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Abstract
Key message  Mating designs determine the realized additive genetic variance in a population sample. Deflated or 
inflated variances can lead to reduced or overly optimistic assessment of future selection gains.
Abstract  The additive genetic variance V

A
 inherent to a breeding population is a major determinant of short- and long-term 

genetic gain. When estimated from experimental data, it is not only the additive variances at individual loci (QTL) but also 
covariances between QTL pairs that contribute to estimates of V

A
 . Thus, estimates of V

A
 depend on the genetic structure of 

the data source and vary between population samples. Here, we provide a theoretical framework for calculating the expecta-
tion and variance of V

A
 from genotypic data of a given population sample. In addition, we simulated breeding populations 

derived from different numbers of parents (P = 2, 4, 8, 16) and crossed according to three different mating designs (disjoint, 
factorial and half-diallel crosses). We calculated the variance of V

A
 and of the parameter b reflecting the covariance compo-

nent in V
A
, standardized by the genic variance. Our results show that mating designs resulting in large biparental families 

derived from few disjoint crosses carry a high risk of generating progenies exhibiting strong covariances between QTL pairs 
on different chromosomes. We discuss the consequences of the resulting deflated or inflated V

A
 estimates for phenotypic 

and genome-based selection as well as for applying the usefulness criterion in selection. We show that already one round of 
recombination can effectively break negative and positive covariances between QTL pairs induced by the mating design. We 
suggest to obtain reliable estimates of V

A
 and its components in a population sample by applying statistical methods differing 

in their treatment of QTL covariances.

Introduction

The first step in a plant breeding scheme is to generate new 
variation by crossing promising genotypes to produce the 
population on which selection is executed. Conditional on 
the dimension of the breeding program the breeder decides 
how many and which parents to cross and how many prog-
enies to generate in total and per cross. Thus, a breeding 
population can range from a bi-parental cross to a com-
plex crossing scheme tracing back to many parents. In the 

literature, we find large variation across breeding programs 
with respect to these decisions even for the same crop. For 
example, in maize, Lian et al. (2015) described a commercial 
hybrid breeding program in which on average 156 progenies 
per cross were tested for a large number of biparental crosses 
at different levels of inbreeding. On the other hand, Auinger 
et al. (2021) reported on average four progenies per cross, 
all fully homozygous and derived from bi- or multiparen-
tal crosses. The genetic structure of the resulting popula-
tions has received little attention in phenotypic selection, 
but when selection is based on methods that require reliable 
estimates of the additive genetic variance ( VA ), such as the 
usefulness of crosses or genomic and multi-trait selection, 
population structure and its effect on VA cannot be ignored.

VA quantifies the observable genetic properties of a pop-
ulation (Falconer and Mackay 1996) and when estimated 
from experimental data it strongly depends on the genetic 
structure of the data source. In the absence of epistasis, VA is 
composed of the genic variance Vg , which is the sum of the 
variances of additive effects at individual quantitative trait 
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loci (QTL) and the disequilibrium component C , which is 
twice the sum of the covariances of additive effects between 
QTL pairs (Lynch and Walsh 1998). Even when sampled 
from the same population, estimates of the two components 
can vary considerably among samples, Vg due to differences 
in allele frequency spectra and C due to variation in gametic 
phase disequilibrium (GPD) (Falconer and Mackay 1996; 
Lynch and Walsh 1998).

Avery and Hill (1977) derived theoretical results on the 
variance of VA among replicated small populations sampled 
from a base population. They concluded that individual sam-
ples did not yield accurate predictions of the variance in the 
base population mainly due to large variation in GPD among 
samples. Lehermeier et al. (2017a) compared statistical 
methods for genomic variance estimation in an Arabidopsis 
data set. They demonstrated that covariances between QTL 
pairs generated by population structure can lead to over- 
or underestimation of VA calculated based on genomic data 
unless the estimation method accounted for them.

For a given trait, the contribution of QTL covariances 
to VA depends on the QTL substitution effects and the GPD 
in the population. We can find both, positive and negative 
QTL covariances in breeding populations. As is known from 
theory, negative QTL covariances are expected when traits 
are under strong directional selection (Bulmer 1971). When 
introgressing non-adapted material into elite germplasm we 
might find positive covariances for traits under diversifying 
selection such as flowering time (Lehermeier et al. 2017a). 
Recombination will reduce GPD and the covariance compo-
nent C when intermating the population under study. For real 
life data, it is therefore not possible to predict the magnitude 
and sign of the covariance component C and its relative con-
tribution to VA . Nevertheless, breeders are interested how the 
design of a breeding program affects the covariance compo-
nent C relative to the variation in the genic variance. Large 
variation in C and consequently in VA creates uncertainty 
when estimating quantitative genetic parameters such as trait 
correlations and when predicting temporal changes of VA 
over breeding cycles (Lara et al. 2022; Allier et al. 2019b). 
Using theory and simulation results, we investigated for a 
given trait and population sample the magnitude and sign 
of the covariance component C and its relative contribution 
to VA conditional on the ancestral population, the crossing 
scheme and the number of parents sampled from the ances-
tral population.

In plant breeding, it has been notoriously difficult to 
obtain meaningful estimates of VA from populations gener-
ated solely for the purpose of selection (Bernardo 2020). 
Instead, for quantitative genetic studies, mating designs of 
different complexity have been devised to estimate VA and 
differentiate between its additive, dominance and epistatic 
components (Hallauer et al. 2010). Bernardo (2020) defines 

a mating design as a systematic method for the development 
of progeny. Using three different mating designs commonly 
employed in plant breeding, we generated in silico popula-
tions varying in allele spectra and levels of GPD. We based 
our simulations on genotypic data from two published maize 
breeding experiments to warrant realistic GPD patterns 
(Mayer et al. 2020; Schrag et al. 2019). The three designs 
were chosen to resemble breeding populations of different 
genetic structure sampled from a base population. Making 
certain assumptions about the distribution of the QTL sub-
stitution effects, the variance of the covariance component 
C and consequently of VA can be inferred for each design 
allowing us to quantify uncertainty of variance estimation in 
breeding populations of different origin and structure.

