
Vol:.(1234567890)

Journal of Hardware and Systems Security (2023) 7:138–146
https://doi.org/10.1007/s41635-023-00139-x

1 3

A Practical Approach to Estimate the Min‑Entropy in PUFs

Christoph Frisch1 · Florian Wilde2 · Thomas Holzner3 · Michael Pehl1

Received: 9 April 2023 / Accepted: 30 October 2023 / Published online: 8 November 2023
© The Author(s) 2023

Abstract
Helper data algorithms reliably extract secrets from physical unclonable functions. The necessary helper data can leak
information, though. One state-of-the-art approach to assess the remaining min-entropy is limited to homogeneous bias or
correlation, not both. Another one extends this to only local bias without correlation but is limited to short code lengths.
This work presents a new approach for determining the min-entropy based on convolving histograms. It provides a better
bound and good approximation given arbitrary bias, more realistic correlation effects, and practically relevant code sizes.
Experiments on real-world and synthetic data show the benefit of the new method compared with state-of-the-art ones. This
work also facilitates a better understanding of how the error correction as post-processing impacts the min-entropy.

Keywords  PUF · Physical unclonable function · Min-entropy · Helper data · RMF · Response mass function

1  Introduction

The technology of physical unclonable functions (PUFs)
deriving secrets unique to each device from minuscule and
unavoidable process variations promises security in low-cost
devices. This is important for many applications on the Internet
of Things and can help protect future supply chains. A secure
way of using a PUF is to derive a key encryption key from it.

Therefore, the currently only PUF standard [1, 2] requires
PUFs to be sufficiently unique.1 The standard suggests
testing this property with statistical tests or entropy esti-
mations targeting the PUF response. However, real-world
PUF designs usually do not provide responses that can be
modeled as drawn from unbiased, independent and identi-
cally distributed (IID) random sources. Instead, a certain

amount of imperfection in the PUF response is accepted and
compensated by post-processing, which usually includes two
steps: increasing the reliability of the output, e.g., through
correction by an error-correcting code (ECC), and increasing
the entropy per bit, e.g., by compression.

Helper data algorithms (HDAs) can correct a PUF
response. They map the PUF response to a code word using
public helper data. Good HDAs are designed such that the
helper data do not leak about the secret as long as the PUF
response bits correspond to unbiased IID random variables
[3]. If the PUF response deviates from this requirement,
though, helper data and information regarding the PUF’s
statistical properties start leaking and reduce the effective
entropy of the PUF. Since the helper data generated for a
specific design also depend on the ECC, the ECC influences
how information leaks. This phenomenon, called helper data
leakage, is currently not considered in the standard, as men-
tioned earlier, and might lead to incorrect assumptions: After
error correction, the entropy left for a key might be lower
than expected when only considering the entropy in the PUF
response. Besides, selecting an ECC must not only target
the efficiency when implementing the required decoder but
also the helper data leakage given the PUF in a specific
design. In other words, if PUF designs with biased or non-
IID responses are used to generate a secret, methods are
necessary to estimate the remaining key entropy.

 *	 Christoph Frisch
	 chris.frisch@tum.de

	 Florian Wilde
	 florian.wilde@tum.de

	 Thomas Holzner
	 thomas.holzner@tum.de

	 Michael Pehl
	 m.pehl@tum.de

1	 TUM School of Computation, Information and Technology,
Technical University of Munich, Munich, Germany

2	 Siemens, Munich, Germany
3	 Lauterbach Engineering, Munich, Germany

1  The uniqueness in the standard corresponds to the unpredictability
of responses of an unknown device given the statistical behavior of
the PUF measured from equally manufactured devices.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-023-00139-x&domain=pdf

139Journal of Hardware and Systems Security (2023) 7:138–146	

1 3

Contribution  Based on preliminary works providing a
bound for the min-entropy after error correction in the light
of helper data leakage [4, 5], which are discussed below,
this work significantly improves and makes applying these
bounds practically feasible. In particular, the contributions
of this work are as follows:

•	 As a base for computing the min-entropy of PUF-derived
secrets after error correction, we introduce the response
mass function (RMF).

•	 Based on it, we introduce the convolution of histograms [6]
into the domain of PUFs. This results in the first feasible
approach to approximate the min-entropy in PUF-derived
secrets in a wide range of practically relevant scenarios. In
previous works, the practical relevance was limited due to
unrealistic assumptions about the PUF behavior or due to
only being feasible for very short ECCs.

