
International Journal on Software Tools for Technology Transfer (2023) 25:249–266
https://doi.org/10.1007/s10009-023-00716-z

EXPLANATION PARADIGMS LEVERAGING ANALYTIC INTUITION

Special Section: Introducing Explanation Paradigms Leveraging Analytic Intuition

Algebraically explainable controllers: decision trees and
support vector machines join forces

Florian Jüngermann1 · Jan Křetínský1,2 · Maximilian Weininger1

Accepted: 6 July 2023 / Published online: 10 August 2023
© The Author(s) 2023

Abstract
Recently, decision trees (DT) have been used as an explainable representation of controllers (a.k.a. strategies, policies,
schedulers). Although they are often very efficient and produce small and understandable controllers for discrete systems,
complex continuous dynamics still pose a challenge. In particular, when the relationships between variables take more
complex forms, such as polynomials, they cannot be obtained using the available DT learning procedures. In contrast, support
vector machines provide a more powerful representation, capable of discovering many such relationships, but not in an
explainable form. Therefore, we suggest to combine the two frameworks to obtain an understandable representation over
richer, domain-relevant algebraic predicates. We demonstrate and evaluate the proposed method experimentally on established
benchmarks.

Keywords Controller representation · Explainability · Synthesis · Decision tree

1 Introduction

Safe and efficient controllers for cyber-physical systems are
difficult to obtain manually, in particular in presence of both
the discrete type of behaviour and continuous aspects such as
complex dynamics in space and/or time. To this end, various
model checking tools offer also an automatic controller syn-
thesis option, for instance UPPAAL Stratego [14], PRISM
[25], SCOTS [35], or STORM [16]. In their most basic form,
they use discretization to represent the continuous input
space with a finite set of states. For each of those states,
the synthesized controller describes which actions are al-
lowed. So, the controller can be expressed explicitly as a
lookup table, often with millions of rows.

There are two main issues with this representation. First,
storing such a large table can require several hundred
megabytes of storage. However, the devices on which the
controller should run are often embedded chips with very

limited storage capacity. This makes it infeasible to store
the entire lookup table on the device. Second, the sheer size
makes it impossible to understand the behavior of the con-
troller. Safety guarantees of the controller rely on the as-
sumption that the formal model was correct and behaves as
expected. To validate this and certify the quality, understand-
ing the controller is crucial. For example, a non-permissive
controller for an emergency braking system might try to im-
mediately stop the car. This fulfils the safety requirement, as
no crash can occur; however, it is not useful in a real appli-
cation. These flaws in the model can be detected if we can
represent the safe controller in a succinct and explainable
way.

Running example To demonstrate our approach to these
issues, we take a closer look at the adaptive cruise control
model (in short cruise) from [26], which models a sim-
plified emergency braking system for a car. Synthesizing a
safe controller with UPPAAL Stratego gives us a controller,
but in the form of a huge lookup table with more than six
million lines. However, previous work [1] has shown that
there is a way to formulate the safe behavior with a handful
of sentences or equations. The goal of this paper is to find
such a succinct and explainable representation automatically,
utilizing techniques from machine learning.

Controller representation with decision trees Re-
cently significant progress has been made [3–6, 10] with

� J. Křetínský
jan.kretinsky@tum.de

F. Jüngermann
florian.jungermann@tum.de

M. Weininger
maximilian.weininger@tum.de

1 Technical University of Munich, Munich, Germany
2 Masaryk University, Brno, Czech Republic

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-023-00716-z&domain=pdf
mailto:jan.kretinsky@tum.de
mailto:florian.jungermann@tum.de
mailto:maximilian.weininger@tum.de

250 F. Jüngermann et al.

Fig. 1 Example showing how different types of predicates can separate a dataset

representing controllers using decision trees (DTs, a.k.a.
nested if-then-else code). Decision trees, e.g. [29], are sim-
ple in structure, making them easy to understand, but still
expressive enough to represent complex controllers. The
open-source tool dtControl [6] takes advantage of this and
offers an automated way to generate succinct decision trees.
It can read controllers from many commonly used model
checkers and implements various heuristics to minimize the
size of the decision tree.

Traditionally, in a DT, the predicate in the decision node
has the form vi ≤ c with some variable vi and some con-
stant c ∈ R. Such a split divides up the feature space with
a hyperplane orthogonal to the feature axis vi thus giving
it the name axis-aligned split [29]. These splits are easy to
understand and find efficiently, forming the basis of efficient
decision-tree learning.

However, axis-aligned predicates are incapable of captur-
ing more complex relationships, as seen in Fig. 1a. In this
example, 5 predicates are needed to separate the red from the
blue labels. For a real-world dataset with thousands of data
points, this behavior can be even more extreme. For this rea-
son, dtControl also supports linear predicates, as proposed
by [30]. These splits are still hyperplanes, but now can have
arbitrary orientations (see Fig. 1b). This makes the predi-
cates harder to find, more difficult to comprehend as more
variables are involved, but can ultimately give significantly
smaller DTs.

Extending the notion of using more complex decision
predicates, the newest version of dtControl allows the use
of algebraic predicates [6, 39] (see Fig. 1c). A domain expert
can provide arbitrary closed-form mathematical expressions
that are then used in the decision tree construction. It is
even possible to leave some constants unspecified, for which
dtControl then finds suitable values.

Limitations While dtControl has already greatly re-
duced the size of the controllers in many benchmarks, there is
still room for improvement. Most of the implemented heuris-
tics for continuous systems rely on clever ways to determine

a non-deterministic controller. This means that we start with
a (possibly most) permissive controller, i.e., a controller that
can permit several safe actions per state. Then, we dynami-
cally select one action for every state, making the choice in
each state deterministic. This allows to represent the result-
ing strategy more succinctly. However, in some instances,
such as the cruise model, we want to keep the permissive-
ness of the controller, for example, to give a human driver
the maximum amount of freedom.

To accurately represent the most-permissive controller for
the cruise model without any determinization heuristics,
dtControl needs several hundred decision nodes and the
resulting DT is hardly explainable. Given the right domain
knowledge, significantly smaller decision trees can be found
by using algebraic predicates [1, 39]. However, so far, the
supplied domain knowledge had to be tailored to the problem
by hand.

Our contributions We address these limitations by pro-
viding a new, automated way of generating algebraic predi-
cates.

• We use support vector machines (SVM) to learn the pred-
icates from the data. To make this feasible, we utilize a
variant of the kernel trick that is informed by our domain
knowledge. This results in more accurate but less under-
standable predicates.

• We introduce several techniques to improve the explain-
ability of the predicates.

• We experimentally evaluate this new approach of combin-
ing DT and SVM learning, which we implemented as an
extension of dtControl. In particular, we receive an ex-
plainable DT with only 5 decision nodes for the cruise
example.

Related work This work extends the open-source tool
dtControl that was first presented in [5], covered in de-
tail in [20], and since significantly extended [6]. Adapting
techniques from machine learning and formal verification,

Springer

Explainable controllers: DT and SVM join forces 251

we combine the insights we receive from the controller data
with the domain knowledge to construct smaller and more
explainable DTs.

There have been several approaches using non-linear pred-
icates in DTs. [19] explicitly constructs new features by
combining existing ones (for example, take their product
or ratio), while [8] explicitly uses SVMs inside the decision
nodes. Both focus on the DT’s ability to generalize rather
than exactly represent a controller, thus potentially losing
safety guarantees. Moreover, they do not consider explain-
ability. Specifically, they do not explicitly reconstruct alge-
braic predicates from the SVM. In contrast, our approach not
only generates SVM related to the domain knowledge and
reconstructs the algebraic predicates, but it also focuses on
their transformation into simpler and more explainable ones.

In previous versions of dtControl [6, 39], curve fitting
[2] was used to find undetermined coefficients in algebraic
splitting predicates. This approach is based on regression
analysis and uses least square fitting [27, 28]. In our work,
however, we use the predicates to separate the data rather
than fitting it. For a more detailed comparison, see Sect. 4.1.

Typically, binary decision diagrams (BDDs) [12] are used
to represent controllers in a compressed way [35, 40]. As
BDDs can only represent a binary function {0,1}n→ {0,1},
this approach requires us to encode the list of state-action
pairs of the controller in binary variables. As a result, the
BDDs are hardly explainable. Additionally, the size of the
BDD heavily depends on the variable ordering. Finding an
optimal ordering is NP-complete [9] and currently known
heuristics struggle with high-dimensional inputs.

Algebraic decision diagrams [7] extend BDDs to sup-
port representation of a function {0,1}n → S with S ⊂ N.
They have been used to represent controllers in, e.g., [37].
However, they suffer from the same issues we discussed for
BDDs.

2 Preliminaries

The paper is concerned with the representation of controllers,
which we thus now define. While the specific type of dynam-
ics of the system is irrelevant, we assume the states of the
system are given by values of state variables:

Definition 1 (Controller)
For a model M with states S and actions A, a controller
C : S → 2A selects for every state s ∈ S a set of (so-called
safe) actions C(s) ⊆ A. Moreover, we assume the set of states
is S ⊆

∏M
i=1 Dom(vi), where, for 1 ≤ i ≤ M ∈ N, vi is a state

variable with domain Dom(vi) and
∏

denotes the cartesian
product.

