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Abstract
Quantumprocess tomography conventionally uses amultitude of initial quantum states
and then performs state tomography on the process output. Here we propose and
study an alternative approach which requires only a single (or few) known initial
states together with time-delayed measurements for reconstructing the unitary map
and corresponding Hamiltonian of the time dynamics. The overarching mathemat-
ical framework and feasibility guarantee of our method is provided by the Takens
embedding theorem. We explain in detail how the reconstruction of a single-qubit
Hamiltonian works in this setting and provide numerical methods and experiments for
general few-qubit and lattice systems with local interactions. In particular, the method
allows to find the Hamiltonian of a two qubit system by observing only one of the
qubits.

Keywords Quantum process tomography · Takens theorem · Unitary maps ·
Optimization

1 Introduction

System identification refers to the estimation of the dynamics of a system from mea-
surements of its characteristics. Its quantum analogue, quantum process tomography
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Fig. 1 Schematic illustration of the map from a unitary time step operator U to a vector of measurement
averages at different time delays

(QPT), is essential for the realization and testing of quantum devices [1–3], as a bench-
marking tool for quantum algorithms [4, 5], and in general for understanding the inner
workings of a quantum system [6, 7]. However, textbook algorithms for QPT [8]might
be difficult to realize in laboratory settings due to the required preparation of many
initial states and observation of the complete target system.

In this work, we focus on the unitary time evolution of a closed quantum system.
We propose and investigate an approach based on measurements with different time
delays, which should be easily realizable in laboratory experiments. Our main con-
tributions are algorithms and numerical procedures for identifying the corresponding
time evolution operator and thus indirectly the quantumHamiltonian. Intriguingly, we
can identify the operator for the entire system even if the measurements are restricted
to a subsystem (using two known initial quantum states). The Takens embedding
theorem, discussed in Sect. 3, provides an overarching mathematical foundation and
feasibility guarantee for our approach. Concretely, the mathematical framework starts
with a manifold M, which we take to be the special unitary group of time evolution
operators. Given an initial quantum state, a time step matrix U ∈ M then determines
the measurement averages at a sequence of time points, see Fig. 1. The Takens the-
orem states that the map from M to this measurement vector is actually a smooth
embedding (under certain conditions), which then allows us to reconstruct U .

Related to the present work, a recent approach for quantum process tomography
using tensor networks as a parametrization of the quantum channel was able to achieve
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high accuracies for systems of up to 10 qubits [9]. Furthermore, in [10] the authors
derive a lower bound in the number of POVMs required to fully characterize a unitary
or near-unitary map. Regarding the related task of quantum state tomography, several
methods, some based on machine learning techniques, have been developed [11–17].
However, except for [14], these works do not explicitly take advantage of the time
trajectory of the quantum system as envisioned here. Gate set tomography [18] does
not need pre-calibrated quantum states, but focuses on finding gate sets.

Our work is closely related to earlier research on the identification of quantum
Hamiltonians from time series [19, 20]. The authors obtain all degrees of freedom
of the Hamiltonian with known structure by solving a system of equations, mostly
in the presence of noise. More recently, artificial neural networks have been used for
identification and applied to experimental data [21–23]. However, theminimal number
of observables needed to identify the Hamiltonian is not addressed mathematically,
and we provide it here with the link to Takens theorem. In our work, the choice of
initial state is not as important, as we will demonstrate.

Takens theorem has been fundamental to several system identification methods for
general dynamical systems already [24], recently also involvingmachine learning [25–
28], with a focus on PDE [29, 30] or special structure such as (classical) Hamiltonian
dynamics [31, 32]. The identification of a unitary map from measurement data has
been discussed by Koopman and von Neumann [33, 34], work that has been revived in
a data-driven context in the last 20years and extended to dissipative systems [35–37].
The connection to quantum systems and their special structure and challenges have
not yet been addressed in the work cited above, however.

2 Physical model

We assume throughout that the quantum Hamiltonian H is time-independent and will
investigate two settings: (i) a few-qubit system and H a general denseHermitianmatrix
and (ii) a (tight binding) Ising-type model on a two-dimensional lattice �, as widely
studied in condensed matter physics. For concreteness, the physical system for case
(ii) consists a local spin degree of freedom at each lattice site. The Hamiltonian is then
defined as