We present the theoretical framework for calculating the 
expectation and variance of the disequilibrium component 
C in VA conditional on the sampled population. Using this 
framework in combination with simulations we investigated 
the covariances between QTL pairs on the same and on dif-
ferent chromosomes in different mating designs. We gener-
ated populations with (1) parents from two different ances-
tral populations, one consisting of elite breeding lines, the 
other of doubled haploid (DH) lines derived from a landrace, 
(2) different numbers of parents sampled from the ances-
tral population, (3) different population sizes in subsequent 
intermating generations, (4) different numbers of additional 
intermating generations, and (5) quantitative traits governed 
by different numbers of QTL. Our results are applicable to 
many populations encountered in plant breeding and can 
assist breeders in the choice of the design, number and 
size of the intermating generations for generating new base 
populations.

Material and methods

In this study we assume absence of dominance and epistasis 
and concentrate on fully homozygous material, like e.g. DH 
lines.

Let � =
(
xni

)
 denote a N × L matrix of genotypic scores, 

where N  is the number of genotypes, L is the number of 
QTL affecting the trait, with xni = 2 , if the n th individual 
is homozygous for the reference allele at the i th QTL, and  
xni = 0 otherwise. Let 1 denote a N × 1 vector of ones and 
� = �T�

1

2N
=
(
p1, p2, … , pi,… pL

)
 the 1 × L vector 

of allele frequencies in the population sample considered, 
where pi is the frequency of the reference allele at the i th 
QTL.

Centering with the allele frequencies, we get

(1)� = � − 21�
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and the L × L variance–covariance matrix � of genotypic 
scores

The diagonal elements  � are dii = 4pi
(
1 − pi

)
 and the 

off-diagonal elements are dij = 4(fij − pipj), where the term 
in parentheses refers to the GPD between locus i and j 
as defined by Falconer and Mackay (1996), i.e., fij is the 
gamete frequency and pi and pj are the allele frequencies 
of the reference allele at these loci.

We define the following three matrices �,�,� com-
posed of elements of �

where  W   and B  are sets of QTL pairs (i, j) (with i ≠ j and 
counting (i, j) and (j, i) as different pairs) located on the same 
chromosome or on different chromosomes, respectively.

Let  � =

⎛⎜⎜⎜⎝

a1
a2
⋮

aL

⎞⎟⎟⎟⎠
 be the vector of fixed effects of the refer-

ence allele at the QTL for a given trait.
The additive genetic variance VA of the population sam-

ple is obtained as the sum of the components  Vg (the sum 
of the variances of additive effects at individual QTL) and 
C (the sum of the covariances of additive effects between 
all QTL pairs), which can be partitioned into Cw within 
chromosomes (the sum of the covariances of additive 
effects of QTL pairs located on the same chromosome) 
and Cb between chromosomes (the sum of the covariances 
of additive effects of QTL pairs located on different chro-
mosomes) (Lara et al. 2022; Lynch and Walsh 1998)

These terms can be expressed by quadratic forms as

and we obtain

Assuming the vector � of fixed QTL effects was sam-
pled for each trait from a multivariate normal distribution 

(2)� = �T�
1

N

� = diag(�) =
(
vij
)
with

{
vij = dii if i = j

vij = 0 elsewhere

}

� =
(
wij

)
with

{
wij = dij if (i, j) ∈ W

wij = 0 elsewhere

}

� =
(
bij
)
with

{
bij = dij if (i, j) ∈ B

bij = 0 elsewhere

}

(3)VA = Vg + C = Vg + Cw + Cb

(4)VA = �T��,Vg = �T��,Cw = �T��,Cb = �T��

(5)�T�� = �T�� + �T�� + �T��

with � ∼ N(0, �) , we get conditional on the matrix � the 
following complete formulas for the expectations and 
variances for the terms in Eq. 5 across different traits (for 
details see Eqs. A1, A2 in Appendix A)

and consequently

and because the pairwise covariances of Vg
||�,Cw

||�, and 
Cb|�  are equal to zero (see Eq. A2 in Appendix A),

we get

While Vg is always positive, Cw and Cb can become 
negative. In particular, if the QTL effects of the reference 
allele have an equal chance of being positive or negative, 
as applies for � ∼ N(0, �), there is a higher probability of 
observing more negative than positive genetic covariances 
among QTL pairs (see Appendix B) and the distributions 
of VA|� , Cw|� , and Cb|�  show a positive skewness (Suppl. 
Figs. S1 and S2).

To allow comparisons across simulation scenarios differ-
ing in the number of QTL and in allele frequencies at QTL, 
we quantify the contribution of the components Cw and Cb 
to VA relative to the contribution of Vg , which can be 
expressed by the ra t ios   bw =

Cw

Vg

 ,  bb =
Cb

Vg

 and 

b =
Cw+Cb

Vg

= bw + bb.

Since the covariances of   bw|�   and  bb|� are approxi-
mately zero (see Eq. A3 in Appendix A) we get

Using properties of Vg|� , Cw|� and Cb|� , given in 
Eqs. A4, A5, A6, A7 in Appendix A, we get

(6)

E
[
Vg|�

]
= trace(�) =

L∑
i=1

dii,E
[
Cw|�

]
= 0,E

[
Cb|�

]
= 0

(7)E
[
VA|�

]
= trace(�) = trace(�) =

L∑
i=1

dii

(8)var
[
Vg|�

]
= 2trace

(
�2

)
= 2

L∑
i=1

d2
ii

(9)var
[
Cw|�

]
= 2trace

(
�2

)
= 2

∑
(i,j)∈W

d2
ij

(10)var
[
Cb|�

]
= 2trace

(
�2

)
= 2

∑
(i,j)∈B

d2
ij

(11)var
[
VA|�

]
= 2trace

(
�2

)
= 2

L∑
i=1

L∑
j=1

d2
ij

(12)var[b|�] ≈ var[bw|�] + var[bb|�]
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 Values of  bw and b are restricted to ≥ −1 . In contrast,  bb can 
be smaller than − 1 if bw > 1 (for an example, see Appendix 
C). If all QTL pairs have a positive genetic covariance, then 
bw ,  bb , and b  assume their maximum, which can exceed 1 
by far.

