∂α�(α∗, 0) = β ′(α∗) = 0.
The other partial derivative ∂a�(α∗, 0) is zero due to the amplitude symmetry of periodic
orbits. Therefore, (α∗, 0) is a strict local extremum of the map (α, a) �→ πβuh−1(α,a). ��
Remark 19 Checking conditions 2–6 of the proposition is fairly routine. Conditions 1 and
7, however, deserve some extra attention. If the step size is small, we should expect the
derivatives of the solution s �→ us to be close to constant. In this way, the set Vs should
not vary too much (in a Hausdorff sense). Vs geometrically consists of two arcs on the unit
circle, and we expect the angles defining these arcs to be nearly constant over the simplex.
Consequently, the interval computations of conditions 1 and 7 are, indeed, implementable,
but the feasibility of the checks — that these intervals are bounded away from zero — will
be strongly influenced by the size of the radius, r , and any weighting in the norm. As for
condition 8, we have not included all of the associated radii, but since all of the intermediary
derivatives appearing in thematrix (44) admit (by assumption) rigorous enclosures, thematrix
is implementable. Therefore, condition 8 can be checked using a suitable package to compute
eigenvalues of interval matrices.

Remark 20 Condition 4 is formulated in such a way that β∗ is a local minimum of the curve
β = β(α). This condition can be reformulated in a straightforward way to allow it instead
to be a local maximum. Also, comments analogous to those appearing in Remark 15 apply
here as well.

Corollary 15 It suffices to verify the conditions 6,7,8 of Proposition 14 for all s in a given
Hopf-bounding trapezoid in W (v1, v∗, v2).
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6.2.3 A Degenerate Hopf BifurcationWithout Second Derivatives

In Remark 18, we pointed out that, unfortunately, the lack of second-differentiability of the
map Fs is a serious obstruction to computing second derivatives ∂2s us and, consequently,
checking all the conditions of Proposition 14.While it is not a problemwhen all of the delays
are zero (i.e. an ODE), we would like to provide a constructive result for delay equations.
Along these lines, let us slightly weaken Definition 2.

Definition 5 A degenerate Hopf bifurcation occurs at (α∗, β∗) in (13) if there exists a Hopf
curve �H with (παu�H (t∗), πβu�H (t∗)) = (α∗, β∗) for some t∗ ∈ (0, 1), such that

• The projection of �H into the (α, β) plane can be realized as a C1 graph β = β(α);
• β(α∗) = β∗ and β ′(α∗) = 0;
• There is aC1 diffeomorphism h : D→ h(D)definedon a neighbourhood D of�H (t∗) ∈

�, such that h(�H (t∗)) = (α∗, 0), and the periodic orbit z (see Definition 1) is a steady
state if and only if π2h(s) = 0, where π2 is the projection onto the second factor. Also,
the projection π1 onto the first factor satisfies and π1h(s) = πaus for all s ∈ D.

The main difference between the above and Definition 2 is we no longer require that β∗
is an extremum of β. We also do not make any specifications concerning the geometry of
the implicit map (α, a) �→ β near the Hopf bifurcation curve. Clearly, a bubble bifurcation
with quadratic fold satisfies the conditions of the above definition. However, the new defini-
tion permits other types of degenerate Hopf bifurcations, including Bautin bifurcations. The
following proposition can now be proven using the same ideas as Proposition 14.

Proposition 16 Assume a family of zeroes us of the map Fs has been proven, in addition to
the first derivatives ∂sus , close to a numerical interpolant ûs = (ûs, ∂s ûs), in the sense that
we have identified r > 0 such that there is a unique zero of (41), for each s ∈ �, in the
ball Br (ûs). Suppose the topology on Br (ûs) is such that the components πα û[k]s = α̂

[k]
s ,

πβ û[k]s = β̂
[k]
s , πaû[k]s = â[k]s satisfy

||(α̂[k]s − α[k]s )[h1, . . . , hk]|| ≤ r (k)
α |h1| · · · |hk |

||(β̂[k]s − β[k]s )[h1, . . . , hk]|| ≤ r (k)
β |h1| · · · |hk |

||(â[k]s − a[k]s )[h1, . . . , hk]|| ≤ r (k)
a |h1| · · · |hk |

for k-tuples h1, . . . , hk ∈ R
2, and k = 0, 1. With the empty tuple (k = 0), the norm reduces to

absolute value on R. Let (v1, v∗, v2) be an s0-oriented triple of line segments in �. Suppose
conditions 1–3, 5 and 6 of Proposition 14 are satisfied. Then, there exists a degenerate Hopf
bifurcation at some (α∗, β∗) in the projection of �H ∩W (v1, v∗, v2) onto the (α, β) plane.