H = −
∑

〈 j,�〉
J j,� σ z

j σ
z
� −

∑

j∈�

�h j · �σ j , (1)

where J j,� ∈ R and �h j ∈ R
3 are local parameters defining the interaction strength

and the external field, respectively. σα
j for α ∈ {x, y, z} is the α-th Pauli matrix acting

on site j ∈ �, and �σ j = (σ x
j , σ

y
j , σ

z
j ) the corresponding Pauli vector. The first sum

in (1) runs over nearest neighbors on the lattice. We take � to contain a finite number
n of sites and assume periodic boundary conditions. The site-dependent parameters
allow to simulate disorder. Figure2illustrates the interaction and external field terms
of H on a two-dimensional lattice. The precise form of H is not important for the
reconstruction as long as the time dynamics it generates can be well approximated by
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Fig. 2 Visualization of the quantum Hamiltonian in Eq. (1) on a two-dimensional lattice, with J the
interaction strength and �h the external field

a quantum circuit, for example via Trotterization. We assume that the overall structure
of H is known, and our task is to determine the numerical values of the parameters.

For later reference, we state the unitary time evolution operator at time t ∈ R based
on the Schrödinger equation (in units of � = 1):

U (t) = e−i Ht . (2)

The solution to the Schrödinger equation for an initial wavefunction (statevector)
ψ ∈ C

N is then ψ(t) = U (t)ψ .

3 Takens embedding framework

The theorems of Takens and Ruelle [38, 39], based on the embedding theorems of
Whitney [40], are the theoretical foundations of time-delay embedding we use here.

The general idea we employ in this paper is to “embed” the manifold of unitary
matrices (describing the dynamics of a quantum system) into the space of measure-
ment trajectories. The primary motivation for conducting an embedding is to create a
feature space for the optimization. Most QPT approaches use measurements in many
different measurement bases, implicitly creating such an embedding. In our case, we
instead use time-delayed measurements, considering that in some experimental setups
it may be more practical to maintain the time evolution than to implement a full set of
measurement bases.

We first state the mathematical theorem and then discuss the specialization for
quantum time evolution. Let k ≥ d ∈ N, and M ⊂ R

k be a d-dimensional, com-
pact, smooth, connected, oriented manifold with Riemannian metric g induced by the
embedding in k-dimensional Euclidean space. Note that this setting is sufficient for
our presentation, but is more restrictive than allowed by the results cited below.

Together with the results from Packard et al. [41] and Aeyels [42], the definitions
and theorems of Takens [39] describe the concept of observability of state spaces of
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nonlinear dynamical systems. A dynamical system is defined through its state space
(here, the manifold M) and a diffeomorphism φ : M → M.

Theorem 1 Generic delay embeddings For pairs (φ, y), φ : M → M a smooth
diffeomorphism and y : M → R a smooth function, it is a generic property that the
map �(φ,y) : M → R

2d+1, defined by

�(φ,y)(x) =
(
y(x), y(φ(x)), . . . , y(φ ◦ · · · ◦ φ︸ ︷︷ ︸

2d times

(x))
)

(3)

is an embedding of M; here, “smooth” means at least C2 and x ∈ M.

Genericity in this context is defined as “an open and dense set of pairs (φ, y)” in
the C2 function space. Open and dense sets can have measure zero, so Sauer et al.
[43] later refined this result significantly by introducing the concept of prevalence (a
“probability one” analog in infinite dimensional spaces). See [44] for similar results
with stochastic systems.

Let N denote the quantum Hilbert space dimension. In our context, M is the
special unitary group SU(N ) ⊂ C

N×N when identifying C 
 R
2. In particular,

M (with underlying field R) has dimension d = N 2 − 1. In physical terms, the
elements of SU(N ) are the unitary time evolution matrices in Eq. (2). We assume
that the Hamiltonian H is traceless, since adding multiples of the identity to H leads
to a global phase factor in the time evolution, which is unobservable in subsequent
measurements as envisioned here. We fix a time step 	t , which we may (without loss
of generality) absorb into H , and set U = e−i H in the following.

Now define the diffeomorphism φ via a scaling of H by a factor γ > 0, γ �= 1,
such that

φ(U ) = e−iγ H = U γ . (4)

Regarding y, fix a randomly chosen initial quantum stateψ ∈ C
N and an observable

(Hermitian matrix) M . Now let y compute the corresponding expectation value:

y : M → R, y(U ) = 〈ψ |U †MU |ψ〉. (5)

With these definitions, the output of the map �(φ,y) in Eq. (3) becomes

�(φ,y)(U ) =
(
〈ψ | ei H M e−i H |ψ〉,

〈ψ | eiγ H M e−iγ H |ψ〉,
. . . , 〈ψ | eiγ 2d H M e−iγ 2d H |ψ〉

)
, (6)

physically corresponding to measurements at time points tq = γ q for q = 0, . . . , 2d.
Note that the exponential scaling of the time points requires a carefully chosen γ that
adapts to the time and resolution constrains of the experiment. In practice, this may
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limit the method to few qubit systems, where the required number of time points is
small.