•	 We demonstrate the practical relevance of our work
using data from real-world SRAMs. Nevertheless, the
proposed bound and approximation are independent of
the PUF primitive.

•	 We demonstrate the influence of ECC parameters and
conclude that short codes with a high rate are preferable
regarding helper data leakage.

•	 We also show for synthetic correlated data that the leak-
age is significant for an overlapping comparison of ring
oscillator (RO) frequencies.

•	 The source code to compute the bound is available at [7].

Structure  The rest of this paper is structured as fol-
lows: After providing the necessary background in Sec-
tions 2 and 3 introduces the RMF and the approach to
compute the expected conditional min-entropy. Section 4
presents and discusses the results when applying our
approach. A conclusion is drawn in Section 5.

2 � Background

2.1 � Helper Data Algorithms

In a practical context, PUF responses are subject to noise.
Hence, error correction is necessary if, e.g., the PUF should
provide a secret key. For this error correction, so-called
HDAs first compute public helper data, which can then
reconstruct the original secret together with a noisy PUF
response. This work focuses on HDAs employing a linear
error-correcting code. Pointer-based approaches are out
of scope for this work because they significantly differ in
their vulnerability: Other than the schemes considered in
this work, they are susceptible to helper data manipulation
attacks and they leak about the PUF through reliability informa-
tion exploitable by machine learning [8]. In the following,

we explain why for the considered HDAs—fuzzy commit-
ment scheme, code-offset fuzzy extractor, and syndrome
construction—the conditional min-entropy of the secret
given the PUF response is equivalent, and distinguishing
these cases is not necessary, as presented in [4, 9].

During the enrollment phase, the fuzzy commitment scheme
[10] encodes the secret into a code word, which is then XORed
with the PUF response X to compute the helper data Y. During
reproduction, the ECC can derive the correct original secret
by decoding the XOR-sum of the noisy PUF response and the
helper data if not too many errors have occurred.

The code-offset fuzzy extractor [11] is similar to the fuzzy
commitment [10]. However, the hashed PUF response specifies
the secret, and a random code word is XORed to facilitate error
correction. The conditional min-entropy is the same because
this XOR is the same as for the fuzzy commitment scheme. The
hash function serves as a randomness extractor. It can be based
on universal [12] or cryptographic hash functions. Hereby, uni-
versal hash functions are good randomness extractors, but they
result in a larger min-entropy loss L ≥ 2 log(1∕�) if the input to
the hash function is not perfectly uniform [13, 14]. A measure
for this distance to uniformity is �.

A syndrome-based approach in general [11] or for polar
codes [15] can be reformulated by mapping the syndrome to a
corresponding code word. Thus, the conditional min-entropy
can be computed equivalently for all three cases [4, 9].

2.2 � ECCs for PUFs

An overview of commonly used ECCs in the PUF domain
is given in [16]. In summary, concatenations of linear block
codes are the most common choice for error correction. Of
those, concatenations of repetition and BCH codes seem
to be favored due to their efficiency. Additionally, current
research considers polar codes as a stand-alone solution for
PUFs [15]. Therefore, our experiments focus on these three
codes individually and on a concatenation of a repetition
and a BCH code. This work denotes codes as tuples (n, k, t)
where n is the code word length, k is the message length, and
t is the number of correctable errors. We omit t below if not
relevant at that point.

2.3 � Expected Conditional Min‑Entropy

For most real-world designs, the probability distribution
of PUF responses is not uniform, i.e., the probability is
not equal for each possible response x . An attacker might
combine knowledge about a PUF design’s imperfections
with the helper data of a particular device under attack to
guess the corresponding PUF response and hence the key
more easily. In this scenario, the expected conditional min-
entropy H̄∞(X|Y) is a measure for the expected chance that
an attacker finds the correct key with the first guess given

140	 Journal of Hardware and Systems Security (2023) 7:138–146

1 3

the helper data. Therefore, it is a measure of the security of
the construction, which incorporates deficiencies of the PUF
and the HDA. We now explain the previous work of Delvaux
et al. [4] in detail because it is a prerequisite to comprehend-
ing our approach. The PUF entropy estimation in [17] fol-
lows the so-called n − k bound, which is overly pessimistic
[4, 5] and thus inefficient. A shorter PUF response would
already suffice.2 The findings in [4] also refute [18], which
tries to determine the entropy loss when the error correction
for a PUF utilizes repetition codes. Delvaux et al. [4] simpli-
fied the approach in [11] using two assumptions:

1.	 The input to the ECC encoder, a random number u ∈ U ,
u←U , is uniformly distributed. Hence, all code words
v ∈ V are equally probable.

