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Abstract
Assembly complexity and manufacturing costs of engineering structures can be sig-
nificantly reduced by using periodic mechanical components, which are defined by
combining multiple identical unit cells into a global topology. Additionally, the supe-
rior energy-absorbing properties of lattice-based periodic structures can potentially
enhance the overall performance in crash-related applications. Recent research devel-
opments in periodic topology optimization (PTO) have shown its efficacy for tackling
new design problems and finding advanced novel structures. However, most of these
methods rely on gradient information in the optimization process, which poses difficul-
ties for crash problemswhere analytical sensitivities are usually not directly applicable.
In this paper, we present an effective periodic evolutionary level set method (P-EA-
LSM) for the optimization of periodic structures. P-EA-LSM uses a low-dimensional
level-set representation based on moving morphable components to parametrize a sin-
gle unit cell, which is replicated in the design domain according to a predefined pattern.
The unit cell is optimized using an evolutionary algorithm and the structural responses
are calculated for the entire system.We initially assess the performance of P-EA-LSM
using three 2D minimum compliance test cases with varying periodicities. Our results
demonstrate that our approach produces solutions comparable to other state-of-the-art
methods for PTO while keeping a low dimensionality of the optimization problem.
Subsequently, we effectively evaluate the capabilities of P-EA-LSM in a crashwor-
thiness scenario. This particular application highlights the significant potential of the
method, which does not rely on analytical sensitivities.
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1 Introduction

Topology optimization (TO) (Sigmund 2000; Bendsøe and Sigmund 2004; Sigmund
and Maute 2013) aims at optimizing material distribution within a prescribed design
space for a given set of objective functions and constraints. Several optimization
criteria, such as structural compliance, natural frequencies, and heat conduction, are
commonly used in industrial and engineering applications, where lightweight, low-
cost, and high-performance structures are demanded.

The theory behind TO dates back to the classical work of Michell (1904). The first
computer-basedTOmethodwas introduced by the pioneeringwork of homogenization
method (Bendsøe and Kikuchi 1988; Hassani and Hinton 1998). Since then, sev-
eral well-known TO approaches have been developed. The (SIMP) method (Bendsøe
1989; Bendsøe and Sigmund 1999; Sigmund 2001) assigns varying material densi-
ties to design elements and optimizes their distribution to achieve optimal structural
performance while respecting material volume constraints. The evolutionary struc-
tural optimization (ESO) method (Xie and Steven 1993) is a computational design
approach that draws inspiration from the principles of natural evolution to optimize
structures for better performance and efficiency. The naive version of ESO involves
gradually removing inefficient material with low stresses from the ground structure in
a heuristic manner. However, the main problem of ESO is that prematurely removed
elements are not able to be recovered due to the one-way element removal mecha-
nism. As such, an improved version of ESO, often called bi-directional evolutionary
structural optimization (BESO) (Querin et al. 1998; Yang et al. 1999; Querin et al.
2000; Huang and Xie 2007a), was later developed. The BESO method can remove
elements from a structure iteratively while simultaneously adding efficient material
back to the structure. The level set method (LSM) (van Dijk et al. 2013) has also
emerged as a notable strategy. It employs a level-set function over a fixed computa-
tional domain to represent material and void regions. By manipulating this function,
the method achieves topological changes seamlessly, providing a robust framework
for exploring complex design spaces. The MMCs method (Guo et al. 2014; Zhang
et al. 2015, 2017; Liu et al. 2018) is a versatile technique that allows concurrent
optimization of material distribution and structural topology. It introduces deformable
components or morphable elements with adjustable shapes, sizes, and orientations.
During optimization, these components dynamically evolve, leading to intricate and
innovative designs that surpass conventional methods. The smooth-edged material
distribution for optimizing topology (SEMDOT) (Fu et al. 2020) uniquely combines
an exploration of design space using perturbations and orthogonalization techniques
with TO. Its ability to generate designs with smooth edges makes it particularly suit-
able for applications in architecture, industrial design, and other fields where both
structural integrity and aesthetics are crucial. In addition, the non-penalization ver-
sion of SEMDOT (Fu et al. 2023), characterized by the elimination of penalties on
intermediate material densities, can yield improved results with stronger convergence,
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compared to its penalized counterpart. This further emphasizes SEMDOT’s utility in
various engineering applications. Another impactful method is the floating projection
topology optimization (FPTO) technique (Hu et al. 2020; Huang 2020, 2021). FPTO
leverages advanced computational techniques to revolutionize material distribution
within a given design space. The key innovation of FPTO lies in its floating projec-
tion strategy. Unlike traditional TO methods that rely on grid-based discretization,
FPTO employs a continuous material distribution approach, allowing for smoother
transitions between different materials. The majority of these techniques rely on finite
element analysis (FEA) and progressively determine optimal topologies through iter-
ative processes involving design variables denoting the presence of material within
individual elements. However, this approach can incur significant costs that escalate
exponentially with the complexity of the numerical models.

To reduce this complexity, structures with spatially repeated patterns are widely
used in modern automotive and aircraft industries. Typical structures of such a type
are often referred to as periodic structures, composed of a series of basic cells (units,
modules). With the duplication of numerous identical unit cells, periodic structures
provide significant advantages such as the ease of assembly, and, consequently, lead
to lower manufacturing costs of mass production. By using periodic systems, one is
able to optimize problems of larger scales that cannot be easily optimized as a whole,
allowing for higher granularity and reducing computational costs. Furthermore, the
favorable structural properties of energy absorption in periodic lattices (Deshpande
et al. 2001; Tang et al. 2015; Mukhopadhyay and Adhikari 2016) can help to improve
crashworthiness performance during impact events of moving vehicles.

Periodic cellular structures have garnered significant attention for crashworthiness
applications due to their potential for achieving a combination of low volume and
lightweight characteristics, coupled with attributes such as low peak acceleration,
minimal displacement, and high energy absorption. Most of the used TO methods
for periodic structures mentioned above utilize elemental sensitivity information to
perform gradient-based search, and usually suffer frommesh-dependency issues (Sig-
mund and Petersson 1998). For some problems like crash TO, such approaches cannot
be used directly since the analytical sensitivities are not available, and it is often
also not possible to estimate them numerically due to the noisiness of the objective
functions or constraints (Duddeck 2007).

Numerous studies suggest solutions that are based on empirical design, and the
utilization of systematic design methods remains limited. To our knowledge, only a
few exceptions are available in the literature. In the work by Najmon et al. (2018),
the SIMP approach is employed to create compliant mechanism lattice (CML) based
liners. Thus, the CML-based liners are designed for synthesizing rubber cellular unit
cells within a comprehensive model that is subjected to ballistic simulation. Another
study is proposed by Jia et al. (2021). They optimize the design of periodic cellular
structure for crashworthiness based on the hybrid cellular automata (HCA) framework
(Penninger et al. 2010;Mozumder et al. 2012), a biologically inspired algorithm, based
on the evolution of a cellular automaton. However, it is fundamentally based on the
heuristic assumption of energy homogenization, which limits its generalization.