Provided the population size used for random mating is 
sufficiently large, then GPD and dij values of unlinked QTL 
i  and j are expected to decrease at a rate of 1

2
 per generation 

(Falconer and Mackay 1996). Thus, from Eq. 15, we obtain 
that var

[
bb|�

]
 is reduced by a factor of 1

4
 . Moreover, the 

expectation and the shape of the distribution of bb|� will 
not be altered by r generations of random mating except for 
the reduction in its variance by a constant factor 1

4r
 . Due to 

the restricted recombination between QTL pairs on the same 
chromosomes, the variance of bw|� is reduced at most by a 
factor of 1

4
 per generation.

Genetic material

We used experimental genotypic data from maize (Zea mays 
L.) to simulate the GPD present in two types of ancestral 
populations. The first ancestral population, called Elite, con-
sisted of a subset of 115 Flint lines from the maize breed-
ing program at the University of Hohenheim (Schrag et al. 
2019). The lines were genotyped with the Illumina SNP chip 
MaizeSNP50 (Ganal et al. 2011) and quality checks as well 
as imputation were performed as described by Technow 
et al. (2014), resulting in 38,119 SNPs.

The second ancestral population, called Landrace, was a 
random sample of 115 DH lines of the 409 DH lines derived 
from the Landrace Petkuser Ferdinand Rot described by 
Hölker et al. (2019, 2022). They were genotyped with the 
600k Affymetrix© Axiom© Maize Array (Unterseer et al. 
2014) with quality checks as described in Mayer et al. (2017, 
2020, 2022) resulting in 501,124 SNPs. A genetic map gen-
erated from an F2 mapping population of the cross EP1 x 
PH207 (Haberer et al. 2020) was used to assign genetic posi-
tions to the 27,542 SNPs which were polymorphic across 

(13)E
[
bw|�

]
≈ 0,E

[
bb|�

]
≈ 0, and E[b|�] ≈ 0

(14)var
[
bw|�

]
≈

2trace
(
�2

)

(trace(�))2

(15)var
[
bb|�

]
≈

2trace
(
�2

)

(trace(�))2

(16)var[b|�] ≈ 2trace
(
�2

)
+ 2trace

(
�2

)

(trace(�))2

both ancestral populations, overlapped between both SNP 
chips, and covered in total 1442 cM of the maize genome.

A total of 2500 SNPs were randomly chosen from the set 
of 27,542 SNPs polymorphic across both ancestral popula-
tions as potential QTL positions with the restriction that 
on each chromosome their number was proportional to its 
genetic length.

With the 2500 SNPs used as potential QTL positions, 
we performed an AMOVA (Excoffier et al. 1992) across all 
230 inbred lines derived from both ancestral populations to 
determine the molecular variance within and among them. 
Within each ancestral population, we estimated LD as r2 
between all pairs of potential QTL positions on each chro-
mosome following Hill and Robertson (1968). We estimated 
the decay of r2 with genetic distance based on nonlinear 
regression according to Hill and Weir (1988) using a thresh-
old of r2 = 0.1 to quantify the LD decay distance.

For simulating traits, out of the 2500 SNPs we randomly 
sampled  L QTL with effects � of the reference alleles from 
� ∼ N(0, �).

Simulation setup and analysis

Simulation of segregating populations

For a given ancestral population, sets of P ∈ {2, 4, 8, 16} 
parental lines were sampled at random. For P = 2, the paren-
tal lines were crossed to generate a single biparental popula-
tion. For P > 2, the parental lines were intermated according 
to three different mating designs depicted in Fig. 1A to pro-
duce generation G1. For the disjoint cross (DC) design, bipa-
rental progenies were generated by ordering the parental 
lines randomly and crossing the first line with the second, 
the third with the fourth, and so forth, to produce P

2
 disjoint 

crosses. For the factorial cross design (FC), the parental 
lines were randomly divided into two sets and all possible 

crosses between the two sets were made leading to 
(

P

2

)2

 
crosses. For the half-diallel cross design (HC), all possible 
P(P−1)

2
 crosses were produced. For each mating design, F1 

progenies were randomly sampled with replacement from 
the crosses to a total of N ∈ {50, 250, 1000} genotypes. For 
P = 2, generation G1 is derived from one biparental cross 
and, hence, comprises N genetically identical F1 genotypes. 
For P > 2, generation G1 represents N  F1 genotypes ran-

domly sampled from the P
2
, 
(

P

2

)2

 , or P(P−1)
2

 crosses condi-
tional on the applied mating design. From each genotype in 
G1, one DH line was generated to produce generation 
G1-DH. In addition, the N genotypes in G1 were randomly 
mated (excluding selfing) to obtain N individuals in genera-
tion G2. For P = 2 this is equivalent to generating the F2 
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generation of a biparental cross. Random mating with N 
genotypes was continued until generation G4. In parallel, 
one DH line was produced from each of the N individuals 
used for random mating in generation G2, G3 and G4 to 
produce generations G2-DH, G3-DH, and G4-DH (Fig. 1B).

Validation of theoretical results

Theoretical derivations in Eqs. 6–16 were validated with 
simulations as follows. For a given matrix � , determined at 
random from one set of QTL positions in one replication of 
G1-DH with P ∈ {2, 4} , N = 1000 , and L = 1000 QTL, using 
Elite as the ancestral population and DC as the mating design, 
we calculated for 10,000 samples of a ∼ N(0, �) the realized 
values of Vg|� , Vg|� + Cw|� , Vg|� + Cb|�, VA|� (Suppl. Fig. 
S1) and C|� = Cw|� + Cb

||�,Cw
||� , Cb|� (Suppl. Fig. S2A) as 

well as their means, variances, and the skewness and kurtosis 
of the distribution of the 10,000 realizations and compared 
them with the corresponding values obtained from theory.