2.	 The space of PUF responses X can be partitioned into a
limited number of subsets �j with j ∈ [0, J] , where each
subset contains PUF responses with equal probability of
occurrence p�,j and p𝜑,j > p𝜑,j+1.

Two examples of distributions that fulfill these assumptions
are given in [4]:

(a)	 All n bits of the PUF response are IID from a Bernoulli
source, i.e., P (xi = 1) = p for i ∈ {1,… , n} . The prob-
ability of a response then only depends on its Hamming
weight (HW), but not on which bits are 1 or 0.

(b)	 The first bit is uniform, and all following bits are equally
correlated to their predecessor, i.e., P (xi = xi−1) = r
with i ∈ {2,… , n} . Here, the probability of a response
only depends on its amount of transitions, but not their
direction ( 1 → 0 vs. 0 → 1 ) or where they happen. Both
examples are illustrated for a response with three bits
in Table 1.

The first assumption, combined with Bayes’ rule, leads to

for a general ECC. For linear ECCs, it can be further simpli-
fied to

where � ∈ E is a coset leader. Coset leaders are bit strings
of minimum HW so that {v⊕ 𝜖|v ∈ V, 𝜖 ∈ E} = Y with

(1)H̄∞(X�Y) = − log2

⎛⎜⎜⎝
1

�V�
�
y∈Y

max
v∈V

P
�
X = y⊕ v

�⎞⎟⎟⎠

(2)H̄∞(X|Y) = − log2

(∑
𝜖∈E

max
v∈V

P
(
X = 𝜖 ⊕ v

))
,

Y being the space of all possible helper data. Note that
|U| = |V| = 2k , and |V||E| = |Y| = |X| = 2n . A 3-repetition
code, for example, has code word space V = {000, 111} and
E = {000, 001, 010, 100}.

In both formulae, the max operator selects for given
helper data y the most probable PUF response that is reach-
able by any valid code word v . For linear codes, this pro-
duces the same response for all elements of a coset, so it is
sufficient to consider the coset leader � . Since all code words
are equiprobable, the expectation boils down to a sum. In
this form, the computational cost is |V| ⋅ |Y| operations for
(1) respectively |Y| operations for (2). Therefore, usage is
limited to ECCs with n approximately up to 60 with today’s
computing resources.

The computational cost can be further reduced by con-
sidering that the max operator in (1) and (2) always selects
the most probable x that is reachable by adding any v for the
given y or � . Since all v are assumed equally probable, the
same x is selected for every 2k elements in Y.

For example, if x = 100 is more probable than x = 011 , the
former is chosen for y = 100 and y = 011 , by an XOR with
v = 000 and v = 111 , respectively. It is thus sufficient to con-
sider |X|∕|U| = 2n−k = |E| elements of X in (1) and (2). Which |E|
elements of X to consider depends on the probability distribu-
tion of X and the specific ECC. For example, for a repetition
code with odd n , which can correct up to t bit errors, and an IID
distribution, the set of coset leaders E either equals the |E| most
probable elements of X or the coset leaders can be derived from
the bitwise inverse of the most likely responses.

For correlated distributions, as depicted in Table 1, the ele-
ments of E are instead distributed among all �j for repetition
codes. For ECCs that are not maximum distance separable
(MDS), some elements of X with HW larger than t have to be
considered because the ECC can still correct them. Neglecting
this and instead always choosing the |E| most likely x overes-
timates the sum in (1). Hence, this overestimation results in a
lower bound for H̄∞(X|Y) . The bound holds with equality for
MDS ECCs and uncorrelated distributions.

