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Abstract The Mathieu–Duffing equation represents
a basic form for a parametrically excited system with
cubic nonlinearities. In multi-degree-of-freedom sys-
tems, parametric resonances and the associated limit
cycles take place at both principal and combination res-
onance frequencies. Furthermore, using asynchronous
parametric excitation of coupling terms leads to a
broadband destabilization of the trivial solution and the
appearance of limit cycles at non-resonant frequencies.
Regarding applications, the utilization of this excita-
tion method has its significant importance in micro-
and nanosystems. On the one hand, cubic nonlineari-
ties are found to be abundant in these systems. On the
other hand, parametric excitation is preferably utilized
in these systems for better amplification leading to an
enhanced sensitivity and for squeezing thermal noise,
and thus, proved to be significantly useful in mechan-
ical, optical and microwave systems. Therefore, this
theoretical investigation should be of relevant impor-
tance to those small-scaled systems. Accordingly, a
general two-degree-of-freedom Mathieu–Duffing sys-
tem is studied. The non-trivial solutions are obtained at
different parametric resonance conditions. A bifurca-
tion analysis is carried out using the multiple scales
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method, followed by investigating the effect of the
asynchronous parametric excitation on the existence of
limit cycles at resonant and non-resonant frequencies.
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1 Introduction

Dynamical systems with time-periodic coefficients,
also named parametrically excited systems, have been
investigated since the nineteenth century to explain
different wave phenomena in fluids or solids. Nowa-
days, parametric excitation is a cornerstone in various
fields of science and engineering, including mechan-
ical resonators [1], optics [2], microwave systems [3]
and atomic physics [4]. The archetypical and simplest
mathematical form of these parametrically excited sys-
tems appears in the Mathieu equation. Subsequently,
significant attention was given to these systems study-
ing the stability of their trivial solutions. In a nonlinear
system, however, a parametric resonance could lead
to steady-state non-trivial solutions and limit cycles, in
which the amplitudes are governedby the system’s non-
linearities. Among nonlinear differential equations, the
Duffing equation used to be one of the most influential
examples inmodeling nonlinear systems, wheremicro-
and nanomechanical resonators are no exception [5]. A
special concern is given to the parametrically excited
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Duffing equation, which in its simplest form carries the
name Mathieu–Duffing equation [6,7].

In applications, and more specifically micro- and
nanosensors, increasing the sensitivity of these devices
by amplifying their response to the environment is a key
performance indicator. However, the signal-to-noise
ratio (SNR) is always an obstacle for the amplification
of these systems. Perfectly suited to these challenges,
parametric excitation offers an increase in sensitivity
through amplification with minimal noise production,
compared to electronic techniques [8]. Ofmore interest
is the parametric excitation in these systems due to the
accompanying thermal squeezing effect [9]. For these
reasons, parametric resonances and amplification were
automatically exploited to increase the sensitivity of
micro- and nanosensors.

The utilization of parametric excitation in micro-
and nanosystems was known for decades [1], which
was used usually in high-Q systems for amplifi-
cation [10]. In addition, combining nonlinearity to
parametric excitation was found to be influential in
these systems, especially for sensing applications [11].
Several examples are discussed in the literature, for
instance, inmicrogyroscopes [12,13].Moreover, acquir-
ing a broadband parametric excitation showed several
advantages: either in terms of frequency tuning capa-
bility [14], for noise squeezing [15], or for energy har-
vesting [16,17]. Although the parametric pumping of
micro- and nanosystems seems to be discussed exten-
sively in the literature, a lesser effort was given to corre-
sponding multi-degree-of-freedom (M-DoF) systems.
Despite the complexity of these systems, they reveal
other interesting phenomena which could be signifi-
cantly advantageous for these applications in terms of
sensitivity and noise reduction.

From a theoretical point of view, parametrically
excited two-DoF linear systems were studied for
decades, since they represent the simplest form of M-
DoF systems. In addition to the principle paramet-
ric resonances at twice the system’s eigenfrequencies,
a bimodal parametric excitation could initiate reso-
nances at combination frequencies, namely difference
and summation frequencies [7,18,19]. At these fre-
quencies, the solutions of these systems could be sig-
nificantly amplified [20] or even suppressed [21,22].
Moreover, by controlling the phase of these exci-
tation terms more interesting phenomena could be
found. A special effect was observed when the cou-
pling between two degrees of freedom is applied

through a phase-shifted parametric excitation, called
asynchronous parametric excitation [23,24]. In this
case a phenomenon called “total instability”was found,
where the system exhibits a destabilization effect at
all parametric excitation frequencies [25]. This effect
was broadly studied in the recent years, and it was
found that this type of excitation causes global sta-
bility conditions, which means not being localized at
resonant frequencies [26]. Furthermore, only recently
this excitationmethodwas brought to themicrosystems
industry, where the mathematical model could be vali-
dated experimentally in a microsystem [27]. Moreover,
the effects of broadband destabilization or broadband
parametric amplification were discussed for microgy-
roscopes [28], which could serve as a typical example
for this theoretical study.

Motivated by thementioned theoretical findings and
by the significance of parametric excitation methods
in micro- and nanoapplications, the two-degree-of-
freedomMathieu–Duffing equation is discussed in this
work in a generic configuration, especially where the
broadband destabilization effect is exhibited. Paramet-
rically excited nonlinear two-DoF systems were inves-
tigated before in different configurations. In addition
to cubic nonlinearities, some systems included either
quadratic or coupling nonlinear termswere studied ana-
lytically [29,30]. Some works were focused on two-
DoF systems for specific applications using numeri-
cal [31] or experimental methods [32,33], where dif-
ferent nonlinear terms were included depending on
the application involved. Theoretical works were more
interested in systems with bimodal coupled paramet-
ric excitation [34–36], where the diagonal terms in the
parametric excitation matrix were not considered. In
these studies, the non-trivial solutions were consid-
ered at combination resonances [34,36] using averag-
ing approximation methods and at non-resonant fre-
quencies under asynchronous excitation [35] using
the method of normal forms; however, principle res-
onances were not considered since the diagonal excita-
tion terms did not exist. The influence of the diagonal
or the off-diagonal terms on parametric resonances will
be discussed in this study.

In this work, the asynchronous parametric excitation
is considered in a two-DoF nonlinear system, with a
fully populated excitation matrix, providing a generic
form of the two-degree-of-freedom Mathieu–Duffing
system. Moreover, the non-trivial solutions are dis-
cussed at all resonant and non-resonant frequencies,
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and a detailed bifurcation analysis using the multiple
scales method is carried out. In addition, a special case
of a 1:1 internal resonance is also considered due to its
relevance to systems with degenerate or similar eigen-
frequencies found in different applications [28,37].

