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Abstract
Ductile damagemodels and cohesive laws incorporate thematerial plasticity entailing the growth of irrecoverable deformations
even after complete failure. This unrealistic growth remains concealed until the unilateral effects arising from the crack closure
emerge. We address this issue by proposing a new strategy to cope with the entire process of failure, from the very inception
in the form of diffuse damage to the final stage, i.e. the emergence of sharp cracks. To this end, we introduce a new strain field,
termed discontinuity strain, to the conventional additive strain decomposition to account for discontinuities in a continuous
sense so that the standard principle of virtual work applies.We treat this strain field similar to a strong discontinuity, yet without
introducing new kinematic variables and nonlinear boundary conditions. In this paper, we demonstrate the effectiveness of this
new strategy at a simple ductile damage constitutive model. The model uses a scalar damage index to control the degradation
process. The discontinuity strain field is injected into the strain decomposition if this damage index exceeds a certain threshold.
The threshold corresponds to the limit at which the induced imperfections merge and form a discrete crack. With three-point
bending tests under pure mode I and mixed-mode conditions, we demonstrate that this augmentation does not show the early
crack closure artifact which is wrongly predicted by plastic damage formulations at load reversal. We also use the concrete
damaged plasticity model provided in Abaqus commercial finite element program for our comparison. Lastly, a high-intensity
low-cycle fatigue test demonstrates the unilateral effects resulting from the complete closure of the induced crack.

Keywords Implicit discontinuity · Strain decomposition · Unilateral effects

1 Introduction

The last decades have witnessed extensive studies on compu-
tational damage and fracture mechanics. With ever growing
computational resources at our disposal, various advanced
numerical tools representing different aspects of failure prob-
lems have emerged, enabling us to predict complex failure
scenarios. The complexity arises from the variety of stages
involved, comprising the presence of diffuse imperfections,
localization of intense deformations, and the formation of
distinct sharp cracks. There is a spectrum of options to cope
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with the failure process, ranging from purely continuous-
based approaches to purely discontinuous ones [1]. On one
hand, continuous approaches span the damaged area over a
finite width of the medium from the emergence of induced
defects, up to the formation of discontinuity surfaces. There-
fore, they recast discrete cracks into narrow bands of highly
localized deformation with (almost) zero stiffness. Contin-
uum damage models [2–4] and phase-field methods [5–10]
belong to this group. On the other hand, discontinuous
approaches represent the fracture process zone in the form of
displacement jumps, no matter if there truly exists an abrupt
change in the displacement field or not. Some prominent
methods belonging to this group are the embedded disconti-
nuity model [11–13] and the extended finite element method
[14–16].

The origin of continuum damage mechanics can be traced
back to the work of Kachanov [17] in which the concept of
effective quantities is introduced. Based on that, the material
elastoplastic regime is characterized within a fictitious intact
configuration at which the mechanical stress is the measure
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of an average force acting on the undamaged cross-sectional
area of the body. The theory has matured since by extending
the idea to cope with the degradation process under differ-
ent assumptions. Ladevèze [18] introduced themultivariable
damage idea to enable simultaneous degradation due to sev-
eral mechanisms. Tensorial damage variables are introduced
in different ways by Leckie and Onat [19], Chaboche [20],
andChow andWang [21] to consider the non-proportionality
of damage on different planes. The unilateral behavior arising
from the microdefects closure was also given by Ladevèze
and Lemaitre [22] for the isotropic case, and by Desmorat
[23] for the anisotropic one. Phase-field models, on the other
hand, were originally introduced for interfacial problems,
and then tailored for fracture analysis. They were initially
introduced for monotonic loading of brittle materials [24].
Then the idea was extended to account for dynamic frac-
ture [25], ductile fracture [26], and fatigue crack growth
[27]. The concept behind phase-field fracture models is to
compute an auxiliary field identifying the microdefects den-
sity whose governing equation is discretized alongside the
mechanical problem [28]. Hence, the phase-field fracture
theories resemble the gradient-enhanced damage models to
some extent.