(3)E =

�⋃t

j=0
𝜑j p < 0.5

{x⊕ 1… 1�x ∈ ⋃t

j=0
𝜑j} p > 0.5

Table 1   Examples of partitioning for IID ( p < 0.5 ) and correlated
( r > 0.5 ) distribution

Example (a) Example (b)

j p�,j �j p�,j �j

0 (1 − p)3 000 r2∕2 000, 111
1 p(1 − p)2 001, 010, 100 r(1−r)∕2 001, 110, 011, 100
2 p2(1 − p) 011, 101, 110 (1−r)2∕2 010, 101
3 p3 111

2  A direct comparison is not possible, as we cannot deduce the bias
behavior of the PUF in [17].

141Journal of Hardware and Systems Security (2023) 7:138–146	

1 3

Since |E| operations may still be infeasible to compute, it
is necessary to utilize that all x in a subset �j have the same
probability. Therefore, the contribution of a subset �j to the
sum equals |�j| ⋅ p�,j . This allows processing |�j| elements
of X at once so that for a linear (n, k, t), block code t or
t + 1 operations suffice. However, this requires the second
assumption to hold, i.e., X can be partitioned into several
subsets �j , which are feasible to iterate. This partitioning
has previously been shown only for the types of distribution
depicted in Table 1.

The grouping bound [5] achieved such a partitioning for
local bias, i.e., each bit of the response may have a different
probability to turn out as 1, but still required the assump-
tion of independence between the bits. It rounded each bias
value to a chosen granularity, so bits with similar bias were
approximated to have equal bias. Then, the partitioning by
Delvaux et al. can be performed within each group of bits
with equal bias. The partitions are combined to find the |E|
most probable PUF responses.

These state-of-the-art methods have multiple drawbacks:
First, assumptions about the PUF, such as an IID bias, do not
hold in practice, and dropping these assumptions results in
an infeasible long computation time. Second, the grouping
bound still ignores correlation among response bits, and the
combination of partitions becomes infeasible for long code
words. This work closes the gap such that we can compute
the conditional min-entropy for more realistic ECCs and
distributions of PUF responses.

3 � Min‑Entropy Estimation Through
Histogram Convolution

In this section, we propose a method that can deal with arbi-
trary biases like the grouping bound [5]. However, it pro-
duces a tighter bound with less computational effort. For this
purpose, the response is considered a bit string partitioned
into substrings, possibly each with a different number of
bits. Additionally, our new approach requires independence
only between substrings, not between all bits. If the sub-
strings are not independent, our metric is no longer a bound
but an estimation of the conditional min-entropy.

3.1 � Response Mass Function

In this work, we use the RMF to find the |E| most likely PUF
responses and their probability but are not interested in their
values since this is not relevant for (1) and (2). The RMF fX
[19] maps a log-probability to the share of outcomes of ran-
dom variable (RV) X that occurs with this log-probability.
It can be seen as the inverse of the probability mass function
(PMF), which maps outcomes to (log-)probability values.
For the security assessment of PUFs, it is usually relevant

that there are one or more PUF responses with at least a spe-
cific probability. This does not mean we need to know which
responses have these specific probabilities. Thus, the RMF
is also a potential metric for the quality of a PUF.

The support of the RMF is] − ∞, 0] and has similar axi-
oms as a PMF, i.e.,

The RMF is a series of Dirac impulses �(⋅) , whose
weights depend on how many outcomes occur with the same
probability. Figure 1 illustrates the RMF for the distributions
from Table 1 and selected values of p, r.3

The RMF of a sequence of independent RVs is found
by convolving the marginal RMFs because the joint prob-
ability of independent events equals the product of their
marginal probabilities, respectively the sum of their mar-
ginal log-probabilities. This holds for any discrete dis-
tribution, even if the log-probabilities or the number of
events differ. Figure 2 exemplifies this for a single-bit
and a two-bit substring. Iterating over all Dirac impulses
(right to left, i.e., most likely PUF response to least likely
one) results in the ranking of PUF responses necessary
for (1) and (2).

3.2 � Convolution of Histograms for RMF

With longer substrings, i.e., more events per marginal
distribution or many substrings being convoluted, the

(4)fX(l) ≥ 0 ∀l ∈] −∞, 0] and �
0

−∞

fX(l)dl = 1.

Fig. 1   RMF of the distributions in Table 1 for selected values of p, r .
The dashed line indicates the RMF for p, r = 0.5

3  With q = log2(p) and q� = log2(1 − p) for the biased distribution

and for the correlated distribution with q = log2(r) and q� = log2(1 − r),
fX(l) = 1∕8

(
�
(
l − 3q�

)
+ �(l − 3q)

)
+ 3∕8

(
�
(
l − q − 2q�

)
+ �

(
l − 2q − q�

))

fX(l) = 1∕4
(
�
(
l − q − 2q�

)
+ �

(
l + 1 − 2q�

))
+ 1∕2�

(
l + 1 − q − q�

)
.

