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Abstract
Geometric singular perturbation theory provides a powerful mathematical framework
for the analysis of ‘stationary’ multiple time-scale systems which possess a critical
manifold, i.e. a smooth manifold of steady states for the limiting fast subsystem,
particularly when combined with a method of desingularisation known as blow-up.
The theory for ‘oscillatory’ multiple time-scale systems which possess a limit cycle
manifold instead of (or in addition to) a critical manifold is less developed, particularly
in the non-normally hyperbolic regime. We use the blow-up method to analyse the
global oscillatory transition near a regular folded limit cycle manifold in a class of
three time-scale ‘semi-oscillatory’ systems with two small parameters. The systems
considered behave like oscillatory systems as the smallest perturbation parameter
tends to zero, and stationary systems as both perturbation parameters tend to zero. The
additional time-scale structure is crucial for the applicability of the blow-up method,
which cannot be applied directly to the two time-scale oscillatory counterpart of the
problem. Our methods allow us to describe the asymptotics and strong contractivity of
all solutionswhich traverse a neighbourhood of the global singularity. Ourmain results
cover a range of different cases with respect to the relative time-scale of the angular
dynamics and the parameter drift. We demonstrate the applicability of our results for
systems with periodic forcing in the slow equation, in particular for a class of Liénard
equations. Finally,we consider a toymodel used to study tipping phenomena in climate
systems with periodic forcing in the fast equation, which violates the conditions of
our main results, in order to demonstrate the applicability of classical (two time-scale)
theory for problems of this kind.
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1 Introduction

Many physical and applied systems featuring multiple time-scale dynamics can be
mathematically modelled by singularly perturbed systems of ordinary differential
equations in the standard form

x ′ = f (x, y, ε),

y′ = εg(x, y, ε),
(1)

where x ∈ R
m , y ∈ R

n , (·)′ = d/dt , 0 < ε � 1 is a small perturbation parameter and
the functions f , g : Rm × R

n × [0, ε0] → R
m × R

n are at least C1-smooth. If the
limiting system obtained from (1) when ε → 0 possesses a critical manifold, i.e. if the
set of equilibria S = {(x, y) : f (x, y, 0) = 0} forms an n-dimensional submanifold
of the phase space Rm × R

n , then system (1) can be analysed using a mathematical
framework known as geometric singular perturbation theory (GSPT) (Fenichel 1979;
Jones 1995; Kuehn 2015;Wechselberger 2020). Typical GSPT analyses consist of two
parts, depending on whether S is normally hyperbolic, i.e. depending on whether the
linearisation with respect to the fast variables Dx f |S when ε = 0 is hyperbolic.

The local dynamics near normally hyperbolic submanifolds of S can be accurately
described using Fenichel–Tikhonov theory (Fenichel 1979; Tikhonov 1952) (see also
Jones 1995; Kuehn 2015; Wechselberger 2020; Wiggins 1994), which ensures that
solutions are well approximated by regular perturbations of singular trajectories con-
structed as concatenations of trajectory segments from the distinct limiting problems
which arise when ε → 0 in system (1) on the fast and slow time-scales t and τ = εt ,
respectively. However, Fenichel–Tikhonov theory breaks down in the non-normally
hyperbolic regime. The dynamics near non-normally hyperbolic points or submani-
folds of S, which generically correspond to bifurcations in the layer problem (1)|ε=0,
can be studied using various techniques. A particularly powerful approach is the so-
called blow-up method, which was pioneered for fast–slow systems in Dumortier and
Roussarie (1996) and later in Krupa and Szmolyan (2001a), Krupa and Szmolyan
(2001b), Krupa and Szmolyan (2001c). In these works and many others (see Jardón-
Kojakhmetov and Kuehn 2021 for a recent survey), the authors showed that the loss
of hyperbolicity at a non-normally hyperbolic point or submanifold Q can often be
‘resolved’ after lifting the problem to a higher-dimensional space inwhich Q is blown-
up to a higher-dimensional manifoldQ. Following a suitable desingularisation, which
amounts to a singular transformation of time, a non-trivial vector field with improved
hyperbolicity properties can be identified on Q. This allows one to study the dynam-
ics in the non-normally hyperbolic regime using classical dynamical systems methods
like regular perturbation and centre manifold theory.We refer to Kosiuk and Szmolyan
(2009), Kosiuk and Szmolyan (2011), Kosiuk and Szmolyan (2016), Kristiansen and
Szmolyan (2021), Krupa and Szmolyan (2001a), Krupa and Szmolyan (2001b), Krupa
and Szmolyan (2001c), Kuehn and Szmolyan (2015), Szmolyan and Wechselberger
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(2001), Szmolyan and Wechselberger (2004) for seminal works in both applied and
theoretical contexts, based on this combination of Fenichel–Tikhonov theory and the
blow-up method.

The mathematical theory and methods described above are local in the sense that
they apply specifically to fast–slow systems possessing an n-dimensional critical man-
ifold S. A corresponding global theory in which the layer problem (1)|ε=0 possesses
a limit cycle manifold in place of (or in addition to) a critical manifold is less devel-
oped. Following Il’yashenko (1997), we shall refer to the former class as stationary
fast–slow systems and the latter class as oscillatory fast–slow systems. A program for
the development of a global GSPT which is general enough to encompass oscillatory
fast–slow systems was initiated by Guckenheimer (1996); however, a number of key
analytical and methodological obstacles to its development remain.

One such obstacle concerns the development of Fenichel–Tikhonov theory for oscil-
latory fast–slow systems. A number of authors have made important contributions in
this direction. Anosova showed that normally hyperbolic limit cycle manifolds in
oscillatory fast–slow systems of form (1) persist as O(ε)-close locally invariant man-
ifolds for the perturbed system (Anosova 1999, 2002), similarly to the persistence of
a normally hyperbolic critical manifold in Fenichel–Tikhonov theory. For oscillatory
fast–slow systems with one slow variable, the persistence and contractivity properties
of the centre-stable/unstable manifolds have been described in detail in Jelbart and
Kuehn (2023) using properties of the Poincaré map and a discrete GSPT framework
developed therein. This study also yielded an asymptotic formula for the slow drift
along the manifold, which agrees with the formula predicted by classical averaging
theory (Pontryagin and Rodygin 1960).

Global theory for oscillatory fast–slow systems in the non-normally hyperbolic
regime is less developed, despite the ubiquity of fast–slow extensions of global bifurca-
tions in applications, for example in biochemical models exhibiting bursting (Bertram
et al. 1995; Ermentrout and Terman 2010; Guckenheimer et al. 2005; Rinzel 1987).
Notable exceptions include the study of a dynamic saddle-node of cycles bifurcation
in a variant of the FitzHugh–Nagumo equations in Kirillov and Nekorkin (2015), and
the rigorous topological classification of so-called torus canards in Vo (2017), which
occur near folded cycle bifurcations in the layer problem in oscillatory fast–slow sys-
tems (Vo 2017). See e.g. Baspinar et al. (2021), Benes et al. (2011), Desroches et al.
(2012), Kramer et al. (2008), Roberts et al. (2015)) for more (predominantly numer-
ical) important work on torus canards. The results in Vo (2017) were obtained using
averaging theory, Floquet theory and (stationary) GSPT. Indirect contributions to the
non-normally hyperbolic theory for oscillatory fast–slow systems have also beenmade
via the study of non-normally hyperbolic singularities in fast–slow maps, since these
can be used to infer dynamical properties of corresponding limit cycle bifurcations
(or fast–slow extensions thereof) in one greater dimension. The slow passage through
a flip/period-doubling bifurcation (and even through an entire period-doubling cas-
cade) was treated in Baesens (1991, 1995), and further results on the slow passage
through discrete transcritical, pitchfork and Neimark–Sacker/torus-type bifurcations
have been derived using non-standard analysis; we refer to the review paper (Fruchard
and Schäfke 2009) and the references therein.
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In general, the development of mathematical methods for handling non-hyperbolic
dynamics in oscillatory fast–slow systems is complicated by the fact that local tech-
niques like the blow-up method rely upon near-equilibrium properties possessed by
stationary but not oscillatory fast–slow systems. The desingularisation step in blow-up
analyses, for example, relies upon a formal division of the blown-up vector field by
zero. This step is crucial for obtaining a desingularised vector field with improved
hyperbolicity properties, but it is only well-defined if the original (blown-up) vector
field is in equilibriumwherever it is formally divided by zero. For oscillatory fast–slow
systems of form (1), a ‘typical’ non-normally hyperbolic cycle has non-equilibrium
dynamics, so it cannot be desingularised and the blow-up method does not apply.

The aim of this work is to show that stationary methods (in particular the blow-up
method) which may not apply for oscillatory fast–slow systems, may be applicable
in the study of oscillatory multiple time-scale systems with at least three distinct
time-scales. Specifically, we consider systems of the form

r ′ = f (r , θ, y, ε1, ε2),

θ ′ = ε1g(r , θ, y, ε1, ε2),

y′ = ε2h(r , θ, y, ε1, ε2),

(2)

where (r , θ, y) ∈ R≥0 × R/Z × R are cylindrical coordinates, 0 < ε1, ε2 � 1 are
singular perturbation parameters, and f , g, h : R≥0×R/Z×R×[0, ε1,0]×[0, ε2,0] →
R are sufficiently smooth for our purposes. Depending upon the relative magnitude of
ε1 and ε2, system (2) has either two or three distinct time-scales. Although we present
results on a range of different cases, we are primarily interested in the case

0 < ε2 � ε1 � 1, (3)

which defines a class of three time-scale semi-oscillatory systems that are in a certain
sense ‘in between’ the classes of stationary and oscillatory fast–slow systems described
above. Heuristically, this is because under suitable assumptions (to be outlined in
detail in Sect. 2), system (2) is an oscillatory fast–slow system with respect to the
limit ε1 > 0, ε2 → 0, and a stationary fast–slow system with respect to the double
singular limit (ε1, ε2) → (0, 0) (Kuehn et al. 2022). It is worthy to note that multiple
time-scale systems with more than two time-scales appear frequently in applications.
The long-term dynamics of a forced van der Pol oscillator with three time-scales was
studied as early as 1947 in Cartwright and Littlewood (1947). A theoretical basis
for normally hyperbolic theory for stationary multiple time-scale systems with three
or more time-scales has appeared more recently in e.g. Cardin et al. (2014), Cardin
and Teixeira (2017), Kruff and Walcher (2019), Lizarraga et al. (2021). Progress has
also been made in the non-normally hyperbolic setting, particularly via the study of
three time-scale applications and ‘prototypical systems’ inspired by applications; we
refer to De Maesschalck et al. (2014), Desroches and Kirk (2018), Jalics et al. (2010),
Kaklamanos and Popović (2022), Kaklamanos et al. (2022), Kaklamanos et al. (2023),
Krupa et al. (2008), Letson et al. (2017), Nan et al. (2015).
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We present a detailed analysis of the ‘jump-type’ transition near a non-normally
hyperbolic cycle of regular fold type using geometric blow-up. More precisely, we
assume that the limiting system (2)ε1>0,ε2=0 undergoes a type of folded cycle bifur-
cation under variation in y which is common in applications with periodic forcing
in the slow equation. This global bifurcation is closely related to (and can in many
ways be seen as an oscillatory analogue to) the regular fold or jump point in stationary
fast–slow systems, which has been studied in R

2 and R
3 in particular using blow-up

techniques in Krupa and Szmolyan (2001a), Szmolyan andWechselberger (2004); see
alsoMishchenko et al. (1975) for a detailed treatment of the planar case using classical
asymptotic methods. After deriving a prototypical system by imposing a number of
defining assumptions on system (2), we show that the blow-up method can be applied,
even though a rigorous reduction to the stationary setting is not possible due to angular
coupling. The formal division by zero which is necessary to obtain a desingularised
vector field with improved hyperbolicity properties is possible if the time-scale asso-
ciated to the rotation is sufficiently slow relative to the fast radial dynamics, i.e. if ε1
is sufficiently small.

The blow-up analysis allows for the detailed characterisation of the transition map
induced by the flow, including the asymptotic and contractivity properties of the tran-
sition undergone by solutions traversing the neighbourhood of the global singularity.
If ε2/ε1 ∼ 1 or ε2/ε1 � 1 (so that (3) is not satisfied), then system (2) is a stationary
fast–slow system. In this case, the local dynamics can (for themost part) be described in
detail using the results established for two time-scale systems in Krupa and Szmolyan
(2001a), Mishchenko et al. (1975), Szmolyan and Wechselberger (2004), after Taylor
expansion about a given jump point. However, these results do not apply directly to
the scaling regimes we consider which satisfy (3), i.e. they do not apply in the semi-
oscillatory case. One important reason for this is that the singularity is ‘global’ in the
angular coordinate θ . Consequently, it does not suffice to blow-up at a single point on
the non-hyperbolic cycle. Rather, it is necessary to blow-up the entire non-hyperbolic
cycle to a ‘torus of spheres’ S1 × S2. A similar approach is adopted in the geometric
analysis of the periodically forced van der Pol equation in Burke et al. (2016); how-
ever, in our case, the leading-order equations derived on the blown-up sphere may
depend upon the angular variable θ , which remains non-local. As a consequence, the
local dynamics cannot be analysed with a straightforward adaptation of the arguments
used to study the dynamics near a regular fold point/curve in Krupa and Szmolyan
(2001a), Szmolyan andWechselberger (2004). Rather, new arguments are needed. We
derive results for two different scaling regimes defined by (ε1, ε2) = (εα, ε3), where
α ∈ {1, 2} and 0 < ε � 1. In each case, the size of the leading-order term in the
asymptotics for the parameter drift in y is shown to agree with the known results for
the stationary regular fold point (Krupa and Szmolyan 2001a; Szmolyan and Wech-
selberger 2004). In contrast to the classical fold, however, the leading-order coefficient
is shown to depend on θ , and we provide an explicit formula for this dependence in the
case α = 2. We also provide asymptotics for the angular coordinate θ as a function of
the initial conditions and small parameters, and an asymptotic estimate for the number
of rotations about the y-axis over the course of the transition. The results obtained are
shown to depend on the relative magnitude of ε1 and ε2 (i.e. on α), with the main qual-

123



17 Page 6 of 68 Journal of Nonlinear Science (2024) 34 :17

itative difference pertaining to the asymptotic estimates for θ and the corresponding
number of rotations.

Finally, we apply our results in order to derive detailed asymptotic information
near folded limit cycle manifolds of periodically forced Liénard equations, and we
consider a simple model proposed in Zhu et al. (2015) as a toy model for the study
of tipping phenomena in climate systems. Our main results do not apply directly to
the latter problem, due to periodic forcing in the fast equation. Rather, we aim to
demonstrate with a partial but illustrative geometric analysis that problems of this
kind can be treated using classical approaches based on established results for two
time-scale systems.

The manuscript is structured as follows. In Sect. 2 we introduce defining assump-
tions and present the prototypical system for which our main results are stated. The
singular dynamics and geometry, which differ in different scalings, are presented in
Sect. 2.1. The main results are presented and described in Sect. 3, and the blow-up
analysis and proof of the main results are presented in Sect. 4. The applications are
treated in Sect. 5. Specifically, in Sect. 5.1 we apply our main results to periodically
forced Liénard equations, and in Sect. 5.2 we consider the toy model for the study of
tipping phenomena from Zhu et al. (2015) which cannot be treated directly with the
results from Sect. 3. We conclude with a summary and outlook in Sect. 6.

2 Assumptions and Setting

We consider Ck-smooth multiple time-scale systems in the general form (2), restated
here for convenience:

r ′ = f (r , θ, y, ε1, ε2),

θ ′ = ε1g(r , θ, y, ε1, ε2),

y′ = ε2h(r , θ, y, ε1, ε2),

(4)

where k ∈ N will be assumed to be ‘sufficiently large’ throughout, (·)′ = d/dt ,
the variables are given in cylindrical coordinates (r , θ, y) ∈ R≥0 × R/Z × R, and
ε1, ε2 are singular perturbation parameters satisfying 0 < ε1, ε2 � 1. Note also that
smoothness implies that f , g, h are 1-periodic in θ . System (4) evolves on either two
or three time-scales, depending on whether the ratio ε1/ε2 is asymptotically large,
constant or small. The setup and defining assumptions presented below are primarily
motivated by the case 0 < ε2 � ε1 � 1, for which system (4) in a certain sense
‘intermediate’ between stationary and oscillatory fast–slow systems. We shall refer to
this as the semi-oscillatory case. Since we also consider other possibilities, however,
we leave the exact relation between ε1 and ε2 unspecified for now. It suffices to
observe that the forward evolution of a generic initial condition is characterised by
radial motion on the fast time-scale t , angular motion on a time-scale τε1 = ε1t , and
vertical ‘parameter drift’ on a time-scale τε2 = ε2t .
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In the following we impose a number of defining conditions in terms of the limiting
oscillatory fast–slow system obtained in the singular limit ε1 > 0, ε2 → 0, i.e. on

r ′ = f (r , θ, y, ε1, 0),

θ ′ = ε1g(r , θ, y, ε1, 0),

y′ = 0.

(5)

We remark that the singular limit ε1 > 0, ε2 → 0 is only ‘natural’ in the semi-
oscillatory case, i.e. if ε1/ε2 � 1 so that the rotation is fast relative to the parameter
drift.

Assumption 1 (Existence of a limit cycle for ε1 > 0, ε2 → 0). There exist a constant
ε1,0 > 0 and a constant v > 0 such that system (5) has a circular limit cycle

Sc
0 = {(v, θ, 0) : θ ∈ R/Z}.

More precisely, we assume that

f (v, θ, 0, ε1, 0) = 0, g(v, θ, 0, ε1, 0) 	= 0, (6)

for all θ ∈ R/Z and ε1 ∈ (0, ε1,0).

Remark 2.1 The assumption that the limit cycle Sc
0 is circular and in particular the

zero condition on f in (6), is natural in applications with small-amplitude external
periodic forcing (amplitudes of O(ε2) or smaller). However, it rules out applications
with ‘large’ periodic forcing in the fast equation for r . One reason for imposing such
a restriction is that problems of the latter kind can often be treated using classical
theory for two time-scale systems. This is demonstrated for a particular application in
Sect. 5.2.

We shall be interested in the dynamics in a neighbourhood of Sc
0. This motivates

the introduction of the signed radius variable

r̃ :=r − v,

in which case Sc
0 = {(r̃ , θ, y) : r̃ = 0, θ ∈ R/Z, y = 0}. We assume without loss of

generality that

g(v, θ, 0, ε1, 0) > 0,

divide the right-hand side of system (4) by g(r̃ + v, θ, y, ε1, ε2), i.e. we apply a time-
dependent transformation satisfying dt̃ = g(r , θ, y, ε1, ε2)dt (which is positive in a
sufficiently small toroidal or tubular neighbourhood V of Sc

0), and rewrite the system
in (r̃ , θ, y)-coordinates in order to obtain

r̃ ′ = F(r̃ , θ, y, ε1, ε2),

θ ′ = ε1,

y′ = ε2H(r̃ , θ, y, ε1, ε2),

(7)
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where by a slight abuse of notation the dash now denotes differentiation with respect
to t̃ , and

F(r̃ ,θ, y, ε1, ε2):= f (r̃ +v,θ, y, ε1, ε2)

g(r̃ +v,θ, y, ε1, ε2)
, H(r̃ , θ, y, ε1, ε2):=h(r̃ +v, θ, y, ε1, ε2)

g(r̃ +v,θ, y, ε1, ε2)
.