Parameter combinations

We defined a “scenario” as the combination of ancestral 
population (Elite or Landrace), mating design (DC, FC, or 
HC), and choice of P ∈ {2, 4, 8, 16} , N ∈ {50, 250, 1000} , 
and L ∈ {50, 250, 1000}. For each scenario we simulated 
500 replications. A “replication” was defined as a simula-
tion run starting from the sampling of the parental lines 
and either generating a biparental population or applying 
the chosen mating design for producing in silico the four 
generations G1-DH to G4-DH. In every replication 50 sets 
of L QTL positions out of the pool of 2500 potential posi-
tions were sampled to obtain 50 realizations of the matrix 
� comprising the genotypic scores at the QTL, resulting 
in 25,000 realizations of � per scenario.

Estimates of E
[
VA

]
 , var

[
Vg

]
 , var[C] , var

[
Cw

]
 , var

[
Cb

]
 , 

var
[
VA

]
, var

[
bw

]
 , var

[
bb
]
 , and var[b] were obtained for each 

scenario by averaging E
[
VA|�

]
, var

[
VA|�

]
 , and the other 

statistics, calculated for given  � according to Eqs. 7–16, 
over the 25,000 realizations of �.

Fig. 1   (A) Crossing schemes of the three mating designs (disjoint 
cross (DC), factorial cross (FC), and half-diallel cross (HC)) exem-
plified with four parental lines ( P

1

,P
2

,P
3

,P
4

 ). (B) Flowchart for 
one replication of the simulation, starting with the sampling of 

P ∈ {2, 4, 8, 16} parental lines and N ∈ {50, 250, 1000} genotypes in 
the simulated populations. G1, G2, G3, G4 refer to the generation of 
intermating and G1-DH, G2-DH, G3-DH, G4-DH to the DH popula-
tions derived from the respective generation
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As mentioned above, under infinite population size 
( N  = ∞ ), var

[
bb
]
 is expected to be reduced by a factor 1

4
 

for every recombination step if the population size is suf-
ficiently large. To describe var

[
bb
]
 after r recombination 

steps with a finite population size N  in all generations, 
denoted as ̂var[bb|N]r , we used the regression model

where θ = var[bb|N = ∞] under an infinite population size 
and ω is the deviation due to sampling from a constant finite 
population in all generations. Solving the recursive formula, 
we obtain

We used a nonlinear least squares regression imple-
mented in the function nls() from the R-package stats 
to estimate ω in every scenario starting in G1-DH using 
Eq. 18 (R Core Team 2019).

Recombination of lines was simulated with R package 
AlphaSimR v1.1.2 setting the crossover interference param-
eter to 1 according to Haldane’s mapping function (Faux 
et al. 2016; Gaynor et al. 2020; Haldane 1919). All other 
simulations were performed with customized R scripts.

Results

Out of the 2500 potential QTL positions, 4.9% and 16.3% 
were monomorphic in ancestral population Elite and Lan-
drace, respectively. The majority (64.9%) of the molecular 
variance in the AMOVA was within populations (Suppl. 
Table S1), with Landrace having a higher molecular vari-
ance than Elite due to a larger proportion of loci with high 
minor allele frequency (Suppl. Fig. S3). The LD decay 
distance was similar for Landrace (21.3 cM) and Elite 
(22.2 cM).

Estimates of E
[
VA|�

]
 and var

[
VA|�

]
 obtained from 

10,000 realizations of � conditional on one realization 
of � matched very closely the expectations from theory 
(Suppl. Fig. S1). For P = 2, var

[
VA|�

]
 was mainly driven 

by Cw|� . For P = 4, var
[
VA|�

]
 was driven to some extent 

by Cw|�  but even more by Cb|�  and this contributed to its 
pronounced positive skewness and leptokurtic distribution. 
The distributions of bw|� and bb|� had the same skewness 
and kurtosis as Cw|� and Cb|� (Suppl. Fig. S2).

As expected from theory, Ê
[
VA

]
 (being = ̂E

[
Vg

]
 ) showed 

no differences between the mating designs and increased lin-
early with L , because E[Vg] depends solely on the expected 

(17)

̂var[bb|N]0 = � + � and ̂var[bb|N]r+1 = 1

4
̂var[bb|N]r + �

(18)̂var[b
b
|N]

r
=

1

4

r
� +

(
1

4

0

+
1

4

1

+
1

4

2

+ ... +
1

4

r

)
� =

1

4

r
� +

(
4 −

1

4

r

3

)
�

allele frequencies and the sum across QTL. Figure 2 shows 
a substantial increase (~ 86%) in Ê

[
VA

]
 from P = 2 to P = 16  

for both ancestral populations with slightly higher values for 
Landrace than Elite. As expected, additional recombination 
steps and choice of N had no effect on Ê

[
VA

]
.

For generation G1-DH and scenario N = 1000 and 
L = 1000 , ̂var

[
VA

]
 was mainly determined (~ 95%) by v̂ar[C] 

with only minor contributions of ̂var
[
Vg

]
 and slightly higher 

values for Landrace than Elite (Suppl. Fig. S4). The con-
tribution of ̂var

[
Cw

]
 to v̂ar[C] decreased moderately with 

increasing P  for both ancestral populations irrespective 
of the mating design. By comparison, the contribution of 
̂var
[
Cb

]
to v̂ar[C] was much higher, especially in ancestral 

population Landrace and mating designs DC and FC, and 
decreased strongly for larger P values in all scenarios.