142	 Journal of Hardware and Systems Security (2023) 7:138–146

1 3

number of Dirac impulses can become inefficient to han-
dle. However, accepting some reduction in accuracy, the
RMF of each substring can be approximated by a histo-
gram, as also shown in Fig. 2. Then, all outcomes whose
log-probability falls into the same bin are approximated
to occur with this bin’s central value. Designing the
bin width allows us to adjust the approximation error.
As Glowacz et al. [6] showed, the convolution of these
histograms—more precisely the vectors of bin counts—
approximates the histogram of the entire string if all his-
tograms use the same bin width.

The example in Fig. 2 uses bin width w = 0.5 , and
bins of marginal histograms are located to have an edge
at an integer value. For the first substring, this produces
the vector

(
1∕2 0 0 0 1∕2

)
 with a central value of −0.25

for the rightmost bin. For the second substring, the vec-
tor is

(
1∕4 1∕2 0 1∕4

)
 with a central value of −1.25 for

the rightmost bin.4 After the convolution, the vector is (
1∕8 1∕4 0 1∕8 1∕8 1∕4 0 1∕8

)
 with a central value of

−1.5 for the rightmost bin. Note that the bin width does not
change by convolution, and the central value of the rightmost
bin of the convoluted histogram equals the sum of the cen-
tral values of the rightmost bins in the marginal histograms.
Since the output vector grows linearly with the number of
convoluted histograms, not exponentially as the number of
Dirac impulses would, this approach remains feasible even
for thousands of substrings, e.g., 1024 single-bit substrings
that are necessary to evaluate the conditional min-entropy
for polar codes.

Compared to a histogram after the convolution of the
RMFs, which is shown by Dirac impulses in Fig. 2, the
convolution of histograms in this example differs in the bin
of the least probable event. This is because every event is
approximated to occur with a log-probability equal to the
corresponding bin’s central value. As shown by Glowacz
et al. [6], the maximum error by this approach is j∕2 bins into
each direction if j histograms have been convoluted.

3.3 � Expected Conditional Min‑Entropy Based
on the RMF

The approximated RMF of the entire response string—obtained
through the convolution of histograms of assumed independent
substrings—provides a partitioning of X into a selectable num-
ber of bins. This is equivalent to the partitioning by Delvaux
et al. [4], but more generally applicable. Each bin constitutes a
group �j with |�j| events that—approximately—occur with log-
probability qj respectively probability pj . Therefore, the groups
�j can be used the same way as the groups �j from Section 2.3
to calculate the expected conditional min-entropy. So starting
from the rightmost bin, as many bins as necessary are processed
until |E| elements of X are collected. The negative logarithm of
their sum then is the expected conditional min-entropy. This
corresponds to (1) and (2). Note that this approach only requires
knowledge about the statistics of individual bits or substrings
of the response, where substrings may comprise an arbitrary
number of possibly correlated bits. It is entirely independent
of the PUF primitive.

3.4 � Optimization of Error Bound

Convolving histograms rather than exact RMFs is an approxi-
mation. It is, therefore, crucial to consider the resulting error.
Glowacz et al. [6] provided a general bound that assumes an
error of half the bin width, but we can improve upon it. Only
the rightmost bins are of interest for the expected conditional
min-entropy. It is thus beneficial to minimize the approxima-
tion error in this area, even if it would cause larger errors in
the leftmost bins. Histogram convolution only requires bins of
equal width but not equal bin location. Thus, without restrict-
ing the applicability, the bins of each marginal histogram can
be located so that the most probable event coincides with the
central value of the rightmost bin. This reduces the approxima-
tion error to zero for each marginal distribution’s most prob-
able event and the entire distribution’s most probable event.
The error for less probable events increases the more events
with non-zero approximation error contribute to them. For
single bits, the maximum error increases proportionally to
the response’s Hamming distance (HD) to the most probable
response. To demonstrate this, we choose an example where an
exact calculation is feasible, and the error is known. Figure 3
shows the difference in log-probability between exact calcula-
tion and histogram convolution for an exemplary 8-bit response,
where pi ∀i ∈ {1,… , 8} is drawn independently from a uni-
form distribution between 0.1 and 0.9 and bin width w = 0.25 .
Without bin alignment, the general error bound [6] holds, which
is, in this case, ±1 for every response; hence, it is not depicted in
Fig. 3. With our proposed alignment, the error bound decreases
from the general case in the least probable bin toward zero for
the most probable bin. Additionally, the actual observed errors
are reduced.