The main point here is the prospect to identify the time step matrix U , and thus
indirectly the Hamiltonian, based on a single measurement time trajectory, under the
assumption that the initial quantum state is known. As caveat, the relationU = e−i H	t

determines the eigenvalues of H only up to multiples of 2π/	t . Moreover, the map
�(φ,y) might not be one-to-one, in the sense that two different unitary matrices give
rise to the same measurement trajectory. We discuss such a case in more detail in the
following. Such issues can be avoided in practice by additional assumptions on the
structure of H .

4 Numerical methods

Throughout this work, we assume that it is feasible to reliably prepare a single (or
when indicated several) known initial state(s) ψ ∈ C

N . To demonstrate the general
applicability of our methods, ψ is chosen at random in the following algorithms
and numerical simulations. Specifically, the entries of ψ before normalization are
independent and identically distributed (i.i.d.) random numbers sampled from the
standard complex normal distribution.

4.1 Reconstruction algorithm for a single-qubit system

We now describe how to reconstruct a single-qubit Hamiltonian from a time series
of measurements. The Bloch sphere picture [8] provides a geometric perspective and
insight into single-qubit quantum states and operations. The Bloch vector �r ∈ R

3

associated with ψ ∈ C
2 is defined via the relation:

|ψ〉〈ψ | = 1

2
(I + �r · �σ). (7)

For pure states as considered here, �r is a unit vector. We can parametrize any single-
qubit Hamiltonian (up to multiples of the identity map, which are irrelevant here)
as:

H = �h · �σ (8)

with �h ∈ R
3. The corresponding time evolution operator is the rotation:

U (t) = e−i Ht = cos(ωt/2)I − i sin(ωt/2)(�v · �σ) ∈ SU(2), (9)

when representing �h = ω�v/2 by a unit vector �v ∈ R
3 andω ∈ R. On the Bloch sphere,

this operator corresponds to a classical rotation about �v, as illustrated in Fig. 3a and
described by Rodrigues’ rotation formula (θ = ωt):

Uθ,�v �r = cos(θ)�r + sin(θ)(�v × �r) + (1 − cos(θ))(�v · �r) �v. (10)
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Fig. 3 a The Bloch sphere
picture of the time dynamics
effected by a Hamiltonian is a
classical rotation. For a single
observable, the reconstruction of
H is not unique, e.g., the two
trajectories for H = �h · �σ and
H ′ = �h′ · �σ result in the same
〈Z〉 expectation values. b The
system of equations to be solved
for the reconstruction admits
four solutions

Uθ,�v ∈ SO(3) is a rotation matrix (parametrized by θ and �v) applied to �r . In the
above context of Takens embedding with U = U (	t), we may equivalently work
with U = Uω	t,�v and matrix powers thereof.

The time trajectory effected by the rotation applied to �r results in a circle embedded
within the Bloch sphere. Knowing the circle would allow to determine �v, and the
dynamics on the circle to determine ω. By construction, we also know one point
on the circle already, namely �r (the initial condition), but we only have access to
the expectation value of an observable M for t > 0. In the following, we denote the
“measurement direction”by �m ∈ R

3, i.e.,M is parametrized asM = �m·�σ .Algorithm1
facilitates a recovery of ω and �v using the projections of the time trajectory on �m. The
main idea is to first reconstruct ω based on the time dependence and then the unit
vector �v.

As caveat, the solution to this problem is not unique, due to the four possible
signs of the coefficients α2 and α3 in the algorithm. Figure3a visualizes how two
rotations can generate the same projection onto the z-axis, with �h′ resulting from
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(α2, α3) → −(α2, α3). The two equations for α2 and α3 are shown in Fig. 3b. (In
the example, α1 = −0.2051, and hence, the radius of the norm constraint circle is
close to 1.) In order to decide between these distinct solutions, one could perform
one further measurement in a different basis, or may use a-priori knowledge about the
Hamiltonian.

Algorithm 1 Reconstruction of a single-qubit Hamiltonian (measurement direction
�m ∈ R

3 with �m ∦ �r )
Input: Measurement averages yq = �m · (Uωtq ,�v �r) with tq = 	t γ q for q = 0, . . . , 2d
Output: Hamiltonian parameters ω and �v.