This pattern carried over to v̂ar[b] and its components, 
where v̂ar

[
bb
]
 contributed substantially more than ̂var

[
bw

]
 

for P > 2  (Fig. 3), but estimates were slightly smaller for 
ancestral population Landrace due to the larger values of 

(Ê
[
Vg

]
)
2

 in the denominator of the formulas in Eq. 14 and 
15. Increasing P from 4 to 16 lead to a substantial reduc-
tion of  ̂var

[
bw

]
 and even more so of v̂ar

[
bb
]
 , so that v̂ar[b]  

was reduced by 38 to 67% for all scenarios. While for given  
P > 2, �var

[
bw

]
 changed only slightly from DC to FC and HC, 

Fig. 2   Expectation of  V
A
 estimated for different numbers of paren-

tal lines  P ∈ {2, 4, 8, 16} in generation G1-DH sampled from ances-
tral population Elite (black) and Landrace (yellow) in scenarios with 
N = 1000 genotypes and L = 1000 QTL
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v̂ar
[
bb
]
 was by far largest for mating design DC, followed by 

FC and HC, with smaller differences for larger values of P . 
For  P = 2, v̂ar

[
bb
]
 was small for N  = 1000 and ̂var

[
bw

]
 was 

higher compared to all other scenarios with P > 2.
For DH lines derived from a single cross, with finite 

sample size N the GPD between loci on different chromo-
somes can differ from zero, the value expected for N = ∞ . 
We analyzed for P = 2 the effect of N on the magnitude and 

composition of v̂ar[b] in generation G1-DH for ancestral 
population Elite (Fig. 4). While ̂var

[
bw

]
 remained constant, 

the contribution of v̂ar
[
bb
]
 amounted to 24%, 6%, and 2% of 

v̂ar[b] for N = 50 , 250 , and 1000, respectively.
Reducing the number of QTL from L = 1000 to  250 and 

50 decreased v̂ar[b] by 2–6 and 7–24%, respectively, for 
all scenarios and did not alter the relative contributions of 
v̂ar

[
bb
]
 and ̂var

[
bw

]
 (Suppl. Fig. S5), which depended on P 

and the mating design (Fig. 3).
According to theory (Eq. 18), intermating with N = ∞ is 

expected to reduce v̂ar
[
bb
]
 by 1

4
 per generation. Our simula-

tions for ancestral population Elite and mating design FC 
fit this expectation well for N = 1000 , but the decay was 
much slower for N = 50 (Suppl. Fig. S6). The parameter � 
describing the effect of finite population size in the nonlin-
ear regression model (Eq. 18) was negligible for N ≥ 250 
( � ≤ 0.006 ) but became significant for N = 50 ( � = 0.03 ). 
As a consequence of the GPD generated anew in each gen-
eration by using a finite N  , which counteracts the reduc-
tion in GPD due to intermating, v̂ar

[
bb
]
 did not fully decay 

so that in generation G4-DH a kind of steady state was 
approached, the level of which depended strongly on N but 
was independent of P (Fig. 5). For P = 2 , v̂ar

[
bb
]
 attributable 

to finite N was nearly constant from generations G1-DH to 
G4-DH and sizeable for N = 50 . The reduction in ̂var

[
bw

]
 

with progressing intermating followed a linear relationship 
with a weak convex curvature and was largely independent 

Fig. 3   Estimated variance of b decomposed into the parts attributable 
to QTL pairs on different chromosomes ( v̂ar

[
b
b

]
 , red) and on the same 

chromosome ( ̂var
[
b
w

]
 , blue) in generation G1-DH for different numbers 

of parental lines P ∈ {2, 4, 8, 16} sampled from ancestral population 

Elite (A) and Landrace (B) and using three mating designs (disjoint cross 
(DC), factorial cross (FC), and half-diallel cross (HC)) in scenarios with 
N = 1000 genotypes and L = 1000 QTL. The number of crosses generated 
in the respective mating design is shown above the bars

Fig. 4   Estimated variance of b decomposed into the parts attribut-
able to QTL pairs on different chromosomes ( v̂ar

[
b
b

]
 , red) and on the 

same chromosome ( ̂var
[
b
w

]
 , blue) in generation G1-DH using P = 2 

parental lines sampled from ancestral population Elite and varying 
N ∈ {50, 250, 1000}  of genotypes and L = 1000 QTL
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of N  , yet the level was about four times higher for P = 2   
than for P = 16.

The mating design neither affected the level nor the rate 
of reduction of ̂var

[
bw

]
 in generations G1-DH to G4-DH 

(Figs. 5 and 6). By contrast, the initial level of v̂ar
[
bb
]
 was 

almost twice as large for mating design DC as for HC and 
intermediate for FC. Altogether, the reduction in v̂ar[b] was 
most effective in the first intermating generation but the effi-
cacy depended on the mating design, the number of parents, 
and the sample size employed for generating and intermating 
the population from which the DH lines were derived. For 

the special case P = 2 , intermating reduced v̂ar[b] only at a 
low rate, especially if N  was small.

Discussion

The additive genetic variance VA inherent to a breeding 
population is a major determinant of short- and long-term 
genetic gain. Consequently, it is crucial for breeders to 
have reliable estimates of VA among selection candidates 
and strategies of intervention if the variance is depleted 
by selection. Allier et al. (2019b) used phenotypic and 

Fig. 5   Estimated variance of 
b decomposed into the parts 
attributable to QTL pairs on 
different chromosomes ( v̂ar

[
b
b

]
 , 

red) and on the same chromo-
some ( ̂var

[
b
w

]
 , blue) in genera-

tions G1-DH to G4-DH for dif-
ferent numbers of parental lines 
P ∈ {2, 4, 8, 16} sampled from 
ancestral population Elite using 
the mating design factorial cross 
(FC) for producing generation 
G1 and  N ∈ {50, 250, 1000}  
genotypes for producing genera-
tions G1 to G4 and G1-DH to 
G4-DH and L = 1000 QTL
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molecular data for a temporal analysis of VA in a North 
European grain maize breeding program and found that 
on a whole-genome basis, negative covariances between 
QTL masked about one fourth of the genic variance mak-
ing it inaccessible to selection. In a simulation study, Lara 
et al. (2022) obtained similar results from the analysis of 
a wheat breeding program. They concluded that negative 
covariances of QTL pairs on different chromosomes were a 
major force that affected the change in VA  across selection 
steps within the same breeding cycle and across cycles. 
Here, we investigated how mating designs and the num-
ber of parents affect the variation in VA among breeding 
populations. In the following we discuss how this relates 
to the success of phenotypic and genome based-selection.

Mating designs have a strong influence 
on the observed additive genetic variance

The observed VA in a breeding program is subject to sampling. 
Variation in VA arises as different realizations of � lead to 
variation in QTL allele content. We developed a theoretical 
framework to assess the dispersion of VA and its components 
around their respective expected values. In addition, we cal-
culated the variance of VA and of the parameter b (covariance 
component C in VA standardized by Vg ) for different mating 
designs and number of parents in simulated data.