In this paper, we present the periodic evolutionary level set method (PEA- LSM),
a non-gradient macroscopic periodic topology optimization (PTO) method that does
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not depend on the underlying finite element (FE) mesh. Thanks to the geometric
representation scheme used by the proposed PTO approach, and the fact that only a
single unit cell is subject to optimization, it is possible to keep the number of design
variables at a very low level, which breaks the critical limitation of using evolutionary
algorithms (EAs). The utilization of EAs enables optimization of any quantifiable
objective functions, which makes the approach very general and applicable to a wide
range of problems in structural TO (Bujny et al. 2018, 2021; Bujny 2020).

The remainder of this paper is organized as follows: Sect. 3 describes the solu-
tion strategies of the proposed PTO approach. Section4 is devoted to the numerical
setup and the analysis of results to assess the proposed method, using three 2D static
examples from the literature. Section5 evaluates the applicability of the proposed
approach in the context of a 2D crash test case, demonstrating its effectiveness in
handling gradient-free scenarios and showcasing its extended potential for addressing
such complex problems. Section6 summarizes the main findings of this paper and
suggests topics for future research.

2 Related work

Traditional TO aims at finding an optimal material distribution within a design domain
with minimal constraints, usually limited to a volume constraint. In contrast, PTO
enforces a condition where the structure is composed entirely of repetitive unit cells,
significantly limiting the design representation.

In general, there are two main streams in the research field of PTO related to the
scale of the structures to be optimized: (1) Microstructures of material with infinite
periodicals (Sigmund 1994a, b, 1995; Hassani and Hinton 1998) and (2) Macrostruc-
tures with finite periodicals (Huang and Xie 2007b; Zuo 2009; Chen et al. 2010; Xia
et al. 2016; Thomas et al. 2020, 2021).

In the first case, periodic material design approaches are based on the assumption of
periodic boundary conditions, since the micro-scale periodic structures are built on a
base cell, which is an infinitesimal unit of the material, usually referred to as a periodic
base cell (PBC). This makes it possible to analyze a single PBC of the material instead
of the entire structure by FEA. In the context of micro-scale material optimization,
PBCs have no specific physical size, and therefore, the optimized solution depends
heavily on the scale effect of the unit cell (Xie et al. 2011). This becomes problematic
when the optimized designs are to be manufactured.

In the second case, finite periodic optimization often utilizes the concept of an
imaginary representative unit cell (RUC) (Huang andXie 2007b; Zuo 2009), due to the
fact that periodic structures comprising a finite number of identical components do not
necessarily exhibit repeating boundary conditions across unit cells. In this scenario,
the sizes of periodic components are often comparable to the characteristic length
of the entire structural system. Consequently, the assumption of periodic boundary
conditions over the material base cells is no longer valid since the stress and strain
distributions are arbitrary (non-periodic) at the macro-structural level, even though the
structural layout is periodic (Chen et al. 2017). Therefore, no scaling problems occur
when transferring the optimization results to the production of the final product.
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Although still in its infancy, finite periodic optimization at the macro-scale shows
its applicability to a wide variety of structural systems such as architecture, bridges,
aircraft, vehicles, etc. (Zuo 2009; Xia et al. 2016). Many works dealing with
macrostructures with finite periodicals have emerged over the past years in the lit-
erature. To cite a few: Huang and Xie (2007b) proposed a method for the maximal
stiffness (minimum compliance) of macroscopic periodic structures under a volume
constraint using the BESO technique. The sensitivities are averaged at corresponding
locations of each component and assigned to theRUC to satisfy the periodic constraint.
Element removal/additionmechanism is executed based on the sensitivity ranking, and
an iterative TO process is realized on the RUC. Ultimately, the optimized design of
the whole periodic structure is constructed by duplicating the optimized RUC. Zuo
(2009) enhanced the BESO approach by replacing void elements with soft material
and developed the concept of sensitivity density for periodic structures that cannot
be divided into equally-sized elements (e.g., cyclic periodic structures), to cope with
the mesh-dependency problem caused by the non-uniform mesh. Chen et al. (2010)
proposed a unified procedure for 3D multi-objective TO of finite periodic structures
by considering a multi-physical problem of minimizing the mechanical and thermal
compliance. Since constraints such as assembly conditions and the connection con-
figuration of periodic sub-components are of particular importance in the real-world
applications of PTO, Thomas et al. (2020) proposed to couple periodic optimization
with common interfacing connections between periodic components, such as screws,
welds, etc. This is frequently referred to as periodic multi-component optimization
that deals with real assembly issues faced in real-world engineering designs. Thomas
et al. (2021) presented a new methodology for the design of finite periodic structures
by allowing variable orientation states for individual unit cells. Applying periodic
optimization to these differently arranged repetitive cells may produce more efficient
macro-structural designs than the conventional non-oriented (or translational) periodic
counterparts, whilemaintaining the same degree of periodic constraints. This approach
greatly expands the design space and takes more advantage of structural periodicity.

3 Periodic evolutionary level set method (P-EA-LSM)

In this section, we discuss the proposed methodology by addressing the geometry
representation scheme (Sect. 3.1), periodic constraint handling (Sect. 3.2), problem
formulation (Sect. 3.3), and optimization strategy (Sect. 3.4) of P-EA-LSM.

3.1 Geometry representation

The parametrization of the design used by the P-EA-LSM is based on an implicit
level-set description (van Dijk et al. 2013). The main idea of the LSM is to define the
material distribution of a structure by means of a global level set function (LSF) Φ as
follows:
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Fig. 1 Illustration of the core
concept in the LSM (Bujny et al.
2018)

⎧
⎪⎨

⎪⎩

Φ(v) > 0, if v ∈ Ω,

Φ(v) = 0, if v ∈ ∂Ω,

Φ(v) < 0, if v ∈ D \ Ω,

(1)

where v = [x, y]T denotes the vector of Cartesian coordinates in a 2D design domain
D ∈ R

2,Ω ⊆ D is a subset ofD, representing the area occupied by thematerial phase,
D \ Ω refers to the part of the design domain occupied by void, and, consequently,
∂Ω is the interface between the material and void. It should be noted that the regions
occupied by material and void correspond to positive and negative values of the LSF,
respectively, and clear boundaries between material and void phases are precisely
defined by the 0nth iso-contour of the LSF, as shown in Fig. 1.