Note that this definition allows for permissive controllers
that can provide multiple possible actions for a state. Further,

we call a controller deterministic when |C(s)| = 1 for all
s ∈ S, meaning it chooses exactly one possible action in
every state.1

2.1 Representing controllers by decision trees

Definition 2 (Decision Tree)
A decision tree (DT) T is defined as follows:

• T is a rooted full binary tree, meaning every node either
is an inner node and has exactly two children, or is a leaf
node and has no children.

• Every inner node v is associated with a decision predicates
αv . A decision predicate (or just predicate) is a boolean
function S→ {0,1} over the input S.

• Every leaf � is associated with an output label a� ∈ A.

For learning a DT, numerous methods exists such as CART
[11], ID3 [33], and C4.5 [34]. In principle, they all evaluate
different predicates (see Sect. 2.3) by calculating some impu-
rity measure (see Sect. 2.2) and then greedily pick the most
promising one before splitting the dataset on that predicate
and recursively continuing with the two children.

A DT represents a function as follows: every input vector
x ∈ S is evaluated by starting at the root of T and traversing
the tree until we reach a leaf node �. Then, the label of the leaf
a� is our prediction for the input x. When traversing the tree,
at each inner node v we decide at which child to continue by
evaluating the decision predicate αv with x. If the predicate
evaluates to true, we pick the left child, otherwise the right
one.

When we represent a controller with a DT, our input data
is the set of states and an output labels describe a subset of
safe actions. Figure 2 shows a decision-tree representation
of a deterministic and a permissive controller of a battery-
powered temperature control system.

2.2 Impurity measures

To evaluate how promising a predicate α is, dtControl
implements different impurity measures. The most classic
impurity measure is entropy, originating from information
theory. It measures how much uncertainty is left in a dataset.
If the dataset is dominated by one specific label, the entropy
is low, whereas a heterogeneous dataset has a higher entropy.
For a dataset X with N data points and the label set B, let

1 Also note that according to our definition, the controller’s decision
is solely based on its current state, not its past states. In practice, this
limitation can often be circumvented by encoding additional informa-
tion about the past into the state. For example, the decision of whether
to water the plants may depend on the precipitation of the last three
days. Then we can model our current state as a tuple (p1, p2, p3) where
pi describes the precipitation i days ago.

Springer

252 F. Jüngermann et al.

Fig. 2 An example of how a
decision tree can represent a
controller. (a) shows a
determinized controller, (b) a
permissive one with multiple
safe actions at some states

n(X, y) be the number of data points in X with the label
y ∈ B. Then the entropy H(X) is defined as:

H(X) = −
∑

y∈B

n(X, y)
N

log2

(
n(X, y)

N

)

. (1)

To evaluate a predicate α, we calculate the remaining entropy
after the split. If α is a binary split and partitions X into
X = Xl � Xr , we define:

H(α,X) =
|Xl |

|X |
H(Xl) +

|Xr |

|X |
H(Xr). (2)

2.3 Predicates in decision trees

In each decision node of our tree, a predicate function A→
{0,1} is used to decide at which child we continue. We
distinguish three categories of predicates according to their
complexity:

Axis-aligned predicates are the simplest and by far the
most commonly used type of predicates. They have the form
vi ≤ c for a constant c ∈ R. Geometrically speaking, the func-
tion vi = c describes a hyperplane orthogonal to the vi axis,
intersecting at vi = c. That is why they are called axis-aligned
predicates [29].

To find the best axis-aligned predicate, we make the simple
observation that for a feature vi with k different values, there
are only k − 1 different relevant values for c. Thus, we can
simply evaluate all possible predicates for all features vi and
select the most promising one.

Linear predicates [30] or sometimes called oblique pred-
icates have the form

∑
i aivi ≤ c with ai,c ∈ R. This linear

combination of different features describes a hyperplane with
arbitrary orientation. Hence they are more expressive, but it
also makes it harder to find optimal predicates. Algorithms
used to find suitable predicates include the OC1 algorithm

[30], logistic regression [18, Chap. 4.4], and support vector
machines (SVM) [18, Chap. 12] – a machine-learning tech-
nique using a hyperplane to split a dataset into two partitions.
A hyperplane can be formally defined by the orthogonal vec-
tor that goes through the origin w and the distance from the
origin b. Then it can be used as a classifier in the following
way:

c : RM
→ {−1,0,1}

x �→ sgn(w · x − b), (3)

where sgn is the sign function.

Algebraic predicates as outlined in [1] and implemented
in [6, 39], are even more powerful predicates, which can re-
duce the size of the DT and improve explainability. Algebraic
predicates allow any closed-form expressions and hence they
are the most expressive. For the same reason, automatically
generating good algebraic splitting predicates is difficult and
typically requires human guidance.

Figure 1 shows how the three types of predicates work on
a toy dataset. As expected, the more expressive the predicate,
the fewer predicates are needed to build a perfect classifier.

3 Running example: cruise control

3.1 High-level description

In the cruise control model (in short cruise) of [26] (avail-
able for download on the website https://people.cs.aau.dk/
~marius/stratego/cruise.html), we want to control a car so
that it does not crash into another vehicle in front. As a sec-
ondary objective, the car should drive as fast as possible,
thereby minimizing the distance between both cars.

The model is illustrated in Fig. 3. We only consider two
vehicles, our vehicle called ego and the next vehicle in front

Springer

https://people.cs.aau.dk/~marius/stratego/cruise.html
https://people.cs.aau.dk/~marius/stratego/cruise.html

Explainable controllers: DT and SVM join forces 253

Fig. 3 An illustration of thecruisemodel. Originally appeared in [26]

of us called front. We drive on a single lane without cars en-
tering or leaving, therefore this constellation does not change.
The state of the system is modeled by the velocities ve , v f
of the cars and their relative distance dr ; the safety criteria
dr ≥ dsa f e should hold in each state. In the model, both cars
choose a constant acceleration ae, a f for the duration of one
time step t1. Then, the new state (d ′r , v ′e, v ′f) is given by:

v ′e = ve + aet1, (4)

v ′f = v f + a f t1, (5)

d ′r = dr + (v f − ve)t1 +
1
2
(a f − ae)t2

1 . (6)

The model restricts the domains of the accelerations to
ae,a f ∈ {−2,0,2} describing the three actions deceleration,
neutral, and acceleration. Similarly, the cars have a bounded
minimum and maximum velocity vmin, vmax and the distance
sensor has a limited reach of dmax . Depending on the val-
ues of these parameters, the size of the generated controller
changes considerably. We provide some technical details on
the choice of these domains in the next subsection.

When synthesizing a controller for this case study with the
tool UPPAAL Stratego, we receive a huge lookup table that
maps every state of the model (i.e., every tuple (ve, v f ,dr))
to the set of safe actions (i.e., a subset of {−2,0,2}). The
next subsection discusses the state of the art methods for
representing this controller more concisely.

3.2 Insufficiency of the current controller
representations

To make the example more concrete, we consider the dataset
cruise_250 (see Sect. 3.4 for technical details). This ver-
sion of the case study discretizes the state space into 320,523
states. Synthesizing a controller using UPPAAL Stratego

results in a file with over 400 MiB and comprising 961,569
state-action pairs.2 UPPAAL Stratego only offers to repre-
sent the controller as a verbose lookup table explicitly de-
scribing every state-action pair. Commonly, controllers are
stored as binary decision diagram [12]. However, as dis-
cussed in the Related Work section, these are hardly ex-
plainable since their decisions are on the bit-level of the

2 Recall that the controller is permissive, i.e., it can allow multiple
safe actions for a state. This is why the number of safe state-action pairs
is larger than the number of states.

state-variables. Moreover, a binary decision diagram for our
concrete example still uses over 1,800 nodes.

The tool dtControl can read the controller file produced
by UPPAAL Stratego and process the lookup table into a
DT. Different settings of dtControl lead to different re-
sults: axis-aligned splits yield a DT with 869 nodes and a
combination of axis-aligned and linear splits one with 369
nodes, both of which is still too large to be understandable.
Using the determinization heuristics discussed in [5], we
find a decision tree with only 3 nodes. This controller is
perfectly explainable: It simply lets the car decelerate until
it reaches minimal velocity. Of course, this behavior satis-
fies the safety criteria, but it is not helpful in the real world,
since it ignores the secondary objective of minimizing the
relative distance and thereby actually driving somewhere. So
we see that dtControl can produce explainable controller
representations, but that the determinization can lead to un-
favorable results.

To fulfil the secondary objective of minimizing the rela-
tive distance, we have two options: We can pre-determinize
the controller by always picking the largest safe acceleration,
or we keep the maximal permissiveness. In the latter case,
the controller acts as an emergency braking system by let-
ting the human driver choose any action as long as it is a
safe one. However, recall that without using determinization
heuristics, the DT that dtControl produces has 369 nodes,
so it is too large to be explainable.

