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Abstract
We identify the characteristics and specifications that drive the out-of-sample performance of machine-learning models across 
an international data sample of nearly 1.9 billion stock-month-anomaly observations from 1980 to 2019. We demonstrate 
significant monthly value-weighted (long-short) returns of around 1.8–2.2%, and a vast majority of tested models outperform 
a linear combination of predictors (our baseline factor benchmark) by a substantial margin. Composite predictors based on 
machine learning have long-short portfolio returns that remain significant even with transaction costs up to 300 basis points. 
By comparing 46 variations of machine-learning models, we find that the models with the highest return predictability apply a 
feed-forward neural network or composite predictors, with extending rolling windows, including elastic net as a feature reduc-
tion, and using percent ranked returns as a target. The results of our nonlinear models are significant across several classical 
asset pricing models and uncover market inefficiencies that challenge current asset pricing theories in international markets.

Keywords  International stock market · Anomalies · Machines learning models · Market efficiency · Publication impact

JEL Classification  G12 · G29 · M41

Introduction

In recent years, top finance journals have published more 
than 400 anomalies1 and exponentially expand the factor zoo 
(Harvey and Liu 2019; Cochrane 2011) calling for differ-
ent methods and higher hurdle rates (Harvey and Liu 2014; 
Harvey et al. 2016; Harvey 2017; Harvey and Liu 2019). 
Thereby, a noticeable tendency of a “(home) bias in aca-
demic research in finance” in the United States of America 

(U.S.) has been highlighted by Andrew Karolyi (2016) for 
published anomalies. This circumstance ignores potential 
regional differences, such as the post-publication profitabil-
ity decline of 58% for numerous anomalies in the US stock 
market observed by McLean and Pontiff (2016) in contrast 
to a mostly insignificant post-publication decline in other 
countries reported by Jacobs and Müller (2020).

In addition to the predominant focus on the US stock 
universe in the field of asset pricing, there has also been 
a particular emphasis on linear models, such as ordinary 
least squares. However, linear models do not seem to be 
able to handle the multidimensionality of return predictors 
sufficiently (e.g., Azevedo and Hoegner 2023). Unlike linear 
models, machine-learning algorithms, with their increased 
complexity, potentially have enhanced capabilities in han-
dling these issues of anomaly-based research.

Among the recent literature that applies machine learn-
ing in asset pricing, Gu et al. (2020) compare a variety of 
machine-learning methods in a US sample with 94 firms’ 
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characteristics and eight macroeconomic predictors, cover-
ing a period from 1957 to 2016. They find that trees and neu-
ral networks performed the best. Tobek and Hronec (2020) 
conduct a similar study with an international sample from 
1963 to 2018 and find that machine learning is profitable 
around the globe and survives on a liquid universe of stocks. 
Chen et al. (2023) suggest a methodology that integrates four 
neural networks to leverage conditioning information and 
predict individual stock returns. Their research employs a 
dataset comprising 46 stock anomalies and 178 macroeco-
nomic time series, spanning from 1967 to 2016, to estimate 
stock returns. The results show that their model yields a 
yearly Sharpe ratio of 2.6, which surpasses the linear spe-
cial case of their model, which reports a Sharpe ratio of 1.7. 
More recently, Azevedo and Hoegner (2023) analyze the 
predictability of 299 capital market anomalies enhanced by 
30 machine-learning approaches for the US market. They 
find that risk-adjusted returns of a machine-learning-based 
investment strategy are significant across alternative asset 
pricing models. The results are robust considering transac-
tion costs with round-trip costs of up to 2% and including 
only anomalies after publication.

While evidence suggests that machine learning can be 
used to enhance the predictability power of anomalies in 
international markets (e.g., Tobek and Hronec 2020; Drobetz 
and Otto 2021; Cakici et al. 2022; Hanauer and Kalsbach 
2022; Leippold et al. 2022; Breitung 2023; Fieberg et al. 
2023), previous studies do not identify the characteristics 
and specifications (e.g., machine-learning algorithms, target 
values, rolling windows, and features reduction) that make 
machine-learning models successful at predicting stock 
returns. Furthermore, with exception of the contemporane-
ous study by Cakici et al. (2022)2 there is to our knowledge 
no other comprehensive overview of the potential return 
predictability of a wide variety of machine-learning models 
for a representative global sample.

To examine the characteristics that make machine learn-
ing successful at predicting stock returns, our study exam-
ines nonlinear relationships among anomalies across the 
international stock universe, applying a broad range of 
different machine-learning algorithms and parameters. In 
contrast to the data sample of Tobek and Hronec (2020) 
consisting of 153 unique signals, we incorporate 240 
individual anomalies for our machine-learning models to 
avoid omitting essential factors. Even in the first year 2003 
of the post-publication scenario, our dataset already con-
tains 90 published anomalies compared to 55 in Tobek and 
Hronec (2020). In addition, we evaluate a comprehensive 

international data sample with up to 38,001 firms per month 
compared to 4058 stocks in the case of Tobek and Hronec 
(2020). While they primarily focus on 23 developed coun-
tries in the regions USA, Japan, Asia Pacific, and Europe, we 
take a more holistic view, including Emerging and Frontier 
Markets. Lastly, we do not exclude micro-caps as machine 
learning is insensitive to outliers (Anand et al. 2019), and 
we are interested in the impact these particular stocks can 
have on the predictability of the machine-learning models. 
Hence, we ensure a vast and multifaceted data sample as the 
foundation of our analysis within the entire international 
universe. Nevertheless, we test if the results are robust for 
economically important stocks.

This versatile foundation embodies complex nonlinear 
relationships among signals which can be exploited by our 
models. We largely follow previous studies (e.g., Azevedo 
and Hoegner 2023; Gu et al. 2020) in which a variety of 
machine-learning algorithms are applied to develop prof-
itable trading strategies in long-short portfolios. With a 
larger number of algorithms compared to Tobek and Hronec 
(2020) and Gu et al. (2020), our set of applied models com-
prises one Generalized Linear Model (GLM), two trees-
based approaches [e.g., Distributed Random Forest (DRF) 
and Gradient Boosting Machine (GBM)], and two Feedfor-
ward Neural Network (FNN) models with both a wide and 
a narrow architecture. These models are analyzed twice by 
training them with two target values, namely, the raw returns 
and the percent-ranked returns as input. Supplementary, we 
include a variant of a recurrent neural network (RNN) with 
a long short-term memory (LSTM), typically very suitable 
for time series. Surprisingly, the FNN models outperform 
the RNN in both raw-return and percent-ranked portfolios 
settings with the highest monthly value-weighted return on 
average of 2.24% within a percent-ranked long-short port-
folio for the larger FNN.

As a major difference compared to Gu et al. (2020), we do 
not support their finding for neural networks in finance “that 
‘shallow’ learning outperforms ‘deep’ learning" (Gu et al. 
2020, p. 2269). As our results reflect mixed outcomes, we 
find evidence that the superiority of a FNN rather depends 
on the target values chosen than on the learning architecture. 
Our “deep” FNN with five hidden layers (99,021 parameters) 
seems to outperform with scaled values (i.e., with percent-
ranked returns), while our “shallow" large FNN with three 
hidden layers (251,759 parameters) performs better in com-
parison with the “deep" FNN trained on raw-returns. Note-
worthy, Gu et al. (2020) analyze only 94 anomalies in the 
US stock market. Since they focus on a substantially lower 
fraction of the existing factor zoo in the USA, this might be 
a plausible explanation for their significantly lower Sharpe 
ratios of up to 1.35 for their neural network forecast com-
pared to the Sharpe ratios for our neural networks ranging 
between 1.87 and 2.48 for the global market.

2  We posted our first draft on April, 23, 2022 at SSRN, while the 
study of Cakici et al. (2022) was posted about 2 months later on June, 
28, 2022 at SSRN.
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Furthermore, this study is accompanied by several addi-
tional supporting analyses expanding the research procedure 
of comparable meta-studies like Tobek and Hronec (2020) 
and Gu et al. (2020). Firstly, to reduce the influence of 
unnecessary noise due to correlated anomalies, we simulta-
neously preprocess our data with a range of feature selection 
methodologies based on significance levels, unsupervised 
machine-learning models such as regularization approaches 
like least absolute shrinkage and selection operator (lasso) 
regression and elastic net selections. Then, combined with 
three rolling window training techniques, we complete the 
set of tested models while improving the performance with 
some applied techniques. In total, the monthly return on 
average for a single model can reach up to 2.71% in the case 
of the percent-ranked FNN with an extending learning win-
dow. Finally, we enrich our study by analyzing round-trip 
costs, the upper limit for transaction costs, in which trading 
strategies remain significant at the 0.05 level. The round-
trip costs estimation of up to 328 basis points is another 
demonstrative indicator of robust results which are neither 
traceable to data snooping nor transaction costs.

We also propose a combination of all machine-learning 
models. As a result, we observe significant monthly returns 
on average for the composite predictors, ranging between 
1.85% and 2.60%, with t-statistics largely above the critical 
value of 3 proposed by Harvey et al. (2016). Consequently, 
these results further strengthen the improbability that signifi-
cant outperformance of the models is justified by p-hacking.

We then identify the characteristics and specifications 
that make machine-learning models successful at predict-
ing returns. We measure the long-short portfolio returns of 
portfolios formed on predictions from 46 machine-learning 
models. We find that a combination of machine-learning 
models performs at least as well as any single model. Among 
the single models, the highest returns are achieved with FNN 
models. Extending and 10-year rolling windows are the win-
dow training models with the highest return performance. 
In terms of target, we find that percent ranked returns out-
perform raw returns. Finally, elastic net reports the highest 
average return among feature reduction methods. Despite 
the superiority of machine-learning models over linear 
models, we find that specifications can play a major role in 
return predictability. The difference between the long-short 
returns of the machine-learning models with the best and 
worst return predictability is 171 basis points per month.

While we are mindful of reducing data snooping risk, the 
question is to what extent current factor models explain the 
return of these models. Testing our findings against eight 
distinct factor models, such as the two Fama–French fac-
tor models (Fama and French 1993, 2015), we find signifi-
cant alphas for all tested machine-learning models. These 
results challenge the Efficient Market Hypothesis (EMH) in 
the international stock universe. Especially as our STATEW 

models enjoy alpha figures ranging between 1.10% and 
2.64% with t-statistic values far above the minimum signifi-
cance hurdle rate for new factors of 3.00.