Our results show that it is mainly the covariance compo-
nent C that contributes to differences in the variance of VA 
among mating designs (Suppl. Fig. S4), as allele frequen-
cies of the progenies (e.g. in G1-DH), which determine the 
genic variance Vg , are not affected by the design. While the 
mating design affected mainly the between chromosome 

covariance component, the number of parents had an 
effect on both, variation in covariances of QTL pairs on 
the same and on different chromosomes. When the number 
of crosses was constant (e.g. DC, P = 8 and FC, P = 4), 
differences between mating designs were alleviated when 
the covariance component C was expressed relative to the 
genic variance Vg (Fig. 3). In general, variation in b was 
highest for populations comprising large biparental fami-
lies derived from few disjoint crosses, thus the DC design 
carries a high risk of generating progenies with deflated or 
inflated VA . The consequences would be reduced selection 
gain due to masking of the genic variance by an excess of 
negative QTL covariances or an overly optimistic assess-
ment of future selection gains due to an inflated VA arising 
from an excess of positive QTL covariances.

The three designs analyzed in this study are stylized 
examples of crossing schemes, but in practice the number 
of crosses and progenies per cross vary not only between 
breeding programs but also within the same program across 
selection cycles (Auinger et al. 2021). Therefore, the infer-
ences from Fig. 3 are recommended as general guidelines. If 
breeders are aware that observed values of VA vary between 
samples, especially when large families are generated from 
few disconnected crosses, they can take interventions if neces-
sary. Already one round of recombination can substantially 
mitigate under- or overestimation of Vg by breaking negative 
and positive covariances between QTL pairs and reducing 
the between chromosome covariance component of VA to a 
large extent (Figs. 5 and 6). If the additional time needed for 
recombination is compensated by higher selection gain due to 
increased VA will be crop and program specific and warrants 
further research. Nevertheless, with genomic data at hand, 

Fig. 6   Estimated variance of 
b decomposed into the parts 
attributable to QTL pairs on 
different chromosomes ( v̂ar

[
b
b

]
 , 

red) and on the same chromo-
some ( ̂var

[
b
w

]
 , blue) in genera-

tions G1-DH to G4-DH for dif-
ferent numbers of parental lines 
P ∈ {2, 4, 8, 16} sampled from 
ancestral population Elite and 
using the mating designs dis-
joint cross (DC) and half-diallel 
cross (HC) in scenarios where 
generation G1 and generations 
G1 to G4 and G1-DH to G4-DH 
are produced with N = 1000 
genotypes and L = 1000 QTL. 
The number of crosses gener-
ated in the respective mating 
design is shown above the bars
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it might be advisable for breeders to obtain estimates of the 
genomic variance from breeding populations with statistical 
methods differing in their treatment of QTL covariances and 
informing about the difference between Vg and VA as suggested 
by Lehermeier et al. (2017a) and Allier et al. (2019b).

The results from this study also allow inferences about 
the suitability of the different mating designs for genome-
based prediction using ridge regression BLUP as statistical 
method. For ridge regression BLUP, it is known that esti-
mates of marker effects are strongly affected by the so-called 
grouping effect (Zou and Hastie 2005). An upper bound 
exists for pairwise differences between estimated marker 
effects, which is a function of their correlation coefficient 
and the extent of regularization. Thus, even if QTL lie on 
different chromosomes and their true allelic effects differ, 
their effect estimates are equalized by the model if their 
genotypic scores are highly correlated (for an example see 
Lehermeier et al. 2017a). A mating design like DC carries 
a high risk of producing data sets in which VA is dominated 
by the between chromosome covariance component. When 
training a genome-based prediction model on a subset of 
progenies with phenotypes from such a data set and pre-
dicting the remaining progenies without phenotypes from 
the same population sample (i.e. within cycle prediction), 
the accuracy of prediction should not be compromised by 
the population structure as long as QTL covariances are 
consistent across training and prediction set. However, if VA 
is decreased due to negative QTL covariances, the predic-
tion accuracy in the respective sample might be low as the 
accuracy is a function of trait heritability (Daetwyler et al. 
2008). In addition, when using the model to predict genetic 
values of the next breeding cycle (i.e. across cycle predic-
tion), recombination will have changed QTL covariances 
dramatically and the prediction accuracy is likely to break 
down. One way to mitigate this effect of the QTL covariance 
structures in the training population is to train the model on 
data from several breeding cycles and years as suggested by 
Auinger et al. (2016, 2021), but genome-based prediction 
accuracy might also be compromised if a population sample 
exhibiting strong QTL covariances is used as prediction set. 
Auinger et al. (2021) reported in their study that expected 
and observed prediction accuracy differed strongly for one 
of two prediction sets. They concluded that this might have 
been the result of low effective sample size and high linkage 
disequilibrium, both pointing to a high probability of strong 
covariances between QTL. How to mitigate the effects of 
variation in the covariance component among prediction 
sets in genome-based selection has not been solved, but it 
is certainly an interesting subject of future research which 
mating designs will maximize the success of genome based 
selection, especially if rapid cycling selection without model 
retraining is employed.