3.3 Handwritten strategy

For our running example, we know that there is a small
DT representing the most-permissive controller, since it was
handcrafted in [1]. It only uses 11 nodes and every predi-
cate is understandable, as it has a clear physical explanation.
Before investigating how to generate such a small DT auto-
matically, we illustrate what the necessary predicates look
like, as this will guide us in developing our automation pro-
cess.

In the worst case, the front vehicle starts decelerating in
the next time step and continues to do so until it reaches its
minimal velocity. For our car, we have to decide what action
to take for the next time step t1: accelerate, stay neutral, or
decelerate. To see if it is safe to accelerate, we calculate the
relative distance after accelerating for one time step t1 and
then decelerating until the ego vehicle reaches the minimal
velocity.

In Fig. 4, we have plotted the velocity-time diagram de-
scribing the kinematics of both cars in case the ego vehicle
accelerates in the next time step. The front vehicle (red) in-
stantly decelerates with the rate amin and then continues with
minimal velocity. The ego vehicle (blue) starts with a higher
velocity, accelerates for one step, and then decelerates with
the same rate. The distance traveled is the time integral of

Springer

254 F. Jüngermann et al.

Fig. 4 A velocity-time graph showing the ego vehicle accelerating for
one time step. The area between the blue and the red curves describes
the change in distance between the two cars

the velocity, so the area between the curves describes the
relative distance change. We can partition the area into four
sections and calculate the respective areas:

A1 = −
v2
e

2amin
−

(

−

v2
f

2amin

)

,

A2 = vmin

ve − v f

amin
,

A3 = amaxt2
1

(

1 −
amax

amin

)

,

A4 = (ve − vmin) t1

(

1 −
amax

amin

)

.

With these values, we can write the predicate deciding
whether it is safe to accelerate in the next time step as a
quadratic polynomial of our state variables ve, v f ,dr .

1
2amin

v2
e −

1
2amin

v2
f −

(
vmin

amin
+ t1(1 −

amax

amin
)

)

ve+

vmin

amin
v f −

(

1 −
amax

amin

)

t1(t1amax − vmin)+

dr ≥ dsa f e . (7)

3.4 Technical details

The cruise model we use in this paper differs slightly from
the one provided on the website https://people.cs.aau.dk/
~marius/stratego/cruise.html, since the way the case study
was modeled warranted some unwanted behaviors. For com-
pleteness and reproducibility, we describe our changes and
their motivation. This section can be skipped without affect-
ing understanding of the rest of the paper.

Table 1 The parameters used for generating the controllers of the
cruise model and the resulting sizes, measured by the number of states
and the number of state-action pairs

Name
Parameters Controller Size

vmin vmax dmax #states #s-a pairs

cruise_prev −10 20 200 295,615 886,845
cruise_250 −6 20 250 320,523 961,569
cruise_300 −10 20 300 500,920 1,502,760

Domain sizes The cruise model is parameterized by the
maximum and minimum velocities vmax and vmin and the
maximum distance dmax . The version used in [5] and [6],
specified these parameters as vmax = 20, vmin = −10, and
dmax = 200.

The case study is modeled such that after the front vehicle
disappears from our sensor distance, a new car with a random
velocity can appear. This, together with domain sizes chosen
in previous work, leads to the following unwanted behavior:
When the distance between the front and the ego vehicle is
at around 150, both cars can drive at full speed. However,
when the relative distance approaches 200, the ego vehicle
needs to slow down. The reason is that after the front car
disappears from sensor distance, the model allows that a new
car with arbitrary velocity appears. As a concrete example,
this can lead to the following sequence of events:

1. the front vehicle drives with v f = 20 and dr = 190,
2. the front vehicle disappears into the far-away state as

dr > 200,
3. a “new” car appears at the end of the sensor range dr =

200. Independent of the velocity the front vehicle had
before, the new car can have any velocity, for example
v f = −10.

This way, the front vehicle effectively changes its velocity
from v f = 20 to v f = −10 in just a couple of time steps. Even
the full sensor distance of 200 is not enough for the ego
vehicle to react and avoid a crash in this scenario. We fix this
flaw by increasing the minimal velocity and the maximum
sensor distance so that the ego vehicle has enough time to
break if a new car suddenly appears.

Table 1 contains an overview of the parameters used and
the resulting size of the controller, measured by the number
of states and the number of state-action pairs. The generated
controllers are included in [23].

Model modifications Additionally to changing the do-
main sizes, we made the following small adjustment as in
previous work [5, 6]. Since the accelerations are −2,0 or 2
and the time step is 1, all velocities occurring in the model
are even. However, when a car appears from the far-away
state, it can also have an odd number velocity. To keep the

Springer

https://people.cs.aau.dk/~marius/stratego/cruise.html
https://people.cs.aau.dk/~marius/stratego/cruise.html

Explainable controllers: DT and SVM join forces 255

Fig. 5 Visualization of a part of the controller data from the cruise
case study, together with a handcrafted predicate perfectly separating the
data. The coordinate axes describe our three state variables ve , vf , dr

and the color of the data points indicates the set of allowed actions: red
for {−2}, blue for {−2, 0} and green for {−2, 0, 2}. The handcrafted
strategy perfectly separates the red and blue labels

even velocities, we changed the source code in lines 242ff.
to:

242 i:int[minVelocityFront/2, maxVelocityFront/2]
243 2*i <= velocityEgo
244 velocityFront = i*2,
245 distance = maxSensorDistance ,
246 rVelocityFront = 2 * i * 1.0,
247 rDistance = 1.0*maxSensorDistance

The modified model file can be found in [23].

4 Predicates from controller data

Coming up with handcrafted algebraic predicates is a difficult
and error-prone process. Indeed, in [4] the authors provided
a handcrafted DT with 25 nodes, which was then optimized
to one with 11 nodes in the bachelor thesis [1]. Our goal
is a process to automatically come up with good algebraic
predicates only by looking at the controller.

In Fig. 5, we have visualized a part of the controller data
from the cruise model together with a handcrafted splitting
predicate. This splitting function can be constructed by solely
looking at the data and fitting a function to it. We use SVM to
perform this task. For completeness, we recall the previous
solution of curve fitting in Sect. 4.1 before explaining how
SVM can be used and why it is more suited for the task at
hand in Sect. 4.2.

4.1 Problems with curve fitting

The recent extensions of dtControl [6, 39] enable us to
use curve fitting [2] for finding unspecified coefficients. We

Fig. 6 In the current curve-fitting implementation, a two-dimensional
dataset (a) is mapped to a three-dimensional space where the
z ∈ {−1, 1} is determined by the label. The old approach then fits a
function to the new dataset. Our approach instead tries to separate the
data, as the gray surface does in (b)

know from Equation (7) that the handpicked strategy is a
quadratic polynomial, so we can try to use a general quadratic
polynomial c1v

2
e + c2vev f + c3v

2
f + · · · and determine the

coefficients with curve fitting. Unfortunately, this approach
fails to find the correct predicate. To understand why, we
need to investigate how the curve fitting is implemented.

For now, we always consider a one versus the rest split.
This means, we pick a label y that we want to separate from
the rest and set:

y′i =

{
+1 if yi = y

−1 else
for all i.

Consider the two-dimensional data from Fig. 6a. What the
current version of curve fitting does is the following. First, we

Springer

256 F. Jüngermann et al.

map our two-dimensional data xi ∈ R2 with label y′i ∈ {−1,1}
to the three-dimensional space where y′i is used as the third
coordinate. Then we use regression analysis to fit a function
to the data with least-squares-fitting [27, 28] (see Fig. 6b). In
this work, we propose to use a classification approach rather
than a regression approach. So, in Fig. 6b, we are interested
in the gray function separating the data points instead of
fitting them. This way, we put most emphasis on the sample
points close to the split, rather than weighting every sample
equally. Coming back to the two-dimensional space (Fig. 6a),
we want to find a function that smoothly separates the labels,
ideally maximizing the distance to any specific sample. This
is where support vector machines (SVMs) come into play.

4.2 Using support vector machines

Support vector machines do exactly what we want here: find
a function that separates the data and maximizes the margins.
The main idea of this work is that we can reconstruct the al-
gebraic decision function from the internal coefficients of the
SVM. This is not feasible for tools like neural networks [18,
Chap. 11], but we will see how and under what conditions it
is possible for SVMs in the next sections.

The tool dtControl already supports finding linear split-
ting predicates with SVMs. However, for the cruise exam-
ple, a linear predicate is not enough to perfectly split the data.
So we are tempted to use a polynomial kernel to increase the
expressiveness of our SVM. However, the runtime of com-
mon training algorithms for SVMs is at least quadratic in
the number of samples. And in fact, the algorithms imple-
mented in the open-source tool scikit-learn [31] do not
terminate within an hour for the cruise example with a few
hundred thousand sample points. Thus, using a general SVM
is infeasible, but using only the linear SVM already provided
by dtControl is insufficient.

We can circumvent the issue by taking advantage of
our specific use case. Usually, SVMs are used with high-
dimensional datasets like images [15] or language models
[32], where the number of features has the same order of
magnitude as the number of samples. For the purpose of
controller synthesis, the number of state variables is usu-
ally small because the number of states grows exponentially
with the number of state variables. So, while the kernel trick
is useful for high-dimensional data, we can renounce the
kernel trick in our case and explicitly construct the higher-
dimensional space. A similar idea is also described in [13].