Remark 2.2 In the derivation of system (7) and in many of the proofs below we make
use of transformations of time which are formulated in terms of differentials, e.g. dt̃ =
g(r , θ, y, ε1, ε2)dt . Strictly speaking, such an ‘transformation’ only defines t̃ as a
unique function of t up to an additive constant. Since we are interested in the behaviour
of solutions to autonomous ODEs, which are invariant under time translation, this
additive constant can be set to zero without loss of generality.

We are interested in three time-scale systems (7) which feature a regular fast–slow
fold of limit cycles with respect to the partial singular limit ε1 > 0, ε2 → 0. Necessary
and sufficient conditions for this to occur can be given in terms of the Poincaré map
induced on the transversal section � obtained by intersecting the toroidal/tubular
neighbourhood V ⊃ Sc

0 with the half-plane defined by θ = 0 (decreasing the size of
V if necessary).

Proposition 2.3 System (7) with ε1 ∈ (0, ε1,0) fixed and 0 < ε2 � 1 induces a
Poincaré map P : � → � given by

P(r̃ , y, ε1, ε2) =
(

Pr̃ (r̃ , y, ε1, ε2)

Py(r̃ , y, ε1, ε2)

)

=
(

r̃
y

)
+ ε−1

1

( ∫ 1
0 F(r̃(θ), θ, y(θ), ε1, 0) dθ + O(ε2)

ε2
∫ 1
0 H(r̃(θ), θ, y(θ), ε1, 0) dθ + O(ε22)

)
. (8)

Proof Since

dr̃

dθ
= ε−1

1 F(r̃ , θ, y, ε1, ε2),
dy

dθ
= ε−1

1 ε2H(r̃ , θ, y, ε1, ε2),

we have

P(r̃ , y, ε1, ε2) =
(

Pr̃ (r̃ , y, ε1, ε2)

Py(r̃ , y, ε1, ε2)

)

=
(

r̃
y

)
+ ε−1

1

( ∫ 1
0 F(r̃(θ), θ, y(θ), ε1, ε2) dθ

ε2
∫ 1
0 H(r̃(θ), θ, y(θ), ε1, ε2) dθ

)
.

The result follows after Taylor expanding about ε2 = 0.

The defining conditions for Sc
0 to be a regular fast–slow fold of cycles are as follows:

Pr̃ (0, 0, ε1, 0) = 0,
∂ Pr̃

∂ r̃
(0, 0, ε1, 0) = 1, (9)

123



Journal of Nonlinear Science (2024) 34 :17 Page 9 of 68 17

together with

∂2Pr̃

∂ r̃2
(0, 0, ε1, 0) 	= 0,

∂ Pr̃

∂ y
(0, 0, ε1, 0) 	= 0,

∫ 1

0
H(r̃(θ), θ, y(θ), ε1, 0) dθ 	= 0, (10)

for all ε1 ∈ (0, ε1,0). The conditions in (9)–(10) are in 1-1 correspondence with the
defining conditions for a fold bifurcation in the 1D ‘layer map’ r̃ �→ r̃ + Pr̃ (r̃ , y, ε1, 0)
(with y as a bifurcation parameter), see e.g. Kuznetsov (2013, Ch. 4.3), except for the
integral condition,which can be viewed as the analogue of the slow regularity condition
on the fast–slow regular fold point in planar continuous-time systems in Krupa and
Szmolyan (2001a), Kuehn (2015).

Remark 2.4 The defining conditions for a regular fast–slow fold of cycles in (9)–(10)
do not depend on the specific form of the Poincaré map in (8). Nevertheless, we have
chosen to state Proposition 2.3 prior to the conditions in (9)–(10) in order to clarify
the interpretation of the slow regularity condition, i.e. the integral expression in (10),
which is not common in the literature. This condition can be viewed as a condition on
the ‘reduced map’; we refer to Jelbart and Kuehn (2023), Jelbart and Kuehn (2023)
for details.

In the following, we shall actually assume stronger conditions that are sufficient
but not necessary for a regular fast–slow fold of cycles, instead of those in (9)–(10).
Similarly to Assumption 1, these conditions are expected to be satisfied in applications
with small-amplitude external periodic forcing; see again Remark 2.1.

Assumption 2 (Sufficient conditions for Sc
0 to be a regular folded cycle) The following

sufficient (but not necessary) conditions for a fast–slow fold of cycles are satisfied by
system (7):

F(0, θ, 0, ε1, 0) = 0,
∂ F

∂ r̃
(0, θ, 0, ε1, 0) = 0, (11)

together with

∂2F

∂ r̃2
(0, θ, 0, ε1, 0) 	= 0,

∂ F

∂ y
(0, θ, 0, ε1, 0) 	= 0, H(0, θ, 0, ε1, 0) 	= 0,

(12)

for all θ ∈ R/Z and ε1 ∈ (0, ε1,0).

It is straightforward to verify that the conditions in (11)–(12) are sufficient to ensure
that the Poincaré map (8) satisfies the fold conditions (9)–(10). In particular, (11)–(12)
are directly analogous to the defining conditions for the (stationary) regular fold point
in Krupa and Szmolyan (2001a), except that we require them to hold for θ -dependent
functions.
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Assumptions 1–2 and the implicit function theorem imply that system (5) has a
two-dimensional manifold of regular limit cycles

S0 = {(r , θ, y) ∈ V : F(r̃ , θ, y, ε1, 0) = 0} ,

where V ⊆ R≥0×R/Z×R is the toroidal/tubular neighbourhood about Sc
0 introduced

above. In other words, system (7) (and by a simple computation also system (4)) is an
oscillatory fast–slow systemwith respect to the (partial) singular limit ε1 > 0, ε2 → 0.

The combination of signs taken by the various nonzero terms in (12) determines the
orientation of the bifurcation. In the following we assume without loss of generality
that

∂2F

∂ r̃2
(0, θ, 0, ε1, 0) > 0,

∂ F

∂ y
(0, θ, 0, ε1, 0) < 0, H(0, θ, 0, ε1, 0) < 0,

(13)

which are consistent with a ‘jump-type’ orientation in forward time; see Figs. 1 and 2.
Based on Assumptions 1–2 and these sign conventions, it suffices to work with the
simplified system provided in the following result.

Proposition 2.5 Let Assumptions 1–2 be satisfied and assume that 0 < ε1, ε2 � 1.
In a sufficiently small toroidal/tubular neighbourhood about Sc

0 , which we continue to
denote by V , system (7) can be written as

r̃ ′ = −a(θ)y + b(θ)r̃2 + Rr (r̃ , θ, y, ε1, ε2),

θ ′ = ε1,

y′ = ε2(−c(θ) + Ry(r̃ , θ, y, ε1, ε2)),

(14)

where the functions a(θ), b(θ), c(θ) are positive, 1-periodic and smooth, and the
higher-order terms satisfy

Rr (r̃ , θ, y, ε1, ε2) = O(r̃3, y2, r̃ y, ε1r̃2, ε1y, ε2),

Ry(r̃ , θ, y, ε1, ε2) = O(r̃ , y, ε1, ε2).

Proof Consider system (7) under Assumptions 1–2. Taylor expanding about r̃ = y =
ε2 = 0, we obtain

r̃ ′ = − f1(θ, ε1)y + f2(θ, ε1)r̃
2 + O(r̃3, y2, r̃ y, ε2),

θ ′ = ε1,

y′ = ε2(−h0(θ, ε1) + O(r̃ , y, ε2)),

where f1(θ, ε1), f2(θ, ε1) and h0(θ, ε1) are smooth, 1-periodic in θ and positive
(this follows from the sign conventions in (13)). Expanding f1(θ, ε1), f2(θ, ε1) and
h0(θ, ε1) about ε1 = 0 and setting

a(θ):= f1(θ, 0), b(θ):= f2(θ, 0), c(θ):=h0(θ, 0),
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yields system (14).

System (14) is related to the local normal form for the regular fold point in Krupa
and Szmolyan (2001a) by a simple variable rescaling if ε1 = 0, i.e. if θ is fixed. For
ε1 > 0, however, the dependence on the angular variable appears via the functions
a(θ), b(θ), c(θ) and the higher-order termsRr (r̃ , θ, y, ε1, ε2) andRy(r̃ , θ, y, ε1, ε2).
In what follows, we drop the tilde notation on r̃ and work with system (14) for the
remainder of this manuscript.

Remark 2.6 In Proposition 2.5 we assert that the functions a(θ), b(θ) and c(θ) are
‘smooth’. Amore precise statement would be to say that they areCk-smooth, since the
system obtained after Taylor expansion is precisely as smooth as the original system
(7). Since we will not be interested in smoothness per se, we shall adopt a similar
terminology throughout for simplicity, i.e. by ‘smooth’ we shall mean sufficiently
smooth for the validity of our methods (e.g. Taylor expansions).

Remark 2.7 The equation for r̃ in system (14) can be further simplified after setting
r̂ = √

b(θ)/a(θ) r̃ . This leads to

r̂ ′ = ι(θ)
(
−y + r̂2

)
+ 1

2

a(θ)b′(θ) − a′(θ)b(θ)

ι(θ)2
ε1̂r + h.o.t .,

where a′ := ∂a/∂θ , b′ := ∂b/∂θ and ι(θ) := √
a(θ)b(θ). The ‘price’ of this simpli-

fication, however, is that the O(ε1̂r) term also appears in the leading-order terms in
the blow-up analysis in later sections. For this reason, we continue to work with the
formulation in (14).

Remark 2.8 If ε1 ∼ ε2 or ε1 � ε2, then the θ -variable is ‘slow enough’ to validate the
Taylor expansion of system (14) about a fixed point (0, θ∗, 0) ∈ Sc

0, i.e. in this case,
one can also Taylor expand in the angular coordinate θ . This allows for a subsequent
transformation into the simpler local normal form near a fold curve in Szmolyan
and Wechselberger (2004, Lem. 3), thereby showing that the dynamics in these cases
are governed by the well-known result for two time-scale systems in Szmolyan and
Wechselberger (2004, Thm. 1). In the semi-oscillatory case of interest with ε2 � ε1,
however, θ is fast relative to y and varies over the entire domain R/Z as solutions
approach Sc

0. As a consequence, one cannot Taylor expand the θ coordinate, and
transformation to the local normal form in Szmolyan andWechselberger (2004) is not
possible.

Remark 2.9 In order to sketch geometric objects like S0 in the upcoming figures,
we choose the positive, 1-periodic and smooth functions a(θ) = 2 + sin(4πθ) and
b(θ) = 5 + cos(2πθ − 1). For constant functions a and b, the figures including the
θ -coordinate would be rotationally symmetric.
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2.1 Geometry and Dynamics in the Singular Limit

We turn now to the singular geometry and dynamics of system (14). Taking the double
singular limit (ε1, ε2) → (0, 0) yields the layer problem

r ′ = −a(θ)y + b(θ)r2 + Rr (r , θ, y, 0, 0),

θ ′ = 0,

y′ = 0,

(15)

which has a two-dimensional critical manifold

S0:= {(r , θ, ϕ0(r , θ)) : r ∈ Ir , θ ∈ R/Z} ,

where Ir :=(−r0, r0) for a small but fixed r0 > 0 and

y = ϕ0(r , θ) = b(θ)

a(θ)
r2 + O(r3)

solves the equation F(r , θ, y, 0, 0) = −a(θ)y+b(θ)r2+Rr (r , θ, y, 0, 0) = 0 locally
via the implicit function theorem.

The stability of S0 with respect to the fast radial dynamics is determined by the
unique non-trivial (i.e. not identically zero) eigenvalue of the linearisation, namely

λ(r , θ) = ∂

∂r

(
−a(θ)y + b(θ)r2 + Rr (r , θ, y, 0, 0)

) ∣∣∣∣
S0

= 2b(θ)r + O(r2).

It follows that the critical manifold has the structure S0 = Sa
0 ∪ Sc

0 ∪ Sr
0, where

Sa
0 = {(r , θ, ϕ0(r , θ)) ∈ S0 : r < 0}, Sr

0 = {(r , θ, ϕ0(r , θ)) ∈ S0 : r > 0},

are normally hyperbolic and attracting/repelling, respectively (assuming r0 > 0 is
sufficiently small). The circular set Sc

0 = {(0, θ, 0) ∈ S0}, which corresponds to the
regular folded cycle in Assumption 2, is non-normally hyperbolic. The situation is
sketched in Figs. 1 and 2.

The dynamics and geometry for the layer problem (15) do not depend upon the
relative magnitude of ε1 and ε2. The reduced dynamics on S0, however, are expected
to differ significantly depending on the size of ε1/ε2. As noted already in Sect. 1, we
consider three distinct possibilities:

(C1) Angular dynamics are fast relative to the parameter drift, i.e.

ε1

ε2
� 1.
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Fig. 1 Singular geometry and dynamics in case (C1). Fast and slow dynamics are depicted (here and
throughout) by double and single arrows, respectively. The attracting and repelling normally hyperbolic
submanifolds of the critical manifold S0, denoted by Sa0 and Sr0, are shown in shaded turquoise and grey,
respectively, and sketched for the particular choice of a(θ) and b(θ) defined in Remark 2.9. The non-
normally hyperbolic folded cycle Sc0 is shown in blue. The reduced flow in case (C1) is periodic, i.e. y is a
parameter and S0 is foliated by limit cycles of period τε1 = 1 (Color figure online)

Fig. 2 Singular geometry and dynamics in case (C3) sketched for the particular choice of a(θ) and b(θ)

in Remark 2.9. The dynamics is distinguished from cases (C1) and (C2) by the reduced flow on S0. In
this case, θ is a parameter and singular orbits (concatenations of solution segments of layer and reduced
problem) are contained within constant angle planes {θ = const .}. An example of such an orbit is sketched
in red (Color figure online)

(C2) Angular dynamics occur on the same time-scale as the parameter drift, i.e. there
is a constant σ > 0 such that

ε1

ε2
= σ.
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(C3) Angular dynamics are slow relative to the parameter drift, i.e.

ε1

ε2
� 1.

A different reduced problem is obtained on S0 in each case. We briefly consider each
case in turn.

The Reduced Problem in Case (C1)

In this case we rewrite system (14) on the slow time-scale τε1 = ε1t . This leads to

ε1ṙ = −a(θ)y + b(θ)r2 + Rr (r , θ, y, ε1, ε2),

θ̇ = 1,

ẏ = ε2

ε1
(−c(θ) + Ry(r , θ, y, ε1, ε2)),

(16)

where the dot denotes differentiation with respect to the slow time τε1 . Since ε1/ε2 �
1, we first take ε2 → 0, and then ε1 → 0 (in that order). This leads to the reduced
problem

0 = −a(θ)y + b(θ)r2 + Rr (r , θ, y, 0, 0),

θ̇ = 1,

ẏ = 0.

(17)

In this case, S0 is foliated by limit cycles of period τε1 = 1, i.e. t = 1/ε1. An
expression for the vector field on S0, expressed in the (r , θ)-coordinate chart, can
be obtained by differentiating the constraint y = ϕ0(r , θ) with respect to τε1 and
rearranging terms. We obtain

ṙ = a′(θ)b(θ) − a(θ)b′(θ)

2a(θ)b(θ)
r + O(r2),

θ̇ = 1,

where a′:=∂a/∂θ and b′:=∂b/∂θ . This case is sketched in Fig. 1.

The Reduced Problem in Case (C2)

To obtain the reduced problem in case (C2) we may write system (14) on either time-
scale τε1 or τε2 , which are related via τε1 = στε2 . Writing the system on the τε2

time-scale leads to

ε2ṙ = −a(θ)y + b(θ)r2 + Rr (r , θ, y, ε1, ε2),

θ̇ = ε1

ε2
,

ẏ = −c(θ) + Ry(r , θ, y, ε1, ε2),

(18)
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where this time, the dot denotes differentiation with respect to the slow time τε2 .
Taking the double singular limit and using the fact that ε1/ε2 = σ leads to the reduced
problem

0 = −a(θ)y + b(θ)r2 + Rr (r , θ, y, 0, 0),

θ̇ = σ,

ẏ = −c(θ) + Ry(r , θ, y, 0, 0).

(19)

In contrast to the limiting equations (17) in case (C1), none of the variables become
parameters in system (19). This is natural because in case (C2), system (14) only has
two (as opposed to three) time-scales. In the (r , θ)-coordinate chart, the dynamics are
determined by

ṙ = −a(θ)c(θ)

2b(θ)r
+ O(1),

θ̇ = σ.

(20)

In particular, solutions reach r = 0 (and therefore Sc
0) in finite time.

The Reduced Problem in Case (C3)

In this case we rewrite system (14) on the slow time-scale τε2 = ε2t , thereby obtaining
system (18). Since ε1/ε2 � 1, we first take ε1 → 0, and then ε2 → 0 (in that order).
This leads to the reduced problem

0 = −a(θ)y + b(θ)r2 + Rr (r , θ, y, 0, 0),

θ̇ = 0,

ẏ = −c(θ) + Ry(r , θ, y, 0, 0).

(21)

This time, the angular variable θ is the slow variable to be considered as a parameter in
system (19). In particular, the dynamics on S0 can be represented by the 1-parameter
family of ODEs

ṙ = − ac

2br
+ O(1),

where a = a(θ), b = b(θ) and c = c(θ) are constants paramaterised by θ ∈ R/Z.
Similarly to case (C2), solutions reach Sc

0 in finite time. Moreover, singular orbits
obtained as concatenations of layer and reduced orbit segments are contained within
constant θ planes. As a result, the singular geometry and dynamics in case (C3) is
equivalent to the singular geometry and dynamics of the normal form for the planar
regular fold point in Krupa and Szmolyan (2001a). This case is sketched in Fig. 2.

For 0 < ε1, ε2 � 1, Fenichel–Tikhonov theory implies that compact submanifolds
of the normally hyperbolic critical manifolds Sa

0 and Sr
0 persist as O(l(ε1, ε2))-

close locally invariant slow manifolds Sa
l(ε1,ε2)

and Sr
l(ε1,ε2)

, respectively (Fenichel

123



17 Page 16 of 68 Journal of Nonlinear Science (2024) 34 :17

Fig. 3 Projected geometry and dynamics in the (r , y)-plane, as described by Theorem 3.2. The critical
manifold and its submanifolds are sketched in colours consistent with earlier figures for the particular
choice of a(θ) and b(θ) defined in Remark 2.9. The entry, exit sections �in, �out (magenta, orange) and
the (extended) Fenichel slow manifolds Saε , Srε are also shown as shaded regions in green and light grey,
respectively. For Saε and Sa0 additionally a sample trajectory for a fixed θ initial condition is shown (Color
figure online)

Fig. 4 The extension of the attracting slow manifold Saε (again in shaded green) as described by Theo-
rem 3.2, in the full (r , θ, y)-space. The entry, exit sections �in, �out as well as the critical manifold and
its submanifolds are also shown, with the same colouring as in Fig. 3 for the particular choice of a(θ) and
b(θ) in Remark 2.9. The intersection π(α)(Saε ∩ �in) ⊂ �out is topologically equivalent to a circle (shown
in dark green), and O(ε2)-close to the plane {y = 0} in the Hausdorff distance. The specific behaviour of
solutions, which depends on α, is not shown (see however Figs. 5, 6, 7 and 8) (Color figure online)

1979; Jones 1995; Kuehn 2015; Wechselberger 2020; Wiggins 1994), where we write
l(ε1, ε2):=max{ε1, ε2} in order to keep the discussion general, i.e. so that we need not
distinguish between cases (C1), (C2) and (C3). Our goal is to describe the extension of
the attracting slow manifold Sa

l(ε1,ε2)
through a neighbourhood of the non-hyperbolic

cycle Sc
0 corresponding to the regular folded cycle in system (14).