Early studies under the topic of discontinuous-based
approaches rely on linear elastic fracture mechanics within
which the plastic zone in front of the crack tip is assumed to
be too small to affect the global response [29]. However, this
assumption does not hold for most cases especially for those
involving crack growth in quasi-brittle and ductile materi-
als. Cohesive zonemodels resolve this issue by incorporating
irreversible phenomena occurring within the fracture process
zone through a set of measure zero [30]. They resemble the
nonlinear response of the fracture process zone by exerting
surface traction on the faces of a fictitious crack that extends
beyond the physical crack tip [31]. Hence, cracks must be
explicitly defined by means of discontinuity surfaces. Two
different strategies can be opted for of which one is to use
conforming meshes and the other is to use enriched basis
functions. Remeshing is necessary in the former since the
crack propagation path is not known in general. This strat-
egy has been employed by Bocca et al. [32] for mixed-mode
crack growth in concrete. They used a crack length con-
trol scheme to avoid global instability in case of snap-back
behavior. Tvergaard and Hutchinson [33] investigate crack
growth in elastic–plastic media by introducing a cohesive
zone model relying on the work per unit area of crack. Crack
growth due to impact damage was investigated by Cama-
cho and Ortiz [34]. They defined cohesive surfaces between
each face of adjacent elements. Hence, their model was able
to capture fragmentation and crack branching. Tijssens et
al. [35] also used the same strategy to enable crack prop-
agation along almost arbitrary directions. They investigated
the sensitivity of the results with respect to the mesh align-

ment and tangential cohesive response.Automatic remeshing
was the strategy that Bittencourt et al. [36] opted for. They
used an interactive crack length control method in conjunc-
tion with the cohesive crack approach to simulate arbitrary
crack growth. In addition to crack growth simulation, cohe-
sive zone modeling had been employed for other purposes
such as delamination analysis by Turon et al. [37], adhesive
joint modeling by Campilho et al. [38], joining zones anal-
ysis by Töller et al. [39], multiscale modeling by Yang et
al. [40], and severe membrane mode deformation analysis
by Töller et al. [41], to name a few

The second strategy, i.e. the use of enriched basis func-
tions, is more favorable for problems involving crack growth.
This allows the introduction of explicit discontinuities in
form of lines or surfaces that do not conformwith the element
boundaries of the underlying spatial discretization without
local remeshing. A prominent variant is the extended finite
element method (XFEM). It treats discontinuities by inject-
ing additional degrees of freedom into the finite element
spaces undergoing fracture. The method was introduced by
Belytschko and Black [42] and Moës et al. [43] in the
late ’90 s and extended to cope with cohesive crack growth
by Moës and Belytschko [31] afterward. Employing the
same concept, Wells and Sluys [44] enriched the cracked
finite elements by adding extra degrees of freedom to rep-
resent the displacement jump occurring in the cracking of
quasi-brittle materials. Stolarska et al. [45] introduced the
level-set approach to the extended finite element method
in order to represent the discontinuity faces and also the
crack tip. Adding extra enrichment functions to the crack
tip elements, Asferg et al. [46] improved the consistency of
partially cracked elements by preserving the stress continu-
ity across the fictitious crack. Unger et al. [47] investigated
different criteria for the crack growth direction in the context
of the extended finite element modeling of cohesive cracks.
They used experimental crack growth trajectories to evaluate
the results. Zhang and Bu [48] reduced the cost of Newton
iterations by presenting new solution procedures that pre-
serve the symmetry of the tangent matrix. Other topics in
the context of cohesive zone modeling using the extended
finite element method include, but not limited to, composite
inelastic modeling by Müller et al. [49], shear band for-
mation by Daneshyar and Mohammadi [50], simulation of
fiber-reinforced composites by Pike and Oskay [51], multi-
scale modeling of heterogeneous materials by Kästner et al.
[52], and biomechanical analysis by Idkaidek et al. [53].