For example, recall that the cruise model has the state
variables ve , v f and dr , and a controller provides a set of safe
actions for every tuple of these variables. We can change this
linear state space to be quadratic by adding more terms as
follows:

(ve, v f , dr , vev f , vedr , v f dr , v2
e, v

2
f , d2

r)
T . (8)

Note that all the new state variables can be directly calculated
from the old ones. Thus, we modify the controller by adding
(essentially redundant) new state-variables to every line of
the lookup table. However, these new state variables allow
a linear SVM to find quadratic splitting functions. Thus,
we can take advantage of the higher dimensional features
while still using the fast linear SVM algorithms, making the
computation feasible. This clearly outweighs the moderate
increase in dimensions.

Note that in this case, we know, based on our domain
knowledge, that polynomials of degree more than two are not
necessary. Still, choosing variables for the new state space
requires way less manual effort than designing predicates by
hand. Moreover, such domain knowledge is not required in
general. When evaluating how the approach generalizes in
Sect. 6.2, we obtain good results by always using quadratic
polynomials, independent of the case study.

To summarize:

• SVM is more suited than curve fitting to find splitting pred-
icates, as it is concerned to find a separating hyperplane,
not fit a function to the data.

• On the one hand, the predicates resulting from straightfor-
ward application of linear SVM algorithms cannot separate
the data. On the other hand, the general SVM algorithms
are not performant enough. Thus, we explicitly increase
the dimensions by considering the quadratic feature space
and then use the more performant linear SVM algorithms.

Problems with higher dimensions At the moment, we
only support mapping to the quadratic space, which means
our predicates are quadratic polynomials. For higher degree
polynomials, our experience is that the gained expressiveness
does not justify the significantly increased complexity of the
predicates. For example, a cubic predicate with 5 variables
already has 55 terms. Even with the methods we will discuss
in Sects. 5.1 and 5.2, this predicate will not fulfil our goal
of being explainable. Mapping to a space with features like
ex or sin(x) poses the challenge that we can only fit the
coefficient, but not scale the function in x-direction like ecx

or sin(cx), and is therefore left for future work.

Reconstructing the algebraic decision function As-
suming that our SVM finds a separating hyperplane that we
want to use as a splitting predicate in our DT, how do we re-
construct the algebraic representation? The SVM algorithm
finds a hyperplane (w∗,b∗) with w∗ · x− b∗ = 0 where x cor-
responds to a transformed set of state variables in the form
of Equation (8). This means the wi are the coefficients of the
quadratic polynomial of our state variables.

When implementing it in practice, there is a small inter-
mediate step we want to mention for completeness. For the
quadratic optimization algorithm to work properly, the input

Springer

Explainable controllers: DT and SVM join forces 257

data needs to be normalized to have a mean of 0 and a stan-
dard deviation of 1. This standardization of course has to be
taken into account when exporting the coefficients.

Problems with predicate size The quadratic polynomial
predicates we receive by applying linear SVM with the
quadratic feature space for the cruise example consist of up
to 25 terms3 and may, for example, look like this (rounded
to 6 decimal places):

− 1.004058echoosedr + 0.000121d2
r + 4.011296echooseve

− 0.002316dr ve + 0.51353v2
e + 8.5 · 10−5echooseae

− 0.000276drae + 0.002239veae − 6.4 · 10−5a2
e

− 3.007296echoosev f + 0.001317dr v f − 0.012358vev f

− 0.001334aev f − 0.499783v2
f − 0.000224echoosea f

+ 0.000261dra f − 0.002111vea f − 6.4 · 10−5aea f

+ 0.001224v f a f + 3.1 · 10−5a2
f − 1.004058dr + 4.011296ve

+ 8.5 · 10−5ae − 3.007296v f − 0.000224a f + 23.107387 ≤ 0

So the price we pay for a performant algorithm that finds
good splits is that the result is hardly explainable. We address
this in the next section by providing ways to embellish the
predicate and reduce its size.

5 Improving the explainability of the
predicates

In the previous section, we described how we can generate
predicates from controller data using SVM. In this section,
we improve the explainability of these predicates and the
resulting DT. For this, we first recall the procedure of gener-
ating a DT from a controller, since our improvements touch
multiple parts of this process.

The input is a controller, i.e., a function mapping states to
sets of allowed actions. These controllers are generated by
solving a model (e.g., cruise) with a controller synthesis
tool (e.g.,UPPAAL Stratego).

The DT learning algorithm (see also Sect. 2.1) has two
important parameters: the set of predicates it considers and
the impurity measure, which is used to evaluate how good
predicates are. Using SVM as described in the previous sec-
tion, we can generate new predicates4 that are very useful,

3 Note that this is because there are unnecessary variables ae , a f ,
fchoose and echoose , see Sect. 5.1 for more details. Theoretically,
predicates could even use up to 9 · 4 = 36 predicates in this example.

4 Note that we generate multiple predicates, because we use the ‘one-
versus-rest’ approach, i.e., we train an SVM for trying to split of every
single label.

Fig. 7 Examples with redundant features. In (a) x2 is not needed. In (b)
x1 and x2 individually look redundant, but only one may be removed.
Also, removing x1 is preferred over removing x2

but also very long. In Sects. 5.1 and 5.2, we shorten these
predicates by removing unimportant terms and rounding the
coefficients to nice numbers. Then we describe a new im-
purity measure named min-label entropy in Sect. 5.3. Intu-
itively, it makes the DT learning algorithm prefer splits that
completely separate one label, i.e., one set of allowed actions,
and thus improves the explainability of the resulting DT. Fi-
nally, we introduce the predicate priority, which allows us to
further fine tune which predicates are selected. Note that the
latter two improvements are independent of using SVM for
predicate generation; still, they go well together with it.

5.1 Feature importance

As we discussed in Sect. 3, the state of the cruise model
is defined by ve, v f , and dr . However, the model checker
UPPAAL Stratego also exposes four additional state vari-
ables. These comprise the current acceleration values ae,a f

that do not impact the acceleration the cars choose at the next
time step, and the variables fchoose and echoose that are an
artifact from the internal model and have constant values for
all relevant states.

To recognize such unimportant variables, we introduce a
basic version of a feature importance measure. Consider the
two-dimensional dataset shown in Fig. 7a with features x1
and x2. To classify a data point, feature x2 is not needed.
We verify this by removing feature x2 and grouping the data
points with the same x1 value. We can now measure how
many ‘collisions’ occur. If zero collisions occur, the feature
is not needed. Otherwise, we can give a rough estimate of
the importance of that feature by calculating the ratio of data
points where a collision happened.

Note that for a dataset like Fig. 7b, this approach would
judge both features as irrelevant. Individually, this is cor-
rect, but we can only remove one of them without causing
collisions. This is why we calculate the feature importance
incrementally. When we find an irrelevant feature, we remove
it directly before calculating the importance of the next fea-
ture. As a result, the outcome may depend on the order of
features we choose. For example, in Fig. 7b, removing x1

Springer

258 F. Jüngermann et al.

would result in a linearly separable dataset, while removing
x2 would not. In general, there might even be a case where
we can either remove a single feature xi or all three features
xi+1, xi+2, xi+3. However, we have not observed such behavior
so far, so we leave this issue for future work.

5.2 Rounding coefficients

With the feature importance, we remove variables that are
clearly useless and reduce the number of terms in the cruise
predicates from 25 to 9 (namely, exactly the features given
in Equation (8)). Removing unimportant features in the pre-
vious example simplifies it like this:

− 0.000463d2
r + 0.008656dr ve − 0.549255v2

e − 0.005078dr v f

+ 0.046916vev f + 0.496888v2
f + 2.043519dr − 10.25286ve

+ 6.138132v f − 39.685041 ≤ 0

Still, we generate predicates that contain unnecessary
terms. For example, we know from our handcrafted pred-
icate (see Equation (7)) that we do not need a d2

r term for the
cruise predicates. However, in the predicate, the respective
coefficient has a small positive value. To understand why this
is the case, recall that the only objective the SVM has is to
maximize the margin between the data points. For that, a
small coefficient for d2

r seems to be beneficial. If we loosen
the maximum margin objective, we can generate a predicate
with equivalent accuracy but a simpler algebraic expression.
Again, as we are not interested in the classifier’s ability to
generalize – as long as the accuracy for our controller data
stays the same, we do not care about how large the margins
are.

So, to embellish our predicate, we proceed in three steps:

1. Setting coefficients to zero.
2. Scaling the entire predicate.
3. Rounding coefficient to integers or nice numbers.

Rounding to zero If we can set a coefficient to zero, the
predicate becomes significantly shorter and easier to under-
stand. So this is our primary goal. A natural approach is to try
setting a coefficient with a small absolute value to zero and
checking if the classification for all samples stays the same.
While this suffices for some coefficients, sometimes we need
to change the remaining ones to counterbalance the change.
Therefore, we temporarily remove the feature and try to re-
train the SVM. If we are successful, we permanently remove
the feature for this split and try the next feature. Similar to
the feature importance approach (Sect. 5.1), the result may
again depend on the order of coefficients we are trying to
remove. Here, we use the heuristic of trying to remove the
coefficient with the smallest absolute value first.