1: Find ω based on the dependency on ωt in Eq. (10):

ω = argmin
ω>0

min
a,b,c

2d∑

q=0

|yq − a cos(ωtq − b) − c|2

2: Set ỹq = yq − cos(ωtq )( �m · �r) for q = 0, . . . , 2d (subtract term which is independent of �v)
3: Find α1 = �m · (�v × �r) and κ = (�v · �r)( �m · �v) via a least squares fit:

α1, κ = argmin
α1,κ

2d∑

q=0

|ỹq − sin(ωtq )α1 − (1 − cos(ωtq ))κ|2

4: Represent �v with respect to the orthonormal basis

{
�u1 = �r × �m

‖�r × �m‖ , �u2 = �r + �m
‖�r + �m‖ , �u3 = �r − �m

‖�r − �m‖
}

:
�v = α1 �u1 + α2 �u2 + α3 �u3,

with to-be determined coefficients α2, α3 ∈ R. Using that �u1, �u2 and �u3 are eigenvectors of K =
1
2 ( �m ⊗ �r + �r ⊗ �m) with respective eigenvalues 0, λ+ = 1

2 (1 + �m · �r) and λ− = − 1
2 (1 − �m · �r), it

follows that

κ = �v · K �v = λ+α22 + λ−α23 .

Together with the normalization condition

α21 + α22 + α23 = 1,

this leads to α22 = κ − (1 − α21)λ− and α23 = 1 − α21 − α22 . Decide between the four possible signs of
α2, α3 using a-priori information of H or one additional measurement in a different basis.

We remark that the nonlinear optimization in the first step of the algorithmmight get
trapped in a local minimum, which could be resolved by restarting the optimization.
On the other hand, when neglecting uncertainties associated with the measurements, a
correct solution is indicated by a zero residual both in steps 1 and 3. We assume that a
range of realistic frequencies ω is known beforehand, such that the Nyquist condition
(given the non-uniform sampling points tq ) holds [45].
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4.2 Relaxationmethod

As straightforward approach for determining a unitary time step matrix U which
matches the measurement averages, one could start from the natural parametrization
U = e−i H (with the time step already absorbed into H ) and then optimize the Hermi-
tianmatrix H directly. However, thismethod encounters the difficulty of a complicated
optimization landscape with many local minima, in particular when using gradient
descent-based approaches.

Here we discuss an alternative numerical approach tailored towards generic (dense)
few-qubit Hamiltonians. As discussed in Sect. 4.1, for single qubits a transformation
ψ ′ = Uψ by a unitary matrix U ∈ SU(2) can equivalently be described by a spatial
rotation in three dimensions on the Bloch sphere: �r ′ = Ur , with U ∈ SO(3) given by
Rodrigues’ formula (10). An equivalent mapping from U to U is via:

Uα,β = 1

2
tr
[
σαUσβU †] (11)

for α, β = 1, 2, 3, where we have used the relation (7) together with the orthogonality
relation of the Pauli matrices: 1

2 tr[σασβ ] = δαβ . For our purposes, the Bloch picture
has the advantage that measurement averages depend linearly on the Bloch vector and
hence on U, e.g., 〈ψ ′|σ z |ψ ′〉 = �ez · �r ′ = �ez · (Ur). In practice, we first optimize the
entries of U to reproduce the measurement data and afterwards findU related to U via
Eq. (11).

Generalization to a larger number of qubits is feasible via tensor products of Pauli
and identity matrices (in other words, Pauli strings). The analogue of (11) for n qubits,
with U ∈ SU(2n), is U ∈ SO(4n − 1) with entries

Uα,β = 1

2n
tr
[
(σα1 ⊗ · · · ⊗ σαn )U (σβ1 ⊗ · · · ⊗ σβn )U †], (12)

where α and β are now index tuples from the set {0, 1, 2, 3}⊗n\{(0, . . . , 0)}, using
the convention that σ 0 is the 2 × 2 identity matrix. We exclude the tuple (0, . . . , 0)
here since it conveys no additional information: the identity matrix is always mapped
to itself by unitary conjugation.