Neither of the aforementioned strategies is self-sufficient
in dealing with the entire fracture process. Continuous
approaches smear localized band of intense deformation over
a finitewidth of themedium,while discontinuous approaches
sample the damaged region on the fictitious crack faces.
Both represent the two extreme ends of the spectrum of
physical effects well and their strengths and deficiencies
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Fig. 1 Generic constitutive laws that incorporate plasticity: a continuum damage models, and b cohesive models

Fig. 2 State of a crack under loaded and relaxed conditions: a realistic loaded state, b realistic relaxed state, c numerical loaded state, and d
numerical relaxed state
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Fig. 3 An abstraction of the additive strain split including the discontinuity strain field

Fig. 4 Geometry, boundary
conditions, and finite element
mesh of the opening-mode test

complement each other to some extent. Therefore, numer-
ous studies have been devoted to leveraging both approaches
by establishing a transition fromdistributed damage to strong
discontinuities. Simone et al. [54] alleviated the unrealistic
damage growth resembled by the class of continuous mod-
els through combining a regularised continuum framework
with a partition of unity finite element method. Introduc-
ing the thick level set approach, Moës et al. [55] allowed
a straightforward transition from damaged zone to com-
plete fracture once the material is totally damaged. Han
et al. [56] proposed a continuous-discontinuous framework
considering large deformation kinematics to recast diffuse
degraded topologies into sharp crack paths. Dynamic crack
propagation induced by gradient-enhanced damage growth
was presented by Sun and Löhnert [57]. They coupled tran-
sient thermal and dynamic mechanical fields, and used the
extended finite elementmethod in three-dimensional settings
for representing discrete cracks. Pandey et al. [58] intro-
duced a hybrid methodology by incorporating the extended
finite element method and continuum damage mechanics
to represent creep-fatigue crack propagation. A continuous-
discontinuous strategy within which a thin layer represents
the discontinuity emerging due to localized failure is pre-
sented by Puccia et al. [59]. This layer behaves similar to the
bulk material so that no additional constitutive model associ-
ated with cohesive-like approaches is required. Regarding

Table 1 Parameters of the
opening-mode test

Parameter Value Unit

E 28 GPa

ν 0.2 –

σy 3.8 MPa

a 80 –

b 70 –

the conservation of energy during the transition, some
continuous-discontinuous approaches inject the discontinu-
ity at the final stage of the fracture process when the material
is almost fully degraded to avoid spurious energy release.
The combined model of Seabra et al. [60] for damage-
driven crack propagation in ductilemetals, the fracture-based
continuous-discontinuous approach of Sarkar et al. [61], and
the enriched continuum model of Negi and Kumar [62] fall
into this category. Others use the concept of energy equiv-
alence to define an intermediate state so that the transition
can be triggered at any stage in a smooth manner. The hybrid
model of Cuvilliez et al. [63], the continuum to discontinuum
transition strategy of Roth et al. [64], and the thermodynam-
ically consistent model of Wang andWaisman [65] are some
examples of this type.

All of the above and numerous other can accurately
address the failure process over moderately complex load-
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Fig. 5 Comparison of the global responses with the experimental data for the opening-mode test: a Abaqus model and dcr = 1.00, b dcr = 0.85,
c dcr = 0.60, and d dcr = 0.45

ing scenarios. Yet they are not necessarily well-equipped
to deal with complex loading paths. The most overlooked
aspect of the fracture process in the strategies mentioned is
the material response during load reversal. Elegant constitu-
tivemodels and cohesive laws incorporate plasticity bywhich
irreversible strains and displacement jumps are coupled with
reversible ones [66]. As a result, all continuous, discontinu-
ous or hybrid models exhibit excessive unrealistic permanent
deformations by construction which are accumulated within
the smear or on the discrete fracture process zone. Figure1
depicts generic constitutive laws of such models. The crack
closure effects lead to stiffness recovery upon transition from
tension to compression. This unilateral behavior is essential
in general loading scenarios, such as cyclic loading [67–70],
fatigue tests [71–74], and seismic modeling [75–77], that
entail complex strain paths. Obeying the responses shown,

fully degraded regions develop excessive permanent defor-
mations that shift the transition point to the right of the curve.
As a result, the unilateral effects may get triggered in a faulty
state and lead to artificial stiffening. This is elaborated fur-
ther in Fig. 2, which shows the normal stress distribution
along the crack axis. According to the figure, the fracture
process zone nucleated in front of the crack tip spans over
the domain that experiences a nonlinear response. As a con-
sequence of balancing the internal forces, part of this zone
experiences compressive stresses upon external load removal
(see Fig. 2b). However, the crack faces spanning from the
notch tip to the crack tips remain traction-free in this relaxed
state. This is not the case for the relaxed numerical model
as the fully degraded section of the crack develops compres-
sive stresses that affect the global response of the numerical
model. This artificial stiffening remains untracedwhen a con-
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Fig. 6 Loaded and relaxed states at the beginning and the end of the second unloading phase for the opening-mode test: a Abaqus model, and b
dcr = 0.45