Overall, we contribute to the existing literature mainly 
in the following three aspects. First, we highlight the tre-
mendous potential of machine-learning algorithms for 
investors seeking profitable trading strategies and for 
scholars to understand (international) asset pricing in 
more detail. We offer a wide variety of 40 applied machine 
learning and six combinations of models using distinct 
algorithms, different feature reduction methods, and static 
and rolling training techniques. We quantify significant 
outperformance almost universally over single anomalies 
and our linear combined baseline factor benchmark. Thus, 
this paper extends the broad analysis of machine-learning 
models in the US market by Gu et al. (2020) and Azevedo 
and Hoegner (2023) by adding international evidence as 
well as identifying the characteristics and specifications 
that drive the out-of-sample performance of machine-
learning models.

Second, we extend the literature by comparing models 
with different features and parameters. By doing so, it is 
possible to assess the impact on the predictability power 
of the models by changing the target value, the machine-
learning algorithms, the window training, and the feature 
reduction. In particular, the elastic net can outperform the 
full feature, which is evidence that for international mar-
kets, some predictors might add some noise to the model, 
and feature reduction can be a solution for dealing with the 
multidimensionality of international data. Furthermore, we 
find that training the machine-learning models based on 
percent-rank returns shows superior results over the most 
common approach, which is based on raw returns (e.g., Gu 
et al. 2020).

Third, we alleviate the data dredging risk of comparing a 
single machine-learning model by combining our entire set 
of tested machine-learning models into several overarching 
composite predictors. The approach of combining multiple 
forecasts is associated with enhanced forecast accuracy as 
widely proven by the statistical research (Clemen 1989; 
Bates and Granger 1969; Makridakis and Hibon 2000; 
Timmermann 2006). Inspired by Rasekhschaffe and Jones 
(2019), we scale the combination concept to multiple com-
posite predictors with international evidence containing our 
entire set of applied model variations.

Our study is structured as follows. In section "Data and 
methodology", we describe the origin of our international 
sample and the underlying methodology of our paper in 
detail. Subsequently, we prepare the results of our empiri-
cal study in a twofold fashion. Starting with section "Perfor-
mance evaluation of individual anomalies and the baseline 
factor", we discuss the performance of the individual anoma-
lies and combine the full feature base into one overarching 
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baseline factor. The purpose of this baseline factor is to serve 
as a linear benchmark for our complex machine-learning 
models in section "Portfolio construction with machine 
learning algorithms in a static window". Here, we construct 
future return predictors using various training and preproc-
essing methodologies. Then, we compare and interpret the 
performance of our tested machine-learning models in sec-
tion "Comparison and robustness tests of machine learning 
models". We discuss the findings concerning feature impor-
tance, transaction costs, and results against traditional fac-
tor models. We further combine our set of tested machine-
learning models into several composite predictors. Lastly, 
we conclude in section "Conclusion".

Data and methodology

Our methodology consists of two phases. Within the first 
phase, we assess the performance of the individual anoma-
lies (i.e., cross-sectional stock return predictors) with a clas-
sical portfolio-sort analysis. Then, we combine the single 
performance of our anomalies into one overarching signal, 
the baseline factor, intended to serve as a linear benchmark. 
We compare this linear benchmark with different nonlinear 
machine-learning models on their predictive power and addi-
tional profits in the second phase. These machine-learning 
models are built on the international anomaly dataset and 
encompass several distinct algorithms, feature reduction 
techniques, rolling windows modifications, and training 
concepts discussed in the following.

Data, preprocessing, and anomaly calculation

For the performance assessment of the individual signals 
and the machine-learning models, we use an updated inter-
national anomaly data sample comparable to the dataset 
in Jacobs and Müller (2018), which includes 240 distinct 
anomalies taken from Green et al. (2017); McLean and 
Pontiff (2016); Hou et al. (2015), and Harvey et al. (2016). 
Our dataset rests on three Thomson Reuters databases: Data-
stream supplies stock returns and other stock-related figures 
(e.g., unadjusted prices), Worldscope is the data source for 
accounting figures, and IBES provides analyst data, includ-
ing recommendations and earnings forecasts.

Our sample period ranges from July 1980, which marks 
the first year with the availability of accounting data, to 
June 2019. We download stock data for all countries which 
belong to one of the major MSCI regional indices as of June 
2019 (i.e., MSCI North America, Europe, Pacific, Emerging 
Markets, or Frontier Markets). By relying on the MSCI clas-
sification, we ensure that our sample includes only countries 
with economically important and sufficiently liquid equity 
markets. At the same time, the selected countries are still 

very heterogeneous in terms of their size and financial mar-
ket development, providing us with a representative sample 
of global equity markets.

We implement several supplementary filters in Data-
stream to ensure that our dataset exclusively comprises 
common equity. Specifically, (i) we select only the primary 
share class when multiple securities exist for a company 
(Schmidt et al. 2019), (ii) we ensure the security-type 
equity (Ince and Porter 2006), (iii) we acquire solely the 
principal quotations for a security in instances of multiple 
exchange listings (Fong et al. 2017), and (iv) we include 
only stocks that Datastream links to one of the countries 
in our study (Ince and Porter 2006). Lastly, (v) to further 
eliminate non-common equity securities from our sample, 
we require all stocks to possess a non-missing Worldscope 
identifier.

These filtering steps result in a final sample of 9.39 
million stock-month observations from more than 66,000 
different firms across 68 different countries. Table 1 pre-
sents summary statistics at the country level. Around 80% 
of the total stock sample is from non-US stock markets, 
which also account for approximately 65% of the aver-
age total stock market capitalization. On average, 20,071 
stocks are included in our dataset per month in a given 
year. The number is increasing over time, partly because 
stock data is not available for all countries at the begin-
ning of our sample period. Table 1 also shows the starting 
dates per country.

We calculate monthly stock returns in US-Dollar using 
Datastream’s total return index (code: RI), which includes 
dividends. Because there are few outliers in the return 
data, we winsorize returns at the 0.1% and 99.9% level, 
respectively. Further, we use the methodology of Ince and 
Porter (2006) to include delisted stocks in our analysis 
only up to the point of their actual delisting. To calculate 
the 240 cross-sectional return predictors for our sample, 
we follow the instructions provided in the original paper of 
Jacobs and Müller (2018). We list all anomalies together 
with their reference study in Table A.2 of the Internet 
appendix. For more details on the gathering, filtering, and 
calculation process of the anomalies, we refer to Jacobs 
and Müller (2018).

Due to missing values, we are left on average with 201 
out of 240 anomalies for each stock-month observation. Fur-
thermore, we categorize the anomaly set into 113 anomalies 
based on fundamentals, 75 market-based signals, 18 analyst-
based anomalies, 19 valuation-based signals, and 15 other 
signals. The number of anomalies is comparable to other 
anomaly studies within current literature, such as Hou et al. 
(2015) assessing 447 anomalies, Harvey et al. (2016) analyz-
ing 315 anomalies, Azevedo and Hoegner (2023) calculating 
with 299 signals, McLean and Pontiff (2016) analyzing 97 
signals, and Green et al. (2017) evaluating 94 anomalies.
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Table 1   Descriptive statistics

Country Region Start date Number of stocks Number of non-microcaps Total market value

Monthly average Percentage 
of total (%)

Monthly average Percentage 
of total (%)

Monthly average Percentage 
of total (%)

Brazil Emerging markets 6/1994 128 0.55 57 0.90 325,042 1.12
Chile Emerging markets 8/1989 132 0.57 44 0.70 122,800 0.42
China Emerging markets 2/1991 1434 6.18 741 11.76 2,375,123 8.17
Colombia Emerging markets 2/1992 39 0.17 16 0.25 65,959 0.23
Czech Republic Emerging markets 6/1996 29 0.12 6 0.10 28,715 0.10
Egypt Emerging markets 12/1997 118 0.51 18 0.29 42,029 0.14
Greece Emerging markets 2/1988 185 0.80 28 0.44 61,346 0.21
Hungary Emerging markets 6/1993 32 0.14 5 0.08 19,047 0.07
India Emerging markets 2/1990 1294 5.57 154 2.44 689,468 2.37
Indonesia Emerging markets 8/1987 270 1.16 46 0.73 157,654 0.54
Korea Emerging markets 8/1984 868 3.74 116 1.84 492,302 1.69
Malaysia Emerging markets 2/1981 512 2.21 76 1.21 181,245 0.62
Mexico Emerging Markets 2/1988 93 0.40 46 0.73 184,427 0.63
Peru Emerging markets 2/1992 85 0.37 15 0.24 38,813 0.13
Philippines Emerging markets 6/1989 167 0.72 32 0.51 91,537 0.32
Poland Emerging markets 6/1992 255 1.10 27 0.43 89,387 0.31
Qatar Emerging markets 6/2004 38 0.16 23 0.37 114,922 0.40
Russia Emerging markets 6/1997 202 0.87 56 0.89 494,198 1.70
South Africa Emerging markets 8/1980 216 0.93 70 1.11 215,811 0.74
Taiwan Emerging markets 12/1988 917 3.95 137 2.17 474,552 1.63
Thailand Emerging markets 6/1988 381 1.64 57 0.90 171,070 0.59
Turkey Emerging markets 6/1988 195 0.84 37 0.59 112,659 0.39
Austria Europe 6/1981 66 0.28 26 0.41 58,828 0.20
Belgium Europe 7/1980 94 0.40 34 0.54 157,097 0.54
Denmark Europe 10/1980 132 0.57 31 0.49 111,135 0.38
Finland Europe 2/1987 103 0.44 34 0.54 157,725 0.54
France Europe 8/1980 563 2.43 170 2.70 1,071,857 3.69
Germany Europe 12/1980 447 1.93 113 1.79 814,853 2.80
Ireland Europe 7/1980 47 0.20 16 0.25 50,492 0.17
Italy Europe 6/1981 201 0.87 90 1.43 384,235 1.32
Netherlands Europe 3/1981 120 0.52 54 0.86 274,226 0.94
Norway Europe 6/1981 137 0.59 37 0.59 122,277 0.42
Portugal Europe 2/1988 56 0.24 17 0.27 49,128 0.17
Spain Europe 2/1986 133 0.57 71 1.13 422,925 1.46
Sweden Europe 2/1982 258 1.11 60 0.95 245,116 0.84
Switzerland Europe 8/1980 175 0.75 79 1.25 623,456 2.15
United Kingdom Europe 7/1980 1244 5.36 352 5.59 1,752,611 6.03
Argentina Frontier markets 2/1988 53 0.23 13 0.21 30,054 0.10
Bahrain Frontier markets 6/2004 32 0.14 6 0.10 14,256 0.05
Bangladesh Frontier markets 9/2005 72 0.31 6 0.10 20,253 0.07
Bulgaria Frontier markets 4/2006 189 0.81 2 0.03 6619 0.02
Croatia Frontier markets 6/2006 93 0.40 5 0.08 21,709 0.07
Estonia Frontier markets 6/2004 13 0.06 1 0.02 2587 0.01
Jordan Frontier markets 11/2005 178 0.77 5 0.08 22,589 0.08
Kazakhstan Frontier markets 5/2009 27 0.12 5 0.08 14,884 0.05
Kenya Frontier markets 6/2001 37 0.16 5 0.08 11,668 0.04
Kuwait Frontier markets 6/2004 153 0.66 27 0.43 96,589 0.33
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Finally, we use percent-ranked signal values instead 
of raw signal values as this preprocessing scaling proce-
dure provides an effective and simple solution to deal with 
outliers and data errors and, therefore, might increase the 
performance of the linear baseline factor and the nonlinear 
machine-learning models. Like Jacobs (2016), we first rank 
stocks as underpriced and overpriced according to each pre-
dictor. Ranks are standardized in intervals from (0,1) in each 
country-month observation. Among the advantages of this 
procedure, it allows us to fill in missing values with a median 
of 0.5 without any forward-looking bias.