Remark 2.10 In Cardin and Teixeira (2017), the authors extend GSPT for a class of
multiple time-scale systems with n ≥ 3 time-scales which feature ‘nested critical
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manifolds’. A requirement for the application of this theory to system (14) is that the
reduced problem on S0 has a one-dimensional critical manifold. This condition is not
satisfied in any case (C1), (C2) or (C3) because none of the reduced problems (17),
(19) and (21) have equilibria in the neighbourhood of interest (i.e. close to r = y = 0).

3 Main Results

We now state and describe our main results. In order to distinguish the different cases
(C1), (C2) and (C3), we scale ε1 and ε2 by a single small parameter 0 < ε � 1. Main
results are stated and proved for system (14) with ε1 = εα and ε2 = ε3, i.e. for the
system

r ′ = −a(θ)y + b(θ)r2 + R̃r (r , θ, y, ε),

θ ′ = εα,

y′ = ε3(−c(θ) + R̃y(r , θ, y, ε)),

(22)

where the functions a(θ), b(θ), c(θ) are positive, 1-periodic and smooth and the
higher-order terms satisfy

R̃r (r , θ, y, ε) = O(r3, y2, r y, εαr2, εα y, ε3), R̃y(r , θ, y, ε) = O(r , y, εα, ε3).

The different cases (C1), (C2) and (C3) are obtained for different values of the scaling
parameter α ∈ N+ as follows:

• Case (C1)∗: α = 1;
• Case (C1): α = 2;
• Case (C2): α = 3;
• Case (C3): α ≥ 4.

Note that we have introduced an additional case (C1)∗. This case is dynamically
distinct from the others, but it is not distinguished in Sect. 2 because the geometry and
dynamics in the double singular limit are the same as for case (C1).

Remark 3.1 The choice towrite ε3 instead of ε in the equation for y ismade a-posteriori
in order to avoid fractional exponents in the proofs. Comparisons with known results
for the stationary regular fold point in Krupa and Szmolyan (2001a), Szmolyan and
Wechselberger (2004) are possible via the simple relation εKSW = ε3,wherewe denote
by εKSW the small parameter in Krupa and Szmolyan (2001a) and/or Szmolyan and
Wechselberger (2004). Similar observations motivated the use of a cubic exponent for
the small parameter in other works involving folded singularities, e.g. in Nipp and
Stoffer (2013), Nipp et al. (2009).

Our aim is to describe the forward evolution of initial conditions in an annular entry
section

�in:=
{
(r , θ, R2) : r ∈ [β−, β+], θ ∈ R/Z

}
, (23)
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Fig. 5 Case (C1)∗. Sketch of the flow of system (22) for α = 1. The solution sketched in red makes

N (1)
rot (r , θ, ε) = �O(ε−2)� rotations about the y-axis before leaving the neighbourhood close to Saε ∩ �out

at an angle approximated by the expression for h(1)
θ (r , θ, ε) in Theorem 3.2 Assertion (b) (Color figure

online)

Fig. 6 Case (C1). Sketch of the flow of system (22) for α = 2. The solution sketched in red makes

N (2)
rot (r , θ, ε) = �O(ε−1)� rotations about the y-axis before leaving the neighbourhood close to Saε ∩ �out

at an angle approximated by the expression for h(2)
θ (r , θ, ε) in Theorem 3.2 Assertion (b) (Color figure

online)

where R is a small positive constant and β− < β+ < 0 are two negative constants
chosen such that Sa

0 ∩ �in ⊂ �in ∩ {r ∈ (β−, β+)}. We track solutions of system (22)
up to their intersection with the cylindrical exit section

�out:= {(R, θ, y) : θ ∈ R/Z, y ∈ [−y0, y0]} , (24)
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Fig. 7 Case (C2). Sketch of the flow of system (22) for α = 3. The solution sketched in red makes

N (3)
rot (r , θ, ε) = � b(θ)

a(θ)c(θ)
R + O(R2) + O(ε3 ln ε)� rotations about the y-axis before leaving the neigh-

bourhood close to Saε ∩ �out at an angle approximated by the expression for h(3)
θ (r , θ, ε) in Theorem 3.2

Assertion (b) (Color figure online)

Fig. 8 Case (C3). Sketch of the flow of system (22). The solution sketched in red makes N (α)
rot (r , θ, ε) = 0

rotations about the y-axis before leaving the neighbourhood close to Saε ∩ �out at an angle approximated

by the expression for h(α)
θ (r , θ, ε) in Theorem 3.2 Assertion (b) (α ≥ 4) (Color figure online)

for a small positive constant y0 > 0. The critical manifold S0, the Fenichel slow
manifolds (denoted now by Sa

ε and Sr
ε) and the entry/exit sections are visualised in the

(r , y)-plane in Fig. 3 and in the three-dimensional space in Fig. 4.
We now state the main result, which characterises the dynamics of the map π(α) :

�in → �out induced by the flow of system (22) for each α ∈ N+, i.e. in all four cases
(C1)∗, (C1), (C2) and (C3).
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Theorem 3.2 Consider system (22) with fixed α ∈ N+. There exists an ε0 > 0 such
that for all ε ∈ (0, ε0], the map π(α) : �in → �out is well-defined with the following
properties:

(a) (Extension of Sa
ε ). There exists a function h(α)

y : R/Z × (0, ε0] → R which is

smooth and 1-periodic in θ such that π(α)(Sa
ε ∩ �in) = {(R, θ, h(α)

y (θ, ε)) : θ ∈
R/Z} is a smooth, closed curve.

(b) (Asymptotics). π(α) has the form

π(α) : (r , θ, R2) �→
(

R, h(α)
θ (r , θ, ε), h(α)

y (h(α)
θ (r , θ, ε), ε) + h(α)

rem(r , θ, ε)
)

,

where

h(α)
y (h(α)

θ (r , θ, ε), ε) = O(ε2), h(α)
rem(r , θ, ε) = O

(
e−κ/ε3

)
,

and κ > 0 is a constant. In particular we have that hθ (r , θ, ε) = h̃θ (r , θ, ε)

mod 1, where

h̃(α)
θ (r , θ, ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ + R2

c0
ε−2 + O(ln ε), α = 1,

θ + R2

c0
ε−1 + O(ε ln ε), α = 2,

ψ(θ) + O(ε3 ln ε), α = 3,

θ + O(ε3 ln ε), α ≥ 4,

(25)

and

h(α)
y (θ̃ , ε) =

⎧⎨
⎩
O(ε2), α = 1,

−
(

c(θ̃)2

a(θ̃)b(θ̃)

)1/3
�0ε

2 + O(ε3 ln ε), α ≥ 2.
(26)

Here c0:=
∫ 1
0 c(θ) dθ > 0 is the mean value of c over a single period, ψ(θ) =

θ+ b(θ)
a(θ)c(θ)

R2+O(R3) is induced by the reduced flow of system (20)with σ = 1 up

to r = 0, and the constant �0 > 0 is the smallest positive zero of J−1/3(2z3/2/3)+
J1/3(2z3/2/3) where J±1/3 are Bessel functions of the first kind.

(c) (Strong contraction). The y-component of π(α)(r , θ, R2) is a strong contraction
with respect to r . More precisely,

∂

∂r

(
h(α)

y (h(α)
θ (r , θ, ε), ε) + h(α)

rem(r , θ, ε)
)

= O
(
e−κ/ε3

)
.

Theorem 3.2 characterises the asymptotic behaviour of solutions and the extension
of the attracting Fenichel slow manifold Sa

ε through a neighbourhood of the regular
folded cycle in system (22). The geometry and dynamics for all four cases (C1)∗,
(C1), (C2) and (C3) are sketched in Figs. 5, 6, 7 and 8, respectively. The proof is
broken into two parts, depending on whether or not α ∈ {1, 2}. A detailed proof
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based on the blow-up method will be given for the cases α ∈ {1, 2} in Sect. 4. Recall
that these are the primary cases of interest, since they correspond to semi-oscillatory
dynamics. If α ≥ 3, minor adaptations of the proof for case α = 2 can be applied.
Moreover, in this case, one can show directly that Sc

0 is a closed regular fold curve.
From here, Assertions (a)–(c) can be proven directly using established results (or a
straightforward adaptation thereof) on the passage past a fold curve in 2-fast 1-slow
systems, specifically (Szmolyan andWechselberger 2004, Thm. 1). We shall therefore
omit the details of these cases. Note that for α ≥ 4 in particular, h(α)

θ (r , θ, ε) ∼ θ as

ε → 0, which implies that the leading-order coefficient in the expansion for h(α)
y (θ, ε)

is also constant in θ . This is expected, since the dynamics for α ≥ 4 should resemble
the dynamics of the stationary fold point considered in Krupa and Szmolyan (2001a)
up to a slight perturbation.

For each α ∈ N+, the size of the leading-order term in the asymptotics for the
parameter drift in y is also the same as for the stationary regular fold point, at least up
to O(ε3 ln ε), since

h(α)
y (θ, ε) = h(α)

y

(
θ, ε

1/3
KSW

)
= O

(
ε
2/3
KSW

)
+ O(εKSW ln εKSW),

which agrees with the asymptotic estimates in Krupa and Szmolyan (2001a),
Mishchenkoet al. (1975), Szmolyan andWechselberger (2004) (recall fromRemark3.1
that εKSW = ε3, where εKSW denotes the small parameter in Krupa and Szmolyan
(2001a), Szmolyan and Wechselberger (2004)). The strong contraction property in
Assertion (c), which does not depend on α, is also the same. These two facts explain
the similarity between the dynamics observed in the (r , y)-plane and the dynamics near
a stationary regular fold point; c.f. Fig. 3 and Krupa and Szmolyan (2001a, Fig. 2.1).
In contrast to the stationary fold, however, the coefficients of h(α)

y (θ, ε) depend on
θ , and (26) gives the precise form for the leading-order coefficient if α > 1, i.e. if
α ∈ N+\{1}. Moreover, Theorem (3.2) provides detailed asymptotic information
about the angular coordinate θ via (25). If α > 2 then estimates are sharp as ε → 0.

Finally, the dynamics in different cases, i.e. for differing values of α, are distin-
guished via the angular dynamics and in particular, the number of complete rotations
about the y-axis during the transition from �in to �out. We can estimate this number
by introducing the function N (α)

rot : [β−, β+] × R/Z × (0, ε0] → N via

N (α)
rot (r , θ, ε):=⌊h̃(α)

θ (r , θ, ε) − θ
⌋
.

We obtain the following corollary as an immediate consequence of Theorem 3.2.

Corollary 3.3 Let γ : R → R≥0 × R/Z × R be a solution of system (22) with initial
condition γ (0) = (r , θ, R) ∈ �in. Then γ (t) undergoes

N (α)
rot (r , θ, ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⌊ R2

c0
ε−2 + O(ln ε)

⌋
, α = 1,⌊ R2

c0
ε−1 + O(ε ln ε)

⌋
, α = 2,⌊ b(θ)

a(θ)c(θ)
R + O(R2) + O(ε3 ln ε)

⌋
, α = 3,

0, α ≥ 4,
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complete rotations about the y-axis during its passage to �out.

Proof This follows immediately from the asymptotic estimates for h̃(α)(r , θ, ε) in
Theorem 3.2 and the definition of N (α)

rot .

4 Proof of Theorem 3.2

Our aim is to investigate the three time-scale system (22) with α ∈ {1, 2} using the
blow-up method developed for fast–slow systems in Dumortier and Roussarie (1996),
Krupa and Szmolyan (2001a), Krupa and Szmolyan (2001b), Krupa and Szmolyan
(2001c); we refer again to Jardón-Kojakhmetov and Kuehn (2021) for a recent survey.
Many aspects of the proof rely in particular on arguments used in the blow-up analysis
of the (stationary) regular fold point in Krupa and Szmolyan (2001a). However, many
of the calculations are complicated by the fact that the angular variable θ cannot be
treated locally. In particular, for α ∈ {1, 2}, we cannot simply Taylor expand the
equations about a fixed value of θ . Consequently, a local transformation into the local
normal form in Szmolyan andWechselberger (2004) is not possible. A similar feature
arises when blowing up the fold cycle in the periodically forced van der Pol equation
in the ‘intermediate frequency regime’ (Burke et al. 2016), except that in our case,
there is no decoupling of the angular dynamics in the leading order.We adopt the (now
well-established) notational conventions introduced in Krupa and Szmolyan (2001a),
Krupa and Szmolyan (2001b), Krupa and Szmolyan (2001c).

The blow-up transformation is defined in Sect. 4.1, as are the three local coordinate
charts that we use for calculations. The geometry and dynamics in all three coordinate
charts are considered in turn in Sects. 4.2, 4.3 and 4.4. Theorem 3.2 is proved in
Sect. 4.5 using the information obtained in local coordinate charts.

4.1 Blow-Up and Local Coordinate Charts

As is standard in blow-up approaches, we consider the extended system obtained from
(22) after appending the trivial equation ε′ = 0, i.e.

r ′ = −a(θ)y + b(θ)r2 + R̃r (r , θ, y, ε),

θ ′ = εα,

y′ = ε3(−c(θ) + R̃y(r , θ, y, ε)),

ε′ = 0,

(27)

where α ∈ {1, 2} is fixed, R̃r (r , θ, y, ε) = O(r3, y2, r y, εαr2, εα y, ε3) and
R̃y(r , θ, y, ε) = O(r , y, εα).

In order to describe the map π(α) : �in → �out, we introduce extended entry and
exit sections

�in
ε :=

{
(r , θ, R2, ε) : r ∈ [β−, β+], θ ∈ R/Z, ε ∈ [0, ε0]

}
, (28)
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and

�out
ε := {(R, θ, y, ε) : θ ∈ R/Z, y ∈ [−y0, y0], ε ∈ [0, ε0]} , (29)

respectively. The entry, exit sections �in, �out defined in Sect. 3 (recall Eqs. (23) and
(24)) can be viewed as constant ε sections of �in

ε , �out
ε , respectively. Based on this

simple relationship, we study the map π(α) : �in → �out described in Theorem 3.2
via the extended map π

(α)
ε : �in

ε → �out
ε induced by the flow of initial conditions in

�in
ε up to �out

ε under system (27).
We now define the relevant blow-up transformation. Let I = [0, ρ0], where ρ0 > 0

is fixed small enough for the validity of local computations, let

B0:=S2 × R/Z × [0, ρ0],

and define the (weighted) blow-up transformation via

ϕ : B0 → R≥−ρ0 × R/Z × R × R≥0,

(r̄ , ȳ, ε̄, θ, ρ) �→ (r , θ, y, ε) = (ρr̄ , θ, ρ2 ȳ, ρε̄), (30)

where (r̄ , ȳ, ε̄) ∈ S2. The blow-up map ϕ is a diffeomorphism for ρ ∈ (0, ρ0], but
not for ρ = 0. In particular, the preimage of the non-hyperbolic cycle Sc

0 under ϕ is a
‘torus of spheres’ S2 × R/Z × {0} ∼= S2 × S1.

For calculational purposes, we introduce local coordinate charts in order to describe
the dynamics on

B+
ȳ :=B0 ∩ {ȳ > 0}, B+

ε̄ :=B0 ∩ {ε̄ > 0}, B+
r̄ :=B0 ∩ {r̄ > 0}.

Following Krupa and Szmolyan (2001a), we introduce affine projective coordinates
via

K1 : B+
ȳ → R × R/Z × R × R, (r̄ , ȳ, ε̄, ρ, θ) �→ (r1, θ1, ρ1, ε1) = (r̄ ȳ− 1

2 , θ, ρ ȳ
1
2 , ε̄ ȳ− 1

2 ),

K2 : B+
ε̄ → R × R/Z × R × R, (r̄ , ȳ, ε̄, ρ, θ) �→ (r2, θ2, y2, ρ2) = (r̄ ε̄−1, θ, ȳε̄−2, ρε̄),

K3 : B+
r̄ → R × R/Z × R × R, (r̄ , ȳ, ε̄, ρ, θ) �→ (ρ3, θ3, y3, ε3) = (ρr̄ , θ, ȳr̄−2, ε̄r̄−1).

Here we permit a small abuse of notation by introducing a new variable ε1, which
should not be confused with the small parameter with the same notation in Sects. 1–2.
This leads to the following coordinates:

K1 : (r , θ, y, ε) = (ρ1r1, θ1, ρ
2
1 , ρ1ε1),

K2 : (r , θ, y, ε) = (ρ2r2, θ2, ρ
2
2 y2, ρ2),

K3 : (r , θ, y, ε) = (ρ3, θ3, ρ
2
3 y3, ρ3ε3).

(31)

In the analysis, it will be necessary to change coordinates between different charts.
The following lemma provides the relevant change of coordinates formulae.
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Lemma 4.1 The change of coordinate maps κi j from Ki to K j are diffeomorphisms
given by

κ12 : r2 = r1ε
−1
1 , θ2 = θ1, y2 = ε−2

1 , ρ2 = ρ1ε1, for ε1 > 0,

κ−1
12 : r1 = r2y

− 1
2

2 , θ1 = θ2, ρ1 = ρ2y
1
2
2 , ε1 = y

− 1
2

2 , for y2 > 0,

κ23 : ρ3 = ρ2r2, θ3 = θ2, y3 = y2r−2
2 , ε3 = r−1

2 , for r2 > 0,

κ−1
23 : r2 = ε−1

3 , θ2 = θ3, y2 = y3ε
−2
3 , ρ2 = ρ3ε3, for ε3 > 0.

(32)

Proof This follows from the local coordinate expressions in (31).

Remark 4.2 The blow-up transformation (30) has the same form as the blow-up map
used to study dynamics near a regular fold curve inR3 in Szmolyan andWechselberger
(2004), except that the domain of the uncoupled variable θ is R/Z instead of R. Note
also that since θ is unaffected by (30), it follows that ϕ can be defined more succinctly
in terms of its action on the remaining variables, i.e. via the map

S2 × [0, ρ0] → R≥−ρ0 × R × R≥0, (r̄ , ȳ, ε̄, ρ) �→ (r , y, ε) = (ρr̄ , ρ2 ȳ, ρε̄),

which is precisely the blow-up map used to study the regular fold point in Krupa and
Szmolyan (2001a) (recall that εKSW = ε3 by the discussion following the statement
of Theorem 3.2).

Remark 4.3 By construction, the blown-up vector field induced by the pushforward of
the vector field induced by system (27) under ϕ is invariant in the hyperplanes {ρ = 0}
and {ε̄ = 0}. The former corresponds to blown-up preimage of the non-hyperbolic
cycle Sc

0, i.e. the torus of spheres S2 × S1. The latter contains the blown-up preimage
of the critical manifold S0. Since r̄2 + ȳ2 = 1 in {ε̄ = 0}, the preimage of ϕ in {ε̄ = 0}
is S1 × R/Z × R≥0 ∼= S1 × S1 × R≥0. Thus, the part of the blown-up singular cycle
Sc
0 within {ε̄ = 0} is a torus.

Remark 4.4 Since ε = const . in system (27) we have constants of the motion defined
by ε = ρ1ε1, ε = ρ2, ε = ρ3ε3 in charts K1, K2, K3, respectively.

We turn now to the dynamics in charts Ki , i = 1, 2, 3.

