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Abstract
This article proposes two approaches for a tailored geometrical deviation compensation for Laser-Powder-Bed-Fusion produc-
tion. The deviation compensation is performed by a non-rigid deformation of the manufacturing geometry in each iteration
to reduce the geometrical deviations from the target geometry. It is important for geometric compensation approaches to
separate deterministic deviations from random scatter, since compensating scatter can result in unstable behaviour. In order to
compensate only deterministic deviations two novel approaches for a local estimation of the scatter are successfully introduced
and tested using a hybrid model of a series production cycle.

Keywords Selective laser melting · Additive manufacturing · Series production · LPBF · Preforming · Predeformation ·
Geometrical deviation compensation

Introduction

Laser-Powder-Bed-Fusion processes (LPBF) are system-
atically developed for small and medium volume series
production in the last years (Schmidt et al., 2017). An impor-
tant issue for this development is process stability and the
management of geometrical deviations due to, for example,
high temperature gradients during production (Bourell et al.,
2017), batch to batch deviations and other time dependent
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influences on the dimensional accuracy of the workpieces.
Improvement of geometric and dimensional accuracy of
additively manufactured parts was addressed in literature in
three different fields: A priori optimization of process param-
eters, online monitoring, or compensation of form deviations
with predeformation of the manufacturing geometry. Cao
et al. (2021) used a machine learning technique to train
a model based on data from simple geometries to mini-
mize surface roughness and increase dimensional accuracy
in LPBF processes. Li et al. (2018) presented a simulative
approach to predict residual stresses and distortions in SLM
processes, which is utilized to minimize distortion by opti-
mizing production parameters. Luan et al. (2019) proposed
a data-driven predictive approach to decouple the effect of
various error sources. A compensation framework can then
be used to improve the geometric accuracy of the LPBF
process by adapting the CAD model. Zhang et al. (2019)
proposed a CAD compensation algorithm to improve dimen-
sional accuracy of 3D printed parts in LPBF processes. They
proposed a predictive regressionmodel based on deformation
of manufactured samples. Inverse transformation can then
be applied to the reference CAD model to compensate for
geometric deviation. Zongo et al. (2020) predict geometrical
deviations of AlSi10Mg components numerically and com-
pare these predictions to experimental results, while Ding et
al. (2022) compensate geometric deviations in thin-walled
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LPBF-manufactured shell lattice structures with a discrete
element method simulation, to capture the dynamic inter-
action behavior between the powder particles. Vasileska et
al. (2022) use layer-wise feedback control to correct devi-
ations of overhang-structures. Amor et al. (2022) predict
deviations in LPBF processes based on scale and material
concentration effects. Akhavan et al. (2023) use a deep learn-
ing approach to control part quality in additive processes
by classifying regions of the part as underprinted, normal
printed, overprinted or empty. This information is used to
adjust themanufacturing parameters of future layers. In addi-
tion, a comprehensive review of machine learning methods
for the control of additive powder bed processes is given by
Zhang and Yan (2022).

Hartmann et al. (2019) utilized a predeformation algo-
rithm based on measurement data of the manufactured
components. However, to the best knowledge of the authors,
there is no research yet, which specifically addresses issues
which arise if a geometrical compensation concept is uti-
lized in series production with high quantities. In particular,
the distinction between random scatter in the manufactured
geometry and deterministic deviations, which can be repro-
duced by the process, has not been studied yet. To fill this
research gap, this article analyses the influence of a sys-
tematic predeformation on the dimensional accuracy of the
manufactured components in series production with a focus
on the separation of random scatter and deterministic geo-
metrical deviations.

Materials andmethods

Components and experimental data

The component which is analysed in this article is already in
series production in the automotive industry. Figure1 shows
the component front (left) and back (right). The front is the
most important functional area for its use case. Therefore,
the presented deviation compensation focuses on this area.