Specifying an element of SO(4n − 1) involves more free parameters than for a
unitary matrix from SU(2n) in case n ≥ 2; thus, the optimization might find an
orthogonal U which reproduces the measurement data, but does not originate from a
U ∈ SU(2n) via (12). We circumvent this representability issue as follows, focusing
on the case of two qubits here. Every U ∈ SU(4) can be decomposed as [46, 47]

U = (
ua ⊗ ub

)
R
(
uc ⊗ ud

)
(13)

with the “entanglement” gate

R = e− i
2 (θ1 σ 1⊗σ 1+θ2 σ 2⊗σ 2+θ3 σ 3⊗σ 3), θ1, θ2, θ3 ∈ R (14)
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and single-qubit unitaries ua, ub, uc, ud ∈ SU(2). The single-qubit gates can be
handled as before, i.e., represented by orthogonal rotation matrices ua, ub, uc, ud ∈
SO(3). We find the Bloch representation of R via (12) (cf. [48, 49]); the parameters
θ1, θ2, θ3 appear in the matrix entries solely as cos(θ j ) and sin(θ j ) for j = 1, 2, 3.
In summary, we express the decomposition (13) in terms of to-be found orthogonal
matrices in the Bloch picture.

After switching to the described Bloch representation, we “relax” the condition that
an involved (real) matrix U is orthogonal, by admitting any real matrix, but adding the
term

Lorth = ∥∥UUT − I
∥∥2
F (15)

to the overall cost function, where ‖·‖F denotes the Frobenius norm. As advantage, we
bypass a parametrization of U to enforce strict orthogonality and avoid local minima
in the optimization. Although this may in principle lead to a non-unitary matrix, at
the end of the optimization we retrieve an exact unitary by finding the Hamiltonian
entries via the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

By choosing γ = 2 in Eq. (4), the time steps tq = γ q are integers, and we can
generate corresponding powers of U by defining U0 = U, Uq = U2

q−1 for q =
1, . . . , 2d, such that

e−iγ q H = Uγ q = Uq for q = 0, . . . , 2d. (16)

In our case, the Uq ’s are separate matrices, which are set in relation via an additional
cost function term

Lsteps =
2d∑

q=1

∥∥Uq − U2
q−1

∥∥2
F. (17)

For the case of two-qubit Hamiltonians, we additionally substitute two-dimensional
vectors (c j , s j ) for (cos(θ j ), sin(θ j )), again to avoid local minima. The condition
c2j + s2j = 1 translates to another penalty term in the overall cost function:

Lθ =
3∑

j=1

|c2j + s2j − 1|2. (18)

In our experiments, weweighted the penalization termswith a constant factor. Thus,
denoting as yq the experimental measurements and as ŷq the predictions of the model,
the final cost functions are:

L = 1

d

2d∑

q=1

(yq − ŷq)
2 + 0.1

(
∑

q

Lorth, q + Lsteps

)
(19)
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Fig. 4 Minimal example for the time-delayed partial (subsystem) measurement scenario. The goal is to
reconstruct the (unknown) Hamiltonian H . We assume that one can prepare two different initial states and
can select a measurement basis via the gate C

for the single-qubit case and

L = 1

d

2d∑

q=1

(yq − ŷq)
2 + 0.01

(
∑

q

Lorth, q + Lsteps + Lθ

)
(20)

for the two-qubit case. Here we note that, by performing the relaxation described
throughout this section, we are increasing the dimensionality of the optimization land-
scape. However, and perhaps counter-intuitively, we find in our numerical experiments
that allowing for more flexibility in the matrices considerably reduces the chances of
the optimization getting stuck in local minima.

4.3 Partial (subsystem)measurements

An intriguing possibility of the time-delay measurements is the identification of the
overall Hamiltonian based on measurements restricted to a subsystem. As minimal
example, consider a two-qubit system, the choice between two initial states, being
able to select a measurement basis via the gate C , and time-delayed measurements on
one of the qubits while the other qubit is inaccessible, as illustrated in Fig. 4.

As already mentioned, the map �(φ, y) is not a one-to-one map, which may lead
to multiple Hamiltonians producing the same set of time-delayed measurements. For
a single-qubit system, it is very clear how to resolve this ambiguity (see Sect. 4.1).
However, for larger systems it is not so clear. In our experiments, we observed that
choosing two or three different initial states and/or two or three different measurement
basiswas enough for the optimizer to arrive to the ground-truthHamiltonian, at least for
the system sizes considered throughout the paper. For the numerical experiment shown
in Fig. 10, we use two random initial states and X -, Y - and Z -basis measurements on
the top qubit andminimize themean-squared error between the observedmeasurement
averages and the prediction based on a general Ansatz for the (traceless) Hamiltonian,
i.e., 15 real parameters.