4.2 Dynamics in the Entry Chart K1

In chart K1 we analyse solutions which track the blown-up preimage of the attracting
Fenichel slow manifold Sa

ε as they enter a neighbourhood of the non-hyperbolic circle
Sc
0.
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Lemma 4.5 Following the positive transformation of time ρ1dt = dt1, the desingu-
larised equations in chart K1 are given by

r ′
1 = −a(θ1) + b(θ1)r

2
1 + 1

2
c(θ1)ε

3
1r1 + O(ρ1),

θ ′
1 = ρα−1

1 εα
1 ,

ρ′
1 = −1

2
ρ1ε

3
1(c(θ1) + O(ρ1)),

ε′
1 = 1

2
ε41(c(θ1) + O(ρ1)),

(33)

where by a slight abuse of notation we now write (·)′ = d/dt1.

Proof This follows after direct differentiation of the local coordinate expressions in
(31) and subsequent application of the desingularisation ρ1dt = dt1.

The analysis in chart K1 is restricted to the set

D1:={(r1, θ1, ρ1, ε1) ∈ R × R/Z × R × R : 0 ≤ ρ1 ≤ R, 0 ≤ ε1 ≤ E},

where R is the constant which defines the entry set�in in (23) and E = ε0/R > 0 due
to the relationship ε = ρ1ε1 (recall Remark 4.4). The set D1 is sketched with other
geometric and dynamical objects in chart K1 in Fig. 9.

System (33) is well-defined within {ρ1 = 0} (recall that α ∈ {1, 2}), which corre-
sponds to the part of the blow-up surface in K1. The subspace {ε1 = 0} is also invariant
and contains two two-dimensional critical manifolds

Sa
1:=

{
(r1, θ1, ρ1, 0) ∈ D1 : r1 = −

(
a(θ1)
b(θ1)

) 1
2 + O(ρ1)

}
,

Sr
1:=

{
(r1, θ1, ρ1, 0) ∈ D1 : r1 =

(
a(θ1)
b(θ1)

) 1
2 + O(ρ1)

}
.

(34)

The manifolds Sa
1 and Sr

1 correspond to the blown-up preimages of the critical man-
ifolds Sa

0 and Sr
0 in chart K1, respectively. Both Sa

1 and Sr
1 are topologically equivalent

to cylindrical segments, and they are normally hyperbolic and attracting resp. repelling
up to and including the sets

Pa:=
{(

−
(

a(θ1)

b(θ1)

) 1
2

, θ1, 0, 0

)
: θ1 ∈ R/Z

}
,

Pr:=
{((

a(θ1)

b(θ1)

) 1
2

, θ1, 0, 0

)
: θ1 ∈ R/Z

}
,
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Fig. 9 Geometry and dynamics withinD1, shown in (r1, ρ1, ε1)-space. Projections of the two-dimensional
attracting and repelling critical manifolds Sa1, Sr1 ⊂ {ε1 = 0} (shown in blue and shaded blue) extend up
to their intersection with the blow-up surface at Pa, Pr ⊂ {ρ1 = ε1 = 0}, respectively. Projections of the
two-dimensional centre manifolds N a

1 , N r
1 ⊂ {ρ1 = 0} emanating from Pa, Pr, as described in Lemma 4.6,

are sketched in red and shaded red for the case α = 2, but they look similar in the case α = 1. Entry and
exit sections �in

1 and �out
1 are shown in shaded magenta and yellow, respectively. The projected three-

dimensional centre manifold Ma
1 and its image under �

(α)
1 is described by Proposition 4.9. This is shown

along with the image �
(α)
1 (�in

1 ) ⊂ �out
1 in green (Color figure online)

which intersect with the blow-up surface; see Figs. 9 and 10. The linearisation of
system (33) along Pa is

J (Pa) =

⎛
⎜⎜⎝

−2
√

a(θ1)b(θ1)
(
a(θ1)b′(θ1) − a′(θ1)b(θ1)

)
/b(θ1) 0 0

0 0 0 0α−1

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (35)

where we write a′ = ∂a/∂θ1 and b′ = ∂b/∂θ1, and we write

0α−1 =
{
1, α = 1,

0, α = 2.

In both cases, the set Pa is partially hyperbolic with a single non-trivial eigenvalue
−2

√
a(θ1)b(θ1) < 0. The remaining three eigenvalues along Pa are identically zero.

Thus in the blown-up space (i.e. for system (33)), we have regained partial hyperbol-
icity. This allows us to extend the attracting centre manifold with base along Sa

1 up
onto the blow-up surface using centre manifold theory.

Lemma 4.6 Consider system (33) on D1 with E, R > 0 sufficiently small. There exists
a three-dimensional centre-stable manifold Ma

1 such that

Ma
1 |ε1=0 = Sa

1, Ma
1 |ρ1=0 = N a

1 ,
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where Sa
1 ⊂ {ε1 = 0} is the two-dimensional attracting critical manifold in (34) and

N a
1 ⊂ {ρ1 = 0} is a unique two-dimensional centre-stable manifold for the restricted

system (33) |ρ1=0 emanating from Pa. The manifold Ma
1 is given locally as a graph

r1 = h(α)
r1 (θ1, ρ1, ε1), where

h(1)
r1 (θ1, ρ1, ε1) = −

(
a(θ1)

b(θ1)

) 1
2 + a(θ1)b′(θ1) − a′(θ1)b(θ1)

4a(θ1)b(θ1)
ε1 + O

(
ρ1, ε

2
1

)

(36)

and

h(2)
r1 (θ1, ρ1, ε1) = −

(
a(θ1)

b(θ1)

) 1
2 − c(θ1)

4b(θ1)
ε31 + O

(
ρ1, ε

6
1

)
. (37)

In both cases, there exists a constant� ∈ (0, ϑ), whereϑ :=minθ1∈[0,1) 2
√

a(θ1)b(θ1) >

0, such that initial conditions in �in
1 are attracted to Ma

1 along one-dimensional stable
fibers faster than e−�t1 .

Proof The existence of a three-dimensional centre manifold Ma
1 follows from lineari-

sation (35) and centre manifold theory (Kuznetsov 2013). The fact that Ma
1 contains

two-dimensional manifolds N a
1 and Sa

1 with the properties described follows after
direct restriction to the invariant hyperplanes {ρ1 = 0} and {ε1 = 0}, respectively.

The graph representations in (36) and (37) are obtained using the standard approach
based on formal matching. More precisely, we substitute a power series ansatz of the
form

r1 = h(α)
r1 (θ1, ρ1, ε1) =

∞∑
n=0

μ(α)
n (θ1)ε

n
1 + O(ρ1)

into the equation for r ′
1 in system (33) and determine the coefficients μ

(α)
n (θ1) by

comparing

r ′
1 =

∞∑
n=0

(
dμ(α)

n (θ1)

dθ1
θ ′
1ε

n
1 + μ

(α)
n+1(θ1)(n + 1)εn

1ε
′
1

)
+ O(ρ1)

=
∞∑

n=0

(
dμ(α)

n (θ1)

dθ1
ρα−1
1 εn+α

1 + 1

2
μ

(α)
n+1(θ1)(n + 1)εn+4

)
+ O(ρ1),
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with

r ′
1 = b(θ)

( ∞∑
n=0

μ(α)
n (θ1)ε

n
1

)2

− a(θ1) + 1

2
c(θ1)ε

3
1

∞∑
n=0

μ(α)
n (θ1)ε

n
1 + O(ρ1)

= b(θ)

∞∑
n=0

(
n∑

k=0

μ
(α)
k (θ1)μ

(α)
n−k(θ1)

)
εn
1 − a(θ1)

+ 1

2
c(θ1)

∞∑
n=0

μ(α)
n (θ1)ε

n+3
1 + O(ρ1).

Depending onwhether α = 1 orα = 2, the approximations in (36) or (37) are obtained
(respectively). The details are omitted for brevity.

The strong contraction along stable fibers at a rate greater than e−�t1 for some
� ∈ (0, ϑ), where ϑ :=minθ1∈[0,1) 2

√
a(θ1)b(θ1) > 0 follows from Fenichel theory

(Fenichel 1979, Theorem 9.1) and the fact that the stable leading eigenvalue is λ =
−2

√
a(θ1)b(θ1), recall (35).

The two-dimensional centre manifold N a
1 is sketched within {ρ1 = 0} in Fig. 11.

Remark 4.7 Similar to Lemma 4.6, there exists a three-dimensional centre-unstable
manifold M r

1 at Pr that contains the repelling critical manifold Sr
1 ⊂ {ε1 = 0} and a

repelling centre manifold N r
1 ⊂ {ρ1 = 0}. These objects are shown in Figs. 10 and 11.

In D1, the manifold M r
1 is given as a graph r1 = h̃(α)

r1 (θ1, ρ1, ε1), where

h̃(1)
r1 (θ1, ρ1, ε1) =

(
a(θ1)

b(θ1)

) 1
2 + a(θ1)b′(θ1) − a′(θ1)b(θ1)

4a(θ1)b(θ1)
ε1 + O

(
ρ1, ε

2
1

)

and

h̃(2)
r1 (θ1, ρ1, ε1) =

(
a(θ1)

b(θ1)

) 1
2 − c(θ1)

4b(θ1)
ε31 + O(ε61, ρ1).

In contrast to N a
1 , the manifold N r

1 is not unique. We omit the explicit treatment of the
dynamics near M r

1 since it is not relevant to the proof of Theorem 3.2.

Lemma4.6 can be used to describe the r1-component of themap�
(α)
1 : �in

1 → �out
1

induced by the flow of initial conditions in

�in
1 := {(r1, θ1, R, ε1) ∈ D1 : r1 ∈ [β−/R, β+/R]} ,

i.e. the representation of the entry section �in
ε defined in (28) in K1 coordinates, up to

the exit section

�out
1 :={(r1, θ1, ρ1, E) ∈ D1 : r1 ∈ [β−/R, β+/R]}.
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Fig. 10 Geometry and dynamicswithin the invariant hyperplane {ε1 = 0}, projected into (r1, θ1, ρ1)-space;
c.f. Fig. 9 (Color figure online)

Fig. 11 Geometry and dynamicswithin the invariant hyperplane {ρ1 = 0}, projected into (r1, θ1, ε1)-space;
c.f. Figs. 9 and 10 (Color figure online)

The constants β− < β+ < 0 are chosen in such a way that the r1-coordinate of
the centre manifold Ma

1 in D1 is always contained in the interval (β−/R, β+/R), cf.
Definition (23) of the entry section �in.

The remaining θ1, ρ1 and ε1 components of the map �
(α)
1 and the transition time

taken for solutionswith initial conditions in�in
1 to reach�out

1 can be estimated directly.
To obtain better estimates, we rewrite the positive, 1-periodic smooth function c(θ1)
as
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c(θ1) = c0 + crem(θ1), (38)

where c0:=
∫ 1
0 c(θ1(t1)) dt1 is the mean value of c(θ1) over one period and

crem(θ1):=c(θ1) − c0 is the smooth, 1-periodic remainder with mean zero. The esti-
mates are provided by the following result.

Lemma 4.8 Consider an initial condition (r1, θ1, ρ1, ε1)(0) = (r∗
1 , θ∗

1 , R, ε∗
1) ∈ �in

1
for system (33). Then

θ1(t1) = θ∗
1 + (Rε∗

1)
α−1ε∗−2

1

c0

(
1 −

(
1 − 3

2
ε∗
1
3
(φ(t1) + t1O(R))

)2/3
)

(1 + O(R)) mod 1,

ρ1(t1) = R

(
1 − 3

2
ε∗
1
3
(φ(t1) + t1O(R))

) 1
3

,

ε1(t1) = ε∗
1

(
1 − 3

2
ε∗
1
3
(φ(t1) + t1O(R))

)− 1
3

,

where φ(t1):=
∫ t1
0 c(θ1(s1)) ds1 = c0t1 + O(1). The notation O(R) is used to denote

(possibly different) remainder terms which satisfy |O(R)| ≤ C R for some constant
C > 0 and all t1 ∈ [0, T1], where

T1 = 2

3c0

(
1

ε∗
1
3 − 1

E3

)
(1 + O(R)) + O(1)

is the transition time taken for the solution to reach �out
1 .

Proof. Consider system (33). Bykeeping track of the higher-order termswhenderiving
the equation for ε′

1 in system (33) one can show that

ε′
1 = 1

2
ε41 (c(θ1) − ρ1χ(r1, θ1, ρ1, ε1)) ,

where χ(r1, θ1, ρ1, ε1):=ρ−1
1 R̃y(ρ1r1, θ1, ρ2

1 , ρ1ε1) = O(r1, ρ1, ε1). Directly inte-
grating and rearranging a little leads to

ε1(t1) = ε∗
1

(
1 − 3

2
ε∗
1
3
(φ(t1) + t1ψ(t1))

)− 1
3

,

where φ(t1) is defined as in the statement of the lemma and

t1ψ(t1) = −
∫ t1

0
ρ1(s1)χ(r1(s1), θ1(s1), ρ1(s1), ε1(s1)) ds1.
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The expression for ρ1(t1) can be obtained directly from the expression for ε1(t1)
using the fact that ρ1(t)ε1(t) = ε = Rε∗

1 is a constant of the motion; recall
Remark 4.4. One can show that |ψ(t1)| = O(R) by appealing to the fact that
χ(r1(s1), θ1(s1), ρ1(s1), ε1(s1)) is bounded uniformly for all s1 ∈ [0, T1], since
ρ1 ∈ [0, R], ε1 ∈ [0, E], θ ∈ R/Z and r1 ∈ [β−/R, β+/R] (the latter follows
from the fact that r ′

1|r1=β−/R > 0 and r ′
1|r1=β+/R < 0). Therefore, there is a constant

C > 0 such that |ψ(t1)| ≤ C R for all t1 ∈ [0, T1], as required.
It remains to estimate θ1(t1) and the transition time T1. We have that

θ ′
1 = ρ1(t1)

α−1ε1(t1)
α = (ε∗

1 R)α−1ε1(t1).

The expression for θ1(t1) is obtained by integrating the expression for ε1(t1) and using
(38) to estimate

φ(t1):=
∫ t1

0
c0 + crem(θ1(s1)) ds1 = c0t1 + O(1),

as
∫ 1
0 crem(θ1(t1)) dt1 = 0 and θ1 is bounded and 1-periodic. To estimate the transition

time T1, the boundary constraint ε1(T1) = E is used; c.f. (Krupa and Szmolyan 2001a,
Lemma 2.7). Integrating ε′

1 = 1
2ε

4
1(c0 + crem(θ1) + O(ρ1)) from ε∗

1 to E leads to

1

3

(
1

(ε∗
1)

3 − 1

E3

)
= c0

2
T1 + 1

2

∫ T1

0
crem(θ1(t1)) dt1 + 1

2

∫ T1

0
O(ρ1(t1)) dt1.

By (38), the second term on the right-hand side is O(1) and the third term can be
estimated by T1O(R). Rearranging yields the desired result.

Combining Lemmas 4.6 and 4.8 we obtain the following characterisation of the
transition map �

(α)
1 : �in

1 → �out
1 , which summarises the dynamics in chart K1.

Proposition 4.9 Fix E, R > 0 sufficiently small. Then the map �
(α)
1 : �in

1 → �out
1 is

well-defined with the following properties:

(a) (Asymptotics). We have

�
(α)
1 (r1, θ1, R, ε1) =

(
�

(α)
1,r1

(r1, θ1, ε1), h(α)
θ1

(r1, θ1, ε1),
R

E
ε1, E

)
,

where

�
(α)
1,r1

(r1, θ1, ε1) = h(α)
r1

(
h(α)

θ1
(r1, θ1, ε1),

R

E
ε1, E

)
+ O

(
e−�̃/ε31

)
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where �̃ = 2�
3c0

, the constant � and the function h(α)
r1 are the same as those in

Lemma 4.6, and h(α)
θ1

(r1, θ1, ε1) = h̃(α)
θ1

(r1, θ1, ε1) mod 1, where

h̃(α)
θ1

(r1, θ1, ε1) = θ1 + (Rε1)
α−1

c0

(
1

ε12
+ O(1)

)
.

(b) (Strong contraction). The r1-component of �
(α)
1 is a strong contraction with

respect to r1. More precisely,

∂�
(α)
1,r1

∂r1
(r1, θ1, ε1) = O

(
e−�̃/ε31

)
.

The image �
(α)
1 (�in

1 ) ⊂ �out
1 is a wedge-like region about the intersection Ma

1 ∩
�out

1 .

Proof Consider an initial condition (r1, θ1, R, ε1) ∈ �in
1 . The form of the map

�
(α)
1 (r1, θ1, R, ε1) follows immediately after evaluating the solutions for θ1(t1), ρ1(t1),

and ε1(t1) at t1 = T1 using Lemma 4.8 and defining h(α)
θ1

(r1, θ1, ε1) = θ1(T1). The

expression for r1(T1) = �
(α)
1,r1

(r1, θ1, ε1) follows from Lemma 4.6. Specifically,
choosing E, R sufficiently small ensures that the initial condition (r1, θ1, R, ε1) is
contained in a fast fiber of Ma

1. It follows that

∥∥∥r1(T1) − h(α)
r1 (θ1(T1), ρ1(T1), E)

∥∥∥ = O(e−�T1)

for the constant � of Lemma 4.6. Thus r1(T1) = h(α)
r1 (θ1(T1), ρ1(T1), E)+O(e−�T1),

which yields the expression in Assertion (a) after substituting the expression for T1 in
Lemma 4.8.

Assertion (b) follows by direct differentiation. The estimate follows since
h(α)

r1 (θ1, ρ1, ε1) does not depend on r1.

Remark 4.10 Strictly speaking, the arguments above only guarantee that �(α)
1 is well-

defined for initial conditions with ε1 ∈ (0, E]. This is not problematic since we aim
to derive results for ε > 0.

4.3 Dynamics in the Rescaling Chart K2

In chart K2 we study solutions close to the extension of the centre manifold Ma
2 =

κ12(Ma
1).
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Lemma 4.11 Following the singular time rescaling ρ2dt = dt2 or equivalently, ρ2t =
t2, the desingularised equations in chart K2 are given by

r ′
2 = −a(θ2)y2 + b(θ2)r

2
2 + O(ρ2),

θ ′
2 = ρα−1

2 ,

y′
2 = −c(θ2) + O(ρ2),

ρ′
2 = 0,

(39)

where by a slight abuse of notation we now write (·)′ = d/dt2. Since 0 < ρ2 = ε � 1,
system (39) can also be viewed as a perturbation problem in (r2, θ2, y2)-space as
ρ2 → 0.

Proof This follows immediately after differentiating the defining expressions for local
K2 coordinates in (31) and applying ρ2t = t2.

In order to understand system (39), we first consider the limiting system as ρ2 → 0,
i.e.

r ′
2 = −a(θ2)y2 + b(θ2)r

2
2 ,

θ ′
2 = 0α−1,

y′
2 = −c(θ2).

(40)

There are two possibilities for the angular dynamics, depending on α, since

θ ′
2 =

{
1, α = 1,

0, α = 2.

We start with the case α = 2. In this case, we obtain a θ2-family of planar systems

r ′
2 = −ay2 + br22 ,

y′
2 = −c,

(41)

where a = a(θ2), b = b(θ2) and c = c(θ2) define (parameter dependent) positive
constants. The transformation

t2 = (abc)−1/3T2, r2 =
(ac

b2

)1/3
R2, y2 =

(
c2

ab

)1/3

Y2, (42)

leads to

dR2

dT2
= −Y2 + R2

2,

dY2

dT2
= −1,

(43)
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which is precisely the Riccati-type equation which arises within the K2 chart in
the analysis of the regular fold point in Krupa and Szmolyan (2001a). For each
fixed θ ∈ R/Z, solutions to system (43) (and therefore also (41)) can be written
in terms of Airy functions, whose asymptotic properties are known (Grasman 1987;
Mishchenko et al. 1975). The properties that are relevant for our purposes are collected
inMishchenko et al. (1975) and reformulated in a notation similar to ours in Krupa and
Szmolyan (2001a). The following result is a direct extension of the latter formulation;
we simply append the existing result with the decoupled angular dynamics induced
by the equation for θ2.