Fig. 2   Convolution of RMF and histograms for a one-bit substring
( p1 = 0.19 ) and a two-bit substring ( p2 = 0.36)

4  Zeros to the left and right of the largest/smallest non-zero value can
be skipped.

143Journal of Hardware and Systems Security (2023) 7:138–146	

1 3

4 � Results

In this section, we apply the concept of Section 3.3 to differ-
ent linear ECCs. We incorporate the error term discussed in
Section 3.4 to achieve a lower bound. If possible, we com-
pare the results in this work with [4] and [5]. We also give
results for the n − k bound as a reference. Advancing over
the results in [4, 5], this is the first work that can additionally
analyze large codes in a scenario with locally biased PUF
response bits. Therefore, it illustrates the impact of code
selection when the underlying PUF exhibits bias effects. The
problem with the methods in [4, 5] is the infeasibility of
sorting sufficiently many PUF responses by their probability.
This is because the respective groups become too small, and
naively sorting, e.g., 21024 PUF responses for the polar code
is impossible in practice.

Experiments on Real Data with Local Bias Effects  The PUF
data for the experiments are from SRAM PUFs on commer-
cial XMC4500 microcontrollers [20, 21]. We assume that
local bias is the predominant deficiency in this data set, and
correlations, as illustrated in Table 1, are negligible [19].
Note that our approach does not depend on the PUF primi-
tive or the amount of PUF data per device. It only requires
information about the probability for single bits or small
groups of correlated bits (cf. Section 3.3). For all codes,
the bias for 10,240 bits is evaluated. The information about
the bias stems from averaging each bit at a specific position
over 144 devices.

As many code words as possible are fit into these 10240
bits, and the conditional min-entropy is computed for each
one of them. For comparison, the average conditional min-
entropy per message bit of all code words (of the same code)
is taken for comparison.

Table 2 summarizes the findings. The bin width for the
convolution is set heuristically to 0.001. A smaller bin width
would result in a higher accuracy of the entropy estimation at
the cost of a longer runtime. A larger bin width would only be

beneficial to speed up the computation if even longer codes
than n = 1024 would be considered. Each row represents
an error-correcting code with its corresponding conditional
min-entropy. The top part of the table evaluates the impact of
different code parameters, such as the rate or overall length
of the code. Note that these codes do not have the same error
correction capability. In the context of code concatenation,
evaluating one of its components (e.g., a (7, 1, 3) repetition
code) is insufficient, but the resulting code has to be analyzed.
Primarily, it is based on a serial code concatenation as in [22].
The lower part thus presents the findings for codes that are
tailored toward PUF applications. They can derive a 128-bit
key with an error probability of < 10−6 even if the bit error
rate on the input side is 15% . These numbers are common
when comparing error correction for PUFs [16].

The table features a (1024, 128) polar code as proposed in
[15] and a concatenation of a (127, 64, 10) BCH code with
a 7-repetition code as in [23]. In the latter case, two code
words form one 128-bit key. (815, 128, 173) are theoretic
code parameters with a code rate of 0.16 according to the
Griesmer bound [24]:

For a message length of k = 128 and the constraints
regarding bit error probability and desired key error prob-
ability, we find the smallest possible n. While not every
error-correcting scheme is based on linear block codes, and
by utilizing reliability information error correction beyond
dmin might be possible, this code rate still serves as a refer-
ence point and indicator of a PUF’s quality.

Table 2 shows the largest approximated min-entropy
values for the approach in [4]. This is because by falsely
assuming IID PUF bits, the approach by [4] does not hold for

(5)n ≥
k−1∑
i=0

⌈
d

2i

⌉

Fig. 3   Difference in estimated log-probability between convolution of
histograms and exact calculation, sorted by the HD to the most prob-
able response. Dashed lines indicate the improved error bound by the
alignment of bins

Table 2   Conditional min-entropy for different error-correcting codes
(n, k, t) as in [4, 5] and the convolution of histograms (bin width
0.001). The data is taken from SRAM PUFs ( H̄∞(X) = 0.74 ) on com-
mercial microcontrollers [20, 21]. A dash indicates that the method is
not computationally feasible for the respective code length based on
our own experiments. For a comparison, the results according to the
n − k bound [11] are included as well normalized to k 