Corollary 17 It suffices to verify condition 6 of Proposition 16 for all s in a Hopf-bounding
trapezoid in W (v1, v∗, v2).

7 Examples

7.1 Extended Lorenz-84 System

The extended Lorenz-84 system is the following system of four coupled ODEs:
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Fig. 6 The manifold of (proven) periodic orbits in the extended Lorenz-84 system, in the projection of ampli-
tude and the parameters c, μ. Note the square-root curvature of amplitude near μ ≈ 0.04 (right side of plot),
indicative of Hopf bubbles. There are over 10,000 simplices, so to provide a clean figure, we have not plotted
the edges

u̇1 = −u22 − u23 − au1 − a f − bu24
u̇2 = u1u2 − cu1u3 − u2 + d

u̇3 = cu1u2 + u1u3 − u3

u̇4 = −eu4 + bu4u1 + μ

We consider the parameters a = 0.25, b = 0.987, d = 0.25, e = 1.04, f = 2 to be fixed,
while μ and c are treated as parameters.

We started the continuation at c = 1, close to a Hopf bifurcation. Using a step size of 0.02,
we generated an approximate triangulation of the manifold with 11,928 simplices (including
simplices created by adaptive refinement needed for proofs). We used N = 5 Fourier modes.
To capture a “wider” section of the manifold, we restricted the simplex growth to amplitude
in the interval [−0.1, 0.3]. Figure6 is a plot of the triangulation, projected into amplitude and
parameter space, while we restricted to the zero amplitude plane in Fig. 7 to generate a plot
of the Hopf bifurcation curve. The former figure allows for visualization of the traditional
square-root amplitude curvature near the Hopf bifurcation curve. Interesting, far from the
bifurcation curve, there appears to be a near-circular “hole” in the manifold. We have not
studied its structure in detail, and have no insight into its significance. The restriction of
the amplitude to [−0.1, 0.3] results in the top and bottom edges appearing “ragged”, since
simplices can not organically grow to produce hexagon patches. The latter Fig. 7 indicates
the presence of three bubble bifurcations.

7.2 Time-Delay SI Model

We consider the time-delay SI model

ẏ(t) = −y(t)+ R0e
−py(t−τ)y(t)(1− y(t)),

for which there is an analytical proof of a bubble bifurcation [18] near (R0, p) ≈
(2.1474, 1.6617), for delay τ = 10. We will replicate this analysis using our rigorous two-
parameter continuation.
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Fig. 7 Intersection of the surface
in Fig. 6 with the amplitude zero
plane, which corresponds to the
Hopf bifurcation curve. Hopf
bubbles are present in the former
figure near μ ≈ 0.04, so the fold
in the present figure likely
corresponds to a bubble
bifurcation with quadratic fold.
There is a symmetric fold near
μ ≈ −0.04, and with respect to
the other variable near μ ≈ 0, for
a total of three bubble
bifurcations

7.2.1 Set-up

We begin by desingularizing the vector field. Writing y = x + a ỹ, for x being a steady state,
we get, dropping the tilde,

ẏ = −y + g(a, yτ p)R0e
−px x(1− x)+ R0e

−pxe−apyτ (−ay2 + y(1− 2x)),

where yτ = y(t − τ), and g is defined by

g(a, y) =
{
a−1(e−ay − 1), a �= 0
−y, a = 0.

Observe, ∂yg(a, y) = −e−ay and

g(a, y) = −y
∞∑
k=1

1

k! (−ay)
k−1.

g is indeed analytic. Whenever g (or its derivatives) must be rigorously evaluated, we con-
struct Taylor polynomials of sufficiently high order and propagate error from the remainder
accordingly.