Compared to the feature importance approach, three key
differences make this approach more powerful:

• We only consider the subset of the entire dataset available
in the current subtree.

• We only focus on separating one specific label (we only
have the two labels +1 and −1).

• We directly consider the features in the higher-dimensional
space such as d2

r .

Scaling the predicate An additional step to improve
readability is to scale the generated predicate. In principle, a
predicate α : 0.5x +0.1y ≤ 0.3 is equivalent to a scaled pred-
icate 10α : 5x + y ≤ 3 but the second one might be easier to
read. The SVM uses an internal scaling constraint but for
us this is not relevant. We can again lift this constraint and
scale all coefficients as well as the intercept value b arbitrar-
ily. One could think of various heuristic of how to scale the
predicate. We decided to use a simple one: We search for the
coefficient with the value closest to 1 and scale the predicate
so that it becomes exactly 1. This way we have at least one
term with a simple coefficient.

General rounding As the last step, we generalize the
“rounding to zero” approach and use it on the coefficient
we could not set to zero. This way, instead of having a pred-
icate like 8.165839d2

r − 2.935846vr ≤ 0, we can use a better
looking one like 8d2

r − 3vr ≤ 0. For that, we try the approach
from above with increasing relative precision. For example,
for the coefficient of d2

r , we first try the value 10, then 8, then
8.2, and so on, until we find a value that does not change the
classification for any sample. Note that we do not re-train
the SVM in this step, but simply change the coefficient and
check if the classification stays the same.

With these techniques, we can finally generate pretty
predicates. For example, one the predicate we find for the
cruise_250 dataset exactly corresponds to the handcrafted
polynomial from Equation (7) after substituting all constants.
The only difference is the constant offset.

−0.25v2
e + 0.25v2

f − 5ve + 3v f + dr + 19.5 ≤ 0 (9)

Numerical errors The rounding procedures introduce the
possibility of numerical floating point precision errors. When
testing our classifier, we use the internal coefficients of the
SVM. The coefficients we output are different though, as we
need to undo the normalization we applied. We must ensure
that possible precision errors from these transformations do
not change the classification. In the original predicate gen-
erated by the SVM, the classifier maximizes the margin be-
tween the label sets, so we can be quite confident that small
precision errors will not change the classification.5 When try-
ing out rounded coefficients, however, we lose this property.
A rounded coefficient might classify everything correctly,

5 Note that this only holds for cases where we find a perfect split.

Springer

Explainable controllers: DT and SVM join forces 259

Fig. 8 Two different splits with their respective entropy values. While
split B has a better entropy value and is preferred in machine learning,
we want to use split A first when building a perfect classifier

but the slightly different transformed coefficient might lead
to other results.

As a heuristic against these problems, we over-
approximate a change when we try a rounded coefficient.
For example, if our current coefficient is 2.953 and we want
to try the rounded value 3, we over-approximate the change
and try 3.00001 instead. If that works, we can be more
confident that the value 3 will not lead to those problems.

Additionally, there can also be numerical errors if the
SVM uses very large coefficients (e.g., 1018). We slightly
adapted the regularization process to get good performance
while also avoiding such large coefficients.

When the tree construction is finished, dtControl ver-
ifies that every sample is classified correctly or outputs an
error rate. In this step, we use the transformed coefficients of
the polynomial we output so we can be sure that the DT is as
accurate as the tool tells the user.

5.3 Min-label entropy

Now that we have pretty predicates, we shift our focus to
the selection of predicates for the next two sections. For
the cruise dataset, we can construct a decision tree with
37 nodes, only 10% of the size when using linear predicates.
Moreover, we have seen that the approach generates the exact
predicates we derived by hand in Sect. 3.3. Still, the decision
tree is not as compact as the 11-node tree from [1], as we
do not directly use those predicates. To understand why this
is the case, let us take a look at Fig. 8. We see that split
A perfectly separates the blue label from the rest, while B
separates the red and orange labels but distributes the blue
one among both children. Considering only a single split,
we would prefer split B because the dataset is well separated
except for the small number of blue samples. The entropy
impurity measure comes to the same conclusion and assigns
split B a better entropy score.

However, when building a perfect classifier for represent-
ing the most-permissive controller, we have a different per-
spective than in machine learning. At some point, we need to
separate the blue labels from the rest. If we do not separate
them now and select split B, we have to add additional splits
on both sides of the split B. If we rather start with split A, we

can select split B as the next split in the left child and thus
receive a smaller DT.

This effect is especially prevalent if the number of samples
per label differs significantly. In the cruise example, we
observe exactly that: the label “all actions are allowed” has
20 times more data points than any of the other labels. Hence,
we introduce a new impurity measure that we call min-label
entropy:

Definition 3
For a dataset X = Xl � Xr with the label set B, let n(X, y)
describe the number of data points in X with label y ∈ B. For
a predicate α that splits the dataset into Xl and Xr , we define
the min-label entropy H∗ as:

K(p) := −p log2(p),

H∗(X, y) := K
(

n(X, y)
|X |

)

,

H∗(α,X) := min
y∈B

{
|Xl |

|X |
H∗(Xl, y) +

|Xr |

|X |
H∗(Xr , y)

}

. (10)

Intuitively, the min-label entropy measure estimates for
every label y, how difficult it will be to separate the label
y in both partions after this split. Then it returns the value
of the best label. The strategy we want to provoke with this
impurity measure is to first fully separate one label and then
continue with the next one. Specifically, if we can completely
separate one label like in the example in Fig. 8, the impurity
for this split is 0 and we definitely select such a spilt.

5.4 Predicate priority

With the min-label entropy, we reduce the DT size of the
cruise example to 25. As a last optimization heuristic, we
also adjust the priorities of the predicates. When deciding
between an axis-aligned and a polynomial predicate, both of
which have similar impurity values, we want to choose the
axis-aligned one as it is considerably simpler to understand.
For that reason, dtControl has implemented a priority func-
tion for predicate generators. For example, when we give the
polynomial predicates the priority 0.5 and the axis-aligned
ones the priority 1, we only choose a polynomial predicate if
it is at least twice as good in terms of the impurity measure.
In fact, we want to choose an even lower value as a priority
for another reason. In the cruise example, we know that
we can find a polynomial that distinguishes cases where we
can accelerate from those where we cannot. However, in our
handpicked strategy, we have not considered the edge cases
when we are already driving at minimal or maximal velocity.
If we do not exclude those, the data will not be perfectly sep-
arable, meaning we will find a polynomial split that almost
classifies everything correctly, but misses a few data points.

Springer

260 F. Jüngermann et al.

While this is not a huge problem, it turns out that it is more
effective to first exclude the edge cases with axis-aligned
predicates and then perfectly split the data with a complex
predicate later. We can achieve it with a low priority value
≤ 0.2 for the polynomial splits in combination with our min-
label entropy. This way, we will only choose the complicated
splits if they are at least 5 times better. Note that the impurity
is 0 if we can perfectly separate one label. So in this case, we
are infinitely better than any non-perfect solution.

6 Experimental evaluation

In this section, we will evaluate how well generating
quadratic polynomials with SVMs performs in practice.
While developing the various techniques and heuristics, we
mainly focused on the cruise dataset. Thus, we first ana-
lyze the results for this dataset in Sect. 6.1 and afterwards
investigate how well the approach generalizes to other case
studies. We split the latter evaluation into Sect. 6.2 about the
performance of the whole approach when compared to the
state-of-the-art and Sect. 6.3 specifically investigating the
improvements of min-label entropy and predicate priority.
We conclude our evaluation with a comment on explainabil-
ity in Sect. 6.4.

Artifacts All resources, such as generated domain knowl-
edge predicates, model files, and synthesized controllers used
in this paper, are available to download at [23]. The reposi-
tory also contains scripts to reproduce the benchmark tables
presented in this paper.

Minimum tree size To better understand the quality of our
results, we also compare them to the theoretical minimum-
sized DTs. We can give a lower bound on the number of
nodes the DT must contain if we want to represent the entire
controller without determinizing (i.e., the most-permissive
controller) as follows: At every state s, a subset of actions
C(s) ⊆ A is allowed. We define U := {C(s) | s ∈ S} as the
set of all possible allowed action subsets that occur in our
controller in at least one state. To completely represent the
controller, we need at least one distinct leaf in our DT for
every distinct element u ∈U. If we disregard the non-binary
splits for categorical variables introduced in [6], we always
build a full binary DT. As a full binary tree with n leaves has
n − 1 inner nodes, the lower bound for the total number of
nodes of our DT is 2|U | − 1.

If the decision predicates are sufficiently complex, we can
always achieve this bound. However, in practice, this is often
not even desirable. For example, we see that our DT for the
cruise example in Fig. 9a has no minimum size as it contains
two leaves with the actions a ∈ {−2,0}. Still, to keep an
explainable DT, we would not want to merge those leaves,

as one describes that the car cannot accelerate because it
has already reached its maximum velocity, while in the other
case accelerating would be technically possible but would
lead to unsafe behavior.