stantly increasing load is applied and can only be detected
in scenarios that involve unloading. A remedy is to limit the
growth of permanent deformations to an ultimate state cor-
responding to the limit at which discrete crack faces emerge.
This treatment is completely impractical in the continuous
models, yet can be applied in the discontinuous ones by per-
manently detaching the opposing crack faces and removing
the stress continuity condition. In this case, resembling the
unilateral effects still invokes the use of computational con-
tactmechanics, which renders themodel evenmore complex.

By contrast, the paper at hand introduces the discontinuity
in the strain field to mimic discrete crack faces. As a result,
no nonlinear boundary conditions or kinematic variables are
involved, preserving the standard form of the virtual work
principle. To this end, we organize the body of this text as
follows. After this introduction, the additive strain decompo-
sition including the discontinuity strain field is introduced in
Sect. 2, followedby the underlying theory of a ductile damage
model involving the unilateral effects. It is worth mentioning
that a simple damage model is chosen to avoid unnecessary
complications arising from the constitutive modeling. How-
ever, the discontinuity strain field can be incorporated into
other material models regardless of the hypothesis involved.
Section3 is devoted to numerical examples. A three-point
bending specimen under pure openingmode is analyzed first.
Then, a similar test is conducted under mixed-mode condi-
tions. The complete closure of the crack is also resembled by
applying a high-intensity low-cycle load on a double-edge
notched specimen before conclusions drawn in Sect. 4 close
the paper.

2 Theory

Material inelasticity involves both reversible and non-rever-
sible changes of shape in the consequence of applied loads.
The classical models of infinitesimal plasticity characterize
these two by means of an additive split with which the total
strain is decomposed into an elastic and a plastic part. We
augment this additive strain decomposition by introducing
the discontinuity strain field εd so that the total strain tensor
reads

ε = εe + ε p + εd , (1)

where εe and ε p are the conventional elastic and plastic parts,
respectively. Here, the strain field εd represents the induced
crack due to the excessive damage growth, but in general,
it can mimic any kind of discontinuity. In contrast to the
plastic strain ε p, the discontinuity strain field is reversible,
allowing it to resemble the opening and closing of the hypo-
thetical crack. Figure3 shows an abstraction of this additive
decomposition. By activating the discontinuity strain field at
a certain damage threshold, which corresponds to the limit
of a sharp crack forming due to the complete detachment
of material, further plastic straining is prevented. As a con-
sequence, crack closure can occur at this detachment limit
in the case of load reversal. Here, we incorporate this strain
split in a simple isotropic damage model to keep the consti-
tutive modeling minimal. However, it is worth mentioning
once again that the discontinuity strain field can be used in
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Fig. 7 Stress contours (MPa) at the loaded and relaxed states for the opening-mode test: a loaded state in the Abaqus model, b relaxed state in the
Abaqus model, c loaded state in the dcr = 0.45 case, and d relaxed state in the dcr = 0.45 case

Fig. 8 Geometry, boundary
conditions, and finite element
mesh of the mixed-mode test
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Table 2 Parameters of the
mixed-mode test

Parameter Value Unit

E 34 GPa

ν 0.2 –

σy 4.2 MPa

a 110 –

b 70 –

any material model and also for representing any kind of
discontinuity.

Following the concept of effective quantities originally
introduced by Kachanov [17], whether the infinitesimal vol-
ume element of material is influenced by damage or not,
the following general constitutive law of isotropic material
applies

σ̃ = D̃ : εe, (2)

or, equivalently,

σ̃ = D̃ : (ε − ε p − εd), (3)

where σ̃ is the effective stress and D̃ is the tangent operator
of intact material. Note that we preserve this naming conven-
tion throughout the text so that the tilde accent refers to the
effective configuration.