Now we polynomialize. Define z2 = e−apy and z1 = g(a, yp). Then

ż1 = −pz2
(− y + R0e

−px z1(t − τ)x(1− x)+ R0e
−px z2(t − τ)(−ay2 + y(1− 2x))

)
ż2 = −apz2

(− y + R0e
−px z1(t − τ)x(1− x)+ R0e

−px z2(t − τ)(−ay2 + y(1− 2x))
)

They can be more compactly written as ż1 = −z2 ż0 and ż2 = −apz2 ż0. We also have the
implied boundary conditions

z1(0) = g(a, z0(0)p)

z2(0) = e−apz0(0),

where z0 = y. We need two unfolding parameters to compensate for the two extra boundary
conditions.
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Lemma 18 If z is a periodic solution of

ż0(t) = −z0(t)+ R0μz1(t − τ)x(1− x)+ R0μz2(t − τ)(−az0(t)2 + z0(t)(1− 2x))

ż1(t) = −pz2(t)ż0(t)+ η1

ż2(t) = −apz2(t)ż0(t)+ η2

for some η1, η2 ∈ R, and z satisfies z1(0) = g(a, z0(0)p) and z2(0) = e−apz0(0), then
η1 = η2 = 0.

Proof First, suppose η2 �= 0. Then necessarily, z2 has constant sign because the differential
equation for z2 is affine-linear and η2 �= 0. Since z2(0) > 0, we must have z2 > 0. But this
means that

ż2(t)

z2(t)
+ apż0(t) = η2

z2(t)
,

a contradiction, since the left side is periodic and η2 �= 0. We may therefore assume that
η2 = 0. Then ż2(t) = apz2(t)ż0(t), and it follows again that z2 > 0. But this means

ż1(t)

z2(t)
+ pż0(t) = η1

z2(t)
,

and since the left-hand side is periodic, it follows that η1 = 0. ��

To complete the polynomial embedding, we further polynomialize the parameters. This
is done to ensure compatibility with the numerical implementation. We define μ = R0e−px ,
so that the complete polynomialized vector field is

ż0(t) = −z0(t)+ μz1(t − τ)x(1− x)+ μz2(t − τ)(−az0(t)2 + z0(t)(1− 2x))

ż1(t) = −pz2(t)ż0(t)+ η1

ż2(t) = −apz2(t)ż0(t)+ η2.

The complete set of boundary conditions is

0 = z1(0)− g(a, z0(0)p)

0 = z2(0)− e−apz0(0)

0 = μ− R0e
−px

In the terminology of Remark 5, the embedding dimension is m = 3. The steady-state
equation is scalar, and is given by

0 = −x + μx(1− x).

7.2.2 Results

We validated a patch of manifold initially with 406 simplices at a step size of 5×10−6. In the
validation of nearly every simplex, three layers of adaptive refinement were needed to keep
the Y0 bound under control. We have plotted the manifold in Fig. 8 without the refinements
included. The projection into the (R0, p) plane is provided in Fig. 9. The results are consistent
with the analysis of Leblanc [18].
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Fig. 8 Themanifold of (proven) periodic orbits in the time delay SImodel. A very small step sizewas necessary
to get proofs without too many adaptive refinement steps. The Y0 bound is the clear bottleneck

Fig. 9 Intersection of the surface from Fig.8 with the amplitude zero, which corresponds to a Hopf bifurcation
curve in the time-delay SI model. The validation radius is 2× 10−5 over the entire manifold, so the location
R0 ≈ 2.1474 of the bubble bifurcation is consistent with the analysis of Leblanc. A tighter validation radius
could be obtained with a smaller step size. Because of how the curve is plotted, skew simplices from them
2-manifold have the effect of making the curve appear “thicker” in some parts than others