To this end, the following two-DoFnonlinear system
is proposed

u′′
1 + ω2

1u1 + μ1u′
1 + γ1u3

1 + α1u′3
1 + η11u1 cos(Ωpt)

+ η12u2 cos(Ωpt) = 0

u′′
2 + ω2

2u2 + μ2u′
2 + γ2u3

2 + α2u′3
2

+ η21u1 cos(Ωpt + ζ ) + η22u2 cos(Ωpt) = 0

(1)

with cubic stiffness and damping nonlinearities having
the coefficients γi and αi , i = 1, 2, respectively, and
having natural frequencies ω1, ω2. Without the given
parametric excitation, the two DoF would be rather
uncoupled, the coupling is then achieved through the
parametric excitation terms,whichhave the coefficients
η12 and η21, where the latter includes a phase-shift ζ .
In addition, the system includes intrinsic parametric
excitation terms as well with coefficients ηi i , i = 1, 2.
Thus, there is no forced excitation, that is, the system
is purely parametrically excited.

2 Stability of the trivial solution

As a first step to investigate the dynamics of the sys-
tem (1), the stability of its trivial solution is discussed.
Therefore, the system is linearized around the trivial
solution to give

u′′
1 + ω2

1u1 + μ1u′
1 + η11u1 cos(Ωpt)

+ η12u2 cos(Ωpt) = 0,

u′′
2 + ω2

2u2 + μ2u′
2 + η21u1 cos(Ωpt + ζ )

+ η22u2 cos(Ωpt) = 0.

(2)

This linearized system was discussed in [22,26,34]
either in more general or specific forms. Since this
system is non-autonomous, the eigenvalues cannot be
deduced. Therefore, Floquet theory is then used to
determine the stability of the trivial solution. To this
end, the system is put in a first-order form

z′
1 = z2,

z′
2=−ω2

1z1−μ1z2−η11z1 cos(Ωpt)−η12z3 cos(Ωpt),

z′
3 = z4,

z′
4 = −ω2

2z3 − μ2z4 − η21z1 cos(Ωpt + ζ )

− η22z3 cos(Ωpt), (3)

which could be written in the compact form

ż = A(t)z. (4)

According to Floquet theory [6], each fundamental
matrix Z(t) can be written as

Z(t) = P(t)eBt , (5)

where eachof Z, P, B is ann×nmatrix, P(t) = P(t+
T ), and B is constant. By evaluating the eigenvalues of
themonodromymatrix eBt = C at the periodic time T ,
we get the Floquet characteristic multipliers ν. Then,

λi = 1

T
ln(νi ), i = 1, 2, ..., n, (6)

are the system’s Floquet characteristic exponents, and
their real parts are found to be Lyapunov characteristic
exponents [38].

The same criterion of stability of a fixed point
can be extended here for periodic solution of a non-
autonomous system. If all Lyapunov exponents are
negative, which means that all Floquet multipliers are
inside the unit circle of the complex plane, the solu-
tion is said to be asymptotically stable. While if any
Lyapunov exponent is negative, which means that any
Floquet multiplier lies outside the unit circle, the sys-
tem is said to be unstable. For nonlinear systems, if
none of the Floquet multipliers associated with a non-
hyperbolic solution lies outside the unit circle, then a
nonlinear analysis is necessary to determine the stabil-
ity [39].

According to this criterion, the Lyapunov character-
istic exponents Re(λ) are evaluated in the parameter
space of parametric excitation frequency and ampli-
tude (Ωp-η). For instance, at an excitation amplitude
η = 0.4 the maximum exponent is calculated against
the parametric excitation frequency Ωp and plotted in
Fig. 1 for synchronous (ζ = 0) and asynchronous (ζ =
−π/2) excitation. Throughout this paper, a comparison
is held between these two cases. The specific phase-
shift, ζ = −π/2, is chosen as an example for the asyn-
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Fig. 1 Maximum Lyapunov characteristic exponent Re(λ)max against the parametric excitation frequency Ωp for system (3) at the
amplitude η = 0.4, where ω1 = 1, ω2 = √

5, μ1 = μ2 = 0.01

chronicity, since it leads to total instability according
to [25] and more specifically, it allows for broadband
destabilization and amplification inmicrosystems [28].
It can be observed in the figure that when ζ = 0, reso-
nances occur at Ωp = (ωi +ω j )/n, that is, at the prin-
ciple resonance frequency (i = j) and at the summa-
tion combination frequency (i �= j) and their fractions,
where n ∈ N. However, at the difference combina-
tion frequency Ωp = ω2 − ω1 an anti-resonance takes
place. While in the case of asynchronous parametric
excitation ζ = −π/2, resonances occur at all princi-
ple and combination frequencies. Moreover, in the lat-
ter case, a broadband destabilization can be observed
between the combination frequencies, where the maxi-
mum characteristic Lyapunov exponent is increased in
this frequency interval. The demonstration in this fig-
ure was discussed before in [26] and is comparable to
the effective damping in [40], specifically for Fig. 1a.

Applying the instability criterion explained before,
i.e., max(Re(λ)) > 0, and plotting only the points of
instability at different excitation levels η gives the so-
called stability chart of the system’s trivial solution in
the parameter space Ωp-η. The stability chart is again
evaluated in the synchronous and asynchronous exci-
tation cases. The stability chart for the synchronous
excitation case is depicted in Fig. 2, while Fig. 3 shows
the asynchronous case, where in each case the blue
points represent unstable trivial solutions. Under syn-
chronous excitation, the expected Arnold’s tongues are
found at principle and combination resonant frequen-
cies Ωp = (|ωi ± ω j |)/n, n ∈ N. The occurrence of

instability tongues at principle resonance frequencies
and their fractions are dependent on the existence of
the diagonal terms, in addition, they occur either at the
summation frequency when ζ = 0 or at the difference
frequencywhen ζ = π . However, when the phase-shift
ζ = −π/2 is introduced, an instability tongue at both
combination frequencies is found, in addition, they are
merged and a large instability region is formed between
both combination frequencies [|ωi − ω j |, ωi + ω j ],
which results in a broadband instability region. This
explains the broadband destabilization effect [28].