The global LSF is then composed of local LSFs, each representing an elementary
beam component that can deform and move in the design domain. The local LSF φ is
defined as:

⎧
⎪⎨

⎪⎩

φi (v) > 0, if v ∈ Ωi ,

φi (v) = 0, if v ∈ ∂Ω i ,

φi (v) < 0, if v∈ D\Ω i ,

(2)

where Ωi is the region occupied by the i th elementary component. As such, the total
region of the design domain occupied by the material is given by:

Ω =
Ne⋃

i=1

Ωi , (3)

where Ne is the number of elementary components.
In particular, theLSFof each component canbedescribedby special basis functions,

which are often referred to as MMCs (Guo et al. 2014). In the MMC-based approach,
several morphable structural components are adopted as basic building blocks of the
topological design. Therefore, assuming that the design domainD comprises Ne struc-
tural components made of solid material, it yields:

Φ(v) = max
(
φ1(v), . . . , φi (v), . . . , φNe (v)

)
, (4)

with φi ($v) denoting the local basis function of the i th component. For a design
domain D ∈ R

2 as in the present work, it takes the following form:
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Fig. 2 Parametrization of a single MMC (left) and the corresponding local LSF where negative values
φ < 0 are set to zero (right) (Bujny et al. 2016)

φi (v) = −
[(

cos θi · (x − x0i ) + sin θi · (y − y0i )

li/2

)q

+
(− sin θi · (x − x0i ) + cos θi · (y − y0i )

ti/2

)q

− 1

]

,

(5)

where q is a modeling exponent (equal to 6 in this paper), (x0i , y0i ), θi , li , and ti
denote the center coordinates, the inclined angle measured counterclockwise from
the horizontal axis, and the length as well as thickness of the i th MMC, respectively.
Figure2 depicts the resulting parametrization of a single MMC and the corresponding
local LSF according to Eq. (5). By modifying these five parameters, the optimizer can
explicitly control the geometric features.

Once the geometric features of the structure are characterized by a set of LSFs,
this description can be mapped to a fixed FE mesh with the use of a density-based
geometry mapping, to compute the performance metrics via FEA. The geometry-
mapping mechanism is employed to update the analysis model upon design changes.
Hence, the relation between the global LSF Φ and the element density ρe is defined
as:

ρe = ρ(v) = H (Φ(v)) , (6)

where H(x) denotes the Heaviside function:

H(x) =
{
0, if x < 0

1, if x ≥ 0.
(7)

Therefore, P-EA-LSM restricts the element densities ρ(v) to two discrete values-
either zero or one- which means that the design optimized by the P-EA-LSM is
black-and-white (Fig. 3) and free from ambiguous, intermediate density as commonly
encountered in the density-based TO methods (Bendsøe 1989; Bendsøe and Sigmund
1999; Sigmund 2001). This property is of very high importance for the manufactura-
bility of the obtained topologies, and, is beneficial in case of some problems, e.g., crash
simulations, where the plastic incompressibility of the intermediate-density material
can lead to nonphysical behavior of the structures (Bujny 2020).
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Fig. 3 Black-and-white design
containing a single MMC
obtained with the P-EA-LSM

Fig. 4 An example layout of the optimized structural components (left) and the corresponding global LSF
where negative values Φ < 0 are set to zero (right) for the cantilever beam benchmark test case (Bujny
et al. 2016)

The element density ρe = ρ(v) is in turn used to scale the stiffness tensor E:

E(v) = ρ(v) · E0, (8)

where E0 is the reference stiffness tensor and ρ(v) = 0 or 1 is the element density
at the point v ∈ D. It is worth noting that, in this paper, the so-called ersatz (weak)
material model (Zhang et al. 2015) is used for FEA to prevent the stiffness matrix from
becoming singular, and thus, improve numerical stability. More precisely, the empty
regions are assigned a very small density value, which is not zero.

Within the above geometry representation scheme using MMCs, the layout of a
structure can be parametrized exclusively by a vector of design variables:

x =
(
(x1)T, . . . , (xi )T, . . . , (xNe)

T
)T

, (9)

where

xi = (x0i , y0i , θi , li , ti )
T . (10)

The vector of design variables x is a collection of parameters defining Ne basis func-
tions. Figure4 shows an example layout of the optimized structural components for
the cantilever beam benchmark test case.

3.2 Periodicity constraint

For the design of periodic structures, the macroscopic distribution of the material must
be periodic, even if the stress or strain distribution does not necessarily exhibit periodic
characteristics. An effective way to realize periodicity is to limit the design domain to
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1

2

3

4

5

6

Representative Unit Cell (RUC)

Fig. 5 An exemplary 2D design domain with a periodicity constraint and 6 (= 3 × 2) unit cells

a RUC. To achieve this, we can define the topology of periodic structures by the RUC
that is to be replicated, such that the optimizer only has to modify the parameters of
MMCs in the RUC.

In this paper, the design domain is divided into NUC = m1 × m2 unit cells where
m1 and m2 denote the numbers of unit cells along the x- and y-direction, respectively.
For example, NUC = 3 × 2 means that the design domain contains three unit cells
in the x-direction and two unit cells in the y-direction, as shown in Fig. 5. The total
number of unit cells NUC is usually prescribed by the engineer’s design specifications.
Please note that the special case of NUC = 1× 1 corresponds to the conventional TO
problem.

3.3 Optimization problem

P-EA-LSM is built on the standard evolutionary level set method (EA-LSM), devel-
oped by Bujny (2020). The standard EA-LSM assumes the following form of
optimization problems:

find x,

minimizing fobj(x),

subject to r(t) = 0 and

gi (x) ≤ 0 i = 1, . . . , nineq,

(11)

where x is the vector of design variables, fobj(x) is the objective function to be min-
imized, the residual r(t) = 0 expresses the mechanical equilibrium condition (static
in case of compliance/stiffness optimization and dynamic at time t in case of crash-
worthiness optimization), and gi (x) are the inequality constraints.

Since EAs are inherently unconstrained optimization methods, it is important to
incorporate the constraints (frequently seen in the compliance/stiffness or crash appli-
cations) into the objective function. A common constraint-handling technique uses
exterior penalty functions (Coello 2002; Rao 2019), i.e., it adds a penalized term to
the objective function whenever any of the constraints is violated. The general formu-
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lation of the exterior penalty function can be written as follows:

J (x) = fobj(x) +
nineq∑

i=1

pi · max (0, gi (x)), (12)

where J (x) is the expanded objective functionwith additional penalized terms (usually
called the cost function), pi are weighting factors which often take very large constant
values, in order to immediately reject infeasible designs upon design changes by
heavily penalizing them. It is worth mentioning that any number of constraints can be
easily handled with the penalty method. Therefore, arbitrary quantifiable optimization
criteria can be taken into account for the standard EA-LSM and its extensions, which
is valuable for complex cases as encountered in crash or multiphysics TO.