According to the work of Feenstra and de Borst [78], the
yield locus is given in the effective configuration by means
of the Rankine maximum principal stress criterion through

f (σ̃ ) = σ̃max − σy, (4)

where σy is the yield strength. Hence, the admissibility of
the stress state must be preserved by enforcing it to remain
inside or on this locus. To this end, the evolution of the plastic
strain is given by the associated flow rule

ε̇ p = γ̇ ∂σ̃ f , (5)

wherein γ̇ is a Lagrange multiplier. The pair f and γ̇ is
subjected to the Kuhn–Tucker optimality conditions

f ≤ 0, γ̇ ≥ 0, γ̇ f = 0, (6)

which enforce the stress state admissibility determining
whether yielding occurs or not. Now by defining

σ = (1 − d)σ̃ , (7)

the stress tensor in the effective configuration can be mapped
to its macroscopically observed counterpart, the Cauchy
stress tensor σ . In the above mapping, the damage index d

represents the density of imperfections reducing the load-
bearing area of the infinitesimal volume element of the
material. However, in order to establish the unilateral con-
ditions, the above relation must be modified such that the
damage index d only applies if the stress state is in tension.
To this end, the stress split

σ̃ = σ̃ t + σ̃ c (8)

is defined wherein the subscripts t and c denote the tensile
and compressive parts, respectively [79]. The tensile part can
be given by [80]

σ̃ t =
3∑

i=1

〈σ̃i 〉ei ⊗ ei , (9)

wherein

〈x〉 =
{
x, x > 0
0, x ≤ 0

(10)

is the Macaulay bracket, and σ̃i and ei are the i th principal
value and principal direction, respectively. Employing the
additive split (8), the compressive part reads

σ̃ c = σ̃ −
3∑

i=1

〈σ̃i 〉ei ⊗ ei . (11)

With the tensile and compressive parts at hand, the stress
mapping including the unilateral effects is given by

σ = (1 − d)σ̃ t + σ̃ c. (12)

As a result, due to the micro-cracks closure upon transition
from tension to compression, the initial stiffness of the mate-
rial is recovered.

The damage evolution is closely linked to the growth of
plastic strain [81]. However, depending on thematerial being
studied, its growth may start as the plastic strain is mobilized
or when the yielding process reaches a certain stage. Inspired
by thework ofGrassl and Jirásek [82], we use the exponential
law

d = 1 − exp(−aε̄ p), (13)

where a is considered as a material constant identifying the
magnitude of damage growth, and

ε̄ p =
∫

t
γ̇ dt (14)

is the accumulated equivalent plastic strain. It is worth men-
tioning that, for a model aiming at realistic constitutive
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Fig. 9 Comparison of the global responses with the experimental data for the mixed-mode test: a Abaqus model and dcr = 1.00, b dcr = 0.85, c
dcr = 0.60, and d dcr = 0.45

modeling, amore complicated relation can be opted for. Now,
at the onset of cracking we have

dcr = 1 − exp(−aε̄
p
cr ), (15)

where dcr is the critical damage denoting the threshold at
which the induced imperfections merge and form a sharp
crack. Utilizing the above expression, we can define the crit-
ical accumulated equivalent plastic strain at the inception of
cracking as

ε̄
p
cr = −1

a
ln (1 − dcr ). (16)

Thus, the discontinuity strain field mobilizes if the accu-
mulated equivalent plastic strain reaches the above limit.

Referring to (14), for two arbitrary successive (pseudo-)time
steps t and t + dt we have

ε̄
p
t+dt = ε̄

p
t + γ̇ . (17)

However, the accumulated equivalent plastic strain cannot
exceed the limit ε̄

p
cr . Hence, if the standard return map-

ping causes an overshoot, there exists an intermediate state
between these two successive steps, identified by t + αdt , at
which

ε̄
p
t+αdt = ε̄

p
cr , (18)

and the maximum principal stress hits the yield locus at the
same time. Defining λ that denotes the evolution of ε̄ p from
the time step t to the time step t + αdt , we arrive at
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Fig. 10 Loaded and relaxed states at the beginning and the end of the second unloading phase for the mixed-mode test: a Abaqus model, and b
dcr = 0.45

ε̄
p
t+αdt = ε̄

p
t + λ. (19)