Portfolio‑sort strategy and baseline factor 
construction

We test our signals with a portfolio-sort strategy for each 
month-anomaly by assessing statistical significance and 
performance in terms of signal profitability. Following 
the approach of Chen and Zimmermann (2022), we assign 
stocks with the best (worst) performing signals within each 
country into long (short) positions. We then create a decile 

(10) minus decile (1) long-short portfolio with a monthly 
return defined as the spread of these long-short positions.

In order to ensure performance comparability, we use a 
standardized portfolio-sort methodology with no further 
stock filtering like minimum price filtering, excluding micro-
cap stocks, or adapting to different rebalancing and holding 
periods. Additionally, a standardized approach diminishes 
the risk of a limited selection of filters or parameters to boost 
research results (i.e., p-hacking).

We calculate equally-weighted and value-weighted 
long-short portfolios with a standardized signal calculation 
approach. However, according to the bad model problem 
stated in Fama (1998), an equally-weighted analysis suffers 
from the potential overweighting of micro-cap stocks, while 
a value-weighted portfolio is more influenced by stocks with 
a large market capitalization. Therefore, we focus on the 
analysis of value-weighted portfolios for our machine-learn-
ing models, which offer an intuitive interpretation of results 
and a foundation for potential investment decisions.

We simultaneously report the number of stock holdings 
in the long and short legs of the portfolios. In the context of 
these long and short positions, we determine the one-sided 

Table 1   (continued)

Country Region Start date Number of stocks Number of non-microcaps Total market value

Monthly average Percentage 
of total (%)

Monthly average Percentage 
of total (%)

Monthly average Percentage 
of total (%)

Lebanon Frontier markets 6/2006 9 0.04 4 0.06 6703 0.02
Lithuania Frontier markets 6/2003 25 0.11 2 0.03 3594 0.01
Mauritius Frontier markets 12/2005 50 0.22 3 0.05 6997 0.02
Morocco Frontier markets 6/1998 50 0.22 16 0.25 41,798 0.14
Nigeria Frontier markets 9/2009 110 0.47 15 0.24 45,822 0.16
Oman Frontier markets 11/2005 102 0.44 8 0.13 18,772 0.06
Pakistan Frontier markets 3/1991 155 0.67 12 0.19 29,623 0.10
Romania Frontier markets 6/2006 121 0.52 7 0.11 21,262 0.07
Serbia Frontier markets 7/2006 57 0.25 1 0.02 3342 0.01
Slovenia Frontier markets 6/2003 24 0.10 2 0.03 3694 0.01
Sri Lanka Frontier markets 9/1993 127 0.55 2 0.03 7633 0.03
Tunisia Frontier markets 1/2006 55 0.24 3 0.05 7632 0.03
Ukraine Frontier markets 4/2006 52 0.22 8 0.13 46,041 0.16
Vietnam Frontier markets 1/2007 641 2.76 15 0.24 57,891 0.20
Canada North America 7/1980 1195 5.15 198 3.14 804,443 2.77
USA North America 8/1980 3773 16.25 1646 26.13 10,089,937 34.73
Australia Pacific 7/1980 828 3.57 126 2.00 545,718 1.88
Hong Kong Pacific 9/1980 661 2.85 162 2.57 890,917 3.07
Japan Pacific 7/1980 2533 10.91 919 14.59 3,069,582 10.56
New Zealand Pacific 2/1986 81 0.35 16 0.25 33,586 0.12
Singapore Pacific 9/1980 352 1.52 68 1.08 235,758 0.81

This table reports summary statistics for the 68 countries included in our sample. The sample period ranges from 7/1980 to 6/2019, but for some 
(particularly emerging) countries, coverage in Refinitiv Datastream starts later. The next columns show the monthly average and the percentage 
of the total average number of firms per month, the number of non-microcaps (stocks in NYSE size decile larger than 2), and the total market 
value (in billion US dollars)
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turnover rate defined as the relative amount of shares 
required for the monthly rebalancing of the portfolio. We 
utilize this one-sided turnover rate in section “Turnover rate 
and acceptable transaction costs estimation” to calculate 
round-trip costs.

Similar to the computation of individual signals, we com-
bine our available set of anomalies into a linear baseline 
factor assessing it on the same criteria. For the linear com-
bination, we build an arithmetic average of our 240 percent-
ranked anomalies for each stock-month observation by each 
country. We include only stock-month observations with at 
least 100 distinct signals to ensure the diverse foundation of 
our baseline factor. This baseline factor serves as a bench-
mark for our machine-learning models in section "Portfolio 
construction with machine learning algorithms in a static 
window".

Sample split and cross‑validation 
of machine‑learning models

As a typical prerequisite for any supervised machine-learn-
ing model, we divide our data sample into a training sam-
ple comprising the signal data from July 1980 to June 2003 
and a test sample in the following periods. To increase the 
robustness of our training sample, we implement a threefold 
cross-validation.3 After training and testing our machine-
learning models, we determine model performance with a 
long-short portfolio-sort strategy. In general, we monitor our 
machine-learning models to predict the next month’s returns 
of stocks based on the described training sample. We then 
use these predictions as a decision factor for our classifi-
cation in long-short portfolios. The following subsections 
briefly summarize the machine-learning algorithms and the 
applied training, validation, and test mechanisms.

Machine‑learning algorithms

In recent years, there has been a growing interest in finance-
related machine-learning issues. Various machine-learning 
models have been tested with the result that tree-based 
models and neural networks seem to be among the most 
promising algorithms in finance (Gu et al. 2020). Following 
recent literature, we, therefore, investigate the performance 
of the two tree-based models GBM and DRF and compare 
them to a regression-based GLM. For this purpose, we use 
the widely spread open-source library for machine learning 
H2O.ai (2020). In addition to these three models, we include 

two FNN with different architectures and one RNN as fur-
ther models in our analysis. To deploy these three neural 
networks, we apply the Tensorflow (2020) framework from 
Google DeepMind. In the following, we briefly specify the 
applied algorithms. We refer to the original documentation 
and source code for a more comprehensive description of all 
six machine-learning algorithms.

Nelder and Wedderburn (1972) were among the first 
to establish GLM as a flexible generalization of multiple 
regression types, including linear regression, logistic regres-
sion, and Poisson regression. GLM can be modified with 
different distributions and link functions. For our GLM, 
we apply the default identity link combined with a normal 
distribution for both percent-ranked and raw-returns target 
values. In contrast to GLM, GBM and DRF are tree-based 
machine-learning techniques (Hastie et al. 2009). Based on 
the algorithm developed by Breiman (2001), the bootstrap 
aggregation, called bagging (Breiman 1996), is used for the 
DRF. It involves randomly selecting data points for mul-
tiple decision trees and combining them by averaging all 
decision trees to enhance the robustness and accuracy of 
the machine-learning model. The GBM algorithm is based 
on other weak prediction models called learners, such as a 
decision tree. Based on these weak learners, the GBM algo-
rithm builds multiple decision trees, weighting the predictive 
power of individual learners according to their performance 
and reducing the amount of misclassified data by using the 
multiple learner approach (Zhou 2012). Our GBM follows 
the implementation of Hastie et al. (2009) and the H2O.ai 
(2020) library documentation.

In addition to the three standard machine-learning mod-
els described, we also investigate the performance of neural 
networks. It is important to note that neural networks dif-
fer distinctly from tree-based or regression-based models. 
In contrast, these neural networks are constructed from a 
series of neuron layers that aim to simulate the mechanism 
of the human brain. Among various neural network algo-
rithms developed since the 1950s, we concentrate on three 
distinct neural network models. Two models are based on 
the classical architecture of a FNN. The two models differ 
in the width of the neuron architecture. The smaller structure 
consists of five hidden layers with a decreasing number of 
neurons while graphically resembling a tunnel. The broader 
structure has three hidden layers and a more significant num-
ber of neurons per layer. The third assessed neural network 
model is the RNN. Previous work has shown that the RNN is 
particularly suitable for analyzing data along a time period, 
as these models build up a type of short-term memory to 
increase performance. This approach might be particularly 
advantageous for predicting future stock returns.

3  A threefold cross-validation involves training the model in rotation 
with two-thirds of the in-sample data (until June 2003). The remain-
ing one-third of the in-sample data is used for validation while per-
forming hyperparameter optimization.
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Performance evaluation of individual 
anomalies and the baseline factor

Performance evaluation of individual anomalies

By analyzing equally-weighted long-short portfolios based 
on 240 individual anomalies in our international out-of-sam-
ple data, we find an average return of 0.35% per month with 
a t-statistic of 3.10. At the minimum t-statistic hurdle rate 
of 1.96, 167 signals show significant returns accounting for 
70% of total available anomalies. With an increased mini-
mum absolute t-statistic of 3.00, we still list 132 significant 
signals throughout our international sample, representing 
55% of all assessed signals.