In Sect. 4, the periodic design task is concerned with the minimization of the struc-
tural complianceC subject to a volume constraint. Therefore, the optimization problem
of a periodic structure using the P-EA-LSM can be formulated as follows:

find x =
(
(x1,1)T, (x1,2)T, . . . , (x1,Ne )

T
)T

,

minimizing C = C(x),

subject to g1(x) ≤ 0 and

x1, j = x2, j = · · · = xNUC, j j = 1, . . . , Ne,

(13)

where NUC is the number of unit cells in the periodic structure, Ne is the number of
MMCs in each unit cell, i and j are the unit cell index and the MMC index in a given
unit cell, respectively, and xi, j = (

x0i, j , y0i, j , θi, j , li, j , ti, j
)T describes the design

vector of the j th MMC in the i th unit cell (x0i, j and y0i, j are defined with respect to
the local coordinate system within unit cells).

Furthermore, the additional periodic constraint is explicitly expressed as x1, j =
x2, j = · · · = xNUC, j to enforce structural periodicity in the topology. Because of the
periodicity requirement, the corresponding MMCs in different unit cells should be
treated equally. In other words, if the geometry of anMMC in one unit cell is changed,
the MMCs at the same position of all the other unit cells are altered simultaneously.

Moreover, g1(x) ≤ 0 is a volume inequality constraint, defined as:

g1(x) = NUC · Vi − V f · V0 ≤ 0 (i = 1, . . . , NUC), (14)

where Vi is the total volume of material in the i th unit cell, V f is the required volume
fraction, and V0 is the material volume of the entire design domain. The associated
cost function J (x) in Eq. (12) reads:

J (x) = C(x) + P · g1(x), (15)

where P is the penalty factor for the volume inequality constraint.
It is worth pointing out that, in Eq. (13), the 1nth unit cell is always selected as the

RUC, and the design variables modify the topology of the RUC only. This reduces
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Fig. 6 Conceptual diagram of horizontal and vertical symmetry conditions within the RUC

significantly the number of design variables in the optimization process. In addition,
we can further reduce the number of design variables by imposing a horizontal or
vertical symmetry condition within the RUC, thanks to the explicit geometrical infor-
mation provided by the MMC-based framework in the P-EA-LSM. More specifically,
as illustrated in Fig. 6, we can implement the symmetry conditions by defining the
parameters of MMCs in one-half of the RUC, of which the other half is the reflection
over the line of symmetry.

3.4 Optimization strategy

Figure 7 gives an overview of the P-EA-LSM in the form of a flowchart. The opti-
mization procedure we present for PTO consists of the following steps. Firstly, as the
preliminary phase, the design domain is defined with respect to the RUC, whereas the
loads and boundary conditions are defined with respect to the macroscopic periodic
topology. Then, P-EA-LSM starts with an initialization of the population of μ par-
ent individuals. Each of the parent individuals is characterized by a vector of design
variables encoding the layout of level set basis functions. The strategy parameter used
in ESs is also initialized in this step. Once the initial parent design is constructed,
the algorithm enters the main optimization loop in which the iterative updating of
structural topology is accomplished. In this work, we assume a fixed budget of FE
evaluations. Thus, the optimization is performed until a maximum budget termination
criterion is met. Next, the recombination operator combines the design vectors of μ

parent individuals to produce new λ offspring individuals. They are then modified
by the mutation operator, which introduces random variations in the design vector to
find better solutions in the neighborhood of given individuals. The mutation process
depends on a single self-adapted step size (Schwefel 1987), meaning the algorithm
controls the evolution of the strategy parameter itself during the optimization (or learn-
ing) process. To improve the quality of the obtained structures due to some unfavorable
artifacts that occur during the optimization process, special repair operators are used
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Fig. 7 Flowchart of the numerical implementation using the P-EA-LSM. Note that the repair operators are
used to deal with four different types of situations- for the sake of completeness, we refer the readers to the
original work (Bujny 2020) for comprehensive descriptions

to handle different situations. Subsequently, the evaluation step involves the follow-
ing stages: First, the density field of the RUC is mapped to a FE mesh via Eq. (6)
and replicated to generate a large-scale FE mesh of the periodic structure depend-
ing on the periodicity specified by the engineer. Second, the evaluation function, i.e.,
FEA, rates the obtained solutions in terms of their fitness values, which reflect the
quality of individual candidates. The fitness value is computed based on the violated
constraints and the results from FE simulations (Eq.12). One should note that the
structural responses are evaluated for the entire periodic system containing multiple
unit cells, since external boundary and loading conditions could substantially affect
each component to different extents. Lastly, the selection operator picks a set of new
candidates that compete based on their fitness for the next generation.

4 Validation of P-EA-LSM

In this section, we present an extensive validation of the P-EA-LSM on 2D linear
elastic problems over various periodicities. In the two first test cases considered in this
section, representing typical benchmark scenarios used in the literature, we present a
rigorous qualitative and quantitative comparison of the structures obtained using P-
EA-LSM with periodic versions of the state-of-the-art density-based methods, SIMP
and BESO. In addition, we demonstrate the capabilities of the proposed approach in a
set of challenging scenarios aiming for optimization of 2D sandwich structures, which
is an important practical application. Here, we include a qualitative comparison of the
obtained structures with the ones from the literature, which are optimized using BESO
technique.

Essentially, P-EA-LSM is a stochastic method due to the randomization used in
the recombination and mutation operators. This implies that each optimization with
the P-EA-LSM might bring slightly different solutions, and thus, a variety of final
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Fig. 8 Diagonal layout of
MMCs used for the initial
design, where the beams are
evenly distributed throughout
the 2D design domain

Fig. 9 Design domain
dimensions and boundary
conditions for the clamped
cantilever beam test case

compliance values for a given particular load case exists. Therefore, we performed
multiple optimization runs for each test case to draw statistically sound conclusions
about the performance of the optimized designs.

Previous experiments by Bujny (2020) have shown that diagonal layouts are pre-
ferred over other initial layouts of MMCs such as orthogonal or filled. Therefore,
diagonal initial layouts are used in this paper (please see Fig. 8 for reference).

Throughout all the experiments in this section, the minimal step size used in the
repair operator to avoid premature convergence of the optimization algorithm, and the
step size used to distribute the initial population around the reference design, are taken
as 0.005 and 0.03, respectively. In addition, the artificial Young’s modulus assigned
to the weak (ersatz) material for better numerical stability is set to 1 × 10−9„ and the
penalty factor for the volume constraint is chosen as 1 × 1020.