Variation of V
A
 and the usefulness criterion

If the focus in a breeding program lies on short-term selec-
tion gain, breeders often generate large biparental families 
derived from crosses of a few “best” parents. In such a sce-
nario it might be rewarding to apply the usefulness criterion 
(Schnell and Utz 1975), i.e. to ensure that the selected parents 
produce progenies with high mean performance and high VA . 
In the context of genome based breeding, molecular data can 
be used to predict not only the mean genetic value of a cross, 
but also VA among its progenies. Genetic values of progenies 
of a cross are either simulated based on parental genotypes and 
information on map distances (e.g. Mohammadi et al. (2015)) 
or by using analytical solutions for specific types of crosses as 
presented by Lehermeier et al. (2017b) for biparental families 
and extended by Allier et al. (2019a) for more complex crosses. 
The resulting genetic values will allow prediction of the mean 
genetic value of the respective cross and its variance. Both, the 
in silico and the analytical approach assume absence of GPD 
between QTL on different chromosomes. This assumption is 
justified for very large biparental populations ( N > 250), but 
our results show that QTL covariances between chromosomes 
pertain up to N = 250 and contribute substantially to the vari-
ance of b for smaller biparental populations (24% for N = 50 and 
L = 1000 with Elite as the ancestral population, Fig. 4). Thus, 
in addition to imperfect information on the genetic distances 
between markers in a specific cross, covariances between QTL 
on different chromosomes are likely to reduce the effective-
ness of the usefulness criterion in comparison to selection on 
the predicted progeny mean. In lines derived from disjoint 
four-way crosses as assumed in Allier et al. (2019a), varia-
tion in covariances between QTL on different chromosomes 
are expected to be even more pronounced than in biparental 
crosses (Fig. 5). In a multi-trait context this effect is also exac-
erbated. In a given cross, the QTL for trait 1 might generate a 
different covariance pattern as the QTL for trait 2 affecting the 
respective estimates of VA and corresponding trait covariances. 
Additional recombination can mitigate the effect, but only if 
the number of progenies derived from each cross is sufficiently 
large (Fig. 5). These results are corroborated by findings from 
outcrossing species. While Iwata et al. (2013) found very good 
agreement of predicted and observed VA in a large biparental 
cross of Japanese pear (N = 1000), Wolfe et al. (2021) found 
only low prediction accuracies for VA in Cassava, most likely 
due to small family sizes.

Sign of the covariance component

The variance of VA for a given trait and population sample 
depends on the vector � reflecting the size, sign, and phase of 
QTL effects and on the realization of the matrix � reflecting 
the allele content at QTL and the magnitude of GPD between 
QTL pairs. We validated our theoretical solutions with respect to 
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var
[
VA|�

]
 and its components by simulating 10,000 samples of 

the vector of QTL effects � conditional on one realization of � . 
Theoretical and simulated results for the expectation and vari-
ance of var

[
VA|�

]
 were highly congruent. Moreover, simulation 

results show nicely that the distribution of QTL covariances is 
not symmetric (Suppl. Figs. S1, S2), because the covariance 
component C has a lower bound relative to the genic variance 
Vg , so that b ≥ –1, but b can exceed 1 substantially if many QTL 
pairs have a positive covariance (see Appendix C). For P = 4 and 
mating design DC this was especially obvious for QTL pairs 
on different chromosomes with some samples of QTL effects 
resulting in large positive values of Cb. Even if the QTL effects 
are sampled from a symmetric distribution about the origin, 
then for a given realization of � the difference between positive 
and negative QTL pair covariances still has a probability > 0.5 
to be negative ( P[Y < 0; L, 0.5] > 0.5 , for details see Appen-
dix B) and the distribution of Y will display positive skewness 
(γ1 = 4.54, Suppl. Fig. S7A), which carries over to the distribu-
tions of C|� , Cw|� , and Cb|� (Suppl. Fig. S2A) pointing to 
a high risk of severely inflated estimates of VA for some QTL 
samples, i.e. traits.

In both ancestral populations, Elite and Landrace, the 
GPD values dij of matrix � were symmetrically distributed 
around zero (Suppl. Fig. S8). This was expected as allele 
coding was based on the B73 reference sequence, i.e. more 
or less at random. As both ancestral populations had similar 
allele frequencies and linkage disequilibrium, the distribu-
tions of GPD values resembled each other for Elite and Lan-
drace and showed that GPD is pervasive in managed popu-
lations and needs to be accounted for. However, as pointed 
out by Lara et al. (2022) nonzero GPD values in matrix � do 
not necessarily lead to a change in VA as they are trait agnos-
tic and positive and negative QTL covariances can cancel 
each other when summed across the genome. It is always 
the combination of the GPD in the population sample and 
the trait specific allele substitution effects that need to be 
considered. Our study showed, that even if QTL effects are 
sampled from a normal distribution, large differences can be 
observed in the variation of QTL covariances among mat-
ing designs. If for some traits QTL are clustered in certain 
genomic regions and QTL alleles exhibit strong repulsion 
or coupling linkage, differences between mating designs 
are likely to become even more pronounced (Appendix C). 
The same is true if assortative or disassortative crosses are 
made in contrast to sampling the parents at random from the 
ancestral populations as done in this study. To investigate 
these effects warrants further research but would be beyond 
the scope of this study. We hypothesize that our conclu-
sions with respect to the effect of the mating design and the 
number of parents on the variation of VA hold across a broad 
range of scenarios as variation of VA arises mainly from dif-
ferences in population structure among scenarios.

Appendices

Appendix A

For every random vector � ∼ (�,�) and symmetric matrix � , 
the following result holds true (Mathai and Provost 1992): 

Inserting � = 0 and � = � yields Eq. 7.
If � has a Gaussian multivariate normal distribution, these 

authors showed that for two symmetric matrices �1 and �2, 
we have

 from which we obtain Eqs. 8, 9, 10 and also that the covari-
ances of Vg|�,Cw|�, and Cb|� are zero.

If the random vector � were sampled from distributions 
other than the multivariate normal such as the Gamma distri-
bution, one can still derive approximations for the moments 
of quadratic forms (Mohsenipour and Provost 2013), but 
more detailed derivations for this case are beyond the scope 
of this study.