By plugging themagnitude of ε̄ p
t+αdt from (18) into the above

expression, λ is obtained as

λ = ε̄
p
cr − ε̄

p
t . (20)

As a result, the growth of the equivalent plastic strain is
known beforehand and the evolution of the plastic strain from
t to t + αdt can be given explicitly by

ε̇ p = λ∂σ̃ f . (21)

Hence, instead of solving the standard nonlinear return map-
ping, we must find α such that

f (σ̃ t+αdt ) = 0, (22)

wherein

σ̃ t+αdt = σ̃ t + D̃ : (αε̇ − λ∂σ̃ f ). (23)

From the intermediate state t + αdt onward, further strains
are accumulated on the discontinuity strain field. As a result,
the discontinuity strain εd emerges at t + αdt and receives
the remaining part of the total strain rate during t + αdt to
t + dt so that

εdt+dt = (1 − α)ε̇. (24)

In addition, to comply with the Rankine maximum principal
stress criterion, the discontinuity plane is set to the plane of
maximum tensile stress at the intermediate state t+αdt . The
normal vector to this plane, denoted by n, will be used in the

subsequent stages of the analysis to check whether the crack
is open or not. Crack closure is detected if

nᵀεdn < 0, (25)

meaning that the opposing crack faces penetrate each other.
Once again,wemust find an intermediate step, denoted by t+
βdt , at which the opposing crack faces meet. By writing the
incremental evolution of the discontinuity strain field from t
to t + βdt , we arrive at

εdt+βdt = εdt + βε̇. (26)

Solving

nᵀεdt n + βnᵀε̇n = 0 (27)

for β, the exact time of crack closure is obtained. After crack
closure, the discontinuity strain field vanishes and the stan-
dard elastoplasticity applies until the inception of another
crack opening regime. It should be noted that, by employing
this formulation, the maximum damage that can be reached
is limited to its critical value since no plastic straining occurs
afterward. As a result, the degradation process freezes once
the damage index reaches its upper limit, which is only
acceptable if dcr is chosen extremely close to unity. Oth-
erwise the material preserves its load-bearing capacity and
never degrades completely. To allow further damage growth,
the exponential function (13) is redefined as

d = 1 − exp(−aε̄ p) exp(−bε̄c), (28)
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Fig. 11 Stress contours (MPa) at the loaded and relaxed states for the mixed-mode test: a loaded state in the Abaqus model, b relaxed state in the
Abaqus model, c loaded state in the dcr = 0.45 case, and d relaxed state in the dcr = 0.45 case

whereb is a dimensionless constant used to adjust the damage
growth after cracking, and

ε̄d = max
τ≤t

(nᵀεdn), (29)

is the maximum strain jump that is experienced during the
loading history. Needless to say that a proper strategy is to
establish a relation between the damage growth function (28)
and the fracture energy of material so that the constants a and
b get linked to a physical property. In addition, it can provide
the objectivity of global responses with respect to numerical
discretization. However, since this paper is not aimed at the
constitutive modeling of material, we will pursue this target
in a separate paper in the future.

3 Numerical results

This section is devoted to showing the contribution of the dis-
continuity strain field in the global responses of specimens
undergoing the failure process. To this end, three labora-
tory tests are chosen, including a pure mode I three-point
bending test, a mixed-mode test, and a double-edge notched
specimen subjected to cyclic loading. The standard finite ele-
ment method is used to discretize the domain of problems.
Note that the solutions are not unique since the softening
response during the failure process induces a local mate-
rial instability that leads to the ill-posedness of the boundary
value problem. This can be cured by injecting a measure
of length, known as the material length scale, representing
the width of the fracture process zone through non-local or
gradient-enhanced formulations or by using the concept of
fracture energy equivalence [83]. In the paper at hand, this
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Fig. 12 Geometry, boundary
conditions, and finite element
mesh of the full-cycle test

Table 3 Parameters of the
full-cycle test

Parameter Value Unit

E 25 GPa

ν 0.2 –

σy 3.2 MPa

a 150 –

b 140 –

ill-posedness is left untreated to focus only on the introduced
discontinuity strain field and keep the message of the paper
as clear as possible. As a result, due to the unregularized
nature of the field equations, the damage constants a and b
are calibrated in accordance with the finite element meshes.
This mesh-dependency vanishes once a material length scale
is introduced.