4.1 Clamped cantilever beam

4.1.1 Setup

Our first test case is the standard cantilever beam, with an external point load F
applied at the middle point of the right edge. As shown in Fig. 9, the design domain
dimensions are 120 mm by 40 mm. Within this design domain, the RUC is replicated
to form periodic structures. The structural complianceC of the 1-by-1, 2-by-1, 3-by-1,
and 4-by-1 periodic structures is minimized under a 60% volume constraint. The main
numerical and optimization settings are provided in Table 1. One can note that within
each of the unit cells, a horizontal symmetry condition is imposed, and a total number
of 72 (= 6×6×2)MMCs per unit cell after mirroring with 180 (= 6×6×5) design
variables is used for the initial design (Fig. 10).

123



1610 H.-M. Huang et al.

Table 1 Configuration and
parameter settings for the
clamped cantilever beam test
case

Property Symbol Value Unit

Young’s modulus E 2.1 × 105 MPa

Poisson’s ratio ν 0.3 –

External point load F 100 N

Required volume fraction V f 60% –

Parent population size μ 10 –

Offspring population size λ 70 –

Mesh resolution – 120 × 40 –

1-by-1

3-by-1

2-by-1

4-by-1

Fig. 10 Initial parent design of diagonalMMC layouts for the clamped cantilever beam test case, containing
a total number of 72 basis functions within each unit cell (green box). (Color figure online)

4.1.2 Results

Table 2 presents the best designs chosen from 30 optimization runs for each periodic
cantilever beam test case. MMC layouts and LSF plots are also provided along with
the black-and-white material distribution for a better understanding of the underlying
geometric features.

To validate our results, we used periodic versions of the state-of-the-art SIMP and
BESO methods, whose MATLAB implementations were provided as supplementary
material to the work of Thomas et al. (2021). The codes (Thomas 2021) were modified
to account for rectangular shapes of the RUCs used in our paper. We used filtering
radius of 1.5mm and 2.0mm in SIMP and BESO, respectively, and applied a threshold
of 0.5 density to convert the resulting density fields to material or void and calculate
the final compliance values. In the FE simulation model, in both cases we used the
same parameters as indicated in Table 1.

Table 3 presents the best structures obtained using each of the methods and indi-
cates relative change of compliance w.r.t. designs obtained with P-EA-LSM. One can
observe that the designs from all the methods are qualitatively similar, showing the
capability of the P-EA-LSM to optimize topologies of periodic structures. Surpris-
ingly, in most cases, the method is able to find designs having lower compliance than
the density-based approaches. However, the relative compliance difference in case of
SIMP is neglegible, and stays below 1%. Furthermore, additional investigations of
topological attainability of the P-EA-LSM are realized in Table 4, by showing the cor-
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Table 2 Material distribution, layout of MMCs, and the global LSF corresponding to the best designs
obtained in 30 optimization runs, for periodicities of 1-by-1, 2-by-1, 3-by-1, and 4-by-1, in the clamped
cantilever beam test case

Optimized periodic designs

Periodicity
(m1, m2)

tolpFSLtuoyalCMMnoitubirtsidlairetaM

(1, 1)

(2, 1)

(3, 1)

(4, 1)

The RUC is marked with a red box

responding best, median (15nth), and worst designs among the 30 optimization runs
for each of the periodic cantilever beam test cases.

Moreover, Fig. 11 shows the improvement in the compliance value over the first 500
iterations, corresponding to the best designs for the respective periodicity. It can be also
noticed that, as shown in Fig. 12, the mean compliance value of periodic structures (2-
by-1, 3-by-1, and 4-by-1) generally increases compared to the one of “non-periodic”
structures, which implies that the conventional 1-by-1 structural design provides the
best performance under the same loading and boundary conditions. This is an expected
outcome, since imposing more constraints on a design usually results in decreased
structural performance, but may contribute to better modularity or manufacturability.
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Table 3 Comparison of optimized periodic designs obtained with the P-EA-LSM and periodic versions of
SIMP and BESOmethods based on the codes published by Thomas et al. (2021), for the clamped cantilever
beam test case

Optimized periodic designs

Periodicity
(m1, m2)

OSEBPMISMSL-AE-P

δC 0.0% −0.9% −1.4%

(1, 1)

δC 0. 1+%0 . 9+%0 .1%

(2, 1)

δC 0. 0+%0 . 4+%3 .1%

(3, 1)

δC 0. 0+%0 . 5+%3 .5%

(4, 1)

For each periodicity, we show the optimized designs along with the relative compliance difference w.r.t.

the best P-EA-LSM design δC = C−CP-EA-LSM
CP-EA-LSM

· 100%

Table 4 The best, median (15nth), and worst designs out of 30 clamped cantilever beam optimizations
obtained for periodicities of 1-by-1, 2-by-1, 3-by-1, and 4-by-1

Periodic designs of clamped cantilever beams

Periodicity
(m1, m2)

tsroWnaideMtseB

(1, 1)

(2, 1)

(3, 1)

(4, 1)
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Fig. 11 Convergence plot illustrating the reduction of compliance values using a base-10 logarithmic scale
over the first 500 iterations, corresponding to the best designs of periodic cantilever beams out of 30
optimization runs. The compliance values were normalized with the ones of the initial designs

Fig. 12 Distribution of 30 final compliance values in each box plot column for the clamped cantilever beam
test case with periodicities of 1-by-1, 2-by-1, 3-by-1, and 4-by-1

4.2 Simply supported bridge

4.2.1 Setup

Another frequently considered test case is a 2D simply supported bridge structure,
under a central point load F applied at the bottom edge. As depicted in Fig. 13, the
bridge dimensions are 400 × 100 mm, modeled with three different periodicities of 1-
by-1, 2-by-1, and 4-by-1. Each unit cell in the respective periodic designs is composed
of 400 × 100, 200 × 100, and100 × 100 elements.A symmetry conditionwith respect
to the vertical axis in each of the unit cells is also imposed, and a total number of 32
(= 4× 4× 2) MMCs after mirroring with 80 (= 4× 4× 5) design variables, is used
for the initial configuration of each unit cell (Fig. 14). The periodic bridge structure is
optimized byminimizing the structural complianceC subject to the prescribed volume
constraint of 50%. A complete numerical setup is given in Table 5.
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Fig. 13 Design domain
dimensions and boundary
conditions for the periodic
bridge structure, with
periodicities of 1-by-1, 2-by-1,
and 4-by-1

Fig. 14 Initial parent design of diagonal MMC layouts for the simply supported bridge test case, containing
a total number of 32 basis functions (i.e., MMCs) mirrored by the line of vertical symmetry (red dashed
line) within each unit cell (green box). (Color figure online)