The component is produced with an AlSi10Mg powder
and 58 individual components in each job. The geometry of
20 specimens from each built job has been optically digitized
for three built jobs. Four of these individual components have
been unchanged from job to job, while the manufacturing
geometry of 16 specimens has been adjusted in job 2 and 3
to compensate for geometrical deviations using Eq.1, which
is detailed in Sect. 2.2. This experimentally obtained geo-
metrical data may be represented as a vector with one scalar
deviation value for each node, which quantifies the deviation
in normal direction from the surface of the specimen. This
data is utilized to measure the job to job scatter of the process
and to determine non-linear compensation behaviour.

Predeformation

The geometry of additivelymanufactured components is usu-
ally described by a triangulated surfacemesh. Themethodol-
ogy in this article builds on this structure and systematically
compensates geometrical deviations by predeformation of
the manufacturing geometry in each node of the mesh by
comparing the manufactured workpiece geometry and the
target geometry. Both are represented by triangulated surface
meshes, which are an approximation of the real geometry.
Hartmann et al. (2019) proposed Eq.1 to calculate the man-
ufacturing geometry m for the next iteration i + 1:

mi+1 = mi − αi+1wi , (1)

wherem is a vectorwhichdescribes the predeformationof the
manufactured geometry, which is added to the target geom-
etry. This predeformation is measured in normal direction
for each node. wi is a vector with the deviation of the man-
ufactured workpiece geometry, which is the manufactured
specimen of job number i , from the target geometry. αi+1 is
a constant factor for a global non-rigid predeformation. The
calculation of wi requires an optically determined surface
mesh of themanufactured geometry, which is fitted to the tar-
get geometry using an iterative closest point algorithm. For
each node in the target geometry the distance to the manufac-
tured geometry is determined and used as the nodal deviation
in wi . From iteration to iteration the predeformation mi+1 is
calculated by subtracting the current deviation from the pre-
deformation of the last iteration mi .

Monte-Carlo analysis and non-linear behaviour

For a continuous geometrical compensation in a high-volume
series production, it is essential to differentiate between
deterministic deviations and random scatter, since scatter that
affects the workpiece geometry from job to job cannot be
compensated by predeformation. Statistical considerations
show that the compensation of random scatter in the manu-
factured geometry by predeformation of the target geometry
leads to an increased scatter for series production. This can be
quantified by aMonte Carlo sampling of Eq.1. In this Monte
Carlo analysis, the deviation wi from target is chosen ran-
domly from the experimental data set with constant target
geometry (uncompensated). The experimentally-obtained
standard deviation of the process is described by σ process

for all M nodes. The Monte Carlo calculation simulated a
production cycle of 1000 built jobs with a predeformation
according to Eq.1 and compensation factors α ranging from
0.5 to 1.05. Therefore, the calculation results in the mean
standard deviation σ compensated of geometrical deviation of
each node within a population of 1000 compensated built
jobs. Since unstable behaviour is expected for a compensa-
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Fig. 1 Specimen of the
geometry which serves as an
example for LPBF series
production in this article

201 mm

62 m
m

tion factor α ≥ 1, the calculation is repeated N = 100 times
for each α to quantify the inherent scatter. To quantify and
depict the results, a normalized scatter σnorm is calculated as
follows:

σ norm =
( N∑

j=1

M∑
k=1

σ
compensated
jk

σ
process
jk

)
/(NM) (2)

These considerations assume the compensation process as
linear, where a compensation of a node presumes the same
reaction in themanufactured geometry. However, recent pub-
lications have shown, that this predeformation process is
non-linear (Bayerlein, 2020). Therefore, we propose to fur-
ther develop Eq.1 by choosing a scaling factor g for each
node to cope with the non-linearity of the compensation pro-
cess, which is highly dependent on the geometry at hand.
These considerations lead to Eq.3:

mi+1 = mi − gi+1αi+1wi∀ nodes (3)

This equation calculates elementwise the manufacturing
geometry for iteration i+1. It contains the statistical stability
in αi+1 and the geometry based inherent non-linearity of the
compensation in gi+1.