4.4 Lattice systemwith local interactions

Finally, we consider quantum systems defined on a lattice and assume an Ising-type
Hamiltonian as in Eq. (1) (instead of a generic Hamiltonian) to avoid an exponential
growth of the number of parameters.
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Fig. 5 One time step 	t of the quantum dynamics based on Strang splitting into interaction and local field
terms, see Eq. (21), illustrated for a one-dimensional lattice with n = 5 sites. The single-qubit gates on
the left and right are rotation gates exp(−i	t �h j · �σ j /2) for the j-th qubit, and the two-qubit gates are
exp(−i	t J j, j+1σ

z
j σ

z
j+1). The different shades indicate different parameters at each site. The ordering of

the two-qubit interaction gates among each other is not relevant since they pairwise commute

For the purpose of reconstructing theHamiltonian parameters, the Schrödinger time
evolution can be well approximated via a second-order Strang splitting method [50],
i.e., the Time-Evolving Block Decimation (TEBD) algorithm [51]. Interpreting the
resulting layout of single- and two-site unitary operators as forming a quantum circuit,
the reconstruction task amounts to a variational circuit optimization to reproduce the
reference measurement averages. Specifically, when considering the interaction and
local field parts of the Hamiltonian

Hint = −
∑

〈 j,�〉
J j,� σ z

j σ
z
� , Hloc = −

∑

j∈�

�h j · �σ j (21)

by themselves, the individual terms in each of the sums pairwise commute. Fig-
ure5illustrates the corresponding quantum circuit for a one-dimensional lattice; the
constructing works for higher-dimensional lattices as well.

5 Numerical experiments

Here we present numerical experiments for the methods described in Sect. 4.

5.1 Exact reconstruction of a single-qubit Hamiltonian

With the algorithm described in Sec. 4.1 we are able to reconstruct a single-qubit
Hamiltonian up to numerical precision. Figure6shows the results obtained for the ω

and least squares optimizations. Following the Takens framework, we use 2d +1 time
points, where d = 3 is the number of Hamiltonian parameters to be reconstructed.
Specifically,wehave used the timepoints tq = 0.3×(1.3)q forq = 0, . . . , 6here.With
this, we are able to find ω, α1 and κ up to an error of ∼ 10−15. Thus, 7 measurements,
plus a further measurement in a different basis to distinguish between the possible
solutions due to symmetry, are sufficient for the reconstruction.

So farwe have assumed a perfectly known initial state and noise-freemeasurements.
In real experiments, however, this is not a reasonable assumption. One can model both
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Fig. 6 a step 1 and b step 3 of
Algorithm 1 using Z -basis
measurements, for the time
evolution of initial state |+〉
under a Hamiltonian where each
entry in the vector is generated
from a normal distribution

Fig. 7 Single-qubit Hamiltonian reconstruction error. The solid line shows the median, while the lighter
shade shows the 10% quantiles
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sources of noise by replacing the expectation values from Eq. (5) by

y′(U ) = y(U ) + N (0, σ 2) (22)

where the standard deviation σ quantifies the uncertainty related to the initial state
and/or themeasurements. Figure7shows that the reconstruction error is related linearly
to σ . This is to be expected, as the arguments of the cost functions minimized in
Algorithm 1 are related linearly to the obtained measurements.

5.2 Relaxationmethod

In this subsection, we consider a generic single- or two-qubit Hamiltonian H . Specif-
ically, we draw the coefficients of H with respect to the Pauli basis from the standard
normal (Gaussian) distribution.

We first focus on a single-qubit 2 × 2 Hamiltonian. Figure8 a shows the result
of directly fitting the vector �h ∈ R

3 (see Eq. (8)), with the KL divergence between
the predicted and actual measurement probabilities as cost function. This approach
is compared to the “relaxation” procedure (described in Sect. 4.2) in Fig. 8b, using
γ = 2 and 	t = 0.1. The manifold for the Takens embedding has dimension d = 3
for a single qubit, and hence, 2d + 1 = 7 time points should be used. However, we
face the difficulty that the Hamiltonian is not uniquely specified solely by Pauli-Z
measurements according to the discussion in Sect. 4.1. For this reason, we include
Pauli-X measurement data as well and reduce the number of time points to 4 (to
compensate for this additional source of data). For both versions, we use the Adam
optimizer [52]. The direct fitting method might get trapped in a local minimum and
hence not be able to find the ground-truth vector �h, which leads to a large variation
around the median. This issue is ameliorated by the relaxation method. The almost-
plateau observed in Fig. 8bmight be due to the constraint in Eq. (17): namely, a change
of U needs to propagate to the higher powers of U . However, we remark that the loss
function still decreases steadily, indicating that the optimization should continue.