Code H̄∞(X|Y) per message bit

(n, k, t) [4] [5] n − k [11] Histogram

(3, 1, 1) Rep 0.63 0.59 0.22 0.62
(15, 5, 3) BCH 0.59 0.49 0.22 0.55
(31, 6, 7) BCH – 0.36 -0.34 0.43
(127, 8, 31) BCH – 0.09 -3.13 0.15
(256, 32) Polar – 0.18 -1.08 0.27
(1024, 128) Polar – – -1.08 0.25
(889, 64, 73) Rep+BCH – – -2.61 0.12
(815, 128, 173) Griesmer bound – – -0.66 0.31

144	 Journal of Hardware and Systems Security (2023) 7:138–146

1 3

the given data set. It hence overestimates the min-entropy.
Compared to [5], the min-entropy estimation based on the
convolution of histograms results in slightly larger values.
However, assuming that no correlations are in the data set,
it is still a lower bound and thus closer to the actual value.
Most importantly, it is also feasible for larger codes and thus
codes relevant in the PUF context. In [5], computing the
conditional min-entropy for a (127,8,31) BCH code required
about 20 min on a commodity computer compared to 5 s
with histogram convolution (with an Intel® Core™ i7-7600U
CPU @ 2.8GHz × 4 cores and 16 GB RAM). For larger
codes such as the (1024, 128) polar code, our approach
requires 30 s whereas [4, 5] do not provide a bound for the
min-entropy in feasible time based on our experiments re-
implementing their methods for local bias effects. Even for
smaller codes than n = 1024 , several days of computing [4,
5] did not provide a result on our commodity computer, and
the computation was aborted. Furthermore, the results show
that the n − k bound is too pessimistic regarding the remain-
ing entropy given helper data.

To put the results in a larger context and for a better com-
parison of the impact of code parameters, Fig. 4 visualizes
the conditional min-entropy over the code rate for different
codes. As a reference, the data on a bit level have an average
min-entropy H̄∞(X) = 0.74 , as indicated by the black hori-
zontal line. It is computed by summing the min-entropy of
each bit divided by the total amount of bits. Beyond what is
provided in Table 2, repetition codes of lengths 3, 5, 7, and
21 are shown. The code parameters for the BCH codes are
(7, 4, 1), (15, 5, 3), (31, 6, 7), (63, 7, 15), and (127, 8, 31).
The figure also shows the results for the following (n, k)
polar codes: (8, 3), (16, 4), (64, 12), (128, 16), (256, 32),
(512, 64), (1024, 90), (1024, 128). Note that several polar
codes have a rate of 0.125 and form a stack of blue lines
close to marker P in Fig. 4. Of these codes with the same
rate, the one with the shortest overall length, the (128, 16),
has the highest H̄∞.

While a higher H̄∞ is beneficial, sufficient error correc-
tion capability is necessary. Therefore, Fig. 4 does not imply
that, e.g., a 3-repetition code is more suitable for PUFs than,
e.g., a (128, 16) polar code. Instead, Fig. 4 includes three
exemplary codes labeled as PUF-ECC that achieve said
error correction capability. They are the same codes as in
the lower part of Table 2.

Experiments on Synthetic Data with Independent Groups
of Correlated Bits  Illustrating the efficiency and efficacy
of our approach to correlated data requires a large data set
with known correlation effects. We enforce such correla-
tion effects for a simulated PUF scenario by sampling RO
frequencies and deriving the responses as the sign bit of an
overlapping comparison: Instead of comparing RO frequen-
cies as differences A–B, C–D, and E–F, in the overlapping

comparison, differences like A–B, B–C, C–D, D–E, and E–F
are taken. This way, more bits are derived from the same
oscillators. However, neighboring bits are likely different,
which corresponds to a negative correlation. This correla-
tion effect has been studied for real data by Maiti et al. [25]
in [26]. Unfortunately, the data set in [25] is too small to
derive 1024 bits for a polar code (1024, 128). Hence, for this
experiment, we replicate the effect of overlapping compari-
sons with synthetic data.