The importance of this phenomenon is considered
for applications that seek broadband parametric ampli-
fication as mentioned in the introduction and was
emphasized in [28] for microgyroscopes, which also
applies for micro- and nanosystems with similar eigen-
frequencies. Since in these devices the summation fre-
quency is in the order of hundreds of kHz while the
difference frequency is in the order of hundreds of Hz,
the broadband destabilization spans approximately the
whole frequency bandwidth up to the summation fre-
quency. This effect cannot be attained using a syn-
chronous excitation except at extremely high exci-
tation amplitudes when the Arnold’s tongues meet,
see Fig. 2; however, using an asynchronous excita-
tion allows it to happen at reasonable excitation lev-
els, see Fig. 3. These findings and their significance in
applications intrigued the authors to study the dynam-
ics of the system inside the regions of instability under
asynchronous excitation and compare it to the conven-
tional synchronous parametric excitation. However, if
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Fig. 2 Stability chart of the
system (2) under
synchronous parametric
excitation (white is stable,
blue/gray is unstable),
where ω1 = 1, ω2 =√
5, μ1 = μ2 = 0.01 and

ζ = 0

Fig. 3 Stability chart of the
system (2) under
asynchronous parametric
excitation (white is stable,
blue/gray is unstable),
where ω1 = 1, ω2 =√
5, μ1 = μ2 = 0.01 and

ζ = −π/2

the trivial solution is destabilized, a linear systemwould
suggest an unbounded response, which does not occur
in reality. For these reasons, the system ismodeled non-
linearly, and the non-trivial solutions and their stability
are studied in the next sections.

3 Perturbation analysis of the nonlinear system

The method of multiple scales is used to analyze the
given problem up to the first order [7,41]. To this end,

the linear system of (1) is perturbed to give

u′′
1+ω2

1u1+ε[μ1u′
1+γ1u3

1+α1u′3
1 + η11u1 cos(Ωpt)

+η12u2 cos(Ωpt)] = 0

u′′
2 + ω2

2u2 + ε[μ2u′
2 + γ2u3

2 + α2u′3
2

+η21u1 cos(Ωpt + ζ ) + η22u2 cos(Ωpt)] = 0,

(7)

where all terms but the linear oscillator terms are con-
sidered to be small, which is indicated by the perturba-
tion arbitrary parameter ε << 1.
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One seeks an expansion in the form

u1(t; ε) = u10(T0, T1) + εu11(T0, T1) + · · · , (8a)

u2(t; ε) = u20(T0, T1) + εu21(T0, T1) + · · · , (8b)

where Ti = εi t, Di = ∂/∂Ti and

∂

∂t
= D0 + εD1 + ...,

∂2

∂t2
= D2

0 + 2εD0D1 + ... .

(9)

Inserting (8) and (9) in (7) and separating according
to the order of ε results in the following: for ε0, we
obtain

D2
0u10 + ω2

1u10 = 0, (10a)

D2
0u20 + ω2

2u20 = 0, (10b)

while for ε1, the equations read

D2
0u11 + ω2

1u11 = −μ1D0u10 − γ1u3
10 − α1D0u3

10

−η11u10 cos(Ωpt) − η12u20 cos(Ωpt)

−2D0D1u10, (11a)

D2
0u21 + ω2

2u21 = −μ2D0u20 − γ2u3
20 − α2D0u3

20

−η21u10 cos(Ωpt + ζ ) − η22u20 cos(Ωpt)

−2D0D1u20. (11b)

Solving (10) gives

u10(T0, T1) = A1(T1)e
iω1T0 + Ā1(T1)e

−iω1T0 , (12a)

u20(T0, T1) = A2(T1)e
iω2T0 + Ā2(T1)e

−iω2T0 , (12b)

where the amplitudes A1, A2 represent the slow time-
scale variables, which will exhibit the system’s stabil-
ity in the further calculations, while the exponential
expressions represent the fast time-scale periodic solu-
tion. Inserting (12) in (11) gives

D2
0u11 + ω2

1u11 = −γ1(A3
1ei3ω1T0 + 3A2

1 Ā1eiω1T0)

− α1(−iω3
1 A3

1ei3ω1T0 + i3ω3
1 A2

1 Ā1eiω1T0)

− 1

2
η11A1(e

i(ω1−Ωp)T0 + ei(ω1+Ωp)T0)

− 1

2
η12A2(e

i(ω2−Ωp)T0 + ei(ω2+Ωp)T0)

− i2ω1D1A1eiω1T0 − iμ1ω1A1eiω1T0 + CC,

(13a)

D2
0u21 + ω2

1u21 = −γ2(A3
2ei3ω2T0 + 3A2

2 Ā2eiω2T0)

− α2(−iω3
2 A3

2ei3ω2T0 + i3ω3
2 A2

2 Ā2eiω2T0)

− 1

2
η21A1(e

i(ω1−Ωp)T0−iζ + ei(ω1+Ωp)T0+iζ )

− 1

2
η22A2(e

i(ω2−Ωp)T0 + ei(ω2+Ωp)T0)

− i2ω2D1A2eiω2T0 − iμ2ω2A2eiω2T0 + CC,

(13b)

where CC stands for the complex conjugates of the
preceding terms in each equation.

Equations (13) have secular terms that must vanish
(see [7,42]). However, these secular terms are found to
be dependent on the frequency interval chosen for the
solution,whether it is away from resonance frequencies
or nearly tuned to them. For this reason, the following
sections will represent the different cases according to
the resonant conditions: near principle resonance fre-
quencies, that is when Ωp � 2ωi ; near combination
resonance frequencies, i.e., when Ωp � ωi ± ω j ; or at
non-resonant frequencies. The latter concludes our goal
for discussing parametric destabilization and amplifi-
cation in the broad frequency band as explained before.

4 Principle parametric resonance

Although this case can be found in [7] or [43] using
the multiple scales method when αi = 0, a further
analysis reveals more interesting properties for αi �= 0
as follows. Being interested in the dynamics around the
principle parametric resonance, a detuning parameter
σp = O(1) is introduced to give

Ωp = 2ω1 + εσp. (14)

Inserting (14) in (13) and equating secular terms to zero,
then transforming into the polar coordinates using

A1(T1) = 1

2
a1(T1)e

iφ1(T1), A2(T1) = 1

2
a2(T1)e

iφ2(T1).