4.2.2 Results

Table 6 illustrates the best optimized m1-by-m2 periodic bridge structures chosen
from the 30 P-EA-LSM optimization runs. In Table 7, the results of the P-EA-LSM
are compared with the periodic versions of SIMP and BESO based on the modified
MATLAB codes from the work of Thomas et al. (2021), as described in Sect. 4.1.
Again, in the table we indicate the relative changes of compliance w.r.t. the P-EA-
LSM design. It can be observed that the designs obtained with SIMP and BESO are
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Table 5 Configuration and
parameter settings for the simply
supported bridge test case

Property Symbol Value Unit

Young’s modulus E 2.1 × 105 MPa

Poisson’s ratio ν 0.3 –

External point load F 1000 N

Required volume fraction V f 50% –

Parent population size μ 5 –

Offspring population size λ 35 –

Mesh resolution – 400 × 100 –

Table 6 Material distribution, layout of MMCs, and 2D contour of global LSF corresponding to the best
designs obtained in 30 optimization runs, for periodicities of 1-by-1, 2-by-1, and 4-by-1, in the simply
supported bridge test case

Optimized periodic designs

Periodicity
(m1, m2)

FSLforuotnocD2tuoyalCMMnoitubirtsidlairetaM

(1, 1)

(2, 1)

(4, 1)

The RUC is marked with a red box

more complex than those from the P-EA-LSM, since the former operate on thousands
of design variables defining the densities of FEs, allowing for much higher structural
attainability of density-basedmethods, whereas the latter only deals with amuch lower
number of design variables parameterizing the geometric characteristics of theMMCs.
Nevertheless, all of the structures are qualitatively similar and their compliance values
differ by less than 3%. Unexpectedly, in case of (1,1) and (2,1) periodicities, the
P-EA-LSM structures yield better performance than the designs obtained with SIMP.

Moreover, as pointed out in the work by Bujny (2020), the complexity of the
structures in P-EA-LSMcan be controlled by the number ofMMCs (and the associated
minimal thicknesses), i.e., it is expected that structures of higher complexity can be
constructed as the number of MMCs increases. Alternatively, to control the structural
complexity, one could also try to specify larger values for the parent and offspring
population sizes, resulting in higher probabilities that the P-EA-LSM can come up
a wide diversity of optimized designs. Another approach is to enforce the minimum
number of (effective) components that appear in the structure by using an explicit
structural complexity controlling mechanism (Zhang et al. 2017).

Furthermore, Fig. 15 depicts how the compliance value has converged over the first
500 iterations, for optimization runs corresponding to the best designs in each of the
periodic cases. One can also see from the box plot in Fig. 16 that, in themost trivial case
of a 1-by-1 “periodic” structure, the design achieves an optimized mean compliance
of 111.65. In contrast, the resultant 2-by-1 and 4-by-1 optimized periodic topologies
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Table 7 Comparison of optimized periodic designs obtained with the P-EA-LSM and periodic versions of
SIMP and BESO methods based on the codes published by Thomas et al. (2021), for the simply supported
bridge test case

Optimized periodic designs

Periodicity
(m1, m2)

OSEBPMISMSL-AE-P

δC 0. 0+%0 .2% −1.1%

(1, 1)

δC 0. 1+%0 .8% −0.7%

(2, 1)

δC 0.0% −2.6% −2.0%

(4, 1)

For each periodicity, we show the optimized designs along with the relative compliance difference w.r.t.

the best P-EA-LSM design δC = C−CP-EA-LSM
CP-EA-LSM

· 100%

reach mean compliance of 131.02 and 169.81, meaning an increase of approximately
17% and 52%, respectively. This is due to the fact that enforcing structural periodicity,
i.e., multiple identical substructures in a system, imposes additional constraints that
must be satisfied by the optimization model, and, consequently, leads to growing final
compliance values. More specifically, the periodic constraint requirement limits the
design freedom and flexibility in the optimization procedure.

Based on the above observations, we can conclude that, in general, the value of the
objective function (mean compliance) becomes higher as the total number of unit cells
NUC increases. Therefore, the solution of conventional TO corresponding to the limit
case with NUC = 1× 1 has the lowest mean compliance value and best performance.
However, the advantage of a periodic design is that it reduces significantly the manu-
facturing and construction costs. It is also worth highlighting that, periodic structures
are generally more robust in the presence of loading uncertainties, since the periodic
constraint allows the structural configurations to perform larger topological changes
throughout the evolutionary process (Zheng et al. 2018).

4.3 Sandwich structure

4.3.1 Setup

The third test case is a design of the core of 2D sandwich structures, as described by
Zhang and Sun (2006) and Huang and Xie (2007b). The rectangular design domain
has dimensions L = 32 mm and Ho = 20 mm, with a height Hi = 16 mm of
designable core (Fig. 17). 320 × 200 FEs are used to discretize the design domain. To
avoid singularities in the FE model, a small non-designable passive element of width
W = L/10000 is added artificially along the right edge to transfer the applied load.
The sandwich structure is fixed on the left edge, and uniform traction (force/length)
F is applied on the right edge. We set a maximum volume fraction of 50% over the
inner core area. For different test cases, the number of unit cells is increased steadily
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Fig. 15 Convergence plot illustrating the reduction of compliance values using a base-10 logarithmic scale
over the first 500 iterations, corresponding to the best designs of periodic bridge structures out of 30
optimization runs. The compliance values were normalized with the ones of the initial designs

Fig. 16 Distribution of 30 final compliance values in each box plot column for the simply supported bridge
test case with periodicities of 1-by-1, 2-by-1, and 4-by-1

(2 × 1, 4 × 2, 8 × 4, and 16 × 8)while keeping the structure size unchanged.Note that
each unit cell in the respective periodic designs is composed of 160 × 200, 80 × 100,
40 × 50, and 20 × 25 elements. Throughout the optimization process, symmetry of
the periodic design is assumed with respect to the horizontal axis of symmetry of
the domain, and a total number of 48 (= 4 × 6 × 2) MMCs after mirroring with
120 (= 4 × 6 × 5) design variables, is used per unit cell for the initial parent design
(Fig. 18). Material properties (E and ν) and other input parameters are specified in
Table 8.