Not surprisingly, the number of significant anomalies 
decreases for value-weighted portfolios because stocks with 
a larger market capitalization have a greater performance 
influence in this case. In exchange, the considerable influ-
ence of micro-cap stocks is reduced. Our analysis shows 
an average monthly return of 0.25% with a mean t-statistic 
of 1.47. 41% (20%) of all signals, namely 98 (49) signals, 
surpass the minimum t-statistic hurdle of 1.96 (3.00). Table 
A.2 in the Internet appendix presents the value-weighted 
returns for each anomaly.

Baseline factor as linear multi‑anomaly combination 
benchmark

Relying on these 240 individual anomalies, we calculate the 
baseline factor based on percent-ranked values of all single 
anomalies at a stock level for each month. Previous studies 
find that by combining anomalies, additional profit opportu-
nities might arise, or hidden structures might be discovered 
(e.g., Stambaugh et al. 2015; Green et al. 2017). Moreover, 
with this procedure, we alleviate the data dredging concerns 
associated with individual anomalies and, thus, strengthen 
the robustness of our anomaly research.

For our main analysis, we use a more restrictive and reli-
able setup with mid-2003 as a breaking point for our base-
line factor analysis. In previous meta-studies, for instance, in 
Green et al. (2017) and Jacobs and Müller (2018), the year 
2003 stands for an essential breaking point in the perfor-
mance of signals. In 2003, the auditing and reporting quality 
in the USA significantly increased due to the ratification of 
the Sarbanes-Oxley Act and the new SEC filing changed 
(Green et al. 2017). Additionally, following the strategy of 
increased global standardization of reporting, the European 
Union accepted in 2002 the International Financial Report-
ing Standards as the new mandatory reporting standards for 
listed EU companies starting in 2005. Due to these meaning-
ful adaptations of reporting standards, the stock data quality 
has arguably increased. In addition, the number of newly 

published anomalies has substantially risen since 2003. As 
McLean and Pontiff (2016) first reported, the performance of 
signals in terms of return becomes significantly lower after 
the publication of the hidden patterns. Our out-of-sample 
data mostly consist of anomalies found in the 2000s, largely 
comparable to the data sample in Azevedo and Hoegner 
(2023), in which 2003 marks the mean publication year of 
299 individual assessed anomalies. Therefore, we initially 
take July 2003 as a breaking point for our baseline factor 
analysis and the creation of our training and testing set 
required by our machine-learning models in section "Port-
folio construction with machine learning algorithms in a 
static window".

Comparing the full sample period from August 1980 
to June 2019 and the period starting in August 2003 of 
an equally-weighted baseline factor shows similar aver-
age monthly returns and mean t-statistics. As can be seen 
in Table 2, the mean long-short return of the baseline fac-
tor increases from 2.01 to 2.20% with a stock data sample 
starting in August 2003, while the t-statistic decreases from 
13.25 to 12.79. In contrast to the mean of the 240 single 
anomalies, the minimum t-statistic hurdle rate of 3.0 is sur-
passed by far for both time frames.

In contrast to the equally-weighted returns, we do not find 
an increase in average monthly returns with stock data from 
2003 onwards in the case of a value-weighted baseline factor 
(1.36% vs. 1.02%). Focusing on the significance level of our 
value-weighted baseline factor, we also see a clear surpass 
of the minimum hurdle rate for new factors. Additionally, we 
report a comparable decline of the mean t-statistics between 
the two-time frames [7.48 vs. 4.93] in line with McLean and 
Pontiff (2016) and Azevedo and Hoegner (2023).

We observe a higher (two-sided) turnover rate for the 
baseline factor than for the average of our individual sig-
nals. Since the baseline factor composes the entire set of 
240 anomalies, it is affected by several monthly stock rank-
ing changes, resulting in more volatile long-short portfo-
lios associated with higher turnover rates. We review these 
findings and quantify the impact on the performance of 
our models in section "Comparison and robustness tests of 
machine learning models", as higher turnover rates likely 
lead to higher transaction costs, which reduce the profitabil-
ity for practitioners implementing our potential investment 
strategies.

To summarize our performance analysis, we report 
significant returns for our baseline factor, outperforming 
most of the individual signals in both equally-weighted 
and value-weighted portfolios. For our nonlinear machine-
learning models in the subsequent chapters, we thus use the 
value-weighted baseline factor with a post-July 2003 sample 
as a linear benchmark. This benchmark generates a mean 
monthly return of 1.02% [t-statistic of 4.93], restricting our-
selves to a more conservative approach.
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Portfolio construction 
with machine‑learning algorithms in a static 
window

Machine‑learning algorithms in a static window 
and the cross section of stock returns

After creating a linear benchmark with a significant outper-
forming return of the baseline factor, we explore nonlinear 
relationships among signals in the following chapter. We 
train regression-based models, tree-based approaches, and 
neural networks to detect hidden structures in our anomaly 
sample and try to exploit them profitably.

For the design of our regression and tree-based 
machine-learning models, given that performance-based 
optimization of parameters (called hyperparameter tun-
ing) is more likely exposed to the risks of data dredging, 
we focus conservatively on the default H2O parameters. 
For our tree-based models DRF and GBM, apart from the 
choice of parameters, the depth definition of the tree struc-
ture influences the model performance. As recommended 
by Probst and Boulesteix (2017), we set up our models 
with 100 trees per model to achieve high performance 
while compensating for generalization requirements and 
computational limitations. For more details on these algo-
rithms, we refer to section "Machine learning algorithms" 
and the H2O.ai (2020) documentation.

Besides regression and tree-based machine-learning mod-
els, artificial neural networks have become the most popu-
lar algorithms in many areas in recent years. We, therefore, 
expand our set of machine-learning models with three neural 
networks. Our first two approaches are FNN with different 

configurations. In general, any FNN consists of a variable 
number of hidden layers and neurons which are individu-
ally and directly linked. Our smaller FNN is constructed 
with 99,021 parameters distributed among five hidden lay-
ers with a decreasing number of neurons per layer (200, 
150, 100, 50, and 10 neurons per layer). The larger FNN 
has a structure with 251,759 parameters distributed among 
three hidden layers with a constant number of 299 neurons. 
Inspired by previous successful meta-studies on time series, 
we finally enlarge our research with a RNN. As explained 
by Abiodun et al. (2018), RNN can enhance performance 
by a type of short-term memory. To implement this short-
term memory, we include in each model prediction twelve 
so-called time steps consisting of last year’s observations of 
all 240 anomalies.

Moreover, to hold potentially common RNN back-
propagated errors constantly, we upgrade our memory to a 
long short-term memory (LSTM) by building a long-term 
memory cell (Hochreiter and Schmidhuber 1997). In total, 
240,449 parameters form the architecture of our RNN.

We use two variants of target values (dependent vari-
ables) to train the models. First, we train our models 
based on the raw next-month stock returns ( rt+1,i ) (i.e., 
f (anomaliest,i) → rt+1,i ). The second analysis variant is 
based on a training method with percent-ranked next-month 
stock returns ( rpt+1,i ) (i.e., f (anomaliest,i) → rpt+1,i ). This 
percent-ranking is conducted separately for every country-
month. It places the returns in a data range from 0 to 1 with 
the advantage of having the same scaled pattern of target 
values as the signal values. This practice allows us to predict 
only the relative stock performance and distribution instead 
of the actual return of each stock with our portfolio-sort 

Table 2   Performance 
comparison of the baseline 
factor

This table shows the long-short value- and equally-weighted portfolio returns (in %) of the baseline factor 
and the average of individual anomalies. We report the results for the subsamples of August 1980 to July 
2003 and August 2003 to June 2019, as well as the full sample (from 1980 to 2019). We also report the 
t-statistics and (two-sided) turnover rate

Strategy Baseline factor Mean of individual signals

Return t-statistic Turnover rate Return t-statistic Turnover rate

Full sample period
Original settings 0.35 3.10 47.13
Equally-weighted 2.01 13.25 65.52 0.34 3.11 46.85
Value-weighted 1.36 7.48 76.55 0.25 1.47 46.83
Until July 2003
Original settings 0.35 2.04 47.33
Equally-weighted 1.87 8.24 66.60 0.33 2.04 47.44
Value-weighted 1.61 5.93 76.84 0.28 1.08 48.07
Post-July 2003
Original settings 0.34 2.91 46.21
Equally-weighted 2.20 12.79 63.97 0.34 2.93 46.09
Value-weighted 1.02 4.93 76.05 0.22 1.08 45.24
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strategy. We expect both variants with different target values 
to generate a similar outcome regarding portfolio returns. 
Nevertheless, percent-rank returns might increase the accu-
racy of our predictions by being less prone to outliers.

Figure 1a shows that except for the DRF model, all other 
models trained with raw returns as a target clearly outper-
form the linear baseline factor in terms of the cumulative 
value-weighted return. Specifically, we find that all three 
neural networks exceed the performance of the regression 

and tree-based machine-learning models in the value-
weighted setting. The best-performing model is the small 
FNN with a highly significant average monthly return of 
1.99% for the post-July 2003 period, followed by the large 
FNN (1.75% average monthly return) and RNN (1.47%). 
Comparing the Sharpe ratios of our models in Panel A of 
Table 3, we detect the highest Sharpe ratio of 2.18 with our 
small FNN benchmarked against the baseline factor with 
a Sharpe ratio of 1.25. In the case of the regression and 

Fig. 1   Cumulative returns of six machine-learning algorithms and the baseline factor
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tree-based machine-learning models, the GLM performs 
best with an average monthly return of 1.43% (post-July 
2003 period).4

Compared to the raw-return variant, we see similar obser-
vations for the percent-ranked return specification. As illus-
trated in Fig. 1b, the three neural networks are among the 
three best-performing machine-learning models in terms of 
cumulative value-weighted return. More specifically, the 
large FNN returns a higher cumulative value in the post-July 

2003 period than the RNN and the smaller FNN, with 2.24%, 
2.10%, and 2.00% of average monthly returns, respectively. 
As we can see in Panel B of Table 3, the largest Sharpe ratio 
is 2.48 for the large FNN. Focusing on the regression and 
tree-based machine-learning models, we find that the GLM, 
with a less complex model architecture, marks the weakest 
machine model performance in the specification with per-
cent-rank returns. With 1.49% of average monthly returns, 
it still surpasses the linear benchmark with a 1.02% monthly 
return on average. The best non-neural-network model is the 
GBM showing 1.75% of average monthly returns in the post-
July 2003 period and a Sharpe ratio of 1.81. The minimum 
significance hurdle rate of new factors is surpassed by all 
models, with t-statistics between 5.63 and 8.99.