Separation of scatter and deterministic deviations

In order to reduce the unwanted compensation of scatter, we
propose to introduce a third factor pi+1, which is supposed
to locally separate scatter from deterministic deviations. This
leads to an extended version of Eq.3:

mi+1 = mi − gi+1 pi+1αi+1wi∀ nodes (4)

In the following, two methods for separating scatter from
deterministic deviations are proposed.

The first one uses statistical considerations to design a
function pstat, which calculates a factor for each node of the
mesh and thus scales the predeformation between 0 and 1,
depending on the deviation from target and the typical pro-
cess scatter at each node. AGaussian cumulative distribution
function, adapted for absolute deviations from target, is uti-
lized to achieve a symmetrical behaviour in Eq.5:

pstat
(
wi , σp

) = 1 + erf |wi |√
2

(
sσprocess

)2 − 1∀ nodes, (5)

where erf(x) is the Gaussian error function and s is a param-
eter that determines how significant the deviation has to be
compared to the process standard deviation of each node.
To calculate pstat the deviations from the target wi have to
be determined analogously to Eq.1 by fitting the produced
geometry to the target geometry. For each node of the tar-
get geometry the standard deviation of the experimentally
obtained process scatter σprocess is calculated (as for Eq.2).
Essentially, Eq.5 weights the absolute value of the geometric
deviation from the target against the scatter at that location.
If the deviation is small compared to the scatter, the function
scales the compensation down. If the deviation is significant
compared to the standard deviation of the process, the func-
tion converges to 1.

Equation 5 only considers the significance of the devia-
tion for each node compared to the scatter and weights the
compensation accordingly. It will be difficult to compensate
deterministic deviations that are close to or are smaller than
the scatter in absolute terms. Therefore, a second approach is
proposed, which is able to compare “deformation patterns”.
The random scatter in thematerial and the process conditions
leads to specific deformation patterns, which can be catego-
rized into one or multiple deviation classes. These patterns
can be compared to the deviation from target in the itera-
tion at hand. If the deviation follows a typical pattern that
was attributed to random scatter in the past, it is not com-
pensated, while a pattern that diverges from typical scatter
patterns is compensated. To achieve this goal the structural
similarity index (SSI), which was originally introduced to
calculate the similarity of pixel-based images by Wang et al.
(2004), was adapted in this article to work with unstructured
point clouds as can be extracted from themeshes at hand. The
adapted similarity index in Eq.6 compares nodal deviations
for two point clouds and calculates an index with elements
between 0 and 1 for each node:

pSSI
(
wx , wy

)

= 1 −
(

2μxμy + c1
μ2
x + μ2

y + c1

)c2 (
2σxσy + c1

σ 2
x + σ 2

y + c1

)c3

(
σxy + c1
σxσy + c1

)c4
∀ nodes, (6)

where μx , μy, σx , σy , and σxy are the elementwise means,
standard deviations, and cross-covariance for two deviation
vectors wi of meshes x and y.All values are calculated spa-
tially with respect to a ball with radius r . All nodes within
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Fig. 2 Comparison of an exemplary manufactured component and the
respective simulation

this ball are considered for the calculation. This enables the
algorithm to deal with unstructured 3D point-clouds instead
of 2D pixel data. c1 is a constant, which is necessary for
numerical stability. c2 to c4 are exponents, which weight the
three terms to each other. This adapted SSI is able to calculate
the local similarity of two meshes which have an identical
connectivity. Equation6 is used to compare the deviationswi

of recent iterations with past deviation patterns to evaluate
their local similarity. If a local deviation pattern was asso-
ciated with a random scatter in the past (e.g. caused by a
fluctuation of the Young’s modulus of the material), it will
not be compensated, since a high similarity will result in a
low pSSI .

Process model

AnFEmodel of themanufacturing process was implemented
to test and tune several compensation strategies without the
need to actually manufacture all components. The model
was built with the simulation tool AscentAM, which was
first described by Bayerlein (2020). The model consists of
sequentially coupled FE calculations, which simulate the
LPBF process by iteratively adding uniformly heated layers.