For the derivation that

 we use (i) E
[
Vg|�

]
> 0 , which implies E[

(
Vg|�

)2
] > 0 , 

and E
[
Cw|�

]
= 0 , E

[
Cb|�

]
= 0   (see Eq.  6), (ii) pair-

wise covariances of Vg|�,Cw|�,Cb|� are zero, and (iii) 
cov(Vg

||�,Cw
||� × Cb|�) ≈ 0 (supported by simulations), 

we get

We can approximate the expectation and variance of b|� ,  
bw|� and bb|�  based on the expectation and variance of  
Vg|�,Cw|�, and Cb|�  using formulas given by Mood et al. 
(1974) and obtain

(A1)E
[
�T��

]
= trace(��) + �

T��

(A2)
cov

[
�T�1�, �

T�2�
]
= 2trace

(
�1��2�

)
+ 4�T�1��2�

(A3)cov
(
bw

||�, bb||�
)
≈ 0

cov
(
bw

||�, bb||�
)
= E

[
Cw|�
Vg|� ×

Cb|�
Vg|�

]
− E

[
Cw|�
Vg|�

]
E

[
Cb|�
Vg|�

]

≈ E

[
Cw

||� × Cb
||�(

Vg|�
)2

]
− E

[
Cw|�

]
E

[
1

Vg|�
]
E
[
Cb|�

]
E

[
1

Vg|�
]

≈ E
[
Cw|�

]
E
[
Cb|�

]
E

[
1(

Vg|�
)2

]
− E

[
Cw|�

]
E
[
Cb|�

]{
E

[
1

Vg|�
]}2

= 0 × 0 × E[1∕(Vg|�)2] − 0 × 0 ×
{
E[1∕(Vg|�)

}2
= 0. q.e.d.

(A4)

E
[
bw|�

]
≈ E

[
Cw|�

]
E

[
1

Vg

|�
]
= 0,

E
[
bb|�

]
≈ E

[
Cb|�

]
E

[
1

Vg

|�
]
= 0,E[b|�] ≈ 0
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and

Appendix B

Let P
[
ai ≥ 0

]
= β denote the probability that the allelic effect 

ai of the reference allele at QTL i  is positive and 
K ∈ {0, 1,… , L} the number of QTL with positive sign of the 
allele effect  ai in vector � . Then, the number of locus pairs, 
with allele effects of different signs, is given by K(L − K), and 
the number of locus pairs, with allele effects of the same sign, 

is given by 
(
L

2

)
− K(L − K) . Thus, Y =

(
L

2

)
− 2K(L − K) 

with  Y ∈

{
Round

[
−

L

2

]
, ..,

(
L

2

)}
(where Round

[
−

L

2

]
 is 

the integer nearest to −L

2
 rounded toward zero) is the differ-

ence in the number of QTL pairs, where the product of allele 
effects is positive minus the number of QTL pairs, where it is 
negative. For different realizations of the vector � ,  K and Y  
can be regarded as random variables with the probability 
distributions

P
[
K = k|L, β] =

(
L

k

)
βk(1 − β)L−k and

so that P
�
Y = y;L, β

�
=
∑L

k=0
P
�
Y = y�K = k;L, β

�
P
�
K = k;L, β

�

=

⎧⎪⎪⎨⎪⎪⎩

∑
k∈K(y)

⎛⎜⎜⎝
L

k

⎞⎟⎟⎠
�k(1 − �)L−k where K(y) =

�
k�k = L

2
±

√
L+2y

2
∧ k ∈ {0, ..., L}

�

or 0 if K(y) = �

⎫⎪⎪⎬⎪⎪⎭
If β = 0.5, as holds true for  � ∼ N(0, �) , we have 

P[Y < 0; L = 1000, 0.5] = 0.67, which exceeds 0.5 by far 
(Suppl. Fig. S7B). If for a given population (realization 
of the matrix � ) the distribution of the GPD values dij is 
symmetric with respect to zero as applies approximately for 
both ancestral populations (Suppl. Fig. S8), then the prop-
erties of the probability distribution for Y  carry over to the 

(A5)

var
[
bw|�

]
= var

[
Cw|�
Vg|�

]
≈

var
[
Cw|�

]
(
E
[
Vg|�

])2 =
2trace

(
�2

)

(trace(�))2

(A6)

var
[
bb|�

]
= var

[
Cb|�
Vg|�

]
≈

var
[
Cb|�

]
(
E
[
Vg|�

])2 =
2trace

(
�2

)

(trace(�))2

(A7)

var[b|�] ≈ var
[
b
w
|�] + var

[
b
b
|�]

≈
2trace

(
�2

)
+ 2trace

(
�2

)

(trace(�))2

P
�
Y = y�K = k;L, �

�
=

⎧⎪⎨⎪⎩

1 if y =

�
L

2

�
− 2k(L − k)

0 elsewhere

⎫⎪⎬⎪⎭

distributions for Cw|�  and Cb|� . Thus, the probability for 
the sum of QTL covariances being negative is greater than 
0.5 and the distributions of Cw|� , Cb|� ,  and especially C|� 
exhibit positive skewness (Suppl. Fig. S2A).

Appendix C

Since VA = Vg + Cw + Cb ≥ 0 , we get Cw

Vg

+
Cb

Vg

≥
−Vg

Vg

 , from 

which we obtain b ≥ −1.
Let VA(c) , Vg(c) , Cw(c) denote the additive genetic vari-

ance, genic variance and the “within covariance” term for 
chromosome c . Then, from VA(c) = Vg(c) + Cw(c) ≥ 0 , we 
get Cw(c) ≥ −Vg(c).

Thus, we have Cw =
∑

cCw(c) ≥
∑

c − Vg(c) = −Vg so 
that bw ≥ −1.

We show by the following example that  bb can be smaller 
than −1 if bw is larger than 1.

Consider a population of DH lines with two chromo-
somes each having  Lc loci, where only two haplotypes 
[AAAAA… + bbbbb…] and [aaaaa… + BBBBB…] occur 
with equal frequency and the additive effects ai = a for all 
QTL. Then the dij values for locus pairs  (i, j) on the same 
chromosome have a value of 1 (because they are in coupling 
phase) and QTL pairs  (i, j) on different chromosomes have a 
value of −1 (because they are in repulsion phase).

Thus, we have Vg = 2Lca
2 ,  Cw = 2Lc

(
Lc − 1

)
a2 , 

Cb = −2Lc
2a2.

As a check, we get V
A
= 2L

c
a2 + 2L

c

(
L
c
− 1

)
a2

−2L
c

2

a2 = 0 , in agreement with the fact that the genotypic 
values of all DH lines are equal to zero. Consequently, we 
have

b = bw + bb = Lc − 1 − Lc = −1, which demonstrates that bb 
can be much smaller than −1. q.e.d.
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