(15)

gives the resonance equation. The reader is referred
to [7] for more details. The steady-state solution of the
second oscillator a2 vanishes, while that of the first one
a1 is given by the resonance equation

−9(γ 2
1 + α2

1ω
6
1)a

5
1 + 24(γ1σpω1 − α1μ1ω

4
1)a

3
1

+(4η211 − 16(μ2
1 + σ 2

p)ω2
1)a1 = 0. (16)
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Fig. 4 Frequency–response curve at the principle parametric
resonance of the first DoF, where ω1 = 1, μ1 = 0, γ1 =
0.07, α1 = 0.03 and η11 = 0.2. Blue and red points represent
stable and unstable limit cycles, respectively

and the steady-state solutions

a1 = ±
√
2

3√√√√2γ1σpω1 − 2α1μ1ω
4
1 ±

√
−8α1γ1μ1σpω

5
1 + γ 2

1 (η211 − 4μ2
1ω

2
1) + α2

1ω
6
1(η

2
11 − 4σ 2

pω2
1)

γ 2
1 + α2

1ω
6
1

, (17)

or the trivial solution

a1 = 0. (18)

The frequency–response curve corresponding to the
non-trivial solution (17) is presented in Fig. 4. A non-
linear resonance behavior is exhibited, and a stable
limit cycle is born after a bifurcation at σp = −0.1
and extends up to σp � 0.25. Although the sys-
tem incorporates Duffing-type nonlinearities, the non-
trivial solution here differs substantially from that of
a forced Duffing oscillator with regard to the type of
excitation. At the point (σp = 0.1) another bifurcation
occurs, where a smaller unstable limit cycle appears
in addition to the stable one and extends also up to
σp � 0.25, where both limit cycles annihilate each
other. This creates two frequency intervals, the first
one (σp ∈] − 0.1, 0.1[) involves only a stable limit
cycle with an unstable trivial solution, while the sec-
ond (σp ∈]0.1, 0.25[) includes a stable limit cycle, an
unstable limit cycle and a stable trivial solution. How-
ever, only a stable trivial solution exists at other fre-
quency intervals. The phase portrait before and after

the bifurcation point (σp = 0.1) is represented in Fig. 5
in complex phase space of the slow variable A1 repre-
sented in the complex form

A1 = (aRe − iaI m)e
1
2 iσp T1 (19)

instead of the polar one used in the analysis. This is
depicted as having a saddle trivial fixed point (s1) in the
first interval and a stable focus ( f1, f ′

1), where the neg-
ative “image” of each non-trivial solution is denoted by
a prime. In the second interval, the stable focus ( f1, f ′

1)
persists, while the saddle point (s1) splits into a stable
focus ( f2) for the trivial solution and a new saddle point
(s2, s′

2).
A further insight could be drawn from this analysis

by setting the detuning parameter σp = 0 and at the
same time canceling the linear damping, i.e., μ1 = 0.
In this case, the non-trivial solution (17) reduces to

a1 = Γ =
(

4η211
9(γ 2

1 + α2
1ω

6
1)

)1/4

, (20)

whichwill be calledΓ for further analysis. Aswe see in
this expression, the amplitude of the oscillation is deter-
mined mainly by the parametric excitation amplitude
η11 and the nonlinear terms γ1, α1. Here, it is obviously
clear that in the case of the absence of any of them, we
will be left with only the trivial solution. Although it
might seem to contradict the fact that the unforcedDuff-
ing oscillator has non-trivial solutions evenwithout any
parametric excitation, but the main difference here is
that the linear damping was set to zero [42]. The Γ

value is considered here to represent a non-trivial solu-
tion neither with a perturbing linear damping nor with
the detuning of the excitation frequency. The effect of
perturbing this solution through varying both of them
will be studied next.

Substituting the value of Γ back in (16) while keep-
ing the detuning parameter σp = 0 but allowing the
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Fig. 5 Phase plot for the complex plane of the A1

linear damping μ1 to vary gives

a5
1 +Γ 4

(
6α1μ1ω

4
1

η211

)
a3
1 +Γ 4

(
4μ2

1ω
2
1

η211
− 1

)
a1 = 0,

(21)

solving this resonance equation gives again

a1 = 0 (22)

or

a4
1 + Γ 4

(
6α1μ1ω

4
1

η211

)
a2
1 + Γ 4

(
4μ2

1ω
2
1

η211
− 1

)
= 0,

(23)

which is clearly a quadratic equation in a1. Using com-
bined parameters Ξ1, Ξ2 for the terms between brack-
ets and rewriting, it gives

a4
1 + Γ 4Ξ1a2

1 + Γ 4Ξ2 = 0, (24)

which has a solution of

a2
1 = −Γ 4Ξ1

2
± 1

2

√
Γ 8Ξ2

1 − 4Γ 4Ξ2. (25)

For relatively high excitation amplitudeswith respect
to system parameters, we find the combined parame-
ters Ξ1, Ξ2 and Γ to have values smaller than one. In
this caseΞ2 will dominate the solution. And in order to
have a real-valued a1, i.e., positive-valued a2

1 , Ξ2 must
then be negative. Thus, a real-valued a1 can only take
place if positive square root solution was selected and
ifΞ2 < 0. Reading theΞ2 term from (23) and applying
this condition yields

− η11

2ω1
< μ1 <

η11

2ω1
, (26)

which could be confirmed by numerically solving (23)
and plotting the solution in Fig. 6a.

However, if the excitation amplitudeswere relatively
small, giving the combined parameters values larger
than one, we find Ξ1 to be dominating. In this case a
real-valued a1 is only possible for μ1 < 0, as shown
in the same figure. The plotted solution in Fig. 6 corre-
sponds to the solution of the main resonance equation
at σp = 0 in Fig. 4, where only a stable limit cycle
exists. However, if another value of σp was chosen
which includes an unstable solution as well, this should
give another dimension to the problem. Thereby, by
returning back to (16) it can be written in
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Fig. 6 Non-trivial solutions by varying the system linear damping μ1, while σp = 0. Other parameter values read ω1 = 1, γ1 =
0.07, α1 = 0.03

Fig. 7 Non-trivial solution by varying the system linear damping μ1 at two different values for the detuning parameter σp . Other
parameter values read ω1 = 1, γ1 = 0.07, α1 = 0.03, η11 = 0.2

a4
1+Γ 4

(
Ξ1−6γ1ω1

η211
σp

)
a2
1+Γ 4

(
Ξ2+4ω2

1

η211
σ 2

p

)
=0,

(27)

which gives the admissible amplitude values shown in
Fig. 7 by varying the linear damping μ1 again. The
figure shows isolated stable and unstable steady-state
solutions. This is particularly interesting, since the vari-
ation of the linear damping could cause an abrupt
increase or decrease in the amplitude of the response at
a bifurcation point. This high sensitivity of the response
at the bifurcation point could be of significant impor-
tance for systems, where high sensitivity is pursued
using a bifurcation control scheme.