7.3 FitzHugh–Nagumo Equation

The FitzHugh–Nagumo ODE is

u̇ = u(u − α)(1− u)− w + I

ẇ = ε(u − γw)

for scalar parameters α, ε, γ, I . It is a cubic vector field in the state variables, and numerical
simulations suggest the existence of Hopf bubbles (see Section 5.8 of [7]). We fix α =
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Fig. 10 Left: Projection of the manifold of periodic orbits for the FitzHugh–Nagumo equation into ε × I ×
amplitude space. At this level of scaling, the curvature of the manifold is not easily visible. Right: zoomed-in
portion near the bubble bifurcation. Here, the curvature is more easily seen. There are over 9000 simplices in
the left figure, so we have not plotted the edges

Fig. 11 Intersection of the surface from the left pane of Fig. 10 with the amplitude zero plane. This corresponds
to the Hopf bifurcation curve for the FitzHugh–Nagumo system. The curve resembles a parabola, with a bubble
bifurcation at its vertex

0.1, γ = 1,while leaving ε and I as parameters for the continuation.We start the continuation
near (ε, I ) = (0.3, 0.3) and compute a triangulation of the manifold with 9006 simplices
(including those needed for adaptive refinement) at step size 0.01. For this example, we used
N = 7 Fourier modes. A plot of the proven simplices from the manifold is provided in
Fig. 10. The Hopf bifurcation curve appears in Fig. 11.

7.4 An ODEwith a Periodic Orbit 2-Manifold Resembling a Fish

Consider the three-dimensional ODE system

ẏ1 = β y1 − y2 − y1(y
2
1 + y22 + y23 + α2) (46)
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Fig. 12 Left: Projection of the manifold of periodic orbits for the ODEs (46)–(48) into amplitude × α × β

space, viewed from the α axis. Note the “pinching” of the manifold, at which this projection becomes singular,
near β ≈ 10−3. Right: an illustration of an angelfish, for comparison

ẏ2 = y1 + β y2 − y2(y
2
1 + y22 + εy23 + α2) (47)

ẏ3 = −y53 + 3y33 − 0.01y3 + 0.1α + 0.01(y21 + y22 ), (48)

for parameters α, β, and a real control parameter ε. When ε = 1, a change of variables
to cylindrical coordinates shows that periodic orbits are in one-to-one correspondence with
solutions (r , z) of the set of algebraic equations

0 = β − r2 − α2 − z2

0 = −z5 + 3z3 − 0.01z + 0.1α + 0.01r2.

When ε �= 1, the radial symmetry in (y1, y2) is broken and this change of variables is no
longer informative. We set ε = 0.8 in (46)–(48) and used our validated continuation scheme
to rigorously compute a 2-manifold of periodic orbits. In the projection of amplitude and
parameters (α, β), the result is a figure that qualitatively resembles an angelfish. See Fig. 12.
In this projection, the manifold has several folds and appears to exhibit a singularity where
it pinches onto a single point. Plotting the manifold in a different projection more clearly
allows us to see that this singularity is merely an artifact of the projection; see Fig. 13. The
Hopf bifurcation curve is plotted in Fig. 14. For this example, we used N = 9 Fourier modes
and a step size 0.01. We computed a comparatively small portion of the manifold, since the
interesting geometry was localized close to (α, β) = (0, 0). We computed and validated
1007 simplices. This example did not require any adaptive refinement.

8 Discussion

We have proposed validated continuation as an alternative way of exploring degenerate
Hopf bifurcations. In combination with rigorous numerics and additional a posteriori post-
processing, one can prove the existence of Hopf bifurcation curves, bubble bifurcations and
some other degenerate Hopf bifurcation. The library BiValVe is rather flexible, and with the
additions of the present paper, can handle multiparameter continuation problems for periodic
orbits in ordinary and delay differential equations, near and far from Hopf bifurcations.
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Fig. 13 Left: Projection of themanifold of periodic orbits for theODEs (46)–(48) into amplitude×α×β space.
There are Hopf bubbles prior to the pinching phenomenon that happens near β ≈ 10−3. Right: projection into
α×β× y3(0) space, where y3 denotes the third component of the periodic orbit in the blown-up coordinates.
The pinching point in the left figure projection is caused by a pair of simultaneous folds, clearly visible in the
right figure projection