Table 3   Portfolio metrics for machine-learning models

This table lists both model metrics and portfolio metrics for the training sample (e.g., cross-validation) and the test sample (e.g., out-of-sample) 
for all our H2O algorithms and the Baseline factor. We distinguish between equally-weighted and value-weighted portfolios. The target values of 
the models are trained on the absolute next-month return and the percent-ranked next-month return of a stock. Post-July 2003 performance and 
significance refer to average monthly returns. Post-July 2003 performance, Average (one-sided) turnover rate, and Annualized returns are given 
in %

Panel A: Portfolio metrics for raw-return machine-learning models

Model Baseline Generalized 
Linear Model 
(GLM)

Gradient 
Boosting 
Machine 
(GBM)

Distributed 
Random Forest 
(DRF)

Small Feedfor-
ward Neural 
Network (FNN)

Large Feed-
forward Neu-
ral Network 
(FNN)

Recurrent 
Neural Network 
(RNN)

Equally-weighted
Post-July 2003 returns 2.2024 5.3920 4.2714 4.8811 4.3061 4.5159 3.1876
Post-July 2003 t-stat 12.7896 30.0620 29.0622 33.7009 37.2661 35.1695 18.8959
Average turnover rate 31.9856 63.0753 54.7579 64.5015 61.0663 64.1277 52.8750
Annualized return 29.4561 87.1991 64.8238 76.7838 65.6195 69.6049 45.2759
Sharpe ratio 3.5729 10.1548 9.2127 11.0735 11.8618 11.3229 5.6062
Value-weighted
Post-July 2003 returns 1.0234 1.4308 1.2130 1.0001 1.9909 1.7505 1.4653
Post-July 2003 t-stat 4.9265 8.0298 6.3534 5.7989 8.0341 7.3917 5.6640
Average turnover rate 38.0247 69.6796 58.3013 72.9210 62.7168 65.3287 57.4003
Annualized return 12.4501 18.1770 15.1045 12.3121 25.8335 22.3894 18.1821
Sharpe ratio 1.2519 2.1308 1.6525 1.4912 2.1776 1.9747 1.4680
Panel B: Portfolio metrics for percent-ranked return machine-learning models
Equally-weighted
Post-July 2003 returns 2.2024 3.9653 4.6522 3.1022 4.4685 5.5636 4.1574
Post-July 2003 t-stat 12.7896 29.6059 33.7287 19.6252 35.6271 42.3406 27.7366
Average turnover rate 31.9856 63.4199 66.4727 62.8320 61.7949 63.3038 57.7469
Annualized return 29.4561 59.1624 72.2365 43.8971 68.6995 91.1649 62.6503
Sharpe ratio 3.5729 9.2265 10.9393 5.8007 11.4410 14.4918 8.7307
Value-weighted
Post-July 2003 returns 1.0234 1.4887 1.7510 1.6642 2.0047 2.2436 2.0991
Post-July 2003 t-stat 4.9265 6.6748 6.8146 5.6271 7.7893 8.9897 6.9542
Average turnover rate 38.0247 69.0475 71.2350 66.1515 62.0930 67.0897 57.7593
Annualized return 12.4501 18.7459 22.2742 20.7385 25.9723 29.6202 27.0266
Sharpe ratio 1.2519 1.7556 1.8107 1.4647 2.1079 2.4791 1.8703

4  Surprisingly, with an equally-weighted setting, this GLM beats all 
other models, including the neural networks, with a 5.56% average 
monthly return. However, we continue to focus on the value-weighted 
portfolios for the already-mentioned reasons.
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To sum up, different nonlinear machine-learning models 
beat the linear baseline factor benchmark. Neural networks 
outperform other regression and tree-based machine-learn-
ing models. Furthermore, the minimum t-statistic hurdle 
rate of 3.00, recommended by Harvey et al. (2016), is easily 
surpassed by all machine-learning models.

Interpretation of the machine‑learning models 
through relative feature importance

As the previous section described, nonlinear machine-learn-
ing models show significant performance. Related work 
investigates mostly the performance of single anomalies, 
and linear relationships among these signals. In contrast, our 
nonlinear machine-learning models have a larger complex-
ity in size and the ability to observe hidden nonlinear rela-
tionships. As an illustration, we can consider the number of 
parameters of our small FNN, which already includes 99,021 
parameters. With this larger complexity comes increased dif-
ficulty in interpreting the model results. In the literature, 
this issue is described as the black-box problem of Artificial 
Intelligence (AI) (Zednik 2021).

In order to address the black-box problem of machine 
learning, various approaches have been put forward. One 
possibility is the interpretation of the relative importance of 
features. As explained in the H2O.ai library documentation, 
the relative importance of tree-based models, like GBM, is 
defined as the improvement of the squared error due to the 
selection of this variable in the tree-building process. Like-
wise, the relative importance of regression-based models, 
such as GLM, is determined by the coefficient magnitudes. 
For our neural networks, we apply the permutation approach 
described by Breiman (2001) to compare the distribution of 
relative variable importance by our three reference models 
(raw-return GLM, percent-ranked GBM, and large percent-
ranked FNN). However, it is important to note that feature 
importance is computed differently for each model and, 
therefore, the comparability between the relative importance 
across our models is limited. Nonetheless, it provides an 
informative indication of the importance of our individual 
signals.

First, we analyze the variables with the highest feature 
importance. The highest emphasis within the GBM is placed 
on the trendfactor with a relative importance of 10.5%. This 
signal can be found among the five best-performing signals 
in relative importance for all three reference models. The 
same finding of the trendfactor as a meaningful predictor is 
made by Jacobs and Müller (2018) for an international sam-
ple and by Gu et al. (2019) for the US market. In the case of 
the GLM and FNN, the most important anomaly is the trad-
ing volume over market value by Haugen and Baker (1996). 
Remarkably, for this signal, the relative importance in the 
case of FNN is 26.7%, which is more than twice as high as 

the second most important signal (trendfactor with 10.5%), 
which presumably makes this model less robust. In general, 
we see three (two) similarities between the most important 
signals for the FNN compared to the GLM (GBM). As an 
important common signal between the GLM and GBM, 
we only observe the trendfactor anomaly. An overview of 
the five most important signals for each reference model is 
shown in Fig. 2.

In order to further understand the importance of the 
anomalies in the machine-learning models, we take a 
holistic view of the weighting of categorized anomalies 
within the reference models shown in Fig. A.2 in the Inter-
net appendix. We find that the category with the highest 
weight across all three machine-learning models is market-
based anomalies. However, for our reference baseline fac-
tor, fundamental-based signals have the highest weight. 
This finding is consistent with Jacobs and Müller (2020), 
showing that accounting signals are less profitable in the 
global market. Hence, the larger emphasis on market-based 
signals instead of fundamental-based anomalies might at 
least partly explain the outperformance of our reference 
models over our baseline factor as a linear multi-signal 
combination.

Overall, when analyzing the relative importance meth-
ods, we can identify different anomaly weights of our three 
reference models and, thus, better explain and interpret our 
models. Here, we investigate significant differences in the 
weighting and the degree of the weighting of individual 
signals. Nevertheless, the black-box problem of machine-
learning models remains a challenge not only for our mod-
els. Current research is increasingly focusing on this topic 
to strengthen the dissemination and acceptance of machine 
learning in all application areas (Rudin 2019). For the fol-
lowing analysis, we examine typical preprocessing and 
training approaches to enhance performance and increase 
research robustness.

Comparison and robustness tests 
of machine‑learning models

Variations of machine‑learning models

Extending machine‑learning models with dynamic 
and rolling training methodologies

In our analysis presented in section "Portfolio construction 
with machine learning algorithms in a static window", the 
machine-learning models are based on a static window from 
July 1980 to June 2003. New information from later stock 
data is not incorporated into the machine-learning models. 
This approach has the advantage of being less susceptible to 



431Stock market anomalies and machine learning across the globe﻿	

false-positive observations, as the number of trained models 
is kept low. Furthermore, this approach corresponds to a 
conservative approach that concentrates on stationary pat-
terns within our data sample.

However, more recent stock data can improve the per-
formance of our models if the predictive power of signals 
varies over time. For this purpose, we retrain our models on 
a rolling basis, including new observations over time in our 
training sample while preventing any forward-looking bias. 
In particular, we apply three separate rolling window mecha-
nisms: a 5-year rolling window, a 10-year rolling window, 
and an extending rolling window that always includes all 
stock data from 1980 onwards. Due to limitations in com-
putational power, the machine-learning models are trained 
yearly, although the dataset could generally also be updated 
monthly.

Employment of unsupervised learning and feature 
reduction techniques to preprocess the high‑dimensional 
factor zoo

There are several preprocessing steps for machine-learning 
models, such as feature reduction methods, to cope with the 
high-dimensionality of given datasets (Ye et al. 2006). We 
address this preprocessing to reduce noise using two feature 
reduction methods and two scientific-motivated selection 
approaches based on the significance level.

Among the most commonly used feature reduction tech-
niques are regularization or shrinkage methodologies. These 
preprocessing methods are based on regressions where 
additional constraints are added to the model to prevent the 
model from overfitting and to achieve a better generaliza-
tion. One regularization form is the lasso regression, which 

Fig. 2   Top five feature importance for machine-learning models
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penalizes weak features to get zero coefficients within a loss 
function and eliminates no-value-adding signals. In contrast, 
ridge regression applies a different penalty expression where 
correlated features tend to get similar coefficients compared 
to other features, which are spread more equally. A com-
bination of both approaches is the elastic net selection. It 
simultaneously reduces features by forcing some coefficients 
to be zero and eliminating correlated features with a similar 
coefficient. This results in a model that can handle correlated 
features and select important variables. In our paper, we uti-
lize the elastic net and lasso selection.

Using the elastic net and lasso for feature selection can 
have some advantages. For example, our study applies a 
large number of stock return predictor variables, and many 
of these variables may be redundant or add some noise to 
the models. By using these feature-reduction techniques, we 
can reduce the noise of the models and prevent overfitting 
(i.e., when a model is too complex and fits the training data 
too closely, leading to poor out-of-sample performance). In 
addition to these two approaches, we downsize our signal 
sample to only anomalies with t-statistics above 1.96 and 
3.00 (Harvey et al. 2016) targeting only significant signals 
without any noise of less important anomalies.