This simulationmodel of theLPBFprocesswill be utilized
to emulate typical batch fluctuations for a hybrid model of
the production process without actually adapting the powder
and manufacturing these parts. Figure2 shows a comparison
of the geometrical deviations due to the LPBF process com-
pared to the target geometry. On the left side, an exemplary
manufactured component is depicted, while the respective
simulated component is shown on the right side.

The relative deformationpattern of the simulated andman-
ufactured geometry is quite similar, while there is some offset
in the absolute deformations. In the following, only relative
deformation changes due to parameter variations are calcu-
lated with this simulation. This model can therefore be used
to calculate the relative deformations of artificial batch vari-
ations without actually having to produce all the necessary
iterations.

Basedon this reference simulation, thematerialmodelwas
varied by increasing the material parameters Young’s mod-
ulus (E), initial yield strength (IS) and thermal expansion

(TE) individually by 10%. Furthermore, the process temper-
ature (PT) was increased by 10%. The subsequent deviations
from the reference simulation are shown in Fig. 3. These
deviations from the reference calculation will be utilized as
artificial deterministic batch fluctuations, resulting from dif-
ferent material batches in the hybrid model of an exemplary
production cycle.

Hybridmodel of a production cycle

Both approaches for the separation of scatter and determinis-
tic deviations will be analysed in the following with respect
to an exemplary production cycle of 80 manufacturing jobs
or iterations. In order to save time and resources, a hybrid
model of the production process is created to emulate real-
istic production results without having to manufacture 80
iterations for each compensation strategy. In this article,
hybrid model describes the combined usage of simulated
and experimentally obtained data to generate realistic pro-
cess deviations. For each iteration a process deviation vector
d, which describes the deviation of the workpiece from the
manufacturing geometry, is calculated elementwise accord-
ing to:

di+1 = d1 + ddet + dscatter∀ nodes, (7)

where d1 is the average deviation from target geometry,
which was experimentally obtained. ddet is one of the four
simulated deviations from the reference simulation due to
changes in the material model or the process parameters.
These deterministic deviations are valid for multiple itera-
tions. dscatter is an experimentally obtained job to job scatter
from the experiments. Out of the eight available scatter
data sets, one is randomly chosen for each iteration in this
exemplary production cycle and scaled randomly by a factor
picked out of a normally distributed population with mean
1 and standard deviation of 15%. This approach offers the
change to combine the strength of Finite Element tools in
calculating deterministic properties with the advantage of
data-based approaches in describing non-deterministic pro-
cess properties.

Results and discussion

Amplification of scatter

The results of the performed Monte Carlo analysis are
depicted in Fig. 4. The results confirm that an α of 1 leads
to a potentially unstable behaviour for large sample sizes
and a significantly increasing scatter in the production cycle.
The error bars in the figure indicate minimum and maximum
results within the number of reruns of the Monte Carlo anal-
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Fig. 3 Simulation results with
artificially adapted material
models to emulate batch
fluctuations of the powder
utilized for series production
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Fig. 4 Results of the Monte Carlo analysis of Eq.1. The scatter in the
produced geometry is amplified by the compensation

ysis. This leads to the conclusion that it should be bounded
below 1. For the geometry at hand, the standard deviation of
the process compensation with Eq.1 and an α of 0.95 leads
approximately to σcompensated = 1.8σprocess. For reference,
for an α of 1.0 this factor averages to 7.3 for large sample
sizes. Compensating for the statistical scatter with α ≥ 1
leads to an increasing and unstable oscillation of the geome-
try. This can be compared to a controller of a dynamic system
with too much gain.

Quantification of non-linear behaviour

In order to quantify the non-linear effects of the compensa-
tion process, the 16 specimenswhich have been compensated
two consecutive times according to Eq.1 (α = 1) are anal-
ysed regarding the resulting deviations in the next iteration.
Therefore, the geometrical data of 32 compensated speci-
mens are available for this calculation. In order to account
for the non-linear behaviour, the compensation needs to be
adjusted locally with a compensation factor g which is cal-
culated elementwise using Eq.8:

g = di
di − di+1

∀ nodes (8)
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Fig. 5 Experimentally obtained local compensation factors g, which
reflect the non-linear behaviour of the specific geometry at hand to
linear compensation

Figure 5 shows g averaged over these 32 data sets. There
are areas in this geometry, which react highly non-linear to
the predeformation, which should be accounted for in future
series compensation.