Proposition 4.12 Fix α = 2 and consider the restricted system (39) |ρ2=0 or, equiva-
lently, the limiting system (40). The following assertions are true:

(a) Every orbit approaches a two-dimensional horizontal asymptote/plane y2 = yr

from y2 > yr as r2 → ∞. The value of yr depends on the initial conditions.
(b) There exists a unique, invariant two-dimensional surface

γ2:=
{(

r2, θ2, h(2)
y2 (r2), 0

)
: r2 ∈ R, θ2 ∈ R/Z

}
, (44)

where h(2)
y2 (r2) is smooth with asymptotics

h(2)
y2 (r2) = b

a
r22 + c

2b

1

r2
+ O

(
1

r42

)
as r2 → −∞,

h(2)
y2 (r2) = −

(
c2

ab

)1/3

�0 + c

b

1

r2
+ O

(
1

r32

)
as r2 → ∞,

and �0 is the constant defined in Theorem 3.2.
(c) All orbits with initial conditions to the right of γ2 in the (r2, y2)-plane are back-

wards asymptotic to the paraboloid {(r2, θ2, (b/a)r22 , 0) : r2 ≥ 0, θ2 ∈ R/Z}.
(d) All orbits with initial condition to the left of γ2 in the (r2, y2)-plane are backwards

asymptotic to a horizontal asymptote/plane y2 = yl . Specifically, y2(t2) → yl

from below and r2(t2) → −∞ as t2 → −∞. The value of yl depends on the
initial conditions, but satisfies yl > yr for each fixed orbit.

(e) The unique centre manifold N a
1 described in Lemma 4.6 coincides with the surface

γ2 where K1 and K2 overlap, i.e. κ12(N a
1) = γ2 on {y2 > 0}.

Proof See Mishchenko et al. (1975) and in particular (Krupa and Szmolyan 2001a,
Prop. 2.3), which cover Assertions (a)–(d) in the planar case, for the transformed
system (43). The corresponding statements for system (41) can be obtained directly
from these results using the transformation in (42). Since the angular variable θ2 =
const . when α = 2, Assertions (a)–(d) are obtained as higher-dimensional analogues
from these results after a simple rotation through θ2 ∈ [0, 1).

Assertion (e) is a straightforward adaptation of Krupa and Szmolyan (2001a,
Prop. 2.6 Assertion (5)).
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The Riccati dynamics described in Proposition 4.12 are sketched for the decoupled
planar system (41) in Fig. 12, and for the three-dimensional limiting system (40) in
Fig. 13.

We now consider the case α = 1, for which system (40) can be written as the
non-autonomous planar system

r ′
2 = −ã(t2)y2 + b̃(t2)r

2
2 ,

y′
2 = −c̃(t2),

(45)

where the functions

ã(t2):=a(θ2(0) + t2 mod 1), b̃(t2):=b(θ2(0) + t2 mod 1),

c̃(t2):=c(θ2(0) + t2 mod 1),

are smooth, positive and 1-periodic in t2 due to the positivity and 1-periodicity of a(θ),
b(θ) and c(θ); recall Proposition 2.5. Using

y2(t2) = y2(0) − ϕ(t2), ϕ(t2):=
∫ t2

0
c̃(ξ) dξ, (46)

we may write (45) as a Riccati equation

dr2
dt2

= ã(t2)(ϕ(t2) − y2(0)) + b̃(t2)r
2
2 . (47)

We now define the constants

A− := inf
t2∈[0,1)

ã(t2)

c̃(t2)
, A+:= sup

t2∈[0,1)
ã(t2)

c̃(t2)
,

B− := inf
t2∈[0,1)

b̃(t2)

c̃(t2)
, B+:= sup

t2∈[0,1)
b̃(t2)

c̃(t2)
, (48)

and use equation (47) in the derivation of the following result.

Proposition 4.13 Fix α = 1 and consider the restricted system (39) |ρ2=0 or, equiv-
alently, the limiting system (40). For sufficiently small but fixed E, R > 0, solutions
with initial conditions

(r2(0), θ2(0), y(0), 0) ∈ �̃in
2 :=

{(
r2, θ2, E−2, 0

)
: r2 ∈ [β−/E R, β+/E R], θ2 ∈ R/Z

}

reach the set

�̃out
2 :=

{(
E−1, θ2, y2, 0

)
: θ2 ∈ R/Z, y2 ∈ [−νE−2, νE−2]

}
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Fig. 12 Dynamics of the Riccati equation (41) in the (r2, y2)-plane for α = 2 and a fixed choice of
θ2 (θ2 is a parameter when α = 2 and ρ2 = 0). A qualitatively similar figure is obtained for each
θ2 ∈ R/Z. The distinguished solution γ2 with asymptotics described by Proposition 4.12 is shown in red.
The parabola y2 = (b(θ2)/a(θ2))r

2
2 which separates solutions with different asymptotic properties is also

shown. Projections of the entry and exit sections �in
2 and �out

2 are shown in yellow and cyan, respectively
(Color figure online)

Fig. 13 Geometry and dynamics of the limiting Riccati equation (39)|ρ2=0 (or equivalently (40)) in
(r2, θ2, y2)-space. The two-dimensional surface γ2 is shown in shaded red and coincides with the extension
of the two-dimensional centre manifold N a

1 described in Lemma 4.6 into chart K2 according to Proposi-

tion 4.12Assertion (e). The evolution of initial conditions in�in
2 up to�out

2 is described by Proposition 4.16,

which implies that the image�
(2)
2 (�in

2 ∩ Ma
1) ⊂ �out

2 , shown here in green, is contained within the surface

defined by the graph y2 = −(c2(θ2)/(a(θ2)b(θ2)))
1/3�0 + E over θ2 ∈ R/Z (see also Lemma 4.17)

(Color figure online)
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in finite time, where ν > 0 is a constant. In particular, we have that κ12(N a
1∩�out

1 ) ⊂
�̃in

2 ∩ {r2 ∈ (β−/E R, β+/E R)}, where N a
1 is the unique centre manifold described

in Lemma 4.6.

Proof The idea is to bound solutions to the Riccati equation (47) between upper and
lower solutions with known asymptotics as r2 → ∞. Specifically, upper and lower
solutions will be obtained as concatenations of solutions to Riccati equations of the
form

dr2
dt2

= c̃(t2)
(
λ(ϕ(t2) − y2(0)) + μr22

)
, (49)

where λ,μ 	= 0 are suitably chosen constants. Note that it is equivalent to compare
solutions of the two planar autonomous systems (45) and

r ′
2 = c̃(t2)(−λy2 + μr22 ),

y′
2 = −c̃(t2),

(50)

which has asymptotic properties similar to those of system (41) with a = λ, b = μ

and c = 1 (the factor of c̃(t2) does not effect the phase portrait since dr2/dy2 has no
explicit time dependence).

We start by considering solutions of system (45)with initial conditions (r2(0), E−2)

corresponding to points in �̃in
2 with r2(0) ∈ [β−/E R, β+/E R]. Our first task is

to bound the r2-component of solutions to (45) on the interval t2 ∈ [0, T0], where
T0 > 0 is the unique solution to ϕ(T0) = E−2. If a solution exists until t2 = T0 (and
has not blown up in a finite time smaller than T0), the definition of T0 corresponds
to the intersection of solutions with {y2 = 0} (recall that y2(t2) = E−2 − ϕ(t2),
see (46)). We get a left-bound to the Riccati equation (47) by identifying a lower
solution r2(t2) ≤ r2(t2). This is obtained by letting r2(t2) be a solution of (49) with
(r2(0), y2(0)) = (β−/E R, E−2) and λ,μ replaced by

λ = A+, μ = B−,

respectively. This ensures that r2(0) ≤ r2(0) and

dr2
dt2

= c̃(t2)λ(ϕ(t2) − E−2) + c̃(t2)μr2
2 ≤ ã(t2)(ϕ(t2) − E−2) + b̃(t2)r2

2 (51)

for all t2 ∈ [0, T0], as ϕ(t2) − E−2 ≤ 0 for t2 ∈ [0, T0]. Solutions of equation (49)
with λ = λ andμ = μ are described by Proposition 4.12 after a simple transformation
similar to that in (42). In particular, there exists an invariant two-dimensional surface
γ
2
with properties similar to the surface γ2, which intersects {y2 = 0}. Choosing

E and R sufficiently small guarantees that the initial condition r2(0) = β−/E R is
smaller than the r2-coordinate of the intersection γ

2
∩ {y2 = E−2}. This implies that

the solution (r2(t2), y2(t2)) also intersects {y2 = 0}. Thus, using (47), we conclude
that r2(t2) is a lower solution for r2(t2), with r2(t2) ≤ r2(t2) for all t2 ∈ [0, T0].

123



17 Page 38 of 68 Journal of Nonlinear Science (2024) 34 :17

An upper solution r2(t2)with the initial condition (r2(0), y2(0)) = (β+/E R, E−2)

can be constructed in a similar way, by identifying r2(t2) as the solution of the Riccati
equation (49) with λ,μ replaced by

λ = A−, μ = B+,

respectively. We have that r2(0) ≥ r2(0) and

dr2
dt2

= c̃(t2)λ(ϕ(t2) − E−2) + c̃(t2)μr2
2 ≥ ã(t2)(ϕ(t2) − E−2) + b̃(t2)r2

2 (52)

for all t2 ∈ [0, T0]. There are now two different possibilities, depending on whether
r2(t2) blows up in finite time for r2 → ∞ (case A), or exists up to the intersection
with {y2 = 0}, i.e. for all t2 ∈ [0, T0] (case B). Blow-up for r2 → −∞ is not
possible as solutions of equation (49) with λ = λ and μ = μ are described by
Proposition 4.12 after a simple transformation similar to that in (42). In particular, there
exists an invariant two-dimensional surface γ 2 with properties similar to the surface
γ2, which intersects {y2 = 0}. Choosing E and R sufficiently small guarantees that the
initial condition r2(0) = β+/E R is larger than the r2-coordinate of the intersection
γ 2∩{y2 = E−2}, implying that r2 cannot blow up as r2 → −∞. Hence it is sufficient
to study case A and case B in the following.

In case A, the solution r2(t2) blows up in finite time T ∗
0 < T0. The analogous

statement to Proposition 4.12 for the Riccati equation with a = λ, b = μ, c = 1
implies that (r2(t2), y2(t2)) converges to a horizontal asymptote y2 = y∗

2 , therefore
intersecting {r2 = E−1} transversally (assuming E > 0 is small enough). Using
(47), we conclude that r2(t2) ≥ r2(t2) for all t2 ∈ [0, T ∗

0 ). As y′
2 < 0 it holds

y2(t2) ≤ y∗
2 for all t2 ≥ T ∗

0 , as long as the solution of (45) exists. We show later that
r2(t2) can also be bounded by a lower solution transversally intersecting {r2 = E−1},
such that also r2(t2) transversally intersects {r2 = E−1}. By choosing E sufficiently
small such that y∗

2 E2 < ν, we can guarantee that the intersection takes place in
{r2 = E−1, y2 < νE−2}.

In case B, r2(t2) exists for all t2 ∈ [0, T0] and hence intersects {y2 = 0}. Using
(47), we can conclude that r2(t2) ≥ r2(t2) for all t2 ∈ [0, T0]. Combining this with
the results for the lower solution r2(t2), we have that

r2(t2) ≤ r2(t2) ≤ r2(t2),

on t2 ∈ [0, T0]. In particular, along y2 = 0 we have

r2(T0) ≤ r2(T0) ≤ r2(T0).

The situation is sketched in Fig. 14 for case A and in Fig. 15 for case B.
The functions r2 and r2 (the latter only in case B) do not necessarily define lower

and upper solutions when y2 < 0 (i.e. when t2 > T0), since inequalities (51) and (52)
may no longer be satisfied. We can, however, connect to different lower and upper
solutions which we denote by r̃2(t2) and r̃2(t2), respectively, with initial conditions
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r̃2(T0) = r2(T0) and r̃2(T0) = r2(T0), obtained as segments of solutions to (49) with
λ,μ replaced by

λ̃ = A−, μ̃ = B−,

and

λ̃ = A+, μ̃ = B+,

respectively. This time, we may apply Proposition 4.12 for the Riccati equation with

a = λ̃, b = μ̃, c = 1 and a = λ̃, b = μ̃, c = 1, respectively. We find that r̃2(t2),

r̃2(t2) → ∞, and that orbits of the corresponding planar systems approach horizontal
asymptotes y2 = yr± in the (r2, y2)-plane from above. Thus, r̃2(t2) and r̃2(t2) blow
up in finite time. The relation y2(t2) = E−2 − ϕ(t2) leads to the following implicit
equations for the blow-up times t±2 :

ϕ(t−2 ):=E−2 − yr− , ϕ(t+2 ):=E−2 − yr+ .

With initial conditions r̃2(T0) = r2(T0) and r̃2(T0) = r2(T0), the constructed upper

and lower solutions guarantee that r̃2(t2) ≤ r2(t2) ≤ r̃2(t2) for all t2 ∈ [T0, t+2 ], see
Fig. 15. Consequently there exists tc

2 ∈ [t+2 , t−2 ], such that r2(t2) → ∞ as t2 → tc
2

from below and r2(t2) crosses the hyperplane {r2 = E−1}.
In case B, choosing E sufficiently small such that ν > |yr−|E2 guarantees that

r̃2(t2) and r̃2(t2) and thus also r2(t2) transversally intersect {r2 = E−1} in the section
�̃out

2 .
In case A, choosing E sufficiently small such that such that ν > max{|yr−|, y∗}E2

guarantees that r̃2(t2) and r2(t2) and thus also r2(t2) transversally intersect {r2 = E−1}
in the section �̃out

2 .

Remark 4.14 As pointed out by an anonymous referee, the proof of Proposition 4.13
can be simplified by fixing ν ≥ 1, in which case the existence of lower solutions r2
and r̃2 and the fact that y′

2 < 0 are sufficient to show that solutions intersect �̃in
2 . The

existence of upper solutions r2 and r̃2 allows for greater control of the solutions when
ν < 1, but it is not strictly necessary for the proof of Theorem 3.2.

Propositions 4.12 and 4.13 can be used to describe the limiting behaviour of the
y2-component of the map�

(α)
2 : �in

2 → �out
2 induced by the flow of initial conditions

in

�in
2 :=

{(
r2, θ2, E−2, ρ2

)
: r2 ∈ [β−/E R, β+/E R], θ2 ∈ R/Z, ρ2 ∈ [0, E R]

}
,

which is related to the exit section in chart K1 via �in
2 = κ12(�

out
1 ), up to the exit

section

�out
2 :=

{(
E−1, θ2, y2, ρ2

)
: θ2 ∈ R/Z, y2 ∈ [−νE−2, νE−2], ρ2 ∈ [0, E R]

}
,
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Fig. 14 Case A of the Riccati dynamics for α = 1. The upper solution r2 does not intersect with {y2 = 0}
and converges to a horizontal asymptote intersecting �out

2 transversally. The lower solution r2 intersects
{y2 = 0} at r2(T0), where it connects to the lower solution r̃2, which also converges to a horizontal

asymptote intersecting �out
2 transversally. Solutions to the Riccati equation (47) with initial conditions in

κ12(N a
1 ∩ �out

1 ) ⊂ �̃in
2 are sketched in shaded red and have r2-coordinates which are bounded between r2

and r2 (r̃2 and r2) when y2 ≥ 0 (y2 ≤ 0). For fixed initial condition θ∗
2 , a sample trajectory is shown in

red (Color figure online)

Fig. 15 Case B of the Riccati dynamics for α = 1. The upper solution r2 intersects {y2 = 0} at r2(T0),
where it connects to the upper solution r̃2, which converges to a horizontal asymptote intersecting �out

2
transversally. The lower solution r2 intersects {y2 = 0} at r2(T0), where it connects to the lower solution

r̃2, which also converges to a horizontal asymptote intersecting �out
2 transversally. Solutions to the Riccati

equation (47) with initial conditions in κ12(N a
1 ∩ �out

1 ) ⊂ �̃in
2 are sketched in shaded red and have r2-

coordinates which are bounded between r2 and r2 (r̃2 and r̃2) when y2 ≥ 0 (y2 ≤ 0). For a fixed initial
condition θ∗

2 , a sample trajectory is shown in red (Color figure online)

where ν > 0 is the constant in Proposition 4.13.

Similarly to the analysis in K1, the remaining components of the image
�

(α)
2 (r2, θ2, E−2, ρ2) can be estimated directly.
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Lemma 4.15 Consider an initial condition (r2, θ2, E−2, ρ2)(0) = (r∗
2 , θ∗

2 , E−2, ρ2) ∈
�in

2 for system (39). Then

θ2(t2) = θ∗
2 + ρα−1

2 t2 mod 1,

y2(t2) =
{

E−2 − ϕ(t2) + O(ρ2t2), α = 1,

E−2 − t2(c(θ∗
2 ) + O(ρ2)), α = 2,

where c(θ∗
2 ) = const . > 0 and ϕ(t2) is the function defined in (46).

Proof The solutions are obtained by direct integration.

In the following we define the function h(α)
y2 (r2, θ2) so that (i)

�
(1)
2 (κ12(N a

1 ∩ �out
2 )) = (E−1, θ2(T2), h(1)

y2 (E−1, θ2), 0) ∈ �out
2 ,

(Proposition 4.13 guarantees the existence of this intersection), and (ii) h(2)
y2 (E−1, θ2) is

precisely the function h(2)
y2 defining the special Riccati solution in Proposition 4.12 (we

simply suppressed the parameter dependence on θ2 in the notation there). Combining
Propositions 4.12–4.13 and Lemma 4.15, we obtain the following characterisation of
the transition map �

(α)
2 : �in

2 → �out
2 , which summarises the dynamics in chart K2.

Proposition 4.16 For sufficiently small but fixed E, R > 0, �
(α)
2 : �in

2 → �out
2 is a

well-defined diffeomorphism of the form

�
(α)
2

(
r2, θ2, E−2, ρ2

) =
(

E−1, h(α)
θ2

(r2, θ2, ρ2), h(α)
y2 (E−1, θ2) + O(r2 − r2,c, ρ2), ρ2

)
,

where r2,c is the (generally θ2-dependent) r2-coordinate of the intersection κ12(N a
1 ∩

�out
1 ) ∈ �in

2 , which is defined implicitly via the relation h(α)
y2 (r2,c, θ2) = E−2, and

h(α)
θ2

(r2, θ2, ρ2) = h̃(α)
θ2

(r2, θ2, ρ2) mod 1 where

h̃(α)
θ2

(r2, θ2, ρ2) =
{

θ2 + O(1), α = 1,

θ2 + ρ2
c(θ2)

(
E−2 − h(2)

y2 (E−1, θ2)
)

+ ρ2O(r2 − r2,c, ρ2), α = 2.