6.1 Cruise control

Using all the strategies discussed in Sect. 4, we achieve great
results for the cruise model. For the cruise_250 dataset,
we find a succinct DT with only 11 nodes (see Fig. 9a). This
is exactly the number of nodes [1] found with the handcrafted
strategy. In fact, we precisely found the handcrafted ‘must
break’ and ‘can accelerate’ predicate from the handcrafted
strategy, with only a small difference in the constant offset.

For the slightly larger cruise_300 dataset, we generate
a very similar but slightly larger DT with 13 nodes (Fig. 9b).
The quadratic predicates change in line with the change of
the constant vmin (see Sect. 3.4 for a description of how the
dataset was changed), and one complex splitting predicate is
exchanged for two simpler predicates.

In both cases, the generated DTs are almost 80 times
smaller than the ones we obtain with axis-aligned predicates,
and 30 times smaller than the ones with linear predicates.

6.2 Generalizing to other benchmarks

To see how our approach and the individual heuristics gener-
alize, we evaluate them on the case studies of cyber-physical
systems from [5] as well as on the case studies from the quan-
titative verification benchmark set [17] that were used in [6].
We avoid using any determinization heuristics so that we
generate the most-permissive controllers. We ran all experi-
ments on a server with the operating system Ubuntu 20.04,
a 2.2 GHz Intel(R) Xeon(R) CPU E5-2630 v4, and 250 GB
RAM. Table 2 contains a selection of the results, with the
case studies of cyber-physical systems at the top and quan-
titative verification at the bottom. In every row, we compare
the number of nodes in the generated DT for

• the axis-aligned splitting strategy (Ax.Al.);
• the smallest DT we could generate with axis-aligned and

linear predicates6 (Linear);
• axis-aligned predicates and the quadratic polynomials gen-

erated by support vector machines with a priority value of
0.1 (Poly);

• and with the default priority value of 1.0 (PolyPrio1).

In every cell, the top number describes the result using the
entropy impurity measure and the bottom number refers to
the result using min-label entropy. TO indicates that we were

6 We calculate this as the minimum over the three splitting strate-
gies logistic regression, linear support vector machines, and the OC1
heuristic.

Springer

Explainable controllers: DT and SVM join forces 261

Fig. 9 The decision trees for
the cruise example generated
by our data-driven approach

unable to generate a DT within three hours. For comparison,
we list the number of states of the controller as well as the
theoretical minimum size of the DT.

For completeness, we provide the full experimental results
in the Appendix, including all 28 case studies, a comparison
with BDDs, and results for different linear strategies.

Scatter plot To complement the table, Fig. 10 visualizes
the results in a logarithmic scatter plot. As a reference, we
take the smallest tree we could generate with linear predicates
and the entropy impurity. Then we compare it to the size of
the tree with axis-aligned predicates and our quadratic poly-
nomials. For example, the two blue points near the location
(370,10) are the two cruise datasets. The x-coordinate is the
size of the tree with linear predicates and the y-coordinate
shows the size of the polynomial or axis-aligned results.

Analysis Our new approach gives smaller DTs for al-
most all case studies, with the exception of helicopter

and cdrive.10, where the linear solution is smaller by 6%,
and traffic_30m, where we run into a timeout (see the
full table of results in the Appendix). In Table 3 we show
the cumulated statistics. Most notably, the number of cases
where we find a tree of minimum size has increased from 2
to 10 out of 28.

6.3 Min-label entropy and predicate priority

We applied two significant changes to arrive at the small
DTs in the cruise example: the min-label entropy impurity
measure and the modified predicate priority value. We now
analyze how useful they are for the other case studies.

In Fig. 11, we again make use of a logarithmic scatter
plot to visualize the data from our tables. As a baseline, we
take the size of the DT, generated by our proposed approach
using the entropy impurity measure and the default priority
1.0. We compare it to the size when using the proposed min-
label entropy (blue) and when using the reduced priority
value 0.1 (red).

Min-label entropy The min-label entropy reduces the tree
size in 14 out of 17 cases (82%) where we are not already at
the minimum size and do not run into a timeout. Interestingly,
this behavior is different when using the min-label entropy
with axis-aligned splits or linear splits. There, the min-label
entropy can only improve the result in 30 out of 106 cases
(28%).

Also, we observe 5 cases where our approach only times
out when using the min-label entropy, but not when using
the standard entropy. A reason for this might be that the min-
label entropy encourages the formation of DTs formed like a
line. For all case studies where we generate minimum-sized
trees like the 10rooms case study, every leaf has a unique
label. With the min-label entropy impurity, every splitting

Springer

262 F. Jüngermann et al.

Table 2 The number of nodes of the generated decision trees using
axis-aligned splits, linear splits, and the proposed quadratic polynomial
splits with priority 0.1 and 1.0. Each row displays the result using the
entropy impurity measure at the top and using min-label entropy at the

bottom. TO means time out after 3 hours. As a comparison, we show
the number of states of the underlying controller and the theoretical
minimum size a decision tree needs to have. The full table is in the
Appendix

Case Study
Comparision Previous Quadratic
States MinSize Ax.Al. Linear Poly PolyPrio1

cartpole [22] 271 169
253 183 243 189
263 187 169 169

10rooms [21] 26,244 49
17,297 147 61 61
17,297 107 49 49

helicopter [22] 280,539 475
6,339 3,769 5,035 3,787
9,649 4,637 TO TO

cruise_250 [26] 320,523 9
869 369 353 37

1,067 363 11 25

dcdc [35] 593,089 5
271 139 129 199
265 173 147 273

truck_trailer [24] 1,386,211 1,839
338,283 TO TO TO
366,411 TO TO TO

aircraft [36] 2,135,056 31
915,877 916,685 725,011 602,335

1,015,903 1,013,949 688,577 630,631

pacman.5 232 37
53 49 47 37
81 59 37 37

philosophers-mdp.3 344 59
391 333 315 251
403 367 251 223

ij.10 1,013 19
1,291 753 897 209
1,405 735 141 177

elevators.a-11-9 14,742 129
16,341 9,865 9,779 2,859
17,809 9,955 2,023 1,919

exploding-blocksworld.5 76,741 149
16,913 2,687 4,511 829
20,273 2,845 TO TO

wlan_dl.0.80.deadline 189,641 175
3,369 701 693 667
3,675 2,841 523 TO

pnueli-zuck.5 303,427 173
171,371 156,165 114,979 83,219
263,955 221,645 95,879 83,951

predicate separates out one of those labels. Thus, the tree
looks like a line. As a consequence, the runtime for finding
predicates does not decrease as fast while constructing the
tree. When we construct a perfectly balanced tree, the size of
the dataset left at the subtree at depth d is only a small fraction
(2−d) of the original size. In the case of a line, however, the
dataset size only decreases slowly.

Low priority heuristic While the low priority value helps
in the cruise example in combination with the min-label
entropy, the only other cases where this heuristic brings an
improvement are the dcdc and eajs.2.100.5.ExpUtil

case studies (see the full table of results in the Appendix).
We conclude that our motivating idea of first separating the

“outliers” and then using the more sophisticated splits later
does not generalize well. Apparently, it is beneficial to just
take the best available split right away in complex models.

6.4 Explainability

We have seen that we can significantly reduce the number of
DT nodes with our proposed approach. But how explainable
are the trees we generated?

Of course, reducing the number of decision nodes already
helps to create an explainable DT. Still, we have to consider
that the complexity of the individual splitting predicate in-
creases, thereby potentially reducing explainability. As an
example, we consider the 10rooms case study. Here, we find

Springer

Explainable controllers: DT and SVM join forces 263

Fig. 10 Performance comparison of different predicate types. Based
on the decision tree size using linear predicates, we compare how
many nodes the decision trees with axis-aligned splits and quadratic
polynomials have. Every sample corresponds to a case study of cyber-
physical systems (CPS) or originates from the quantitative verification
benchmark set (QV)

a DT with 49 nodes, which is the minimum size for a most-
permissive DT. Unfortunately, the DT is not particularly ex-
plainable, as some predicates comprise up to 35 terms, even
after trying to round coefficients to zero. The reason is the
large number of 10 state variables. A quadratic polynomial
with ten variables can already have 65 terms.

Regardless of the complexity of individual predicates,
for some case studies, the minimum DT size is already
too large to be easily understandable by a human. Any
most-permissive DT for the case studies helicopter and
truck_trailer will have more than 400 and 1,800 nodes,
respectively. So, in these cases, we might need to investigate
determinized controllers, as discussed in [5, 6].

7 Conclusion

In this work, we have investigated an approach to generate ex-
pressive algebraic splitting predicates for decision trees. We
proposed learning quadratic polynomials with support vector
machines directly from the controller data. Additionally, we
introduced a new impurity measure called min-label entropy
that focuses on separating one specific label first. We inte-
grated both ideas into the decision-tree learning algorithm
and implemented it as an extension of the open-source tool
dtControl. We were able to generate significantly smaller
DTs in cases where the determinization heuristics could not
be applied. For the cruise model, we generated a tree with the
same size as the one created with help of a human expert, and
in 10 out of 28 case studies we even found a DT of minimum
size.