Figure 8c visualizes the loss function and relative errors when applying the
relaxation procedure to reconstruct the unitary time step matrix and corresponding
Hamiltonian of a two-qubit system (d = 15 real parameters). Specifically, for parame-
ter optimizationwe express Eq. (13) using theBloch picture, i.e., in terms of orthogonal
rotation matrices for the single-qubit unitaries, and likewise using the Bloch picture
analogue of the entanglement gate (14), parametrized by two-dimensional vectors
(c j , s j ) for (cos(θ j ), sin(θ j )). The condition c2j + s2j = 1 translates to another penalty
term in the overall cost function, see Eq. (18).We set	t = 0.05, γ = 2 and use 6 time
points for this experiment. The reference measurement data at each time point are the
expectation values of the nine observables {I ⊗ σα, σα ⊗ I , σα ⊗ σα}α∈{x,y,z}. We
use 54 measurement data points in total (instead of 2d + 1 = 31) since we found that
the additional information improves the reconstruction. As last step (after the main
optimization), we find the Hamiltonian entries giving rise to the computed U via the
BFGS algorithm.
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Fig. 8 a and b: Single-qubit
Hamiltonian reconstruction
based on four Z - and four
X -basis measurements, (a) by
direct fitting of the Hamiltonian
parameters to the measurement
data, and (b) using the
“relaxation” procedure
(Sect. 4.2), with the actual
Hamiltonian parameters
determined from U at the end
(blue line at the rightmost
section of the plot). Solid lines
show the median, and lighter
shades are 25% quantiles. (c)
“Relaxation procedure” for
two-qubit Hamiltonian
reconstruction, working with the
Bloch picture of the
representation (13) to find the
time step matrix U, and then
determining a two-qubit
Hamiltonian giving rise to this U
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Fig. 9 Histogram of the final error in the reconstructed Hamiltonian

According to Fig. 8c, the median relative errors ofU and the Hamiltonian are below
10−3, but there are still cases where the method cannot find the reference solution at
all, even though the loss value is small. An explanation could be that U and H are not
uniquely determined. Figure9shows a histogram of the final error in the reconstructed
Hamiltonian. Despite most trials converging to the correct solution, there seem to be
several other extrema where the optimization gets stuck. We leave a clarification of
this point for future work.

5.3 Partial (subsystem)measurements

We study the scenario depicted in Fig. 4, namely performing measurements solely
on one out of two qubits. The observables are the three Pauli gates here. For the
reconstruction to work, we require that two different, precisely characterized initial
states, can be prepared, which we choose at random for the numerical experiments.

The ground-truth Hamiltonian is similarly constructed at random, by drawing
standard normal-distributed coefficients of Pauli strings, which in sum form theHamil-
tonian. We use the time step 	t = 1

5 and γ = 1.15 here and have heuristically found
12 time-delayed measurements (for each measurement basis) as viable to reliably
reconstruct the Hamiltonian. The loss function is the mean-squared error between the
model prediction for the measurement averages and the ground-truth values. To avoid
getting trapped in local minima during the numerical optimization, we use the best out
of 10 attempts (in terms of the loss function) with different random starting points.

The specific observables are the threePauli gates applied to thefirst qubit. Figure10a
shows exemplary measurement time trajectories, and Fig. 10b the reconstruction error
and loss function (median and 25% quantiles based on 20 random realizations of the
overall setup). One observes that a reliable and precise reconstruction of the Hamilto-
nian (even up to numerical rounding errors) is possible in principle, when neglecting
inaccuracies of the measurement process.
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Fig. 10 Numerical reconstruction of a generic two-qubit Hamiltonian based on time-delayedmeasurements
of only one of the qubits, cf. Fig. 4. a Exemplary measurement time trajectory of the operators σ x ⊗ I ,
σ y ⊗ I and σ z ⊗ I . Two random initial states and their respective trajectories are used as input to the
reconstruction algorithm. b Reconstruction error and loss function based on 20 random realizations

We remark that we have used only a single initial state and less time points for the
“relaxation” method (see Fig. 8c), which can explain the seemingly larger errors there.
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5.4 Hamiltonian on a lattice with local interactions

Wefirst consider the case of aHamiltonian (1)with uniform parameters (not depending
on the lattice site), i.e.,

H = −
∑

〈 j,�〉
J σ z

j σ
z
� −

∑

j∈�

�h · �σ j (23)

with J ∈ R and �h ∈ R
3. Thus, the task consists of reconstructing 4 real numbers. The

ground-truth values for the following experiment are J = 1 and �h = (0.5,−0.8, 1.1).
� is a 3 × 4 lattice with periodic boundary conditions, and the initial state is a single
wavefunction with complex random entries (independently normally distributed). We
compute the time-evolved quantum state ψ(t) via the KrylovKit Julia package [53]
and use the squared entries of ψ(t) as reference Born measurement averages.