Proof We start with the case α = 2 and let (r2,c, θ2, E−2, 0) denote the K2 coordinates
of the intersection γ2 ∩ �in

2 . It follows from Proposition 4.12 and Lemma 4.15 that

�
(2)
2 (r2,c, θ2, E−2, 0) =

(
E−1, θ2 + ρ2T2 mod 1, h(2)

y2 (E−1, θ2), 0
)

∈ Int �out
2 ,

where T2 > 0 is the transition time taken from �in
2 to reach �out

2 , Int �out
2 denotes the

interior of �out
2 in {E−1} ×R/Z×R×R≥0, and the containment in Int �out

2 follows

from the asymptotics h(2)
y2 (η−1, θ2) = −(c2/ab)1/3�0 + (c/b)η +O(η3) as η → 0+

in Proposition 4.12 Assertion (b) (note that a = a(θ2), b = b(θ2) and c = c(θ2)
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Fig. 16 Geometry and dynamics projected into (r2, y2, ρ2)-space for α = 2; c.f. Figs. 12 and 13. The
extension of the (projected) three-dimensional manifold Ma

2 is sketched in shaded green. The image of the

wedge-shaped region κ12(�
(2)
1 (�in

1 )) ⊂ �in
2 (recall Proposition 4.9) under �

(2)
2 is also shown in shaded

green (Color figure online)

are constant functions of the initial value θ2 here). The transition time for an initial
condition with ρ2 = 0 can be estimated using Lemma 4.15. In particular,

y2(T2) = h(2)
y2 (E−1, θ2) = y2(0) − c(θ2)T2

= E−2 − c(θ2)T2 ⇒ T2 = E−2 − h(2)
y2 (E−1, θ2)

c(θ2)
,

which implies that

�
(2)
2 (r2,c, θ2, E−2, 0)

=
(

E−1, θ2 + ρ2

c(θ2)

(
E−2 − h(2)

y2 (E−1, θ2)
)

mod 1, h(2)
y2 (E−1, θ2), 0

)
. (53)

Since the transition time T2 is finite and system (40) is a regular perturbation prob-
lem, a neighbourhood of (r2,c, θ2, E−2, 0) ∈ �in

2 is mapped diffeomorphically to a
neighbourhood of γ2 ∩�out

2 in �out
2 . The form of the map in Proposition 4.16 follows.

Now fix α = 1. In this case the transition time T2 satisfies 0 < T −
2 ≤ T2 ≤ T +

2 <

∞, where T ±
2 are the transition times associated to the lower/upper solutions used in

the proof of Proposition 4.13. The result from here follows similarly to the case α = 2,
using the fact that T2 is finite and that system (40) is a regular perturbation problem.

The extension of Ma
2 up to �out

2 , as described by Proposition 4.16, is shown in
projections onto (r2, θ2, y2)- and (r2, y2, ρ2)-space for α = 2 in Figs. 13 and 16,
respectively.

Finally we note that if α = 2, then the expression for h(2)
y2 (E−1, θ2) (and therefore

the map �
(2)
2 ) can be simplified using the following result, which can be found in

Krupa and Szmolyan (2001a).
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Lemma 4.17 For α = 2, the Riccati function h(2)
y2 defined in Proposition 4.12 satisfies

h(2)
y2

(
E−1, θ2

)
= −

(
c2

ab

)1/3

�0 + E,

where a = a(θ2), b = b(θ2) and c = c(θ2).

Proof This can be proven using the asymptotic properties of the decoupled Riccati
equation (41) described in Proposition 4.12. Since the proof does not depend on the
angular dynamics (θ2 = const . when ρ2 = 0 and α = 2), we refer to Krupa and
Szmolyan (2001a, Rem. 2.10 and Prop. 2.11).

4.4 Dynamics in the Exit Chart K3

In chart K3 we study solutions close to the extension of the manifold Ma
3 = κ23(Ma

2)

as it leaves a neighbourhood of the singular cycle Sc
0.

Lemma 4.18 Following the positive transformation of time ρ3dt = dt3, the desingu-
larised equations in chart K3 are given by

ρ′
3 = ρ3F(ρ3, θ3, y3, ε3),

θ ′
3 = ρα−1

3 εα
3 ,

y′
3 = −2y3F(ρ3, θ3, y3, ε3) + ε33(−c(θ) + O(ρ3)),

ε′
3 = −ε3F(ρ3, θ3, y3, ε3),

(54)

where F(ρ3, θ3, y3, ε3) = b(θ) − a(θ)y3 + O(ρ3).

Proof This follows after direct differentiation of the local coordinate expressions in
(31) and subsequent application of the desingularisation ρ3dt = dt3.

Except for the angular coordinate θ3, the analysis in K3 is entirely local. Specifically,
we focus on dynamics within the set

D3:= {(ρ3, θ3, y3, ε3) : ρ3 ∈ [0, R], θ3 ∈ R/Z, y3 ∈ [−ν, ν], ε3 ∈ [0, E]} ,

where E , R and ν are the same positive constants used to define the entry and exit
sections in charts K1 and K2. System (54) has a circular critical manifold

Q:={(0, θ3, 0, 0) : θ3 ∈ R/Z},

with the following properties.

Lemma 4.19 Consider system (54). Q is normally hyperbolic and saddle type. More
precisely, the linearisation along Q has eigenvalues

λ1 = b(θ), λ2 = 0, λ3 = −2b(θ), λ4 = −b(θ),
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Fig. 17 Geometry and dynamics withinD3, shown in (r3, ρ3, ε3)-space for α = 2. The (projection of the)
two-dimensional surface γ3 = κ23(γ2) shown in red connects to the circular saddle-type critical manifold
Q, which is indicated by the purple dot at the origin. Entry and exit sections �in

3 and �out
3 are shown

in shaded cyan and orange, respectively. The wedge-shaped region within �out
2 (shown in shaded green

in Fig. 16) is shown here in �in
3 (again in shaded green), along with its image in �out

3 under �
(2)
3 . The

projection of the three-dimensional manifold Ma
3 with base along γ3 ∪ {y3 = ε3 = 0, ρ3 ≥ 0} is also

shown (Color figure online)

and corresponding eigenvectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0,−αρα−1
3

εα−1
3 /b(θ), 0, 1), respectively.

Proof Direct calculation.

Lemma 4.19 implies the existence of local centre, stable and unstable manifolds at
Q. Specifically, there is a one-dimensional centremanifoldW c

3 (Q), a two-dimensional
stable manifold W s

3(Q), and a one-dimensional unstable manifold W u
3 (Q). The geom-

etry is sketched in different three-dimensional subspaces and projections in Figs. 17, 18
and 19.

If α = 2, we can show that the extension of the surface γ2 connects to the critical
manifold Q tangentially to the cylinder spanned by the centre and weakly stable
eigenvectors.

Lemma 4.20 Fix α = 2. Then the extension of γ2 under system (54), i.e. γ3 = κ23(γ2),
connects to Q tangentially to the cylinder segment {(0, θ3, 0, ε3) ∈ D3}.
Proof Applying the change of coordinates formula in (32) together with the Riccati
asymptotics as r2 → ∞ in Proposition 4.12 Assertion (b), we obtain

κ23(γ2) ∩ D3

=
{(

0, θ3, ε
2
3

(
−
(

c2

ab

)1/3

�0 + c

b
ε3 + O(ε33)

)
, ε3

)
: θ3 ∈ R/Z, ε3 ∈ [0, E]

}
,

where a = a(θ3), b = b(θ3) and c = c(θ3) are constant (θ ′
3 = 0 in {ρ3 = 0}), which

converges to the critical manifold Q tangentially to {(0, θ3, 0, ε3) ∈ D3} as ε3 → 0.
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Having described the geometry forα = 2,we turn our attention to the characteristics
of the map �

(α)
3 : �in

3 → �out
3 induced by the flow of initial conditions in

�in
3 := {(ρ3, θ3, y3, E) ∈ D3} ,

which corresponds to the exit section �out
2 in chart K2 via �in

3 = κ23(�
out
2 ), up to the

exit section

�out
3 := {(R, θ3, y3, ε3) ∈ D3} ,

which is precisely the representation of the exit section�out
ε defined in (29) after blow-

up in chart K3 if we set y0 = R2ν. Similarly to the K3 analysis for the regular fold
point in Krupa and Szmolyan (2001a), �

(α)
3 can be analysed directly after a second

positive transformation of time F(ρ3, θ3, y3, ε3)dt3 = dt̃3, which amounts to division
of the right-hand side in system (54) by F(ρ3, θ3, y3, ε3) (which is strictly positive in
D3). This leads to the orbitally equivalent system

ρ′
3 = ρ3,

θ ′
3 = ρα−1

3 εα
3

b(θ3) − a(θ3)y3 + O(ρ3)
= ρα−1

3 εα
3

b(θ3)
+ O(ρα−1

3 εα
3 y3, ρ

α
3 εα

3 ),

y′
3 = −2y3 + ε33(−c(θ3) + O(ρ3))

b(θ3) − a(θ3)y3 + O(ρ3)
= −2y3 − ε33

c(θ3)

b(θ3)
+ O(ε33 y3, ρ3ε

3
3),

ε′
3 = −ε3,

(55)

where by a slight abuse of notation the prime notation now refers to differentiation
with respect to t̃3.

System (55) is used to obtain the following result.

Proposition 4.21 Fix ν > 0 and E, R > 0 sufficiently small. Then the map �
(α)
3 :

�in
3 → �out

3 is well-defined and given by

�
(α)
3 (ρ3, θ3, y3, E) =

(
R, h(2)

θ3
(ρ3, θ3, y3), h(α)

y3 (ρ3, θ3, y3),
E

R
ρ3

)
.

We have that h(α)
θ3

(ρ3, θ3, y3) = h̃(α)
θ3

(ρ3, θ3, y3) mod 1, where

h̃(α)
θ3

(ρ3, θ3, y3) =
⎧⎨
⎩

θ3 + O
(
ln
(
ρ−1
3

))
, α = 1,

θ3 + O
(
ρ3 ln

(
ρ−1
3

))
, α = 2.
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Fig. 18 Geometry and dynamics within the invariant hyperplane {ρ3 = 0} with α = 2, projected into
(y3, θ3, ε3)-space; c.f. Fig. 17 (Color figure online)

Fig. 19 Geometry and dynamics within the invariant hyperplane {ε3 = 0} with α = 2, projected into
(y3, θ3, ρ3)-space; c.f. Figs. 17 and 18 (Color figure online)

Moreover, there exist constants σ− < σ+ such that in case α = 1 we have

(
−ν + σ−E3

)
(1 + O(ρ3))

(ρ3

R

)2 ≤ h(1)
y3 (ρ3, θ3, y3)

≤
(
ν + σ+E3

)
(1 + O(ρ3))

(ρ3

R

)2
. (56)

In case α = 2 we have

h(2)
y3 (ρ3, θ3, y3) =

(
y3 − E3

) (ρ3

R

)2 + O
(
ρ3
3 ln

(
ρ−1
3

))
.

123



Journal of Nonlinear Science (2024) 34 :17 Page 47 of 68 17

Proof. We start with the case α = 2, and consider solutions of system (55) which
satisfy (ρ3, θ3, y3, ε3)(0) = (ρ∗

3 , θ
∗
3 , y∗

3 , E) ∈ �in
3 and (R, θ3, y3, ε3)(T3) ∈ �out

3
for some T3 > 0. The equations for ρ3 and ε3 can be solved directly, leading to
ρ3(t̃3) = ρ∗

3 e
t̃3 and ε3(t̃3) = Ee−t̃3 , and the boundary constraint ρ3(T3) = R leads to

the following expression for the transition time:

T3 = ln

(
R

ρ∗
3

)
. (57)

It follows that ε3(T3) = Eρ∗
3/R, as required. We need to estimate y3(T3) and θ3(T3)

at t̃3 = T3. Since α = 2, we have that

θ ′
3 = ρ∗

3

(
E2e−t̃3 (b(θ3) − a(θ3)y3 + O(ρ3))

)−1
.

One can show with direct estimates that the term in parentheses is uniformly bounded
by a positive constant, which implies that

ρ∗
3ζ− t̃3 ≤ θ̃ (t̃3) − θ∗

3 ≤ ρ∗
3ζ+ t̃3,

for all t̃3 ∈ [0, T3], where ζ+ ≥ ζ− > 0 and θ̃3 is defined via θ3(t̃3) = θ̃3(t̃3) mod 1.
Using ρ3(t̃3) = ρ∗

3 e
t̃3 , it follows that θ̃3 can be written in terms of ρ3; specifically, we

obtain

θ̃3(ρ3) = θ∗
3 + O

(
ρ∗
3 ln

(
ρ3

ρ∗
3

))
, (58)

where we permit a slight abuse of notation in switching the argument from t̃3 to ρ3.
Substituting ρ3(t̃3) = ρ∗

3 e
t̃3 and evaluating the resulting expression at t̃3 = T3 yields

the desired estimate for θ3(T3) = h̃(2)
θ3

(ρ3, θ3, y3) mod 1.
It remains to estimate y3(T3). It will be helpful to use (58) in order to write

a(θ3) = a3 + O
(

ρ∗
3 ln

(
ρ3

ρ∗
3

))
, b(θ3) = b3 + O

(
ρ∗
3 ln

(
ρ3

ρ∗
3

))
,

c(θ3) = c3 + O
(

ρ∗
3 ln

(
ρ3

ρ∗
3

))
, (59)

where a3 = a(θ∗
3 ), b3 = b(θ∗

3 ) and c3 = c(θ∗
3 ). From here, we use and adaptation of

the ‘partial linearisation’ method used in the proof of Krupa and Szmolyan (2001a,
Prop. 2.11). Define a new variable ε̃3 = ε33, and consider the resulting equations within
the invariant hyperplane {ρ3 = 0}:

θ ′
3 = 0,

y′
3 = −2y3 − c3

b3
ε̃3 + O(y3ε̃3),

ε̃′
3 = −3ε̃3,

(60)

123



17 Page 48 of 68 Journal of Nonlinear Science (2024) 34 :17

which may be considered as a θ∗
3 -family of planar systems in the (y3, ε̃3) variables,

with constants a3, b3 and c3 depending on the parameter θ∗
3 . Since the Jacobian at the

equilibrium (0, 0) is hyperbolic and non-resonant with the eigenvalues −2 and −3,
there exists a parameter-dependent, near-identity transformation of the form

ỹ3 = ψ(y3, ε̃3, θ
∗
3 ) = y3 + O(y3ε̃3), y3 = ψ̃(ỹ3, ε̃3, θ

∗
3 ) = ỹ3 + O(ỹ3ε̃3), (61)

such that the transformed system has been linearised, i.e.

ỹ′
3 = −2 ỹ3 − c3

b3
ε̃3,

ε̃′
3 = −3ε̃3,

(62)

see e.g. Il’yashenko and Yakovenko (1991, Thm. 1). Applying transformation (61) to
system (55) and using (59) leads to

ρ′
3 = ρ3,

θ ′
3 = ρ3ε

2
3

b(θ3)
+ O(ρ3ε

2
3 ỹ3, ρ

2
3ε

2
3),

ỹ′
3 = −2 ỹ3 − c3

b3
ε33 + ε33ρ3H(ρ3, θ3, ỹ3, ε3),

ε′
3 = −ε3,

(63)

where the remainder function H(ρ3, θ3, ỹ3, ε3) is smooth and uniformly bounded over
t̃3 ∈ [0, T3]. Substituting the solutions for ρ3(t̃3) and ε3(t̃3) into the equations for θ3
and ỹ3 in system (63) leads to the planar non-autonomous system

θ ′
3 = ρ∗

3 E2

b(θ3)
e−t̃3 + ρ∗

3O(ỹ3e
−t̃3 , ρ∗

3 ),

ỹ′
3 = −2 ỹ3 − c3

b3
E3e−3t̃3 + ρ∗

3 E3e−2t̃3 H(ρ∗
3 e

t̃3 , θ3, ỹ3, Ee−t̃3).

Now introduce a new time-dependent variable z3 via

ỹ3(t̃3) =
(

y∗
3 − E3 + z3(t̃3)

)
e−2t̃3 + c3

b3
E3e−3t̃3 .

Differentiating ỹ3(t̃3) and using ρ3(t̃3) = ρ∗
3 e

t̃3 leads to the following ODE in z3:

z′
3 = ρ∗

3 E3 H̃
(
ρ∗
3 , θ3, y∗

3 , z3, t̃3
)
,

with H̃(ρ∗
3 , θ3, y∗

3 , z3, t̃3):=H(ρ∗
3 e

t̃3 , θ3, (y∗
3−E3+z3(t̃3))e−2t̃3+(c3/b3)E3e−3t̃3 , Ee−t̃3)

and initial condition z3(0) = 0. One can show that H̃
(
ρ∗
3 , θ3, y∗

3 , z3, t̃3
)
is uniformly
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bounded over t̃3 ∈ [0, T3], so that integration gives

z3(t̃3) = O(ρ∗
3 t̃3) �⇒ z3(T3) = O

(
ρ∗
3 ln

(
1

ρ∗
3

))
.

Changing variables back to ỹ3 and evaluating at t̃3 = T3 yields

ỹ3(T3) = (y∗
3 − E3 + z3(T3))e

−2T3 + c3
b3

E3e−3T3

= (y∗
3 − E3)

(
ρ∗
3

R

)2

+ O
(

(ρ∗
3 )

3 ln

(
1

ρ∗
3

))
,

and therefore

y3(T3) = (y∗
3 − E3)

(
ρ∗
3

R

)2

+ O
(

(ρ∗
3 )

3 ln

(
1

ρ∗
3

))

as required.

Now fix α = 1. The fact that θ̃3(T3) = O(ln ρ∗
3
−1) follows from direct estimates

using the boundedness of the right-hand side of the equation for θ ′
3 and the expression

for the transition time T3 in (57). It remains to bound y3(T3). Note that we cannot apply
the same partial linearisation approach aswe did forα = 2, since θ3 is dynamic (i.e. not
constant) in {ρ3 = 0}. We can, however, obtain a coarser estimate via a more direct
approach. Notice that for sufficiently small E we have y′

3|y3=−ν > 0 and y′
3|y3=ν < 0.

It follows that �
(1)
3 is well-defined, since solutions are inflowing along the faces of

D3 defined by {y = ±ν} for all t̃3 ∈ [0, T3]. Moreover, there exist constants σ− < σ+
such that

−2y3 + σ−ε33 ≤ y′
3 ≤ −2y3 + σ+ε33,

for all y ∈ [−ν, ν] and ε3 ∈ [0, E]. Substituting ε3(t̃3) = Ee−t̃3 and solving the
first-order linear equations

y±
3

′ + 2y±
3 = σ±E3e−3t̃3 ,

we obtain lower and upper solutions on t̃3 ∈ [0, T3] with the property that

y−
3 (t̃3) =

(
−ν + σ−E3

)
e−2t̃3 − σ−E3e−3t̃3 ≤ y3(t̃3) ≤ y+

3 (t̃3)

=
(
ν + σ+E3

)
e−2t̃3 − σ+E3e−3t̃3 .
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Evaluating these expressions at t̃3 = T3 = ln(R/ρ∗
3 ) yields

(
−ν + σ−E3

) (
1 + O(ρ∗

3 )
) (ρ∗

3

R

)2

≤ y3(T3) ≤
(
ν + σ+E3

) (
1 + O(ρ∗

3 )
) (ρ∗

3

R

)2

.

Note that systems (54) and (55) are orbitally equivalent. Since the result in Propo-
sition 4.21 only depends on the initial condition in �in

3 , and not on the transition time,
it holds for both systems (54) and (55).

Remark 4.22 Similarly to the arguments used to describe the map �
(α)
1 in proof of

Proposition 4.9, the arguments used to describe the map �
(α)
3 in Proposition 4.21

are (strictly speaking) only valid for initial conditions with ρ3 ∈ (0, R]. This is not
problematic since we aim to derive results for ε > 0. Moreover,�(α)

3 can be smoothly
and uniquely extended to ρ3 = 0.