On the one hand, we showed that more expressive
quadratic polynomials can help to generate succinct trees
for permissive controllers. On the other hand, a key aspect
still to be improved upon is the explainability. Of course,

Table 3 Cumulated statistics over all 28 benchmarks. We compare the
best linear strategy with entropy impurity with the best of our heuristics

Linear Quadratic

Timeout 1 2
Minimal DT 2 (7%) 10 (35%)
DT is smaller or equal 25 (89%)
DT has less than half the size 8 (29%)

Fig. 11 Performance comparison of the min-label entropy (MLE) and
the low priority heuristic. Based on the decision tree size using quadratic
polynomials as predicates with entropy and priority 1.0, we compare
how the heuristics change the tree size. Every sample corresponds to
a case study of cyber-physical systems (CPS) or originates from the
quantitative verification benchmark set (QV)

succinct DTs are already easier to understand by nature, but
more complex predicates again reduce explainability. Ide-
ally, we would want to automatically generate a justification
explaining the coefficients of each complex predicate.

Appendix: Full experimental results

In the main body, we condensed the results of our experimen-
tal evaluation in order to improve readability. Here we list the
benchmark results for all case studies and approaches. The
structure is the same as described in Sect. 6.2 with two slight
differences. Firstly, we also give the size of the binary deci-
sion diagram (BDD) representation. Secondly, we explicitly
list the tree sizes we get with the linear support vector ma-
chine, the logistic regression, and the OC1 heuristic splitting
strategies. In Table 2 in the main body, we only show the
minimum across those.

The BDD sizes for the cyber-physical system cases are the
minimum number of nodes from 10 tries. For the quantitative
verification case studies, we show the BDD sizes from [6],
which correspond to the minimum across 20 tries.

The benchmarks are split into three tables. Table 4 con-
tains the cyber-physical system case studies, Table 5 and
Table 6 contain case studies from the quantitative verifica-
tion benchmark set [17].

Springer

264 F. Jüngermann et al.

Table 4 Benchmark results for the cyber-physical system case studies

Case Study
Comparision Linear Quadratic
States BDD MinSize Ax.Al. LinSVM LogReg OC1 Poly PolyPrio1

cartpole [22] 271 312 169
253 247 199 183 243 189
263 263 187 261 169 169

10rooms [21] 26,244 168 49
17,297 157 147 4,515 61 61
17,297 121 107 7,455 49 49

helicopter [22] 280,539 1,348 475
6,339 5,787 3,769 TO 5,035 3,787
9,649 9,763 4,637 TO TO TO

cruise_250 [26] 320,523 1,820 9
869 721 557 369 353 37

1,067 817 657 363 11 25

cruise_300 [26] 500,920 2,229 9
1,157 991 691 467 521 59
1,343 1,035 881 507 13 23

dcdc [35] 593,089 575 5
271 279 139 179 129 199
265 265 173 179 147 273

truck_trailer [24] 1,386,211 36,169 1,839
338,283 TO TO TO TO TO
366,411 TO TO TO TO TO

aircraft [36] 2,135,056 177,332 31
915,877 916,685 TO TO 725,011 602,335

1,015,903 1,013,949 TO TO 688,577 630,631

traffic_30m [38] 16,639,662 TO 23
12,573 9,631 8,953 TO TO TO
20,895 9,211 7,099 TO TO TO

Table 5 Benchmark results for case studies from the quantitative verification benchmark set (part 1)

Case Study
Comparision Single Feature Linear Quadratic
States BDD MinSize Ax.Al. Categ. LinSVM LogReg OC1 Poly PolyPrio1

triangle-tireworld.9 48 51 17
27 28 25 23 19 25 17
31 31 21 25 23 17 17

pacman.5 232 330 37
53 43 51 49 55 47 37
81 81 71 59 81 37 37

rectangle-tireworld.11 241 495 481
481 3731 481 481 481 481 481
481 481 481 481 481 481 481

philosophers-mdp.3 344 295 59
391 181 381 377 333 315 251
403 307 375 367 393 251 223

firewire_abst.3.rounds 610 295 25
25 25 25 25 25 25 25
25 25 25 25 25 25 25

rabin.3 704 303 23
111 187 51 43 29 69 27
175 137 31 29 45 23 23

ij.10 1,013 436 19
1,291 1,291 907 753 771 897 209
1,405 1,405 893 735 1,131 141 177

zeroconf.1000.4.true.correct_max 1,068 535 45
83 83 67 63 49 75 57
79 79 47 45 71 45 45

blocksworld.5 1,124 3,985 367
1,687 1,308 1,515 1,407 1,583 1,451 891
1,771 1,649 1,535 1,405 1,719 521 513

1This is better than the minimum size as it uses non-binary splits

Springer

Explainable controllers: DT and SVM join forces 265

Table 6 Benchmark results for case studies from the quantitative verification benchmark set (part 2)

Case Study
Comparision Single Feature Linear Quadratic
States BDD MinSize Ax.Al. Categ. LinSVM LogReg OC1 Poly PolyPrio1

cdrive.10 1,921 5,134 1,903
2,401 3,122 2,401 2,401 2,257 2,401 2,401
2,089 2,037 TO TO TO TO TO

consensus.2.disagree 2,064 138 25
67 67 75 69 69 57 51

105 105 105 93 95 35 33

beb.3-4.LineSeized 4,275 913 57
65 70 65 65 63 65 59
85 76 57 57 89 57 57

csma.2-4.some_before 7,472 1,059 65
103 103 107 105 89 103 79
185 185 85 65 177 65 65

eajs.2.100.5.ExpUtil 12,627 1,315 65
167 160 173 161 135 133 141
167 167 167 157 133 133 125

elevators.a-11-9 14,742 6,750 129
16,341 16,413 11,243 9,865 13,619 9,779 2,859
17,809 17,495 11,505 9,955 16,423 2,023 1,919

exploding-blocksworld.5 76,741 3,447 149
16,913 8,138 4,503 2,687 5,993 4,511 829
20,273 8,571 5,307 2,845 6,893 TO TO

echoring.MaxOffline1 104,892 43,165 801
2,101 2,251 1,629 1,625 1,627 2,005 1,431
5,031 TO TO TO TO TO TO

wlan_dl.0.80.deadline 189,641 1,541 175
3,369 3,369 2,821 2,563 701 693 667
3,675 3,675 2,841 2,621 1,049 523 TO

pnueli-zuck.5 303,427 50,128 173
171,371 171,371 156,165 150,341 125,421 114,979 83,219
263,955 263,955 221,645 214,801 221,645 95,879 83,951

Funding Open Access funding enabled and organized by Projekt
DEAL. This research was funded in part by the German Research Foun-
dation (DFG) projects 383882557 Statistical Unbounded Verification
(SUV) and 427755713 Group-By Objectives in Probabilistic Verifica-
tion (GOPro). This paper extends the tool dtControl [6] and through
the synergy of algebraic, formal-methods and machine-learning ap-
proaches it increases the explainability of controllers, positioning itself
into the STTT theme area Explanation Paradigms Leveraging Algebraic
Intuition (ExPLAIn).

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Akmese, S.M.: Generating richer predicates for decision trees.
Bachelor’s thesis, Technical University of Munich (2019)

2. Arlinghaus, S.: Practical Handbook of Curve Fitting. Taylor &
Francis, London (1994)

3. Ashok, P., Brázdil, T., Chatterjee, K., Křetínský, J., Lampert, C.H.,
Toman, V.: Strategy representation by decision trees with linear

classifiers. In: Parker, D., Wolf, V. (eds.) Quantitative Evaluation
of Systems, pp. 109–128. Springer, Cham (2019)

4. Ashok, P., Kretínský, J., Guldstrand Larsen, K., Le Coënt, A.,
Taankvist, J.H., Weininger, M.: SOS: safe, optimal and small strate-
gies for hybrid Markov decision processes. In: Parker, D., Wolf,
V. (eds.) Quantitative Evaluation of Systems, 16th International
Conference, QEST 2019, Proceedings, Glasgow, UK, Septem-
ber 10-12, 2019, Lecture Notes in Computer Science, vol. 11785,
pp. 147–164. Springer Berlin (2019)

5. Ashok, P., Jackermeier, M., Jagtap, P., Křetínský, J., Weininger, M.,
Dtcontrol, M.Z.: Decision tree learning algorithms for controller
representation. In: Proceedings of the 23rd International Confer-
ence on Hybrid Systems: Computation and Control, HSCC’20.
Association for Computing Machinery, New York (2020)

6. Ashok, P., Jackermeier, M., Kretínský, J., Weinhuber, C.,
Weininger, M., Yadav, M.: dtcontrol 2.0: explainable strategy repre-
sentation via decision tree learning steered by experts. In: TACAS
(2). Lecture Notes in Computer Science, vol. 12652, pp. 326–345.
Springer, Berlin (2021)

7. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E.,
Pardo, A., Somenzi, F.: Algebraic decision diagrams and their
applications. Form. Methods Syst. Des. 10(2/3), 171–206 (1997)