We analyze each test using different assumptions of the
critical damage dcr to show its effects on the unloading
branches. To consider the cases in which the conventional
strain decomposition is used, the critical damage dcr is set
to unity. As a result, since d is defined by means of an expo-
nential function that never reaches this ultimate value (see
the damage growth function in (28)), the discontinuity strain
field is simply neglected in the simulations. In addition, to
further illustrate the shortcoming of the conventional formu-
lations, the concrete damaged plasticity model of Abaqus
finite element program is also used to simulate the tests. This
model is capable of reproducing the unilateral effects, which
is the key ingredient for revealing the artificial stiffening upon
load reversal. Note that one-dimensional stress–strain and
damage-strain curves are required to define the post-linear
behavior in the Abaqus model. These curves are provided
for each example using the calibrated values of E , σy , and a
in conjunctionwith the one-dimensional Hooke’s law and the
exponential damage growth function in (13). Other parame-
ters of the model are set to their default values.

3.1 Opening-mode test

This numerical example is a replication of the laboratory test
of Perdikaris and Romeo [84]. A series of concrete beams

with similar dimensions, yet notched at different offsets were
tested. We use the mid-span notched beam for testing the
model under a pure mode I loading. Figure4 shows the finite
element model of the beam on the test setup. The dimensions
s, h, and e are 304.8, 76.2, and 25.4mms, respectively. In
addition, the notch depth is one-third of the height of the
beam. The test is simulated under plane stress conditions
with a thickness of 28.6mms. The material properties of the
beamare reported inTable 1. Four cases ofdcr are considered,
including 1.00, 0.85, 0.60, and 0.45. The former, dcr = 1.0,
denotes the condition in which the discontinuity strain field
is disregarded. Decreasing the value of dcr , the contribution
of the discontinuity strain field becomes more pronounced.
The test is also modeled by means of the concrete damaged
plasticity model of Abaqus.

The global responses of the numerical models are plot-
ted against the experimental data in Fig. 5. The horizontal
axis, i.e. the crackmouthdisplacement (CMD), represents the
absolute relative displacement of the crack mouth. Figure5a
clearly shows that the conventional additive strain decom-
position, which is the case in the model with dcr = 1.0
and the constitutive mode of Abaqus, causes the unload-
ing branches of the curves to have a slope similar to the
initial elastic branch. On the other hand, by decreasing the
value of dcr , which is accompanied by earlier activation of
the discontinuity strain field, the unloading slopes gradually
become less steep. The cause of this behavior is elaborated
further by comparing the stress distributions before and after
the load removal. To this end, consider the loaded and the
corresponding relaxed states of the Abaqus model and the
dcr = 0.45 case depicted in Fig. 6. The stress contours of
these cases are shown in Fig. 7. Note that the absolute values
of the principal stresses are used so that both tensile and com-
pressive distributions are shown. Figure7a depicts the stress
distributions at the beginning of the unloading phase for the
Abaqus model and Fig. 7c for the case of including the dis-
continuity strain field with the critical damage dcr = 0.45.
The domain occupied by the fully formed crack is almost
stress-free in both cases and the crack front experiences ten-
sile stress with a peak value identical to the yield strength.
However, in the relaxed state of the Abaqus model (Fig. 7b),
the notch tip experiences a considerable amount of compres-
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Fig. 13 Comparison of the global responses with the experimental data for the full-cycle test: a Abaqus model and dcr = 1.00, b dcr = 0.60, c
dcr = 0.40, and d dcr = 0.20

sive stress. Hence, a transition from compression to tension
exists by moving along the crack axis from the notch tip to
the crack front. However, the material must be completely
detached and remain stress-free along some part of this axis.
This faulty behavior is caused due to the unrealistic growth of
plastic strain within the fully degraded regions. This exces-
sive plastic strain causes an early activation of the unilateral
effects upon a slight reduction of the total strain, leading to
an unrealistically early transition from tension to compres-
sion. On the other hand, according to Fig. 7d, by including
the discontinuity strain field, some part of the fully damaged
region remains stress-free after unloading, and the core of the
compressive region is shifted from the notch tip to themiddle
of the crack. The damaged region located between the ten-
sile and compressive cores can be interpreted as the active
fracture process zone, and these two cores indicate the head
and tail of this zone. Referring to the schematic stress dis-

tributions shown previously in Fig. 2, we can deduce that by
considering the discontinuity strain filed, the fully detached
section of the crack is reproduced within the model, which is
not the casewhen the discontinuity strainfield is not included.