4.5 Proof of Theorem 3.2

We now combine the results obtained in the charts K1, K2 and K3 in order to prove
Theorem 3.2. The idea is to describe the extended map π

(α)
ε : �in

ε → �out
ε defined

in Section 4.1, the first three components of which coincide with components of
π(α) : �in → �out, via its preimage in the blown-up space:

�(α):=�
(α)
3 ◦ κ23 ◦ �

(α)
2 ◦ κ12 ◦ �

(α)
1 : �in

1 → �out
3 .

This can be done explicitly using the change of coordinate maps κi j in Lemma 4.1

and the characterisation of �
(α)
1 , �

(α)
2 and �

(α)
3 in Propositions 4.9, 4.16 and 4.21,

respectively. The geometry is sketched in Fig. 20.
In order to prove Assertions (a)–(c), we need to derive the form of the map �(α).

Initial conditions (r1, θ1, R, ε1) ∈ �in
1 are mapped to �out

1 under �
(α)
1 as described

by Proposition 4.9. Since �in
2 = κ12(�

out
1 ), we obtain the following input for the map

�
(α)
2 :

(r2, θ2, y2, ρ2) = κ12

(
�

(α)
1 (r1, θ1, R, ε1)

)

=
(
1

E

(
h(α)

r1

(
h(α)

θ1
(r1, θ1, ε1),

R

E
ε1, E

)

+O
(
e−�̃/ε31

))
, h(α)

θ1
(r1, θ1, ε1),

1

E2 , Rε1

)
, (64)

where we recall that h(α)
θ1

(r1, θ1, ε1) = h̃(α)
θ1

(r1, θ1, ε1) mod 1,

h̃(α)
θ1

(r1, θ1, ε1) = θ1 + (Rε1)
α−1

c0

(
1

ε12
+ O(1)

)
, (65)
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and c0:=
∫ 1
0 c(θ1(t1)) dt1. Using (64), Lemma 4.1 and Proposition 4.16, we obtain an

expression for the input to the map �
(α)
3 , namely

(ρ3, θ3, y3, ε3) = κ23

(
�

(α)
2 (r2, θ2, y2, ρ2)

)

=
(

R

E
ε1, h(α)

θ2
(r2, θ2, ρ2) , E2h(α)

y2 (E−1, θ2) + O(ε1), E

)
, (66)

where we used the fact that r2 − r2,c = O(e−�̃/ε31 ) in the derivation of the third
component in the right-hand side, and h(α)

θ2
(r2, θ2, ρ2) = h̃(α)

θ2
(r2, θ2, ρ2) mod 1with

h̃(α)
θ2

(r2, θ2, ρ2)

=
⎧⎨
⎩

h̃(1)
θ1

(r1, θ1, ε1) + O(1), α = 1,

h̃(2)
θ1

(r1, θ1, ε1) + Rε1
c(θ2)

(
E−2 +

(
c2
ab

)1/3
�0 − E

)
+ O (ε21) , α = 2,

(67)

where c(θ2) = c
(

h(2)
θ1

(r1, θ1, ε1)
)
. With regards to the third component in (66), if

α = 1 then we have

−ν ≤ E2h(1)
y2 (E−1, θ2) ≤ ν,

where ν > 0 is the constant appearing in the definition of�out
2 (recall Proposition 4.13).

If α = 2, then by Lemma 4.17 it holds

h(2)
y2 (E−1, θ2) = −

(
c(θ2)2

a(θ2)b(θ2)

)1/3

�0 + E,

where a(θ2) = a
(

h(2)
θ1

(r1, θ1, ε1)
)
, b(θ2) = b

(
h(2)

θ1
(r1, θ1, ε1)

)
and c(θ2) =

c
(

h(2)
θ1

(r1, θ1, ε1)
)
.

Substituting the right-most expression in (66) into the expression for�(α)
3 (ρ3, θ3, y3, E)

in Proposition 4.21 yields an expression for �(α)(r1, θ1, R, ε1). We obtain

�(α)(r1, θ1, R, ε1) =
(

R, h(α)
θ3

(ρ3, θ3, y3), h(α)
y3 (ρ3, θ3, y3), ε1

)
, (68)

and specify the secondand third components in the following.Wehaveh(α)
θ3

(ρ3, θ3, y3) =
h̃(α)

θ3
(ρ3, θ3, y3) mod 1, with

h̃(α)
θ3

(ρ3, θ3, y3)

=
⎧⎨
⎩

h̃(1)
θ2

(r1, θ1, ε1) + O
(
ln ρ−1

3

)
= θ1 + 1

c0ε21
+ O(ln ε−1

1 ), α = 1,

h̃(2)
θ2

(r1, θ1, ε1) + O
(
ρ3 ln ρ−1

3

)
= θ1 + R

c0ε1
+ O(ε1 ln ε−1

1 ), α = 2,
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where we used (65) and (67) in order to obtain the right-hand side. It remains to specify
the third component in the right-hand side of (68). If α = 1, we can use the bounds in
(56) to estimate

(
−ν + σ−E3

) (ε1

E

)2 + O
(
ε31

)
≤ h(1)

y3 (ρ3, θ3, y3) ≤
(
ν + σ+E3

) (ε1

E

)2 + O
(
ε31

)

for constants ν > 0 and σ− < σ+, such that h(1)
y3 (ρ3, θ3, y3) = O(ε21). If α = 2, then

h(2)
y3 (ρ3, θ3, y3) =

(
E2h(2)

y2 (E−1, θ2) − E3
) (ε1

E

)2 + O
(
ε31 ln ε−1

1

)

= −
(

c(θ3)2

a(θ3)b(θ3)

)1/3

�0ε
2
1 + O

(
ε31 ln ε−1

1

)
,

where

a(θ3) = a
(

h(2)
θ3

(ρ3, θ3, y3)
)

= a(θ2) + O(ε1 ln ε−1
1 ),

b(θ3) = b
(

h(2)
θ3

(ρ3, θ3, y3)
)

= b(θ2) + O(ε1 ln ε−1
1 ),

c(θ3) = c
(

h(2)
θ3

(ρ3, θ3, y3)
)

= c(θ2) + O(ε1 ln ε−1
1 ),

which follows from a(θ2) = a(h(2)
θ1

(r1, θ1, ε1)), b(θ2) = b(h(2)
θ1

(r1, θ1, ε1)), c(θ2) =
c(h(2)

θ1
(r1, θ1, ε1)) together with h̃(2)

θ3
(ρ3, θ3, y3) = h̃(2)

θ1
(r1, θ1, ε1) + O(ε1 ln ε−1

1 ).
Applying the blow-down transformations defined by the local coordinate formulae

in (31) to (68) yields the map

π(α)
ε (r , θ, R2, ε) =

(
R, h(α)

θ (r , θ, ε), h(α)
y (r , θ, ε), ε

)
, (69)

for all ε ∈ (0, ε0] (the limiting value ε = 0 is omitted because the blow-down trans-
formation is only defined for ε > 0). The estimates above ‘blow-down’ to those given
in Assertion (b) in Theorem 3.2, since the map π is identified with πε after omitting
the trivial component ε �→ ε. Assertion (a) is a direct consequence of Assertion (b).

It remains to prove the strong contraction property in Assertion (c). This can be
done by differentiating the expression for�(α). LettingQ(α):=�

(α)
3 ◦κ23 ◦�

(α)
2 ◦κ12,

we obtain

∂�(α)

∂r1
(r1, θ1, R, ε1) = ∂Q(α)

∂r1

(
�

(α)
1 (r1, θ1, R, ε1)

) ∂�
(α)
1

∂r1
(r1, θ1, R, ε1),

after applying the chain rule. Direct calculations using Lemma 4.1, Propositions 4.16
and 4.21 show that (∂Q(α)/∂r1)(�

(α)
1 (r1, θ1, R, ε1)) is (at worst) algebraically grow-

ing in r1 and ε1. Since the second term (∂�
(α)
1 /∂r1)(r1, θ1, R, ε1) is exponentially
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Fig. 20 Global geometry and dynamics in the blown-up space projected into (r̄ , ȳ, ε̄)-space. The three-
dimensional manifold Ma which extends from �in

ε up to �out
ε (which are identified with �in

1 and �out
3 ,

respectively) is shown again in shaded green. Theorem 3.2 is proven by combining results obtained in charts
K1, K2 and K3: The flow from �in

1 to �out
1 is described by Proposition 4.9, the flow from �in

2 to �out
2

is described by Proposition 4.16, and the flow from �in
3 to �out

3 is described by Proposition 4.21 (Color
figure online)

small due to the strong contraction in K1, recall Proposition 4.9 Assertion (b), it
follows that

∂�(α)

∂r1
(r1, θ1, R, ε1) = O

(
e−�̃/ε31

)
,

for a constant �̃ > 0, assuming the constant E bounding ε1 is sufficiently small.
Assertion (c) in Theorem 3.2 follows for all ε ∈ (0, ε0] with ε0 sufficiently small after
applying the blow-down transformation (in particular ε1 = ε/R).

5 Applications

In this sectionwe consider semi-oscillatory dynamics near folded limit cyclemanifolds
in two different applications. Specifically, we consider

1. Periodically forced oscillators of Liénard type;
2. A toy model ‘normal form’ for the study of tipping phenomena in climate systems

proposed in Zhu et al. (2015).

The first of these will allow us to illustrate the application of the main results in Sect. 3.
The second is an example of a model exhibiting a folded limit cycle bifurcation in
the partial singular limit ε1 > 0, ε2 → 0 (recall system (5)), which violates both
Assumptions 1–2.
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5.1 Periodically Forced Oscillators

Periodically forced oscillators in mechanical and electrical engineering can often be
modelled using Liénard equations of the form

x ′′ + μ f (x)x ′ + g(x) = A(ωt), (70)

where A(ωt) = A(ωt+1) for all t ∈ R, the friction/resistance function f (x) is smooth,
and the parameters μ and ω determine the magnitude of the friction/resistance and the
frequency of the (periodic) forcing term A, respectively.

Remark 5.1 A very well-known and historically important example of a Liénard equa-
tion is the van der Pol equation (van der Pol 1920, 1926). We refer to Burke et al.
(2016), Guckenheimer et al. (2003), Haiduc (2008) for detailed geometric studies of
the (local and global) dynamics of the periodically forced van der Pol equation in a
number of frequency regimes.

We recast equation (70) as an autonomous dynamical system by (i) rescaling time
via τ = μ−1t , and (ii) introducing new variables via the Liénard transformation

y:= − μ−1x ′ + K (x), s = ωμτ,

where K (x) = − ∫ x
0 f (ξ) dξ . This leads to

ẋ = μ2 (−y + K (x)) ,

ṡ = μω,

ẏ = g(x) − A(s),

where the overdot denotes now differentiation with respect to τ . Exploiting the period-
icity property A(s +1) = A(s) in order to replace s with an angular variable θ ∈ R/Z

and rewriting the system on the (new) fast time-scale defined by t̃ = μ2τ leads to

x ′ = −y + K (x),

θ ′ = μ−1ω,

y′ = μ−2 (g(x) − A(θ)) ,

where by a slight abuse of notation, we allow the dash to denote differentiation with
respect to the new time t̃ . Our analysis applies in particular scaling regimes with
0 < μ−1ω,μ−2 � 1. Specifically, we derive results for scaling regimes defined by

εα = μ−1ωϑ−1, ε3 = μ−2, (71)

where α ∈ N+ and ϑ > 0 is a parameter such that ϑ = O(1) as ε → 0. Note that this
is equivalent to considering the scaling regimes defined by

ω = ϑμ
1− 2

3α
, α = 1, 2, . . . , 0 < μ−1 � 1. (72)
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After one more change of time-scale t̂ = ϑ t̃ , our system becomes

x ′ = −ϑ−1y + ϑ−1K (x),

θ ′ = εα,

y′ = ε3
(
ϑ−1g(x) − ϑ−1A(θ)

)
,

where by a slight abuse of notation, we now allow the dash to denote differentiation
with respect to the time t̂ . Finally, we assume the following properties of the functions
K , g and A.

Assumption 3 There exists a point xF such that

∂K

∂x
(xF ) = 0,

∂2K

∂x2
(xF ) > 0, g(xF ) − A(θ) < 0,

for all θ ∈ R/Z.

Assumption 3 implies that the critical manifold, given by S0 = {(x, θ, K (x)) : x ∈
R, θ ∈ R/Z}, contains a regular folded cycle Sc

0 = {(xF , θ, K (xF )) : θ ∈ R/Z}.
The set Sc

0 can be moved to the ‘origin’ via the coordinate translation (x̃, ỹ) = (x −
xF , y − K (xF )), which yields the system

x̃ ′ = −a(θ)ỹ + b(θ)x̃2 + O(x̃3),

θ ′ = εα,

ỹ′ = ε3 (−c(θ) + O(x̃)) ,

(73)

which is—up to relabelling (x̃, ỹ) ↔ (r , y)—in general form (22) with

a(θ) ≡ ϑ−1, b(θ) ≡ ϑ−1 1

2

∂2K

∂x2
(xF ) =: ϑ−1 1

2
K ′′(xF ),

c(θ) = −ϑ−1 (g(xF ) − A(θ)) , (74)

all of which are strictly positive due to Assumption 3. Using the same relabelling,
we define entry and exit sections �in and �out analogously to those in (23) and (24),
respectively, and let π(α) : �in → �out denote the transition map induced by the
forward flow of system (73) for a given α ∈ N+.

Theorem 5.2 Consider system (73) with fixed α ∈ N+. There exists an ε0 > 0 such
that for all ε ∈ (0, ε0], the map π(α) : �in → �out is described by Theorem 3.2 after
relabelling (x̃, ỹ) ↔ (r , y). In particular, we have

h̃(α)
θ (x̃, θ, ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ + R2

c0
ε−2 + O(ln ε), α = 1,

θ + R2

c0
ε−1 + O(ε ln ε), α = 2,

ψ(θ) + O(ε3 ln ε), α = 3,

θ + O(ε3 ln ε), α ≥ 4,
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where

c0 = −ϑ−1g(xF ) + ϑ−1
∫ 1

0
A(θ)dθ, ψ(θ) = θ + 1

2
ϑ

K ′′(xF )

A(θ) − g(xF )
R + O(R2),

and

h(α)

ỹ (θ̃ , ε) =
⎧⎨
⎩
O(ε2), α = 1,

−
(
2(g(xF )−A(θ̃ ))2

K ′′(xF )

)1/3
�0ε

2 + O(ε3 ln ε), α ≥ 2.

Proof This is a direct application of Theorem 3.2, using the notation of (73) and the
identities in (74).

Note that via (71), the results in Theorem 5.2 can be reformulated and restated for
the scaling regimes defined by (72). As for our main results in Sect. 3, the results for
scalings corresponding to semi-oscillatory dynamics (α ∈ {1, 2}) cannot be obtained
using established theory for two time-scale systems. These results are new, to the best
of our knowledge, even for the forced van der Pol example (the intermediate frequency
regime considered in Burke et al. (2016) covers the case α = 3/2).

5.2 Tipping Phenomena in Climate Systems

The authors in Zhu et al. (2015) proposed the following simple normal form for
studying early warning signs for saddle-node induced tipping in climate systems:

z′(t) = ã(t) − z2−A sin(2πωt), ã(t) = ã(0) − δ̃t,

where 0 < δ̃ � 1 and the parameters A, ω > 0 determine the amplitude, frequency
of the sinusoidal periodic forcing term, respectively. This can recast as an autonomous
system of the form

z′ = ã − z2−A sin(2πθ),

θ ′ = ω,

ã′ = −δ̃,

(75)

where θ ∈ R/Z. We shall be interested in the dynamics when 0 < δ̃, ω � 1, and
in particular the semi-oscillatory case 0 < δ̃ � ω � 1. In this case, system (75) is
oscillatory with respect to the partial singular limit ω > 0, δ̃ → 0, but stationary with
respect to the double singular limit (ω, δ̃) → (0, 0).

We are particularly interested in system (75) as a model example of a system which
violates Assumptions 1–2.

Proposition 5.3 Consider system (75) with ω > 0 fixed and 0 < δ̃ � 1. This sys-
tem has a regular fold of limit cycles at z = ã = 0. In particular, the necessary
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and sufficient conditions on the Poincaré map in (9) and (10) are satisfied; however,
Assumptions 1 and 2 are not.

Proof The fact that Assumptions 1–2 are violated follows from direct calculations on
the system obtained from (75) in the partial singular limit ω > 0, δ̃ → 0. The details
are omitted for brevity.

In order to verify the existence of a regular fold of cycles, we derive an expression
for the Poincaré map P induced on a section contained in the plane {θ = 0}. Using
the fact that

dz

dθ
= ω−1

(
ã − z2−A sin(2πθ)

)
,

dã

dθ
= −ω−1δ̃,

we obtain

P(z, ã, ω, δ̃) =
(

Pz(z, ã, ω, δ̃)

Pã(z, ã, ω, δ̃)

)
=
(

z
ã

)
+ ω−1

(∫ 1
0

(
ã(θ) − z(θ)2

)
dθ

−δ̃

)
.

This expression can be used to check the necessary and sufficient conditions in (9)
and (10) for a regular fold of cycles directly.

Our aim in what follows is to demonstrate that problems of this kind can (to a large
extent) be analysed with existing theory for two time-scale systems. We shall restrict
attention to scaling regimes defined by

δ̃ = ε3ν, ω = εα,

where ν = O(1) as ε → 0 and α ∈ N+. We shall also simplify the fast equation by
defining a new variable a:=ã−A sin(2πθ). This leads to

z′ = a − z2,

θ ′ = εα,

a′ = −2πεαA cos(2πθ) − ε3ν.

(76)

The main results for this section will describe the dynamics of system (76). Letting
ε → 0 yields the layer problem

z′ = a − z2,

θ ′ = 0,

a′ = 0.

(77)

The critical manifold is given by S0 = {(z, θ, z2) : z ∈ R, θ ∈ R/Z}, and the non-
trivial eigenvalue of the linearisation along S0 isλ = −2z. This implies a folded critical
manifold structure S0 = Sa

0 ∪ Sc
0 ∪ Sr

0, where Sa
0 = S0 ∩ {z > 0} (Sr

0 = S0 ∩ {z < 0})
is normally hyperbolic and attracting (repelling), and Sc

0 = {(0, θ, 0) : θ ∈ R/Z} is
of regular fold type.
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The reduced problem on S0 will differ depending on the scaling, i.e. depending
on the value of α. We are primarily interested in the cases α ∈ {1, 2}, for which
0 < δ̃ � ω � 1; see however Remark 5.8 below for the cases α ≥ 3. Fixing
α ∈ {1, 2}, rewriting system (76) on the slow time-scale τ = εαt , and taking the limit
ε → 0 yields the reduced problem

0 = a − z2,

θ̇ = 1,

ȧ = −2πA cos(2πθ).

(78)

This leads to the following reduced vector field on S0, expressed in the (z, θ)-
coordinate chart:

ż = −πA
z

cos(2πθ),

θ̇ = 1.
(79)

It is typical for problems of this kind to consider the so-called desingularised reduced
problem (Kuehn 2015; Szmolyan andWechselberger 2001;Wechselberger 2020). This
may be obtained after a (singular) time transformationwhich amounts tomultiplication
of the vector field by z (see again Remark 2.2), leading to

ż = −πA cos(2πθ),

θ̇ = z.
(80)

System (80) is orbitally equivalent to system (79) on S0 \ Sc
0, but the orientation of

orbits on Sr
0 (where z < 0) is reversed. Direct calculations reveal the presence of two

equilibria along Sc
0, namely

ps : (0, 1/4), pc : (0, 3/4),

which are of neutral folded saddle and folded centre type, respectively (see Szmolyan
andWechselberger 2001 for definitions), see Fig. 21. Moreover, system (80) is Hamil-
tonian, with Hamiltonian function

H(z, θ) = A
2
sin(2πθ) + z2

2
.