Fig. 14 Intersection of the surface from the left pane of Fig. 13 with the amplitude zero, which corresponds
to a Hopf bifurcation curve for the ODE system (46)–(48). There is a bubble bifurcation at (α, β) = (0, 0).
The apparent self-intersection of the Hopf curve is a consequence of the projection, and does not represent a
bifurcation point. Because of how the curve is plotted, skew simplices from them 2-manifold have the effect
of making the curve appear “thicker” in some parts than others

Without access to second derivatives of solutions of the zero-finding problem (20), it is
difficult to prove bubble bifurcations with quadratic folds. That is, we are only able to prove
the weaker characterization of Definition 5. This is a major barrier in applying the method to
delay equations.We believe that a suitable re-formulation of the zero-finding problem, taking
into account the additional unbounded operators that result from derivatives with respect to
frequency, could resolve the issue.
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Another way to prove the “quadratic fold” part of the bubble bifurcation would be to
compute the second derivatives of Hopf bifurcation curves without using the machinery of
sequences spaces. Along these lines, it would be interesting to use pseudo-arclength continu-
ation to continue Hopf bifurcation curves directly. Computer-assisted proofs of isolated Hopf
bifurcations in delay differential equations are completed in [4], and with minimal changes,
pseudo-arclength continuation could be used to do continuation of Hopf bifurcations. The
map from [4] is finite-dimensional and as smooth as the delay vector field, so the derivatives
of the Hopf curve could be rigorously computed that way instead. However, this trick can
not be used to prove that (α, a) �→ πβuh−1(α,a) has a strict local extremum at the bifurcation
point. Indeed, the latter map is defined in terms of the periodic orbits themselves, rather than
the algebraic properties of the vector field and the eigenvalues of the linearization.

As remarked in [31], the Z2 bound associated to delay periodic orbit validation suffers
from a fundamental limitation: it scales linearly with respect to the number of Fourier modes.
Therefore, while we have not needed to use many Fourier modes in our examples, it would
be very costly (or infeasible) to do continuation of a periodic orbit that required many modes
to represent. This is because the Y0 bound is naturally dependent on step size, so even if an
isolated solution has an exceptionally good numerical defect, a very small step size might be
needed to hedge against a large Z2. In this way, while we can compute manifolds of periodic
orbits with delay near (degenerate) Hopf bifurcations, we expect that in large-amplitude
regimes or for complicated orbits, completing a validationwould be difficult. To compare, the
situation is far better for ordinary differential equations. The Z2 bound is generally unharmed
by having many Fourier modes, and second derivatives of the solutions can be computed by
solving an auxiliary zero-finding problem using similar techniques from rigorous numerics.

There are other codimension-2+ bifurcations that could be studied from the point of
view of validated multi-parameter continuation. For example, the cusp bifurcation should be
amenable to this type of analysis, and is simpler than the present work because it involves only
bifurcations of fixed points rather than periodic orbits. There is also the Bautin bifurcation,
for which the analysis of Sect. 6 could be replicated. In fact, our continuation scheme is able
to validate manifolds of periodic orbits passing through Bautin points. As a very brief final
example, recall the normal form (3)–(4), which has a Bautin bifurcation at (x, y) = (0, 0)
at the parameters (α, β) = (0, 0). Periodic orbits in this ODE are equivalent (by a change of
variables to polar coordinates) to scalar solutions r of

0 = r(β + αr2 − r4). (49)

Agnostic to this particular representation of the zeroes, our code is able to validate a large
section of the manifold of periodic orbits directly from the ODEs. See Fig.15. As expected,
we were able to validate this manifold using very few Fourier modes: three, in this case.

Hopf bubbles have been observed in the Mackey-Glass equation [15] at the classical
parameters, and some of our preliminary investigations suggest that the equation possesses
a bubble bifurcation. It would be interesting to use a combination of polynomial embedding
and blow-up to investigate this bifurcation. However, the added complexity of using both
blow-up and polynomial embedding presents a challenge; the resulting (polynomial) delay
vector field ends up being high-order with dozens of distinct nonlinear terms.
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Fig. 15 Proven section of the manifold of periodic orbits associated to the Bautin normal form. Note that the
amplitude is in fact equal to r from equation (49)
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