5 Internal resonance under parametric excitation

The case of 1:1 internal resonance stands to be relevant
for systems involving degenerate or similar eigenvalues
ω1 � ω2. This happens to be the case for structureswith
axis-symmetric geometry. A motivating example is the
micro-ring gyroscope [28], where it was shown that
the degeneracy of eigenvalues or even the nearness to
one another leads to a large broadband destabilization
effect between the difference and summation combi-
nation frequencies. In the nonlinear case, however, an
additional phenomenon takes place, which is the inter-
nal resonance, provided that one eigenfrequency is in
the vicinity of the other.
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In this case, we introduce an additional detuning
parameter σin where

ω2 = ω1 + εσin, (28)

while the previous one (14) remains effective.
Returning to (13) and this time inserting both (14)

and (28) gives the solvability conditions

i2ω1D1A1 + iμ1ω1A1 + 3(γ1 + iα1ω
3
1)A2

1 Ā1

+1

2
η11 Ā1eiσp T1 + 1

2
η12 Ā2ei(σp−σin)T1 = 0,

(29a)

i2ω2eiσin T1 D1A2 + iμ2ω2eiσin T1 A1

+3(γ2 + iα2ω
3
2)A2

2 Ā2eiσin T1 + 1

2
η21 Ā1eiσp T1+iζ

+1

2
η22 Ā2ei(σp−σin)T1 = 0. (29b)

In order to investigate the exchange of energy when
only oneDoF is parametrically excited,we putη22 = 0,
and the phase-shift is firstly not taken into considera-
tion, i.e., ζ = 0. As previously done, we insert (15) in
(29) then separate real and imaginary parts to yield the
modulation equations

D1a1 = −μω1a1
2ω1

− 3α1ω
3
1a3

1

8ω1
+ η12a2 sin(θ1)

4ω1

− η11a1 sin(θ2)

4ω1
, (30a)

D1a2 = −μ2ω2a2
2ω2

− 3α2ω
3
2a3

2

8ω2
+ η21a1 sin(θ1)

4ω2
,

(30b)

D1θ1 = −σp + σin + 3γ1a2
1

8ω1
+ 3γ2a2

2

8ω2

+ 1

4ω2
η21

a1
a2

cos(θ1) + 1

4ω1
η12

a2
a1

cos(θ1)

+ η11 cos(θ2)

4ω1
, (30c)

D1θ2 = σp − 3γ1a2
1

4ω1
− η12a2 cos(θ1)

2ω1a1
− η11 cos(θ2)

2ω1
,

(30d)

where θ1 = φ1 +φ2 + (σin − σp)T1 and θ2 = −2φ1 +
σpT1.

The steady-state solutions are then sought when
D1ai = 0, D1θi = 0, i = 1, 2, which when substi-
tuted in (30) and solved for a1 and a2 give the two

resonance equations

9(γ 2
2 +α2

2ω
6
2)a

6
2+24ω2(−γ2σp + 2γ2σin+α2μ2ω

3
2)a

4
2

+16ω2
2(μ

2
2 + (σp − 2σin)2)a2

2 − 4η221a2
1 = 0,

(31a)

9η221(γ
2
1 + α2

1ω
6
1)a

7
1 + 24η221(α1μ1ω

4
1 − γ1σpω1)a

5
1

+ a3
1

[
−4η221(η

2
11 − 4(μ2

1 + σ 2
p)ω2

1)

+ 24η12η21(γ1(σp − 2σin) − α1μ2ω
3
1)ω2a2

2

−18η12η21(γ1γ2 + α1α2ω
3
1ω

3
2)a

4
2

]

+ 4η12η21a1
[
(η12η21 − 8(μ1μ2 + σp(σp−

2σin))ω1ω2)a
2
2

+6ω1(γ2σp − α2μ1ω
3
2)a

4
2

]
= 0.

(31b)

5.1 Stability analysis

In order to determine the stability of the obtained non-
trivial solutions, the solution is perturbed using

a1(T1) = a10 + Δa1(T1), a2(T1) = a20 + Δa2(T1),

θ1(T1) = θ10 + Δθ1(T1),

θ2(T1) = θ20 + Δθ2(T1), (32)

compactly written

z(T1) = z0 + Δz(T1), (33)

which is then inserted in the modulation equations (30)
to give

Δ ż = ∂ f (Δz, z0)

∂Δz
|Δz=z0 + N LT, (34)

where J = ∂ f (Δz,z0)
∂Δz |Δz=0 is the Jacobian matrix eval-

uated at the fixed point, N LT represents the nonlinear
terms.

After eliminating the nonlinear terms, the linearized
system presents an eigensystem with the eigenvectors
being tangent to the system’s nonlinear manifolds. The
stability of the fixed point of the nonlinear system can
be deduced from the eigenvalues of the linearized sys-
tem, as long as the fixed point is hyperbolic accord-
ing to Hartman–Grobman theorem [44]. In this view, if
all the eigenvalues at the investigated fixed point have
negative real parts, the fixed point and the correspond-
ing solution is considered asymptotically stable. While
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Fig. 8 Non-trivial solutions for a1 and a2 by detuning σp in case
of tuned 1:1 internal resonance, where ωi = 1, μi = 0, γi =
0.1, αi = 0.02, η11 = η12 = η21 = 1, η22 = 0 and σin = 0, for

i = 1, 2. Blue and red points represent stable and unstable limit
cycles, respectively

Fig. 9 Non-trivial solutions for a1 and a2 by detuning σp in case
of tuned 1:1 internal resonance, where ωi = 1, μi = 0, γi =
0.1, αi = 0.02, η12 = η21 = 1, η22 = 0, σin = 0 and η11 = 0,

for i = 1, 2. Blue and red points represent stable and unstable
limit cycles, respectively

the existence of a single positive eigenvalue implies the
instability of the solution. However, if the largest eigen-
value is strictly zero, then the stability of the solution
cannot be determined by a linear analysis [39].

Figure8 depicts the frequency–response curves for
the amplitudes of both degrees of freedom, which were
calculated by solving (31). The parameter values used
represent a perfectly symmetrical systemwith zero lin-
ear damping. The resonance curves show the typical
“M” shape due to the internal resonance; moreover,

the hardening nonlinear stiffness causes all curves to
bend to the right. This figure shows a similar behavior
as in [45] for a 1:3 internal resonance, however, with
different stability analysis results. In addition, multiple
stationary points could be calculated by detuning the
excitation frequency. This results in a complex phase
space containing various fixed points at a given excita-
tion frequency.