4.3.2 Results

Table 9 presents the best results for the 30 runs for each of the respective periodicities,
in conjunction with the literature results from the BESO method (Huang and Xie
2007b). Figures19, 20, 21, and 22 present the evolution of topology, volume fraction,
and objective function (compliance) for the periodic case of 2-by-1, 4-by-2, 8-by-4, and
16-by-8, respectively. It can be seen that the topology, volume fraction, and objective
function are all converged at the end of the optimization process. In addition, we can
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Fig. 17 Design domain
dimensions and boundary
conditions for the optimization
problem of the core design of a
sandwich structure

Hi

L

F

W

Ho

2-by-1 4-by-2

8-by-4 16-by-8

Fig. 18 Initial parent design of diagonal MMC layouts for the core design of sandwich structures test case,
containing a total number of 48 basis functions (i.e., MMCs) mirrored by the line of horizontal symmetry
(red dashed line) within each unit cell (green box). (Color figure online)

Table 8 Configuration and
parameter settings for the core
design of sandwich structures
test case

Property Symbol Value Unit

Young’s modulus E 1000 MPa

Poisson’s ratio ν 0.3 –

Uniform traction F 100 N
mm

Required volume fraction V f 50% –

Parent population size μ 5 –

Offspring population size λ 35 –

Mesh resolution – 320 × 200 –

observe that, as the periodicity increases, the convergence of the topology is reached
with fewer iterations. This can be attributed to a smaller design space for the RUC
with increasing periodicity. Given the fixed number (48) of MMCs used per unit cell
in the initial parent design, it is easier for the optimizer to compute the topologies, and
thus, consume less computation time (in terms of iterations/generations).
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Fig. 19 Evolution histories of topology, volume fraction, and compliance value (in a logarithmic scale) for
the 2-by-1 periodic condition in the core design of sandwich structures test case. The compliance values
were normalized with the ones of the initial designs

Fig. 20 Evolution histories of topology, volume fraction, and compliance value (in a logarithmic scale) for
the 4-by-2 periodic condition in the core design of sandwich structures test case. The compliance values
were normalized with the ones of the initial designs
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Fig. 21 Evolution histories of topology, volume fraction, and compliance value (in a logarithmic scale) for
the 8-by-4 periodic condition in the core design of sandwich structures test case. The compliance values
were normalized with the ones of the initial designs

Fig. 22 Evolution histories of topology, volume fraction, and compliance value (in a logarithmic scale) for
the 16-by-8 periodic condition in the core design of sandwich structures test case. The compliance values
were normalized with the ones of the initial designs
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Table 9 Comparison of optimized periodic designs obtained with the P-EA-LSM and BESO approach
(Huang and Xie 2007b) for the core design of sandwich structures test case, with different periodic con-
straints

Optimized periodic designs

Periodicity
(m1, m2)

OSEBMSL-AE-P

(2, 1)

(4, 2)

(8, 4)

(16, 8)

5 Evaluation on a crash numerical example

After validating the performance of P-EA-LSM on 2D linear elastic test cases with
different periodicities, we proceed to evaluate the method on a 2D crash test case. In
this scenario, sensitivity information is unavailable, rendering conventional gradient-
based optimization algorithms inapplicable. Thus, the effectiveness of EAs, which
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underpin our P-EA-LSM, in handling gradient-free scenarios becomes indispensable.
Please note that the purpose of this section is not to conduct an extensive evaluation of
the P-EA-LSM on crash-related problems. Instead, our primary aim is to demonstrate
its extended applicability to these scenarios, where it can showcase its full potential.

The optimization problem we address is similar to the one presented in Sect. 4, but
with a different objective function. Here, we analyze a transverse bending test case and
minimize the intrusion d of an impactor into the structure. Therefore, the optimization
problem is defined as follows:

find x =
(
(x1,1)T, (x1,2)T, . . . , (x1,Ne )

T
)T

,

minimizing d = d(x),

subject to r(t) = 0,

g1(x) = NUC · Vi − V f · V0 ≤ 0 i = 1, . . . , NUC,

x1, j = x2, j = · · · = xNUC, j j = 1, . . . , Ne,

(16)

where the active constraint is still chosen as the total volume of the structure to be
lower than or equal to the 50% of the design domain volume. The term r(t) = 0
expresses dynamic equilibrium at time t .

5.1 Setup

Our dynamic test is a transverse bending case, as shown in Fig. 23 (left). In this
scenario, a pole impacts a beam that is supported at both ends and it generates an
external dynamic load applied at the midpoint of its upper edge. The dimensions of
the design domain are 800 mm by 200 mm. Within this area, the RUC is replicated
to create periodic layouts. The goal is to minimize the intrusion of the impacting pole
into the periodic structure. Three configurations are considered: 1-by-1, 2-by-1, and
4-by-1 periodic layouts. These configurations aim to achieve intrusion minimization
while adhering to a volume constraint of 50%.

For the crash simulation, we rely on the commercial FEA software LS-DYNA (lsd
2014). As illustrated on the right of Fig. 23, the LSF is mapped on a reference LS-
DYNAmeshcomposedof 64008-node solid elementswith a piecewise linear plasticity
material. The elements are subjected to a translational constraint in z-direction and
rotational constraint about x- and y-axis. The numerical setup is provided in Table 10.

It is important to note that, within each unit cell, a vertical symmetry condition
is enforced to reduce the dimensionality of the problem. Furthermore, for the initial
design, a total of 8 MMCs are positioned in each unit cell according to a cross-shaped
layout (see Fig. 24). As described by Eq. (5), each MMC is defined by 5 parameters,
leading to 20 optimization variables in total.
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Fig. 23 Transverse bending test case: design domain dimensions and boundary conditions (left) and LS-
DYNA FEM mesh (right)

Table 10 Configuration and parameter settings for the transverse bending test case

Property Symbol Value Unit

Young’s modulus E 7.0 × 104 MPa

Poisson’s ratio ν 0.33 –

Pole velocity v 20 m/s

Pole mass m 5.9 kg

Pole diameter D 139.154 mm

Required volume fraction V f 50% –

Mesh resolution – 160 × 40 –

Termination time tend 1.5 ms

Solver – LS-DYNA R7.1.1 –

Element type – 8-node solid element –

Fig. 24 Initial parent design of diagonal MMC layouts for the pole intrusion test case, containing a total
number of 8 (= 2 × 2 × 2) basis functions (i.e., MMCs) mirrored by the line of vertical symmetry (red
dashed line) within each unit cell (green box). (Color figure online)

5.2 Results

Table 11 presents the best designs from 10 optimization runs for each periodic trans-
verse bending test case. The material distributions over the design space, along with
the MMCs layouts and the LS-DYNAmeshes are displayed. It is evident that the opti-
mization runs enforcing either a 1-by-1 (i.e., no periodicity) or a 2-by-1 periodicity
converge towards highly similar layouts. These layouts are in line with optima typi-
cally reported in the literature for non-periodic transverse bending test cases (Bujny
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Table 11 Material distribution, layout of MMCs, and LS-DYNA mesh corresponding to the best designs
obtained in 10 optimization runs, for periodicities of 1-by-1, 2-by-1, and 4-by-1, in the transverse bending
test case

Optimized periodic designs

Periodicity
(m1, m2)

hsemANYD-SLtuoyalCMMnoitubirtsidlairetaM

(1, 1)

(2, 1)

(4, 1)

The RUC is marked with a red box

et al. 2018; Raponi et al. 2019) as well as the structures obtained with commercial
TO software such as LS-TaSC (Bujny 2020; LSTC 2011). Instead, the 4-by-1 period-
icity enforces a too strong constraint that does not allow to reach such a satisfactory
material distribution. This is confirmed by both Figs. 25 and 26. The former illustrates
the convergence plot for each examined periodicity, averaged across 10 different opti-
mization runs. The latter shows box plots providing statistics upon reaching the total
iteration budget. In both figures, the mean intrusion value of the 4-by-1 periodic layout
is significantly higher than that of the non-periodic (1-by-1) and 2-by-1 periodic cases.