Analysis of 40 machine‑learning models

Following Azevedo and Hoegner (2023), we estimate 
the returns for 40 relevant models with variations on the 
machine-learning algorithms applied, the target values, the 
training window, and feature reduction methods. Table 4 
compares the performance of these methods. We find that 
the highest monthly return on average of 2.71% (t-statistic 
of 9.48) is reported by the percent-ranked small FNN with 
an extending window and a full feature base. Furthermore, 
we consistently see high t-statistic values and comparable 
performance across models with different feature reduction 
methods and rolling windows, which indicate a lower risk 
of false-positive observations.

Overall, 39 out of 40 implemented machine-learning 
models report a higher mean monthly value-weighted return 
for the post-July 2003 period than our baseline factor as 
a linear benchmark (1.02%). Moreover, for 30 models, the 
return difference to the baseline factor is positive and statisti-
cally significant at the 0.05 level. Here, the small FNN as the 
best-performing model indicates a performance difference 
of 1.68% compared to the baseline factor (t-static of 6.87).

Combinations of machine‑learning models

To avoid data-dredging concerns, where the models are 
selected ex-post, we combine these 40 models according 
to their target values to get an aggregated predictor. Ana-
lyzed by Timmermann (2006) and Rasekhschaffe and Jones 

(2019), forecast combinations might enhance the informa-
tion level while reducing noise, particularly in the case of 
relatively uncorrelated forecast biases and various tested 
model methodologies.

Our set of tested machine-learning models incorporates 
six algorithms based on two target values, optimized by six 
distinct feature selection methods, and trained on three roll-
ing windows approaches. Therefore, our set of models has 
a high degree of diversity, which can be advantageous to 
achieve greater accuracy and robustness.

To create our machine-learning combinations, we treat 
our 40 machine-learning models separately based on their 
target values. In general, there are multiple combinations 
approaches available derived from the literature, includ-
ing methodologies based on statistics (such as the Bates 
and Granger combination method (e.g., Bates and Granger 
1969), regressions (e.g., Granger and Ramanathan 1984), 
eigenvectors (e.g., Hsiao and Wan 2014), as well as more 
enhanced approaches considering volatility, mean-variance, 
or idiosyncratic-return adjustments (e.g., Hanauer and 
Windmüller 2020). While an in-depth application of each 
mentioned combination methodology would be out of the 
scope of our paper, we focus on one specific Statistic-based 
equal-weighted machine-learning combination (STATEW). 
First, we average all machine-learning models with the same 
weight for each month. Afterwards, we apply the same 
portfolio-sort strategy we have already used throughout the 
paper. As mentioned above, this intuitive combination can 
be used as a benchmark for more complex combinations for 
future research.

Inspired by our results in section "Portfolio construction 
with machine learning algorithms in a static window", we 
extend our two combination models based on all machine-
learning models with the best-performing feature reduction 
methodologies elastic net selection and lasso regression. 
With these feature selections, we can make intelligent model 
choices that might improve our performance.

As shown in Table 5, our six equal-weighted combina-
tions demonstrate promising results, including a significant 
improvement compared to our linear baseline factor bench-
mark. On average, the combinations based on percent-ranked 
target values achieve higher performance with a monthly 
average return of 2.53% than the combinations based on 
our raw-return machine-learning models with only 1.93%. 
In both variants, the feature selection methods improve the 
performance compared to the full feature case. For the per-
cent-ranked combinations, the lasso selection of 12 out of 27 
models slightly outperforms the elastic net selection of 15 
models (2.60% compared to 2.53% average monthly return). 
Here, both selection techniques mainly focus on selecting 
models based on neural networks with a share between 67% 
and 75%. In contrast, for the raw-return combinations, the 
elastic net selection and lasso regression choose the same 
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Table 4   Analysis of machine-
learning models compared to 
the linear baseline factor

The table above compares the relevant set of our applied machine-learning models. We distinguish between 
machine-learning algorithm types, raw return, and percent-ranked target values, the applied feature selec-
tion processes, and the rolling training techniques. In addition to the absolute model performance, we note 
the differences compared to our baseline factor, defined as the average differences in monthly returns. 
Moreover, the latter is described by the t-statistic indicating the statistical significance of the differences

Model specifications Performance Baseline factor 
improvement

Algorithm Return target Feature set Rolling learning Return in % t-stat. Add. 
return in %

t-stat.

FNN Percent-ranked Full Extending 2.71 9.48 1.68 6.87
FNN Percent-ranked Full 10y-rolling 2.70 9.73 1.68 7.19
FNN Percent-ranked Elastic net Static 2.55 8.65 1.52 6.2
FNN (Larger) Percent-ranked Elastic net Static 2.55 9.09 1.53 7.54
FNN (Larger) Percent-ranked Full Extending 2.55 9.32 1.53 6.49
FNN Percent-ranked Lasso Static 2.41 8.85 1.38 6.57
FNN (Larger) Percent-ranked Full 10y-rolling 2.38 8.44 1.36 5.62
FNN (Larger) Percent-ranked Lasso Static 2.30 7.53 1.27 5.95
FNN Percent-ranked Full 5y-rolling 2.28 7.45 1.26 5.15
FNN (Larger) Percent-ranked Full Static 2.24 8.99 1.22 6.16
FNN (Larger) Percent-ranked t-stat. > 1.96 static 2.24 7.89 1.21 5.29
RNN Percent-ranked Full Static 2.10 6.95 1.08 5.22
FNN Percent-ranked t-stat. > 1.96 Static 2.07 7.2 1.05 4.81
GBM Percent-ranked Full 10y-rolling 2.01 6.67 0.99 4.95
FNN Percent-ranked Full Static 2.00 7.79 0.98 5.03
FNN (Larger) Percent-ranked Full 5y-rolling 2.00 6.21 0.98 3.4
FNN Raw Full Static 1.99 8.03 0.97 5.24
GBM Percent-ranked Full Extending 1.86 6.63 0.84 4.11
GBM Percent-ranked Lasso Static 1.79 7.01 0.77 4.38
FNN (larger) Raw Full Static 1.75 7.39 0.73 4.11
GBM Percent-ranked Full Static 1.75 6.81 0.73 4.09
FNN Percent-ranked t-stat. > 3 static 1.70 5.45 0.67 3.28
GBM Percent-ranked Elastic net Static 1.68 6.66 0.65 3.6
DRF Percent-ranked Full Static 1.66 5.63 0.64 2.95
GBM Percent-ranked Full 5y-rolling 1.65 5.3 0.62 2.75
GLM Raw Full Extending 1.63 8.21 0.61 2.27
FNN (larger) Percent-ranked t-stat. > 3 Static 1.60 4.87 0.57 2.66
GBM Percent-ranked t-stat. > 1.96 Static 1.58 6.24 0.56 2.99
GLM Percent-ranked Full Static 1.49 6.67 0.47 3.14
GLM Raw Full 10y-rolling 1.49 7.58 0.46 1.69
GLM Raw Elastic net Static 1.48 8.06 0.46 1.83
RNN Raw Full Static 1.47 5.66 0.44 2.54
GLM Raw Full Static 1.43 8.03 0.41 1.77
GLM Raw Lasso Static 1.43 7.74 0.41 1.63
GBM Percent-ranked t-stat. > 3 Static 1.40 5.01 0.38 1.88
GLM Raw Full 5y-rolling 1.28 6.19 0.25 0.94
GLM Raw t-stat. > 1.96 Static 1.27 6.34 0.25 1.03
GBM Raw Full Static 1.21 6.35 0.19 0.9
GLM Raw t-stat. > 3 Static 1.07 5.3 0.05 0.23
DRF Raw Full Static 1.00 5.8 −0.02 −0.1
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six features out of the set of 13 raw-return machine-learning 
models, namely the static GBM, the static large FNN, the 
static small FNN, the static RNN, and the static and rolling 
10-year GLM (all six models are based on a full feature 
base). Therefore, both machine-learning combinations have 
a monthly return of 1.97% on average.

In summary, we combine a set of tested machine-learning 
models separated by raw-return and percent-ranked models 
into composite predictors. These machine-learning combina-
tions can be classified as diverse predictors based on a rela-
tively uncorrelated input. Our 40 models cover a broad range 
of used target values, algorithms, feature reduction methods, 
and training techniques. These characteristics increase the 
stability and robustness of our models through a higher level 
of included information and a reduction of noise. We use the 
elastic net and lasso feature selections to improve the prom-
ising performance already shown to achieve additional gains.

Comparison among all machine‑learning models

Next, we identify the characteristics and specifications that 
make machine-learning models successful at predicting 
stock returns. We assess the effect of changing machine-
learning algorithms, window training, target prices, and fea-
ture reduction method. We perform regressions of monthly 
returns on time fixed-effects and dummies for each param-
eter (e.g., the machine-learning approach, window, forecast 
variable, and feature reduction). The results are shown in 
Table 6.

In specification 1, we first analyze the impact of chang-
ing the machine-learning algorithm. The intercept (baseline) 
of 1.40% (t-statistic of 7.53) refers to the performance of 
the GLM model. When comparing the machine-learning 
approaches, the FNN model reports a monthly return of 87 
basis points higher than the GLM model with a t-stat of 3.30. 

In comparison, the combination model is around 83 basis 
points higher with a t-stat of 3.48. These results indicate that 
nonlinear models and combinations seem to outperform a 
linear model, such as the GLM model.

In specification 2, we analyze the impact of using a 5-year 
and 10-year rolling window and extending the window com-
pared to a static window (intercept). While using a 5-year 
rolling window is not statistically different from a static win-
dow, we find that extending and 10-year rolling windows are 
the best-performing training windows. For instance, extend-
ing windows leads to almost 35 basis points higher monthly 
returns than the static window, which is evidence that using 
more recent data rather than a static window can improve 
the predictability power of the models. However, a 5-year 
rolling window seems to be too short to deal with the high 
complexity of stock returns.

Concerning the target return, we find in specification 3 
that using percent-ranked returns leads to monthly returns 
around 58 basis points (t-stat of 3.22) higher than raw 
returns (intercept). These results indicate that using raw 
returns in the objective function is too noisy, and percent-
ranked returns might be an effective alternative to deal with 
noisy returns. This is a very important finding given that 
most of the literature on machine learning uses raw returns 
as a target (e.g., Gu et al. 2020).