8. Bennett, K.P., Blue, J.A.: A support vector machine approach to
decision trees. In: 1998 IEEE International Joint Conference on
Neural Networks Proceedings. IEEE World Congress on Compu-
tational Intelligence (Cat. No. 98CH36227), vol. 3, pp. 2396–2401
(1998)

9. Bollig, B., Wegener, I.: Improving the variable ordering of obdds
is np-complete. IEEE Trans. Comput. 45(9), 993–1002 (1996)

10. Brázdil, T., Chatterjee, K., Chmelik, M., Fellner, A., Kretínský,
J.: Counterexample explanation by learning small strategies in
Markov decision processes. In: Kroening, D., Pasareanu, C.S.
(eds.) Computer Aided Verification - 27th International Confer-

Springer

http://creativecommons.org/licenses/by/4.0/

266 F. Jüngermann et al.

ence, CAV 2015„ Proceedings, Part I, San Francisco, CA, USA,
July 18-24, 2015, Lecture Notes in Computer Science, vol. 9206,
pp. 158–177. Springer Berlin (2015)

11. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classifica-
tion and Regression Trees. Wadsworth, Belmont (1984)

12. Bryant, R.E.: Graph-based algorithms for Boolean function ma-
nipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)

13. Chang, Y.-W., Hsieh, C.-J., Chang, K.-W., Ringgaard, M., Lin, C.-
J.: Training and testing low-degree polynomial data mappings via
linear SVM. J. Mach. Learn. Res. 11, 1471–1490 (2010)

14. David, A., Gjøl Jensen, P., Guldstrand Larsen, K., Mikucionis,
M., Haahr, J.: Taankvist. Uppaal stratego. In: Baier, C., Tinelli, C.
(eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS 2015, Held as
Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, Proceedings, London, UK, April 11-18,
2015, Lecture Notes in Computer Science, vol. 9035, pp. 206–211.
Springer Berlin (2015)

15. DeCoste, D., Schölkopf, B.: Training invariant support vector ma-
chines. Mach. Learn. 46(1–3), 161–190 (2002)

16. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming:
a modern probabilistic model checker. In: Majumdar, R., Kuncak,
V. (eds.) Computer Aided Verification - 29th International Con-
ference, CAV 2017, Proceedings, Part II, Heidelberg, Germany,
July 24-28, 2017, Lecture Notes in Computer Science, vol. 10427,
pp. 592–600. Springer Berlin (2017)

17. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.:
The quantitative verification benchmark set. In: Vojnar, T., Zhang,
L. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems - 25th International Conference, TACAS 2019, Held
as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2019, Proceedings, Part I, Prague, Czech
Republic, April 6-11, 2019, Lecture Notes in Computer Science,
vol. 11427, pp. 344–350. Springer, Berlin (2019)

18. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction, 2nd edn.
Springer Series in Statistics. Springer, Berlin (2009)

19. Ittner, A., Schlosser, M.: Non-linear decision trees - NDT. In:
Saitta, L. (ed.) Machine Learning, Proceedings of the Thirteenth
International Conference (ICML’96), Bari, Italy, July 3–6, 1996,
pp. 252–257. Morgan Kaufmann, San Mateo (1996)

20. Jackermeier, M.: dtcontrol: Decision tree learning for explainable
controller representation. Bachelor’s thesis, Technical University
of Munich (2020)

21. Jagtap, P., Zamani, M.: QUEST: a tool for state-space quantization-
free synthesis of symbolic controllers. In: Bertrand, N., Bortolussi,
L. (eds.) Quantitative Evaluation of Systems - 14th International
Conference, QEST 2017, Proceedings, Berlin, Germany, Septem-
ber 5-7, 2017, Lecture Notes in Computer Science, vol. 10503,
pp. 309–313. Springer, Berlin (2017)

22. Jagtap, P., Abdi, F., Rungger, M., Zamani, M., Caccamo, M.: Soft-
ware fault tolerance for cyber-physical systems via full system
restart. ACM Trans. Cyber Phys. Syst. 4(4), 47:1–47:20 (2020)

23. Jüngermann, F.: Learning Algebraic Predicates for Explain-
able Controllers: Artifacts (2021). https://doi.org/10.5281/zenodo.
4746131

24. Khaled, M., Zamani, M.: pfaces: an acceleration ecosystem for
symbolic control. In: Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, HSCC
2019, Montreal, QC, Canada, April 16-18, 2019, pp. 252–257.
ACM, New York (2019)

25. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: verifica-
tion of probabilistic real-time systems. In: Computer Aided Veri-

fication - 23rd International Conference, CAV 2011, Proceedings,
Snowbird, UT, USA, July 14-20, 2011, Lecture Notes in Computer
Science, vol. 6806, pp. 585–591. Springer, Berlin (2011)

26. Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Safe and optimal
adaptive cruise control. In: Meyer, R., Platzer, A., Wehrheim, H.
(eds.) Correct System Design - Symposium in Honor of Ernst-
Rüdiger Olderog on the Occasion of His 60th Birthday, Proceed-
ings, Oldenburg, Germany, September 8-9, 2015, Lecture Notes in
Computer Science, vol. 9360, pp. 260–277. Springer Berlin (2015)

27. Levenberg, K.: A method for the solution of certain non-linear
problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)

28. Marquardt, D.W.: An algorithm for least-squares estimation of
nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441
(1963)

29. Mitchell, T.M.: Machine Learning. McGraw-hill, New York
(1997)

30. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of
oblique decision trees. J. Artif. Intell. Res. 2, 1–32 (1994)

31. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
VanderPlas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., Duchesnay, E.: Scikit-learn: machine learning in python. J.
Mach. Learn. Res. 12, 2825–2830 (2011)

32. Pradhan, S.S., Ward, W.H., Hacioglu, K., Martin, J.H., Jurafsky,
D.: Shallow semantic parsing using support vector machines. In:
Hirschberg, J., Dumais, S.T., Marcu, D., Roukos, S. (eds.) Human
Language Technology Conference of the North American Chapter
of the Association for Computational Linguistics, HLT-NAACL
2004, Boston, Massachusetts, USA, May 2-7, 2004, pp. 233–240.
The Association for Computational Linguistics (2004)

33. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1),
81–106 (1986)

34. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan
Kaufmann, San Mateo (1993)

35. Rungger, M., Zamani, M.: SCOTS: a tool for the synthesis of sym-
bolic controllers. In: Abate, A., Fainekos, G.E. (eds.) Proceedings
of the 19th International Conference on Hybrid Systems: Com-
putation and Control, HSCC 2016, Vienna, Austria, April 12-14,
2016, pp. 99–104. ACM, New York (2016)

36. Rungger, M., Weber, A., Reissig, G.: State space grids for low
complexity abstractions. In: 54th IEEE Conference on Decision
and Control, CDC 2015, Osaka, Japan, December 15-18, 2015,
pp. 6139–6146. IEEE Press, New York (2015)

37. St-Aubin, R., Hoey, J., Boutilier, C.: APRICODD: approximate
policy construction using decision diagrams. In: Leen, T.K., Di-
etterich, T.G., Tresp, V. (eds.) Advances in Neural Information
Processing Systems 13, Papers from Neural Information Process-
ing Systems (NIPS) 2000, Denver, CO, USA, pp. 1089–1095. MIT
Press Cambridge (2000)

38. Swikir, A., Zamani, M.: Compositional synthesis of symbolic mod-
els for networks of switched systems. IEEE Control Syst. Lett. 3(4),
1056–1061 (2019)

39. Weinhuber, C.: Learning domain-specific predicates in decision
trees for explainable controller representation. Bachelor’s thesis,
Technical University of Munich (2020)

40. Zapreev, I.S., Verdier, C., Mazo, M. Jr.: Optimal symbolic con-
trollers determinization for BDD storage. In: ADHS, IFAC-
PapersOnLine, vol. 51-16, pp. 1–6. Elsevier, Amsterdam (2018)

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer

https://doi.org/10.5281/zenodo.4746131
https://doi.org/10.5281/zenodo.4746131

	Algebraically explainable controllers: decision trees and support vector machines join forces
	Abstract
	Introduction
	Running example
	Controller representation with decision trees
	Limitations
	Our contributions
	Related work

	Preliminaries
	Representing controllers by decision trees
	Impurity measures
	Predicates in decision trees
	Axis-aligned predicates
	Linear predicates
	Algebraic predicates

	Running example: cruise control
	High-level description
	Insufficiency of the current controller representations
	Handwritten strategy
	Technical details
	Domain sizes
	Model modifications

	Predicates from controller data
	Problems with curve fitting
	Using support vector machines
	Problems with higher dimensions
	Reconstructing the algebraic decision function
	Problems with predicate size

	Improving the explainability of the predicates
	Feature importance
	Rounding coefficients
	Rounding to zero
	Scaling the predicate
	General rounding
	Numerical errors

	Min-label entropy
	Predicate priority

	Experimental evaluation
	Artifacts
	Minimum tree size
	Cruise control
	Generalizing to other benchmarks
	Scatter plot
	Analysis

	Min-label entropy and predicate priority
	Min-label entropy
	Low priority heuristic

	Explainability

	Conclusion
	Appendix: Full experimental results
	References