For the purpose of reconstructing J and �h, we approximate a time step via a varia-
tional quantum circuit as shown in Fig. 5, where the single- and two-qubit gates share

their to-be optimized parameters J̃ and �̃h. For simplicity, we use three uniform time
points 	t , 2	t , 3	t with 	t = 0.2 (instead of time points tq = γ q	t), such that the
quantum circuit for realizing a single time step can be reused. Note that such a set of
time points does not correspond to the diffeomorphism described in Eq. 4. In practice,
we found that using uniform time steps worked comparably well for the optimiza-
tion. This suggests that the numerical method is more flexible in this respect, despite
Takens theorem providing the mathematically sound argument to use time-delayed
measurements as a basis for the reconstruction in the first place.

We quantify the deviation between the exact Born measurement probabilities,
p j (t) = |ψ j (t)|2 (which in practice would be obtained from the experimental
data), and the probabilities p̃ j (t) resulting from the trotterized circuit Ansatz, via
the Kullback–Leibler divergence:

DKL (p(t) ‖ p̃(t)) =
∑

j

p j (t) log
p j (t)

p̃ j (t)
. (24)

Figure 11a visualizes the optimization progress, i.e., the relative errors of J and �h,
and the loss function (24). The darker curves show medians over 100 trials of random
initial states, and the lighter shades 25% quantiles. The dashed horizontal line is the
loss function evaluated at the ground-truth values of J and �h; it is nonzero due to the
Strang splitting approximation of a time step. Interestingly, the optimization arrives
at an even smaller loss value starting around training epoch 70. We interpret this as
an artefact of the Strang splitting approximation—note that around this epoch, the
relative error of �h slightly increases again. We have used the RMSProp optimizer [54]
with a learning rate of 0.005 here. In summary, the reachable relative error is around
0.02, and higher accuracy would likely require a smaller time step to reduce the Strang
splitting error.
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Fig. 11 Relative reconstruction error of theHamiltonian parameters for the 3×4 latticemodel in (a) Eq. (23)
and (b) Eq. (25), and loss function during training, when fitting a quantum circuit representation of a time
step (Fig. 5) to the exact Born measurement averages

Next, we consider a Hamiltonian (1) with disorder (and external field solely in
x-direction):

H = −
∑

〈 j,�〉
J j,� σ z

j σ
z
� −

∑

j∈�

h j · σ x
j (25)

with i.i.d. random coefficients J j,� and h j . For the numerical experiment, J j,�
is uniformly distributed in the interval [0.8, 1.2], and h j ∼ N (0, 1/4) (normal
distribution).
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The results are shown in Fig. 11b. As before, we evaluate 100 realizations of the
experiment, with a set of coefficients and random initial state drawn independently for
each trial. We take the maximum over the relative errors of J j,� for all j, � to arrive
at the relative error reported in Fig. 11b, and likewise for h j . The “reference” loss
function is the KL divergence evaluated at the ground-truth coefficients. It is nonzero
due to Strang splitting errors and fluctuates due to the different random coefficients at
each trial.

6 Conclusions and outlook

Our work demonstrates the feasibility of using measurements at different time points
to reconstruct the time evolution operator. The approach presented in this work has
twomain benefits: First, it requires only a single (or few) initial state(s) and reduces the
number of different kinds of measurements for the reconstruction of the Hamiltonian.
From an experimental point of view, this would be helpful when the experimental
setup makes it easier to maintain the time evolution of the system than to implement
a variety of measurements. Second, as demonstrated in Sect. 5.3, the method allows
for the reconstruction of a Hamiltonian even when only part of the system can be
observed.

A natural extension of our work is QPT in the situation of dissipation and noise pro-
cesses, i.e., a system governed by a Lindblad equation. This would pose the additional
challenge of a limited time window for extracting information and a larger number
of free parameters. An interesting alternative approach could be a mapping to a uni-
tary evolution with an unobserved environment [55], which would fit into the present
framework.

The relaxation method in Sect. 4.2 can be regarded as tool to smoothen the opti-
mization landscape, but an open question is how to guarantee convergence to the
correct solution. This becomes particularly relevant for larger systems and the likewise
increasing number of free parameters.

A related task for future work is a sensitivity analysis with respect to inaccuracies
and noise in the measurement data. A modified version of Takens theorem still applies
in this situation [44], but it is not clear how accurate our algorithm can reconstruct H .
A first step could be a gradient calculation of the measurement averages with respect
to the Hamiltonian parameters.
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