However, when the external parametric excitation
η11 is turned off, the internal resonance’s typical behav-
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ior vanishes (see Fig. 9), and the frequency–response
curves show only stable and unstable limit cycles simi-
lar to the case of principle parametric resonance dis-
cussed before. Nevertheless, a distinction should be
made here between this case and the case of paramet-
ric resonance. In the case of principle resonance, we
have only one excitation source, which is η11, that is,
the effect of the coupling parametric excitation terms
η12, η21 does not exist. This is a general remark that the
coupling excitation terms influence only combination
resonances, while intrinsic excitation terms η11, η22
influence only the respective principle parametric res-
onance [22]. However, we present here a different
phenomenon, where the energy is transferred to the
other degree of freedom, not through coupling excita-
tion terms but through internal resonance. Thus, in the
case of internal resonance, we do have three excita-
tion sources, η11, η12 and η21. If the first one is turned
off, the other two remain effective, causing a transfer
of energy at the principle resonance frequency. These
coupling excitation termswill showupagain to be influ-
encing the system’s behavior under combination reso-
nance, as will be discussed afterward. In other words,
while having zero η11 and η22, we have a cross para-
metric resonance through η12 and η21. This leads to the
response depicted in Fig. 9.

6 Combination parametric resonances

We apply the same analysis as before for the case of
combination parametric resonances, where the para-
metric excitation frequency is in the neighborhood of
the summation or the difference frequencies, that is
Ωp � |ω1±ω2|. Toperturb around anyof both frequen-
cies, we introduced the detuning parameter σ , where

Ωp = ω1 ± ω2 + εσ, (35)

then as before the resonance condition (35) is then
inserted in (13), to give the solvability conditions for
the summation frequency

i2ω1D1A1 + iμ1ω1A1 + 3γ1A2
1 Ā1 + i3α1ω

3
1 A2

1 Ā1

+1

2
η12 Ā2eiσs T1 = 0, (36a)

i2ω2D1A2 + iμ2ω2A2 + 3γ2A2
2 Ā2 + i3α2ω

3
2 A2

2 Ā2

+1

2
η21 Ā1ei(σs T1+ζ ) = 0, (36b)

or for the difference frequency

i2ω1D1A1 + iμ1ω1A1 + 3γ1A2
1 Ā1 + i3α1ω

3
1 A2

1 Ā1

+1

2
η12A2e−iσd T1 = 0, (37a)

i2ω2D1A2 + iμ2ω2A2 + 3γ2A2
2 Ā2 + i3α2ω

3
2 A2

2 Ā2

+1

2
η21A1ei(σd T1+ζ ) = 0. (37b)

Putting the amplitudes A1(T1), A2(T1) in polar form
according to (15), substituting in (36) or (37) and sep-
arating real and imaginary terms gives

D1a1 = −1

2
μ1a1 − 3

8
α1ω

2
1a3

1 − 1

4ω1
η12a2 sin(θ1)

(38a)

D1a2=−1

2
μ2a2−3

8
α2ω

2
2a3

2 ∓ 1

4ω2
η21a1 sin(θ1) cos(ζ )

− 1

4ω2
η21a1 cos(θ1) sin(ζ ) (38b)

D1θ1= ± σ−3γ1a2
1

8ω1
∓ 3γ2a2

2

8ω2
∓ 1

4ω2
η21

a1
a2

cos(θ1) cos(ζ )

+ 1

4ω2
η21

a1
a2

sin(θ1) sin(ζ ) − 1

4ω1
η12

a2
a1

cos(θ1),

(38c)

D1θ2 = 3γ2a2
2

8ω2
+ 1

4ω2
η21

a1
a2

cos(θ1) cos(ζ )

∓ 1

4ω2
η21

a1
a2

sin(θ1) sin(ζ ), (38d)

where θ1 = ±σ T1 − φ1 ∓ φ2 and θ2 = φ2, where
the upper and lower signs in the terms with combined
signs correspond to the summation and difference fre-
quency cases, respectively. Steady-state solutions are
then obtained by calculating the fixed points of (38),
that is when D1ai = 0 and D1θi = 0, for i = 1, 2,
and then the stability of each fixed point is deter-
mined as explained before. However, in this case the
effect of the asynchronicity of the parametric excita-
tion, i.e., the presence of the phase-shift ζ , heavily influ-
ences the non-trivial solutions. Therefore, we present
the steady-state solutions in two different cases, syn-
chronous ζ = 0 and asynchronous ζ = −π/2. This
latter particular phase-shift is chosen according to our
analysis of the trivial solution discussed before.

From (38), it can be observed that although these
equations are in four variables, only three of them influ-
ence the vector fields excluding θ2, which lead to three
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Fig. 10 Non-trivial solutions for a1 and a2 by detuning σ about the summation frequency, when ω1 = 1, ω2 = √
5, μi = 0, γi =

0.07, αi = 0.03, ηi j = 1, i, j = 1, 2 and ζ = 0

Fig. 11 Non-trivial solutions for a1 and a2 by detuning σ about the summation frequency, when ω1 = 1, ω2 = √
5, μi = 0, γi =

0.07, αi = 0.03, ηi j = 1, i, j = 1, 2 and ζ = −π/2

algebraic equations in three variables to determine the
fixed points.

In the synchronous excitation case, the steady-state
solutions are deduced and plotted in Fig. 10 for the
summation resonance frequency, where the blue and
red points represent stable and unstable limit cycles,
respectively. However, by solving the equations for
the difference frequency case, an interesting result is
observed: non-trivial solutions do not exist. This comes
in line with our stability analysis of the trivial solution,
where no resonance was found at the difference com-
bination frequency, instead an anti-resonance could be
detected. According to this observation, a correspon-
dence between the stability of the trivial solution and
the existence of the non-trivial ones can be proposed.

Moreover, the parametric resonance curve for the sum-
mation frequency case is shown to be similar to princi-
ple resonances (see Fig. 4), where the amplitude of the
second degree of freedom a2 is lower than the first one
a1.