In particular, from Fig. 26, it is evident that the highest periodicity leads to much
more spread solutions at the end of the budget, as indicated by the wider 25th-75th
percentile box and whiskers. This might imply that various optimization runs have
converged towards diverse local optima, or that the designated total budget might not
be large enough to fine-tune the optimal solution for this specific periodicity scenario.
Nonetheless, we did identify a shared pattern among the layouts delivering the most
favorable intrusion values among the 10 optimization repetitions. In these cases, the
optimizedRUCsall exhibit layouts reminiscent of a sandwich structure, complemented
by a cross-beam reinforcement situated at the center. While the performance of the
resulting overall componentmay not be entirely satisfactory for the considered loading
and boundary conditions, it is probable that it possesses greater robustness compared
to the optimal arrangements for the 1-by-1 and 2-by-1 periodicity under different and
potentially multiple loading conditions.

Figure 27 depicts the distribution of von Mises stress during the loading phase,
captured at the time step corresponding to the maximum deformation of the structure.
Herewe can stress twomain aspects. Firstly, in contrast to the static scenarios examined
in this study, the performance of the 2-by-1 optimized periodic topology is comparable
and even superior to that of the non-periodic layout. Hence, the enforced structural
periodicity still allows to maintain flexibility and efficiency within the optimization
process. Secondly, the rationale behind the optimal layout achieved in the 4-by-1
periodic scenario becomes evident when analyzing the stress distribution. The most
highly stressed sections constitute a substructure that has already been identified as
a local optimum in earlier research pertaining to the non-periodic case (Bujny et al.
2018; Raponi et al. 2019). However, the imposed periodicity, coupled with the 50%
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Fig. 25 Convergence plot illustrating the reduction of intrusion values in a 300-iterations budget, averaged
over 10 optimization runs
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Fig. 26 Distribution of 10 final intrusion values in each box plot column for the transverse bending test
case with periodicities of 1-by-1, 2-by-1, and 4-by-1

volume constraint, prevents an optimal material distribution. In fact, this leads to the
placement of unstressed material that could otherwise reinforce the layout that is
actually absorbing the energy generated by the external load.
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Fig. 27 Von Mises stress distribution (in MPa) during the crash event, corresponding to the best design for
periodicities of 1-by-1, 2-by-1, and 4-by-1

6 Summary

In this paper, we propose a non-gradient macroscopic optimization method for peri-
odic structures, the P-EA-LSM. Thanks to the utilization of evolutionary optimization
algorithms, P-EA-LSM is able to address a wide range of structural TO problems
involving arbitrary quantifiable objective functions and constraints. This research was
motivated by the fact that periodic structures are widely used in structural designs
due to their ease of fabrication and energy-absorbing properties. In the context of
PTO, only a RUC is optimized and additional periodic constraints are imposed on the
optimization formulation to ensure that the optimized structure comprises an array
of a prescribed number of identical unit cells. This strategy significantly reduces the
number of design variables from thousands to tens, compared to the standard grid
representations as for density-based TO methods.
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Based on the presented numerical results, we are able to draw the following conclu-
sions: First, P-EA-LSM can yield solutions consistent with other well-established TO
techniques (SIMP and BESO) in the existing literature. Second, P-EA-LSM is capable
of optimizing layouts of periodic structures with a very low number of design vari-
ables. Therefore, using EAs in this context is much more efficient, since it allows for
analyzing topologically complex structures based on relatively simple base units. Such
designs cannot be easily obtained by traditional density-based optimization methods
using the same order of design variables. Third, the mean compliance value rises with
the number of unit cells because of the increasing periodicity. The limiting case of
NUC = 1×1, which has no explicit periodic constraint, produces the best final solution
with the smallest mean compliance value as expected, but may sacrifice the manufac-
turability. Indeed, the increase in compliance is the price paid for the extra periodic
constraint on the final topology. Finally, application of P-EA-LSM in complex crash
TO problems is very promising, which we demonstrated in a 2D scenario of rectan-
gular beam under an impact loading. The method was able to successfully reduce the
intrusion of the impactor into the structure for each of the considered periodicities.

For further developments based on this research, one could extend the P-EA-LSM
to consider arbitrarily complex cases of TO like those encountered in multiphysics
problems, where gradient-based optimizers are not suitable, because of the generic
character of the proposed approach. Additionally, to alleviate the problem of high
computational costs when using the P-EA-LSM, a surrogate-based approach (Raponi
et al. 2019) can be explored. The periodic parameterization with RUCs allows the
construction of complex periodic structures while keeping the dimensionality of the
optimization problem low. Therefore, surrogate-based optimization techniques appear
to be very promising in this context as they suffer from a hampered convergence rate
with increasing problem dimensionality, but converge faster at a low dimension, allow-
ing to find competitive designs with a small budget of objective function evaluations,
i.e., FEAs. In particular, Bayesian optimization (Močkus 1975) is very competitive up
to 20 variables and often performs better than other heuristics such as ESs, thanks to
its more exploratory behavior in the early phase of the optimization run.

A future challenge is to address 3D TO problems based on P-EA-LSM. In our
past works, we demonstrated that the non-periodic variant of P-EA-LSM, i.e., EA-
LSM, is suitable for solving both linear elastic and complex, non-linear dynamic crash
TO problems in 3D (Bujny 2020; Bujny et al. 2021). Since P-EA-LSM introduces a
modification of EA-LSM on the representation level while inheriting the optimization
methodology, it should be also capable of addressing 3D problems. By benefiting from
the reduced dimensionality of the periodic parametrization, the computational costs
of P-EA-LSM are considerably reduced while maintaining structural complexity, and
therefore, it could prove itself to be a valuable tool in industrial practice,where periodic
structures gain interest, especially for structures under impact loading (Schaedler et al.
2014; Najmon et al. 2018; Liu et al. 2021; Jia et al. 2021).
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