Local separation of scatter and deterministic
deviations

In this section, three different compensation strategies are
tested with the production cycle of 80 iterations described
in Sect. 2.6. Figure6 shows the experimentally obtained ran-
dom scatter and the artificial deterministic batch fluctuations,
which have been calculated with the FE model. All absolute
deviations of all nodes on the functional area of the speci-
men have been averaged to provide one scalar to compare the
different approaches and iterations. Furthermore, the devia-
tions from target are shown for selected iterations for all three
approaches. All four artificial deterministic deviations have
similar amplitudes compared to the scatter, which shows the
importance and difficulty to separate the two for the geo-
metrical compensation. Over all the 80 iterations, both local
compensation methods offer significant advantages over a
constant pα = 0.95 (as determined in Sect. 3.1), which leads
to an average deviation from target of 0.057 mm for each
node. This value is calculated as a mean deviation over all
nodes and iterations. The statistical approach (Eq. 5) reduces
this by 13% to 0.049 mm, while the structural pattern anal-
ysis approach (Eq.6) reduces it to 0.048 mm. Because the
random scatter and the first iteration after a new batch with
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Fig. 6 Simulation results with artificially adapted material models to emulate batch fluctuations of the powder utilized for series production

deterministic deviations cannot be compensated, the mini-
mum error, which is achievable in case of a perfect separation
of scatter and deterministic deviations, is 0.045 mm. For
reference: An uncompensated production cycle results in
0.083 mm average deviation. In order to discuss the con-
sequences of the locally adapted compensation, iterations
42 and 72 are detailed in Fig. 4 middle and bottom. This
includes the job to job change of the process deviation d.
Furthermore, the derivative of the batch fluctuation for the
iteration at hand is shown and the mean experimental scatter,
which is utilized for the two local approaches to calculate
the local compensation factor p. Iteration 72 is an example
why both local compensations lead to better overall results.
There is no change to the deterministic form deviations due

to batch fluctuations. However, the scatter leads to changed
process deviations. By comparing the process deviations to
the scatter the compensation is scaled back and the error
is reduced. Furthermore, it shows one advantage of the sta-
tistical compensation. If the scatter does not coincide well
with the known scatter patterns (marked in dark gray), the
statistical analysis is more robust, while the pattern analysis
copes better with known deviation patterns. Iteration 42 is
one of the few examples, where both algorithms lead to an
increased mean geometrical error compared to a pα = 0.95.
Both approaches lead generally to reduced compensation.
Therefore, in case of a significant change in determinis-
tic deviations, these are not fully compensated in the first
iteration possible. Instead, it is gradually compensated over
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multiple iterations. In this case, the pattern analysis algorithm
has advantages over the statistical approach, since it compen-
sates deterministic deviations well, which do not coincide
with typical scatter deformation patterns (marked in light
grey), independent of the absolute value. In contrast, the
statistical approach scales the compensation back without
the physical knowledge which can be gained by a poste-
riori analysing past iterations regarding their deformation
patterns. Compared to the state of the art, thesemethods offer
the opportunity to separate statistical scatter from determin-
istic deviations in an LPBF series production environment,
which, to the best of the authors’ knowledge, has not yet been
investigated.

Conclusion

In this article, an approach was proposed for a geometrical
deviation compensation in a LPBF series production. This
approach accounts for time dependent deterministic form
deviations due to, for example, batch fluctuations. Further-
more, the influence of random scatter on the compensation
has been analysed and two equations have been proposed to
handle the separation of scatter and deterministic form devia-
tions. This is especially important for additivemanufacturing
processes with a high scatter compared to usual component
tolerances. These methods will be adapted to other additive
processes like binder jetting in the future which are suitable
for series production as well. Furthermore, the compensation
of time-dependent deterministic gemetrical deviations (e.g.,
an aging laser system) will be analysed.
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