Except for the points ps and pc, there are three different types of orbits shown in
Fig. 21. These are identified in the following result.

Lemma 5.4 Consider the reduced problem (79). Orbits are contained within constant
level sets H(z, θ) = K ≥ −A/2, where

1. K = −A/2 corresponds to the folded centre pc.
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Fig. 21 Dynamics of the reduced problem (79) on S0, projected into the (θ, z)-plane. We sketch the case
with A = 2 and R = 1, where we recall that R > 0 is the constant used to define �in. The normally
hyperbolic and attracting (repelling) branch Sa0 (Sr0) is indicated in shaded turquoise (grey). The fold cycle
Sc0 which separates these two branches is sketched in blue. There are two folded singularities on Sc0: a neutral
folded saddle ps , and a folded centre pc . The singular true and faux canards through ps coincide in this
case (denoted γc and shown in green), forming a limit cycle of period 2, and the region bounded outside of
γc is foliated by periodic orbits of period 1. Finally, we sketch the forward evolution of an initial condition
in �in ∩ Sa0 with initial angle θ∗ ∈ I (the interval I is shown in blue), i.e. inside the region bounded by γc .
Such points reach a regular jump point on Sc0 with angle θe ∈ (3/4, 1) ∪ [0, 1/4) in finite time. ForA = 2
and R = 1 we have θl = 5/12, θr = 1/12. The initial condition in red has angle θ∗ = 5/6, for which our
results imply a jump angle of θe(θ

∗) = 11/12 (Color figure online)

2. K ∈ (−A/2,A/2) correspond to orbits that connect to the folded cycle Sc
0 in both

forward and backward time.
3. K = A/2 corresponds to two saddle homoclinic orbits in the desingularised

reduced problem (80), and a periodic orbit γc of period τ = 2 along the true and
faux canards through the neutral folded saddle ps in the reduced problem (79).

4. K > A/2 corresponds to periodic orbits of period τ = 1 outside of the region
bounded by γc.

Proof This follows from direct calculations with the desingularised reduced problem
(80) and a reversal of time on Sr

0.

We can use the information obtained above to describe the local dynamics near Sc
0.

Specifically, we want to describe the transition map π(α) : �in → �out induced by
the forward flow of system (76), where

�in:=
{
(z, θ, R2) : |z − R| ≤ β, θ ∈ R/Z

}
,

�out:= {(−R, θ, a) : θ ∈ R/Z, a ∈ [−a0, a0]} ,

for small but fixed R, β, a0 > 0. A singular transition map π
(α)
0 : �in → �out

for ε = 0 can be constructed explicitly, by concatenating solutions to the layer and
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reduced problems described above. If we choose R > 0 so that

R2 < 2A, (81)

then �in ∩ Sa
0 intersects the singular canard solution γc at the two points (R, θl) and

(R, θr ), where θl ∈ (1/4, 3/4] and θr ∈ [3/4, 0) ∪ [0, 1/4) solve

sin(2πθl,r ) = 1 − R2

A ,

see Fig. 21. Let I ⊂ R/Z denote the interior of the interval between θl and θr which
is contained within the region bounded by γc. Different types of singular orbits can
be constructed depending on whether or not one starts with an initial angle θ ∈ I,
θ ∈ {θl , θr } or θ /∈ I.

Consider an initial condition (z∗, θ∗, R2) ∈ �in with θ∗ ∈ I. This is mapped by
the layer flow of system (77) to the point (R, θ∗, R2) ∈ �in ∩ Sa

0. Since θ∗ ∈ I, the
point (R, θ∗, R2) lies on an orbit of the desingularised reduced problem (80) which is
contained within a level curve H(z, θ) = K ∈ (−A/2,A/2). In fact, one can show
directly that

K = K (θ∗):=A
2
sin(2πθ∗) + R2

2
. (82)

Lemma 5.4 implies that the forward evolution of (R, θ∗, R2) under the reduced
problem (79) reaches Sc

0 at a regular jump point (0, θe(θ
∗), 0), where θe(θ

∗) ∈
(3/4, 1) ∪ [0, 1/4). In fact, the value of θe can be calculated explicitly using

H(0, θe) = A
2
sin(2πθe) = K (θ∗), θe(θ

∗) ∈ (3/4, 1) ∪ [0, 1/4). (83)

Note that the containment condition on the right ensures that θe(θ
∗) is uniquely deter-

mined, i.e. that the function θe : I → (3/4, 1) ∪ [0, 1/4) is well-defined. Since
(0, θe(θ

∗), 0) ∈ Sc
0 is a (classical) regular jump point, we can connect to the layer flow

of system (77) and map it to the point (−R, θe(θ
∗), 0) ∈ �out. Thus we have shown

that for all initial conditions with (z∗, θ∗, R2)with θ∗ ∈ I, the singular transition map
is

π
(α)
0 (z∗, θ∗, R2) = (−R, θe(θ

∗), 0
)
,

where θe(θ
∗) is uniquely determined by expressions (82) and (83).

Now consider an initial condition (z∗, θ∗, R2) ∈ �in with θ∗ /∈ I. In this case the
point (z∗, θ∗, R2) is mapped via the layer flow to (R, θ∗, R2) ∈ Sa

0, but this point lies
on an orbit of the reduced problem with H(z, θ) ≥ A/2. Specifically, if θ∗ ∈ {θl , θr },
then (R, θ∗, R2) ∈ γc. The map π

(α)
0 is multi-valued in this case, since every point on

γc ∩ Sr
0 can be concatenated with an orbit segment of the layer problem. In particular,

π
(α)
0 (z∗, θl,r , R2) = {(−R, θ,A (1 − sin(2πθ))) : θ ∈ R/Z} .
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If θ∗ /∈ I, then (R, θ∗, R2) lies on a periodic orbit of the reduced problem which
is bounded above γc. In this case solutions never leave Sa

0, and the map π
(α)
0 is not

defined.

The following result describes the perturbation of singular orbits with initial con-
ditions in the sector defined by requiring that θ ∈ I.

Proposition 5.5 Consider system (76) with α ∈ {1, 2}, assume the constant R which
defines �in satisfies (81), and let

�̃in:={(z, θ, R2) ∈ �in : θ ∈ J1},

for a closed interval J1 ⊂ I. There exists an ε0 > 0 such that for all ε ∈ (0, ε0), the
restricted map π̃ (α):=π(α)|�̃in : �̃in → �out is well-defined and given by

π̃ (α)(z, θ, R2) =
(
−R, π̃

(α)
θ (z, θ, ε), π̃ (α)

a (z, θ, ε)
)

,

where

π̃
(α)
θ (z, θ, ε) = θe(θ) + O(εα ln ε), π̃ (α)

a (z, θ, ε) = O(ε2α/3),

π̃ (α) → π
(α)
0 |�̃in as ε → 0, and θe(θ) is uniquely determined by equations (82) and

(83). Explicitly,

θe(θ) = 1

2π
arcsin

(
sin(2πθ) + R2

A
)

, θ ∈ (3/4, 1) ∪ [0, 1/4). (84)

Proof Consider the forward evolution of initial conditions (z∗, θ∗, R2) ∈ �̃in under
system (76). By Fenichel theory, such solutions are initially attracted at an exponen-
tial rate to the Fenichel slow manifold Sa

ε which perturbs from Sa
0, after which they

remain O(εα)-close to solutions of the reduced vector field induced by system (78)
until reaching a neighbourhood of the regular jump point (−R, θe(θ

∗), 0). The local
dynamics near (−R, θe(θ

∗), 0) are governed by the system

z′ = a − z2,

θ ′ = εα,

a′ = εα
(
−2πA cos(2πθe(θ

∗)) + O((θ − θe(θ
∗))2, ε3−α)

)
,

where cos(2πθe(θ
∗)) > 0 since θe(θ

∗) ∈ (3/4, 1) ∪ [0, 1/4). Direct calculations ver-
ify that this is a stationary two time-scale problem with a regular fold curve passing
through the point (0, θ∗, 0). This observation allows for a derivation of the desired
result using a slight adaptation of the well-known result in Szmolyan and Wechsel-
berger (2004).
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Proposition 5.5 describes regular jump-type dynamics for solutions with initial
conditions in �̃in, which can be chosen arbitrarily close to�in|θ∈I by decreasing ε0 if
necessary. It isworthy to note that the leading-order approximation for the ‘jump angle’
π̃

(α)
θ (z, θ, ε) ∼ θe(θ) can be calculated explicitly as a function of the initial angle using

(84). It is also worthy to note that for α ∈ {1, 2} we have π̃
(α)
a (z, θ, ε) = O(ε2α/3),

in contrast to the O(ε2) estimates for the parameter drift in Theorem 3.2. This is
a consequence of the fact that the ‘parameter drift’ in system (76) in a occurs on
the intermediate, rotational time-scale. This is not the case for systems satisfying
Assumptions 1–2.

We may also consider the case in which initial conditions are chosen ‘higher up’,
in an annular section

�in:=
{
(z, θ, ρ2) : |z − R| ≤ β, θ ∈ R/Z

}

where the constant ρ > 0 satisfies

ρ2 > 2A > R2, (85)

c.f. equation (81). A subset of solutions with initial conditions in �in are described by
the following result.We formulate it in terms of the transitionmap�(α) : �in → �out.

Proposition 5.6 Consider system (76) with α ∈ {1, 2}, assume the constant ρ which
defines �in satisfies (85), and let

�̃in:={(z, θ, ρ2) ∈ �in : θ ∈ J2},

where J2 := {θ ∈ R/Z : T (θ, ε) ∈ J1}, where J1 ⊂ I is the interval from Proposi-
tion 5.5, and T (θ, ε) is the minimal positive solution of the transcendental equation

ρ2 + A sin(2πθ) − R2 = ε3νT + A sin(2π(θ + εαT )). (86)

Then there exists an ε0 > 0 such that for all ε ∈ (0, ε0), the restricted transition map
�̃(α):=�(α)|�̃in : �̃in → �out is given by

�̃(α)(z, θ, ρ2) =
(
−R, θe(θ + εαT (θ, ε) mod 1) + O(εα ln ε),O(ε2α/3)

)
.(87)

Proof The idea is to consider �̃(α) as a composition �̃(α) = π̃ (α) ◦ π̂ (α), where π̃ (α)

is the local transition map described in Proposition 5.5 above and π̂ (α) : �̃in → �̃in.
The (θ ′, a′) system decouples from system (76), and can be solved directly.We obtain

θ(t) = θ∗+εαt mod 1, a(t)=ρ2 + A (sin(2πθ∗)− sin(2π(θ∗+εαt))
)− ε3νt,

for all t ∈ R, where θ∗ = θ(0). The transition time T = T (θ∗, ε) > 0 is determined
implicitly as the first positive solution of a(T ) = R2, i.e. of the transcendental equation
(86). The estimate for z(T ) follows from Fenichel theory, which implies that the
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attracting slow manifold Sa
ε which perturbs from Sa

0 can be written as a graph z =
ϕε(θ, a) = √

a +O(εα) in this regime (normal hyperbolicity is guaranteed by the fact
that a(t) ≥ R2 > 0 for all t ∈ [0, T (θ, ε)]).

The preceding arguments imply that

π̂ (α)(z, θ, ρ2) =
(
ϕε(θ(T ), R2) + O(e−κ/εα

), θ(T ), R2
)

.

Since the domain of π̂ (α) is �̃in, we have that θ(T ) = θ(T (θ∗, ε)) ∈ J1, where
J1 ⊂ I is the interval from Proposition 5.5. Thus the composition �̃(α) = π̃ (α) ◦ π̂ (α)

is well-defined and, using Proposition 5.5, given by (87).

Remark 5.7 Due to the transcendental nature of equation (86), a closed-form expres-
sion for the function T = T (θ, ε) can only be given in terms of special functions.
Nevertheless, for any given θ , T (θ, ε) be calculated to arbitrary precisionwith standard
numerical methods (e.g. Newton or bisection methods).

Propositions 5.5 and 5.6 describe solutions of ‘regular jump type’, but they do not
explain what happens to solutions with initial conditions in �in\J1. This corresponds
to a set of initial conditions that is ‘small’ in these sense that the diameter of the interval
[0, 1) \ I tends to zero as R → 0, but for fixed R > 0 it is still O(1) with respect to
ε → 0. Moreover, this set contains solutions close to the singular canard γc, which are
expected to play an important role in determining the qualitative dynamics (Szmolyan
and Wechselberger 2001). A detailed description of the dynamics in this case is left
for future work.

Remark 5.8 For α ≥ 3, the dynamics can be analysed and understood entirely with
established theory for two time-scale systems. The case α = 3 is non-trivial, and
features a degenerate bifurcation in the desingularised reduced problem as the folded
saddle ps and neutral folded centre pc collide and annihilate at a particular value of
the forcing A = Ac > 0. For A < Ac, the folded cycle Sc

0 is regular, i.e. there are no
folded singularities. For α ≥ 4, Sc

0 is always regular. A direct application of the results
in Szmolyan and Wechselberger (2004) in this case yields an explicit expression for
the transition map:

π(α)
(

z, θ, R2
)

=
(
−R, θ + O(εα ln ε),O(ε2α/3)

)
, α ≥ 4.

Remark 5.9 The local geometry and dynamics near the fold lines/circles in the forced
van der Pol system considered in e.g. Burke et al. (2016), Guckenheimer et al. (2003),
Haiduc (2008) are characterised by alternation of folded saddles and folded focus sin-
gularities, in contrast to the alternation of folded saddle and folded centre singularities
in Fig. 21. Nevertheless, there are many similarities, including the fact that the image
of Sa

ε on �out is non-circular as ε → 0, due to the folded saddles. This feature, which
is not present for the systems described by Theorem 3.2, is utilised in the construction
of horseshoes in the forced van der Pol system (Haiduc 2008).
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6 Summary and Outlook

GSPT is an established and powerful tool for the analysis of stationary fast–slow
systems, particularly when combined with the blow-up method. The corresponding
theory for oscillatory fast–slow systemswhich possess a limit cyclemanifold instead of
(or in addition to) a critical manifold is less developed, despite the fact that oscillatory
systems are common in applications. One reason for this appears to be that the theory
for stationary fast–slow systems, notably Fenichel–Tikhonov theory and the blow-
up method, depend on quasi-equilibrium properties possessed by stationary but not
oscillatory fast–slow systems. The main purpose of this article has been to show that
both Fenichel–Tikhonov theory and the blow-up method can be applied to study the
dynamics of a class of multiple time-scale systems with three or more time-scales,
as long as the angular/rotational dynamics are sufficiently slow relative to the radial
dynamics. The class of systems considered, namely those in general form (4), contains
a ‘semi-oscillatory’ class of systems that are oscillatory with respect to the partial
singular limit ε1 > 0, ε2 → 0, but stationary with respect to the double singular limit
(ε1, ε2) → (0, 0). Although our approach is not applicable in the purely oscillatory
case, our analysis showed that Fenichel–Tikhonov theory and the blow-up method can
be applied directly in the semi-oscillatory case.

More concretely, we focused on the dynamics near a (three time-scale) global
singularity corresponding to a kind of folded cycle bifurcation in the layer problem
obtained in the partial singular limit. In order to do so we derived a prototypical sys-
tem for the three time-scale global singularity near the non-hyperbolic cycle Sc

0, recall
Proposition 2.5, and studied the transition map induced by the flow. Our main result
is Theorem 3.2, which is stated for system (22), which provides a rigorous character-
isation of the asymptotic and strong contraction properties of the flow near Sc

0. The

asymptotics h(α)
y (θ, ε) = O(ε2) and the strong contraction property are the same as for

the stationary regular fold point studied in Krupa and Szmolyan (2001a), Mishchenko
et al. (1975), Szmolyan and Wechselberger (2004), not only in the semi-oscillatory
cases α ∈ {1, 2} considered herein in detail, but for all α ∈ N+. The semi-oscillatory
cases α ∈ {1, 2} are distinguished from the cases α ≥ 3 by the fact that the leading-
order estimates for h(α)

y (θ, ε) are, in general, non-constant functions of θ . We derived
an explicit expression for the leading-order estimate in terms of the functions a(θ),
b(θ) and c(θ) appearing in system (22) when α = 2 in particular. In addition, we
provided detailed estimates for the exit angle, recall (25), as well as estimates for the
total number of rotations about the y-axis as solutions traverse the region between�in

and �out, recall Corollary 3.3. Theorem 3.2 is proved using the blow-up method in
Sect. 4, thereby demonstrating the applicability of geometric blow-up techniques to
study global singularities of limit cycle type in suitable classes of three time-scale sys-
tems. We focused on a detailed presentation of the proof in the semi-oscillatory cases
α ∈ {1, 2}. The proof for α ≥ 3 can be obtained either via straightforward adaptations
of the proof for α = 2, or via straightforward adaptations of the proof of the estab-
lished results for two time-scale systems inKrupa and Szmolyan (2001a),Mishchenko
et al. (1975), Szmolyan andWechselberger (2004). The primary complication in cases
α ∈ {1, 2} stems from the fact that the dynamics remain ‘global’ in θ after blow-up
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near Sc
0. Consequently, one has to consider a blow-up of the entire cycle (as opposed

to a local blow-up about a point on Sc
0). We also demonstrated the applicability of

our results by using them to derive detailed geometric and asymptotic information
about the passage through a folded cycle singularity in a class of periodically forced
Liénard equations; recall Sect. 5.1 and in particular Theorem 5.2. Finally, in Sect. 5.2,
we considered a toy model for the study of tipping phenomena. Due to the periodic
forcing in the fast equation, this model violates both of our primary Assumptions 1–2.
The partial geometric analysis presented herein provides reason to argue that cases of
this kind can for the most part be analysed using classical two time-scale theory.

In summary, the current manuscript provides a precedent for the effectiveness of
stationary methods including Fenichel–Tikhonov theory and the blow-up method in
semi-oscillatory multiple time-scale systems with at least three time-scales. There are
many interesting directions which one might take from here. Our analysis of the toy
model for tipping considered in Sect. 5.2 is incomplete and motivates the analysis of
a more general class of systems with regular folded cycle manifolds which violate
our main Assumptions 1–2. One might also consider the applicability of the meth-
ods developed herein for other global cycle singularities for which there is no direct
and lower-dimensional analogue in stationary fast–slow systems, e.g. near a non-
hyperbolic flip/period-doubling-type cycle in three time-scale systems of form (4).
We also expect the detailed estimates on the local dynamics near regular folded cycles
in Theorem 3.2 to play an important role in the description of multi-scale oscillations
which involve regular folded cycles as a key ingredient. In Szmolyan and Wechsel-
berger (2004), the authors derive a detailed characterisation of the local dynamics
near a regular fold curve using geometric blow-up and combine it with Fenichel the-
ory in order to derive the form of the Poincaré map associated to prototypical 1-fast
2-slow systems with an S-shaped critical manifold. These results were used to prove
the existence of an invariant torus for a certain parameter regime in the forced van der
Pol equation, which contains an attracting relaxation oscillation if a particular circle
map induced on the angular variable is contracting. We conjecture that similar con-
structions could be applied to the three time-scale semi-oscillatory systems considered
herein, under suitable assumptions on the global geometry. The details of these and
other related problems are left for future work.
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