In specification 4, we test feature reduction methods. 
When analyzing the baseline, which is a model with the 
full feature set (i.e., including all predictors), we find an 
average monthly return of 1.883%. However, when we use 
elastic net (lasso), we see a return increase of approximately 
0.25% (0.20%) with a t-statistic of 4.16 (3.76) compared 
to the baseline. These results indicate that these two fea-
ture reduction methods are important preprocessing tools to 
deal with the high dimensionality of global equity markets. 
In particular, these feature selection methods seem to do a 

Table 5   Performance 
comparison for machine-
learning combinations

The table above compares the performance of our applied machine-learning combinations. We distinguish 
between the types of combinations, raw-return and percent-ranked target values, the feature selection pro-
cesses, and the rolling training techniques. Moreover, we note the improvement compared to our baseline 
factor, defined as the average differences in monthly returns. Furthermore, the latter is described by the 
t-statistic indicating the statistical significance of the differences

Model specifications Performance Baseline factor 
improvement

Machine-learn-
ing combina-
tion

Return target Feature set Rolling learning Return in % t-stat. Add. 
return in %

t-stat.

Equal-weighted Percent-ranked Lasso Static 2.60 8.54 1.57 6.58
Equal-weighted Percent-ranked Elastic net Static 2.53 8.59 1.51 6.58
Equal-weighted Percent-ranked Full Static 2.47 8.47 1.45 6.46
Equal-weighted Raw Elastic net Static 1.97 8.47 0.95 5.37
Equal-weighted Raw Lasso Static 1.97 8.47 0.95 5.37
Equal-weighted Raw Full Static 1.85 8.7 0.82 4.9
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Table 6   The effect of machine-
learning approach, window, 
forecast variable, and feature 
reduction on returns

This table reports the regressions of monthly returns on time fixed-effects and dummies for the machine-
learning approach, window, forecast variable, and feature reduction. Specification 1 shows the results 
according to the machine-learning model, and the baseline model is the GLM approach. Specification 2 
shows the results according to the window, where the baseline model is a static window. Specification 3 
classifies the models according to the forecasting objective, and the baseline model uses raw returns. Speci-
fication 4 analyzes feature reduction methods and the baseline is the full feature (i.e., including all predic-
tors without feature reduction). Specification 5 shows the results based on the machine-learning approach, 
window, forecast variable, and feature reduction on returns. The baseline is based on the GLM model, 
static window, raw returns, and full feature predictors. Standard errors are clustered by time

Baseline: (1) (2) (3) (4) (5)
Model GLM Window static Target raw returns Feature full GLM, static, 

raw returns, full 
feature

FNN 0.8703*** 0.5231***
(3.30) (2.71)

RNN 0.3848 0.2580
(1.47) (1.15)

DRF −0.0652 −0.1921
(−0.36) (−1.25)

GMB 0.2616 −0.0856
(1.21) (−0.57)

FNN (larger) −0.0882** −0.0882**
(−2.14) (−2.14)

Combination 0.8347*** 0.6005***
(3.48) (2.84)

Extending_Window 0.3472*** 0.3348***
(5.00) (4.32)

Rolling_5Y −0.0406 −0.0531
(−0.32) (−0.41)

Rolling_10Y 0.3043*** 0.2918***
(3.68) (3.37)

Percent Rank 0.5764*** 0.4464***
(3.22) (3.55)

Elastic Net 0.2450*** 0.183
(4.16) (3.76)

Lasso 0.1995*** 0.1383***
(3.76) (3.29)

Only_Likely −0.0926 −0.0636
(−1.09) (−0.88)

Only_Very_Likely −0.4407*** −0.4116***
(−3.92) (−4.03)

Intercept 1.3974*** 1.8415*** 1.5187*** 1.8830*** 1.3010***
(7.53) (88.31) (13.00) (79.36) (6.56)

Observations 8,786 8,786 8,786 8,786 8,786
R-squared 0.633 0.624 0.628 0.625 0.638
Regtype Fixed-effects Fixed-effects Fixed-effects Fixed-effects Fixed-effects
Date dummy Yes Yes Yes Yes Yes
Cluster Month Month Month Month Month
Region World World World World World
Period 2003–2019 2003–2019 2003–2019 2003–2019 2003–2019
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good job at reducing the noise of the models and eliminating 
redundant predictors. In other words, these results indicate 
that not all predictors used in our study necessarily add pre-
dictability power to our machine-learning models.

Finally, in specification 5, we include all different param-
eters in the same regression. Overall, the inferences are 
mostly unchanged, but the magnitudes of the differences 
are slightly smaller. Furthermore, among the machine-
learning approaches, after controlling for all parameters, 
the combination reports the highest return, with 60 basis 
points higher return compared to the baseline model with a 

GLM approach, static window, raw returns, and using the 
full feature set.

Overall, these results indicate that the right choice of 
specifications can play a major role in the predictability 
of the machine-learning model. Compared to the baseline 
(GLM, static, raw returns, and full feature set), the regres-
sion in specification 5 indicates that it is possible to have an 
increase of up to 156 basis points by applying a combination 
of machine learning with extending rolling-window, using 
percent-ranked returns as a target and elastic net as a feature 
reduction.

Table 7   Round-trip costs of 
the top-30 performing models 
compared to the baseline factor

This table reports the maximum round-trip costs each machine-learning model could have to remain statis-
tically significant at the 0.05 significance level. We show results for 30 machine-learning models and the 
baseline factor, including the one-sided turnover rate

Model name Return   
[t-stat]

Turnover rate (%) Round-
trip costs 
(%)

FNN.PERCENTRANK.FULL.ROLLING10Y 2.7% [9.73] 65.72 3.28
STATEW.PERCENTRANK.LASSO.STATIC 2.6% [8.54] 61.17 3.27
FNN.PERCENTRANK.FULL.ROLLINGEXT 2.71% [9.48] 65.98 3.26
STATEW.PERCENTRANK.ELASTICNET.STATIC 2.53% [8.59] 60.44 3.24
STATEW.PERCENTRANK.FULL.STATIC 2.47% [8.47] 59.71 3.18
FNN (larger).PERCENTRANK.ELASTICNET.STATIC 2.55% [9.09] 65.33 3.07
FNN (larger).PERCENTRANK.FULL.ROLLINGEXT 2.55% [9.32] 66.44 3.04
FNN.PERCENTRANK.ELASTICNET.STATIC 2.55% [8.65] 64.95 3.03
STATEW.RETURN.ELASTICNET.STATIC 1.97% [8.47] 51.37 2.95
STATEW.RETURN.LASSO.STATIC 1.97% [8.47] 51.37 2.95
FNN.PERCENTRANK.LASSO.STATIC 2.41% [8.85] 65.83 2.85
STATEW.RETURN.FULL.STATIC 1.85% [8.7] 50.42 2.84
FNN (larger).PERCENTRANK.FULL.ROLLING10Y 2.38% [8.44] 66.08 2.76
FNN (larger).PERCENTRANK.LASSO.STATIC 2.3% [7.53] 61.59 2.76
FNN (larger).PERCENTRANK.LIKELY.STATIC 2.24% [7.89] 62.97 2.67
FNN (larger).PERCENTRANK.FULL.STATIC 2.24% [8.99] 67.09 2.62
RNN.PERCENTRANK.FULL.STATIC 2.1% [6.95] 57.76 2.61
FNN.PERCENTRANK.FULL.ROLLING5Y 2.28% [7.45] 64.88 2.59
FNN.PERCENTRANK.FULL.STATIC 2% [7.79] 62.09 2.42
FNN.PERCENTRANK.LIKELY.STATIC 2.07% [7.2] 62.61 2.41
FNN.RETURN.FULL.STATIC 1.99% [8.03] 62.72 2.4
GBM.PERCENTRANK.FULL.ROLLING10Y 2.01% [6.67] 66.3 2.14
FNN (larger).PERCENTRANK.FULL.ROLLING5Y 2% [6.21] 66.11 2.07
FNN (larger).RETURN.FULL.STATIC 1.75% [7.39] 65.33 1.97
GBM.PERCENTRANK.FULL.ROLLINGEXT 1.86% [6.63] 67.41 1.94
FNN.PERCENTRANK.VERYLIKELY.STATIC 1.7% [5.45] 58.48 1.86
GBM.PERCENTRANK.LASSO.STATIC 1.79% [7.01] 70.53 1.83
FNN (larger).PERCENTRANK.VERYLIKELY.STATIC 1.6% [4.87] 53.56 1.78
GBM.PERCENTRANK.FULL.STATIC 1.75% [6.81] 71.23 1.75
GLM.RETURN.FULL.ROLLINGEXT 1.63% [8.21] 71.38 1.74
BASELINEFACTOR 1.02 [4.93] 38.02 1.62
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Turnover rate and acceptable transaction costs 
estimation

Thus far, our machine-learning models have been trained to 
predict the next month’s return for each stock to optimize 
the return of the portfolio-sort strategy by maximizing the 
spread of the long-short positions. This strategy does not 
consider the monthly relative rebalancing amount of shares 
entered or removed from the portfolio. As each rebalancing 
execution of a single stock is associated with transaction 
costs, our current approach does not illustrate the real profit-
ability of possible trading strategies. The real profitability 
is rather significantly influenced by the relative rebalanc-
ing amount, also framed as the one-sided turnover rate. To 
address this issue, we integrate a measure for potential trans-
action costs into our assessment in the following.

While single anomaly strategies greatly vary in turnover 
rates, the relative rebalancing amount by machine-learning 
models is relatively high, around 50% to 75%. These findings 
highlight the potential relevance of transaction costs, espe-
cially as the machine-learning models with high turnover 
rates might display a substantially lower return after costs.

Nevertheless, these analyzed turnover rates do not directly 
reflect the associated transaction costs for a real trading strat-
egy implementation. Therefore, we calculate the round-trip 
costs to estimate the upper limit of acceptable transaction 
costs (Grundy and Martin 2001; Barroso and Santa-Clara 
2015; Hanauer and Windmüller 2020). Current literature 
assumes 50 basis points as transaction cost parameter (Las-
sance and Vrins 2021). This measure enables us to analyze 
whether enhanced model returns can offset increased trans-
action costs associated with larger turnover rates. The latter 
applies a significance level of 5% for a Z-score and is calcu-
lated as follows (Hanauer and Windmüller 2020):

where S = Portfolio strategy S, TS= t-statistic of strategy S, 
μS = Average monthly return of strategy S, TOS = One-sided 
turnover rate of strategy S.