In the other case, when ζ = −π/2, the fixed points
of (38) are again determined and the resonance curves
in this case are then depicted in Figs. 11 and 12. In
these figures it can be observed that all the non-trivial
steady-state solutions, or limit cycles, are found to be
stable for the given detuning interval. However, the res-
onance curves of both degrees of freedom have differ-
ent profiles. Furthermore, detuning the excitation fre-
quency has opposite effects on the amplitudes of the
limit cycles of both degrees of freedom: for the sum-
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Fig. 12 Non-trivial solutions for a1 and a2 by detuning σ about the difference frequency, when ω1 = 1, ω2 = √
5, μi = 0, γi =

0.07, αi = 0.03, ηi j = 1, i, j = 1, 2 and ζ = −π/2

mation frequency case, by positive detuning a2 exhibits
higher amplitude than a1, while by negative detuning
the opposite occurs, and vice versa for the difference
frequency case.Moreover, the resonance curves around
the difference frequency are shown to be significantly
similar and mirrored around the zero detuning parame-
ter when compared to those calculated around the sum-
mation resonance. This result should be related to the
difference in the solvability conditions (36) and (37)
where the excitation terms in each case are found to be
the complex conjugate of the corresponding ones in the
other case.

7 Non-resonant limit cycles

As illustrated in Sect. 2, the uniqueness of the phase-
shifted parametric excitation lies in the destabilization
of the trivial solution in a broad band of excitation fre-
quencies. This means, when the trivial solution turns
unstable, we should look for a non-trivial solution. In
this case, as previously noted, the non-trivial solutions
represent limit cycles due to the parametric excitation.
In order to find these solutions, the system (7) is restud-
ied without specifying a resonance condition. How-
ever, in order to capture the required phenomenon the
approximation up to the second order is then required.
In this case we rewrite (8) and (9) to be

u1(t; ε) = u10(T0, T1, T2) + εu11(T0, T1, T 2)

+ε2u12(T0, T1, T2) + ..., (39a)

u2(t; ε) = u20(T0, T1, T2) + εu21(T0, T1, T2)

+ε2u22(T0, T1, T2) + ..., (39b)

and

∂

∂t
= D0 + εD1 + ε2D2...,

∂2

∂t2
= D2

0 + 2εD0D1 + ε2(D2
1 + D0D2).

(40)

Inserting (39) and (40) in the perturbed differential
equations (7) gives an additional couple of equations
for the second order ε2, which are

D2
0u12 + ω2

1u12 = −μ1(D0u11 + D1u10)

− η11u11 cos(Ωpt) − η12u21 cos(Ωpt)

− D2
1u10 − 2D0D2u10 − 2D0D1u11,

(41a)

D2
0u22 + ω2

2u22 = −μ2(D0u211 + D1u20)−
η21u11 cos(Ωpt + ζ ) − η22u21 cos(Ωpt)

− D2
1u20 − 2D0D2u20 − 2D0D1u21.

(41b)

While the excitation frequency Ωp is chosen to be
away from all resonance frequencies, the solvability
conditions of (13) in the non-resonant case then read

i2ω1D1A1 + iμ1ω1A1 + 3γ1A2
1 Ā1

+i3α1ω
3
1 A2

1 Ā1 = 0, (42a)

i2ω2D1A2 + iμ2ω2A2 + 3γ2A2
2 Ā2

+i3α2ω
3
2 A2

2 Ā2 = 0, (42b)

which show no influence of the parametric excitation.
However, as pointed out in Sect. 2, the trivial solution
shows instability in a broad band of frequencies, which
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suggests the presence of secular terms at non-resonant
frequencies that depend on parametric excitation terms.
Moreover, in a nonlinear system this could lead to the
presence of non-trivial solutions or limit cycles. For
this reason, the analysis is then extended to the second-
order approximation.

Up to this point, it was not required to obtain the
first-order correction terms u11, u12, since we were
only interested in the amplitudes of the basic solution
u01, u02. In this current case the first-order correction
terms are needed to solve (41), noting that the solutions
should be functions of three time scales here T0, T1, T2,
which also applies to (12) and (13). By eliminating
the secular terms and solving (13), then applying these
solutions to (41) and extracting the secular terms, the
solvability conditions then read

(
4ω2

1

(
η211

4ω2
1 − Ω2

p

+η12η21(2iω1Ωp sin(ζ ) − (Ω2
p + ω2

1 − ω2
2) cos(ζ ))

(Ω2
p − (ω1 − ω2)2)(Ω2

p − (ω1 + ω2)2)

)

−3(γ1 − iα1ω
3
1)(γ1 − 3iα1ω

3
1)|A1|4

)
A1

− 8ω2
1D2

1 A1 − 8ω2
1(μ1 + 6α1ω1|A1|2)D1A1

− 16iω3
1D2 A1

+ 24α1ω
4
1 A2

1D1 Ā1 + CC = 0,
(43a)(

4ω2
2

(
η222

4ω2
2 − Ω2

p

−η12η21(2iω2Ωp sin(ζ ) + (Ω2
p + ω2

2 − ω2
1) cos(ζ ))

(Ω2
p − (ω1 − ω2)2)(Ω2

p − (ω1 + ω2)2)

)

−3(γ2 − iα2ω
3
2)(γ2 − 3iα2ω

3
2)|A2|4

)
A2

− 8ω2
2D2

1 A2 − 8ω2
2(μ2 + 6α2ω2|A2|2)D1A2

− 16iω3
2D2 A2

+ 24α2ω
4
2 A2

2D1 Ā2 + CC = 0,
(43b)

where they surprisingly represent two decoupled
equations in A1(T1, T2) and A1(T1, T2). Unlike the
conditions (42), we observe here the influence of
both nonlinear and parametric excitation terms, which
should be a correct representative of the slow time-scale
dynamics at non-resonant frequencies.

The solvability equations (43) show the amplitudes
A1, A2 differentiatedwith respect toT1 andT2,whereas
those in (42) were only differentiated with respect to
T1. In this case, instead of being solved as partial dif-
ferential equations, they could be combined using the
method of reconstitution [46] to give

dA

dt
= Ȧi = εD1Ai +ε2D2Ai +· · · , i = 1, 2. (44)

Thus, using (42) and (43), while D2
1 A1, D2

1 A2 are
obtained by the time differentiation of (42), we arrive
at the differential equations of the slow varying ampli-
tudes A1, A2. Afterward, using the polar coordinates

An = 1

2
an(t)eiφn(t), n = 1, 2 and separating real and

imaginary parts yield

ȧ1 = 1

2

(
−μ1 + η12η21Ωp sin(ζ )

(Ω2
p − (ω1 − ω2)2)(Ω2

p − (ω1 + ω2)2)

)
a1

+ 3(γ1μ1 − 2α1ω
4
1)