3.2 Mixed-mode test

The second example is also selected from the work of
Perdikaris and Romeo. The test setup is similar to the previ-
ous one, with the exception that the notch is offset by 75.6
mms from themid-span (see Fig. 8). The properties presented
in Table 2 are used for the numerical model. Similar to the
previous test, in addition to the Abaqus model, four cases of
dcr = 1.00, dcr = 0.85, dcr = 0.60, and dcr = 0.45 are
considered.

The applied force versus the crack mouth displacement
curves, plotted on the experimental data in Fig. 9, conspicu-
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ously demonstrate the contribution of the discontinuity strain
field. Referring to the stagesmarked in Fig. 10 for theAbaqus
model and the dcr = 0.45 case, a deduction similar to that
of the previous test regarding the stress contours shown in
Fig. 11 can be drawn. Upon the external load removal, the
fully degraded part of the crack develops compressive stress
in the Abaqus model, while this part remains stress-free in
the dcr = 0.45 case.

3.3 Full-cycle test

The final example is dedicated to showing the crack closing
and reopening behavior occurring in full-cycle tests. For this
purpose, the high-intensity low-cycle fatigue test of Rein-
hardt [85], conducted on double-edge notched specimens, is
chosen. The test setup and finite element mesh of its numeri-
cal model are depicted in Fig. 12. As shown in the figure, the
length and width of the beam are 250 and 60mms, respec-
tively. The thickness of the beam is also 50mms, included in
the numericalmodel bymeans of the plane stress assumption.

The test is simulated by imposing prescribed opposing
displacements on the left and right edges of the specimen.
The recorded reaction forces are divided by the cross-section
area of the specimen to represent the average stress. The
average relative displacement of two vertical lines that are
offset by 17.5mms from the mid-section of the specimen is
also recorded to generate the stress–deflection curves.

The contribution of the discontinuity strain field is
assessed using four different values of dcd , including 1.00,
0.60, 0.40, and 0.20. The concrete damaged plasticity model
of Abaqus is also utilized to simulate the test. The material
properties employed in the numerical model are presented in
Table 3.

The stress versus deflection responses of the numerical
models are plotted on the experimental data in Fig. 13. No
sign of stiffness degradation can be observed in the unload-
ing branches of the Abaqus model and the dcd = 1.00 case.
On the other hand, by decreasing the value of dcr , the contri-
bution of the discontinuity strain field, which reveals itself in
the activation of the unilateral effects under less permanent
deflection, becomes more pronounced.

4 Conclusion

This paper introduces a new term to the conventional addi-
tive strain decomposition to prevent the excessive unrealistic
growth of irrecoverable deformations to reproduce the entire
failure process of solids.

The issue of excessive growth of irrecoverable deforma-
tions is rarely addressed (see for example [86, 87]) since it
only manifests itself if the unilateral effects resulting from
to the closing and reopening of fully formed cracks are of

interest. However, this is the case in the area of low cycle
fracture/fatigue as caused by earthquakes in civil engineering
structures, for example. We demonstrated the problem aris-
ing from the mentioned excessive strains which are inherent
to other plastic damagemodels and showed how these strains
cause a faulty stress redistribution upon load reversal.

We called the newly introduced term discontinuity strain
field since it mimics a discontinuity, yet it is defined at
the infinitesimal element level. We demonstrated that intro-
duction of the discontinuity strain field to the conventional
additive strain decomposition of the plasticity theory avoids
the built up of excessive strains by means of three numerical
examples: a pure mode I cracking, a mixed-mode cracking,
and a high-intensity low-cycle fatigue test. It is worth men-
tioning that, although we used the discontinuity strain field
to resemble the unilateral effects arising from the collision
of the opposing crack faces, it can be used to represent any
kind of discontinuity.
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