As shown in Table 7, the set of our top-30 performing 
machine-learning models compensates with their increased 
performance for the higher turnover rate. The round-trip 
costs for all tested machine-learning models range between 
1.74 and 3.28%, implying a realistic upper limit for accept-
able transaction costs to sustain a profitable trading strategy 
for our models. Compared to the baseline factor model, the 
machine-learning models seem to beat the linear benchmark 
performance in monthly returns and acceptable transaction 
costs. Simultaneously, we find that long-short strategies 
based on our six composite predictors remain significant 
at the 0.05 level with round-trip costs between 284 and 

(1)Round-trip costs𝛼=5% =
(

1 −
1.96

TS

)

×
𝜇S

̄TOS

327 basis points, which collectively proves that the outper-
formance of the models is not explained by transaction costs. 
From practitioners’ perspective, these results underline the 
profitability for a real implementation of the training strate-
gies based on the analysis of nonlinear relationships across 
the factor zoo with our machine-learning models.

Classification of machine‑learning returns 
as a mispricing or risk components of established 
factor models

In this section, we test the return of our models against clas-
sical factor models using linear regressions to determine 
whether the returns are due to common (risk) components. 
Throughout the asset pricing theory, there are multiple 
established factor models. To this end, we regress the long-
short portfolio returns resulting from selected machine-
learning models against eight distinct factor models: the 
Carhart (1997) four-factor model, the Capital Asset Pricing 
Model (CAPM), the behavioral factor model of Daniel et al. 
(2020) (DHS), the three- and five-factor models of Fama and 
French (1992) (FF-3 and FF-5), both the Q-factor model and 
the augmented Q-factor, and the mispricing factor model of 
Stambaugh and Yuan (2017).

Our factor regression tests comprise the following mod-
els: a GLM with raw returns and a static window, a large 
FNN with a percent-ranked target and a static window, a 
GBM model with a percent-ranked target and a static win-
dow, and two combinations of models (STATEW). Further-
more, we add a GBM model with a percent-ranked target and 
rolling window, including only anomalies post-publication. 
An insignificant alpha value would suggest that machine-
learning model returns could be (fully) explained by factor 
models.

The results in Table 8 show that the three reference 
models enjoy significant alpha values ranging between 
0.87 and 2.43%, with t-statistics firmly above the criti-
cal value of 3.0. The post-publication GBM has lower 
but still statistically significant alphas between 0.60 and 
1.95%. More precisely, for the two Q-Factor models and 
the DHS model, t-statistics of 2.68, 2.85, and 2.38 are 
reported for the post-publication case as the only three 
values slightly below three across all tested models. Note-
worthy, our STATEW models embody significant alphas 
ranging between 1.10 and 2.69%. Moreover, we find that 
models including neural network approaches show more 
prominent alphas (i.e., the FNN or the STATEWs).

In summary, we highlight significant alphas across the 
entire range of different tested machine-learning models. 
Consequently, the returns of our models are not satis-
factorily explainable by common asset pricing models. 
In addition to our analysis in the previous sections, we 
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underline the improbable cause of data dredging for the 
discovered outperformance of our models. Therefore, 
these findings challenge the EMH in the global stock 
universe. In the past, comparable findings defined as 
arbitrage possibilities were usually exploited fast after 
publication by investors seeking profitable trading strate-
gies. In contrast, exploiting the returns of our machine-
learning models might be more challenging due to the 
increased complexity and limited interpretation of these 
algorithms. This circumstance possibly explains our find-
ings for a static frame with a training set consisting of 
pre-July 2003 stock information. As the interpretability 
of machine-learning models increases, the exploitation 
of these profitable nonlinear relationships might become 
more achievable by practitioners.

Practical implications and considerations

Our analyses suggest that machine-learning models would 
have outperformed passive buy-and-hold strategies as well 
as a linear combination of individual anomalies by a substan-
tial margin during our sample period. Since our calculations 
are based on value-weighted portfolios, and the long-short 
outperformance remains intact even after accounting for sig-
nificant transaction costs, our findings should be of interest 
to portfolio managers and other investment professionals.

Nevertheless, when implementing such models, we 
urge practitioners to follow a structured approach, which 
takes into account the challenges and limitations of these 

techniques. In our experience, careful data preprocessing, 
which includes proper handling of outliers and missing 
values, is extremely important, particularly when working 
with international data. For example, we propose a percent-
ranking of input variables as an effective and simple solution 
to deal with outliers and data errors. For feature selection, 
practitioners should take advantage of the fact that there is 
a large number of academic studies providing a rich ground 
for identifying potentially relevant predictors. The reliance 
on other work, which is published and typically also peer-
reviewed, to select input variables may also mitigate the risk 
of overfitting, which is a common problem in machine learn-
ing. We have taken additional steps such as cross-validation 
and forecast combinations to reduce overfitting and data 
mining risk further, and we encourage practitioners to use 
similar techniques.

In light of the evolving nature of financial markets, it 
seems also likely that the relevance of individual stock 
predictors changes over time. This can be accounted for by 
regularly updating the list of features and using techniques 
such as rolling- or extending-window estimation, which 
work well in our study. Finally, portfolio managers may 
seek a cost-efficient implementation of machine-learning 
approaches by limiting portfolio turnover or focusing on 
stocks with high liquidity.

In addition to these practical considerations essential 
for the effective deployment of machine-learning models, 
investment professionals should also examine potential 
ethical and regulatory concerns associated with using these 

Table 8   Analysis of machine-learning models against common factor models

The table above tests our three reference models, thepost-publication GBM, and two composite predictor models against eight classical factor 
models. The alphas and the t-statistics are calculated based on a linear regression within the time horizon from August 2003 to June 2019

Factor model GLM (raw, 
static, full)

Large FNN (perc.-
ranked, static, full)

GBM (perc.-
ranked, static, 
full)

GBM (perc.-ranked, 
rolling, post-publica-
tion)

STATEW 
(raw, static, 
full)

STATEW (perc.-
ranked, static, 
full)

Carhart Four-Factor 1.28 % 2.25 % 1.8 % 1.55 % 1.83 % 2.42 %
[6.97] [9.66] [8.59] [6.5] [10.18] [8.95]

Capital Asset Pricing 1.44 % 2.41 % 2.03 % 1.82 % 2.06 % 2.64 %
[7.99] [10.08] [9.07] [6.62] [10.97] [9.32]

DHS 1.21 % 1.55 % 0.87 % 0.6 % 1.1 % 1.69 %
[6.44] [6.69] [4.12] [2.38] [6.13] [6.11]

Fama-French Five-Factor 1.4 % 2.08 % 1.73 % 1.43 % 1.81 % 2.27 %
[7.26] [9.06] [8.18] [5.86] [9.69] [8.26]

Fama-French Three-Factor 1.46 % 2.43 % 2.08 % 1.95 % 2.1 % 2.69 %
[8.01] [10.66] [9.75] [7.66] [11.32] [10.02]

Q-Factor (Augmented) 1.06 % 1.66 % 1.01 % 0.73 % 1.27 % 1.56 %
[4.69] [6.16] [4.29] [2.68] [6.12] [4.99]

Q Factor 1.04 % 1.79 % 1.14 % 0.74 % 1.25 % 1.71 %
[4.81] [6.87] [4.98] [2.85] [6.31] [5.65]

Mispricing Factors 1.14 % 1.78 % 1.31 % 0.9 % 1.39 % 1.99 %
[5.56] [7.23] [5.93] [3.6] [7.47] [6.86]
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models. For example, from a regulatory and compliance per-
spective, the complexity and opacity of machine learning 
may make it difficult to properly monitor and assess the risks 
in larger asset portfolios. Feature importance analysis is one 
solution to address this black box problem of machine learn-
ing as shown in section "Interpretation of the machine learn-
ing models through relative feature importance". In addition, 
one may reduce the opacity of the models by continuously 
monitoring (risk) factor and industry exposures.

Market stability and efficiency can also be impacted if 
machine learning models are used at a larger scale in the 
asset management industry. For example, if multiple insti-
tutions relied on similar models, they could be exposed to 
correlated risks, which may lead to market instability during 
periods of financial stress, similar to the “quant meltdown” 
experience of hedge funds in August 2007 (Khandani and 
Lo 2011).

A related concern is that the performance of machine-
learning models could be more sensitive to sudden changes 
in market conditions, potentially leading to elevated crash 
risk as has been observed for individual anomalies like stock 
price momentum (Daniel and Moskowitz 2016). However, in 
our study, we do not find evidence that the performance of 
the long-short portfolios is dependent on market conditions. 
In unreported results, we test whether the return of long-
short portfolios of machine-learning models are different in 
periods with above average investor sentiment and CBOE 
Volatility Index (VIX), or during NBER-dated recessions in 
the U.S.5 In our analysis, none of the variables had a statisti-
cally significant impact on portfolio performance.

Conclusion

Our study analyzes the performance of machine-learning 
models in a global stock universe to predict stock returns. 
Our tested machine learning models enjoy a significant 
monthly average value-weighted return of up to 2.71%, 
illustrating the superiority over the baseline factor. It is 
worth focusing on our composite machine learning predic-
tors to avoid any forward-looking bias in selecting the best-
performing model. These composite predictors demonstrate 
promising returns of up to 2.60% and underline the impact 
of nonlinear effects on asset pricing.

Additionally, our study extends the existing anomaly 
research about machine learning with an international view 
and strengthens measures against p-hacking, leading to 
greater study robustness. Furthermore, with different types 

of algorithms, training approaches, and feature selections, 
we enlarge the set of tested machine-learning models as 
the basis of the creation of several composite predictors. 
Due to these conducted measures, our findings cannot be 
merely traced back to data dredging. The outperformance of 
our models is not explained by common factor models, and 
likely suggests market inefficiencies and mispricing.

Consequently, researchers might focus more closely on 
nonlinear relationships across anomalies within the factor 
zoo and investigate individual anomalies and linear con-
nections. Thereby, nonlinear hidden patterns identified by 
complex machine-learning algorithms might provide fur-
ther insights into international asset pricing. To enhance 
robustness, more complex composite predictors of multiple 
machine-learning models, as well as reinforcement learn-
ing algorithms, might be applied by subsequent scholars. 
Finally, for practitioners, our findings might offer new pos-
sibilities for profitable trading strategies supplementary to 
the mostly exhausted patterns of individual anomalies.

Our study emphasizes the importance of nonlinear rela-
tionships within the factor zoo and their impact on interna-
tional asset pricing. With continued progress in research, 
enhanced interpretation measures, and greater computational 
power, smart machine-learning algorithms have the capabili-
ties to broaden our knowledge of asset pricing. In the future, 
models based on these smart algorithms may announce a 
new development of improved asset pricing models incor-
porating nonlinear effects. In the meantime, these hidden 
patterns might yield arbitrage opportunities for practitioners 
who can navigate these complexities.
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