16ω2
1

a3
1 − 3

32
α1γ1a5

1 , (45a)

ȧ2 = 1

2

(
−μ2 − η12η21Ωp sin(ζ )

(Ω2
p − (ω1 − ω2)2)(Ω2

p − (ω1 + ω2)2)

)
a2

+ 3(γ2μ2 − 2α2ω
4
2)

16ω2
2

a3
2 − 3

32
α2γ2a5

2 , (45b)

φ′
1 = − μ2

1

8ω1
− η211

4ω1(4ω2
1 − Ω2

p)

+ η12η21(ω
2
1 − ω2

2 + Ω2
p) cos(ζ )

4ω1(Ω2
p − (ω1 − ω2)2)(Ω2

p − (ω1 + ω2)2)

+ 3γ1
8ω1

a2
1 + 3(−5γ 2

1 + 3α2
1ω

6
1)

256ω3
1

a4
1 , (45c)

φ′
2 = − μ2

2

8ω2
− η222

4ω2(4ω2
2 − Ω2

p)

+ η12η21(ω
2
2 − ω2

1 + Ω2
p) cos(ζ )

4ω2(Ω2
p − (ω1 − ω2)2)(Ω2

p − (ω1 + ω2)2)

+ 3γ2
8ω2

a2
2 + 3(−5γ 2

2 + 3α2
2ω

6
2)

256ω3
2

a4
2 . (45d)

It can be noticed in (45) that the amplitude equa-
tions (a,b) are composed of linear and nonlinear terms.
The linear terms represent an effective damping coeffi-
cient modified by the parametric excitation, while the
nonlinear terms are primarily composed of the nonlin-
ear coefficients of the original system (1). This affirms
the expected dependency of the existence of non-trivial
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Fig. 13 Limit cycle
amplitudes a1, a2 at
non-resonant frequencies,
when
ω1 = 1, ω2 = √

5, μi =
0, γi = 0.07, αi =
0.03, ηi j = 1, i, j = 1, 2
and ζ = −π/2

solutions on the nonlinearity of the original system. A
similar modulation equation could be obtained in [35]
using the method of normal forms; however, the non-
linear stiffness terms did not appear.

By plotting the non-trivial solutions for the ampli-
tudes a1, a2 in Fig. 13, we find the non-trivial solutions
of each degree of freedom existing in a different band
of frequencies for ζ = −π/2, while when the phase-
shift vanishes, ζ = 0, no non-trivial solutions could be
found. In this figure, a1 has non-trivial values between
the two combination frequencies |ω2 ± ω1|, while a2
has only the trivial solution, and vice versa. This can be
attributed to the denominator of the parametric excita-
tion term, that is (Ω2

p − (ω1−ω2)
2)(Ω2

p − (ω1+ω2)
2)

which changes signs at both combination frequencies,
giving a negative value in-between and a positive one
otherwise. This change of sign influences the existence
of non-trivial solutions for a1 and a2. However, their
non-trivial solutions exist at different intervals due to
the sign change of the whole parametric excitation
term, see (45a,b).

Furthermore, (12) can be rewritten using (15) to
yield
u1 = 1

2
a1

(
ei(ω1t+φ1) + e−i(ω1t+φ1)

)
,

u2 = 1

2
a2

(
ei(ω2t+φ2) + e−i(ω2t+φ2)

)
, (46)

which shows the main frequency of the oscillations of
each degree of freedom to be ω1 and ω2 modified by
the slow varying φ1 and φ2, respectively.

To summarize all the non-trivial solutions obtained:
the analysis carried out at the non-resonant frequencies
represents a global solution with respect to the excita-
tion frequency, whereas the solutions obtained in the
previous sections at resonant frequencies correspond
to local solutions. In combining the global and local
pictures of the system response under asynchronous

excitation (ζ = −π/2), see Figs. 4, 11, 12 and 13,
we obtain a full representation of the dynamics of the
system (1) at all excitation frequencies.

Furthermore and most importantly, stable limit
cycles are proved to exist at non-resonant frequencies,
where the trivial solution exhibits instability. This result
affirms our hypothesis, which is the broadband para-
metric amplification acquired through this method of
excitation as a result of a broadband destabilization of
the trivial solution discussed in Sect. 2.

8 Conclusion

Nonlinear time-periodic systems exhibit several types
of instability which occur due to different reasons.
Resonances and transfer of energy between coupled
degrees of freedom contribute to this destabilization;
moreover, the addition of a phase-shift between the
coupling parametric excitation terms adds other non-
trivial steady-state solutions. Through the variation of
the linear damping coefficient at the principle paramet-
ric resonance, the non-trivial solutions seem to exist
in a limited interval of the damping coefficient values,
but more interestingly it could cause isolated steady-
state solutions as well when the excitation frequency
is detuned in a region of multiple stationary points. In
addition, the case of internal resonance shows an influ-
ence of each excitation term. Even when the intrinsic
excitation terms, i.e., the diagonal terms in the paramet-
ric excitation matrix, do not exist, the coupling excita-
tion terms could cause a cross excitation in both degrees
of freedom. At the summation combination frequency,
the non-trivial solutions were obtained for both syn-
chronous and asynchronous excitations. In the former
case, the resonance curves are shown to be similar to
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those occurring at the principle resonance frequency;
however, in the latter case only stable limit cycles could
be found for the given parameter values. Furthermore,
it could be shown that non-trivial solutions appear at
the difference frequency under asynchronicity, which
is not the case when the phase-shift vanishes. This is
found to be in accordance with the stability analysis of
the trivial solution, since at the difference frequency an
anti-resonance occurs causing the stabilization of the
trivial solution. Finally, limit cycles are found at non-
resonant frequencies under asynchronous parametric
excitation. This last result supports the aim of this work
to find a broadband parametric amplification through
the destabilization of the trivial solution.

In summary, the system’s dynamics are investigated
at all resonant and non-resonant frequencies, thus giv-
ing a global picture of the system’s response. Through
the analysis, the influence of the asynchronous para-
metric excitation on the stability of the trivial and
non-trivial solutions is highlighted, which corresponds
directly to parametric amplification.

Therefore, these findings provide a better under-
standing of the nonlinear dynamics of parametrically
excited M-DoF systems which are particularly impor-
tant for micro- and nanosystems, such as micro- and
nanomechanical resonators. Through these conclu-
sions, the proposed method of asynchronous paramet-
ric excitation is shown to be promising for the sake of
increasing the amplification and thereby enhancing the
sensitivity of these systems in the sensors industry.
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