First, we sample random frequencies from a standard nor-
mal distribution. We then define the number of correlated
bits b = #ROs − 1 , i.e., how many bits are derived from a
group of #ROs ring oscillators. b = 1 means, e.g., that two
ROs are compared, and no correlation exists; b = 4 cor-
responds to comparing five frequencies in an overlapping
manner so that four neighboring bits are pairwise correlated.
To derive probability data as input to the convolution, we
repeat this experiment as a Monte Carlo simulation and
observe the 2b probabilities for every possible resulting bit
sequence. Asymptotically, each bit group has the same prob-
ability distribution regarding its bit sequences. However, to
not necessitate each bit group having the same probability
distribution, we determine the probability distributions indi-
vidually for each bit group.

For the experiment, we set b ∈ 1, 2, 4 , and the amount
of Monte Carlo simulations is 2b ⋅ 1000 to ensure sufficient
accuracy for the empirically determined probabilities. We
evaluate our method using the aforementioned (1024,128)
polar code as an ECC.

Fig. 4   Estimated H̄∞ for different codes and rates. PUF-ECC denotes
codes that achieve a 128-bit key error rate of less than 10−6 : C for
code concatenation of repetition and BCH code, P for polar code, and
G for Griesmer bound

145Journal of Hardware and Systems Security (2023) 7:138–146	

1 3

Table 3 compares the conditional min-entropy per mes-
sage bit after the convolution of histograms with the actual
min-entropy in the PUF. The deviation for b = 1 from the
ideal value of 1.0 appears by chance since there are extreme
cases where the resulting zero/one probability is not exactly
0.5 for a bit. However, these extreme cases are the ones that
determine the min-entropy. The results of this experiment
provide three insights: First, the convolution of histograms
is possible for a realistic setting of partially correlated PUF
bits and practical code sizes. Second, as to be expected,
the entropy per bit decreases already in the original PUF
response the more overlapping comparisons are made, i.e.,
for increasing b. Third, this decrease in entropy is even more
significant in the experiment after considering the helper
data for the conditional min-entropy.

To put the results about overlapping comparisons into
perspective, this means, e.g., for a (theoretical) array of
10,240 ring oscillators, that different amounts of effec-
tive entropy can be extracted. For b = 1 , we can extract
5 ⋅ (1024, 128) codes; for b = 4 , we have more bits and thus
more codewords: 8 ⋅ (1024) . However, the remaining con-
ditional min-entropy in the overall messages is nonetheless
higher for b = 1 (576bit) than for b = 4 (102bit).

Discussion  From the experiments, we draw several conclu-
sions. A higher code rate leads to an increased conditional
min-entropy. This means that the smaller implementation
complexity of concatenated codes comes at the price of a
possibly lower security level: Due to combining two simpler
individual codes, the resulting code rate is smaller than for
a stand-alone code such as the polar code or optimally for
the code based on the Griesmer bound. For the exemplary
data, the average conditional min-entropy for a polar code
is approximately twice the one for the code concatenation
due to having a higher code rate (point P in Fig. 4 vs. point
C). A higher code rate means an attacker has less knowledge
(in the form of helper data) about the underlying secret. This
shows that when designing a code for a practical scenario,
the choice of the code significantly impacts the entropy
given helper data and a non-ideal PUF.

If the code rate is the same for two codes, but they have
different lengths (such as for the exemplary polar codes), this
effect is similar. The additional attacker knowledge due to

more helper data outweighs the additional information due to
a longer underlying message. Thus, in principle, it might also
be advantageous not only for a reduced implementation com-
plexity but also for a higher min-entropy to split the key into
several smaller chunks. But this does not necessarily result in
improved security with regard to other attack vectors such as
side-channel attacks. It might be easier for an attacker to focus
on two 64-bit chunks instead of a single 128-bit one. While in
other PUF scenarios, a different number of key bits might be
required; the general observations remain the same as for our
case with 128-bit: Regarding the conditional min-entropy, a
higher code rate as provided by stand-alone codes is preferable.

Furthermore, based on the new approach of convolving his-
tograms, we show that overlapping comparisons of ring oscil-
lator frequencies exhibit a high decrease regarding conditional
min-entropy. So, although an overlapping comparison is benefi-
cial for extracting more bits in theory, the effectively extracted
entropy is less than for a non-overlapping comparison.

5 � Conclusion

Within this work, we have introduced an approach to bound
and approximate the conditional min-entropy in a PUF-
derived key given the helper data. Our approach is the first
one which is feasible for practical code lengths and realistic
PUF weaknesses. Such an evaluation method is essential
to ensure security and for future certification approaches,
which also have to support PUFs with non-ideal response
statistics. The results of this work show that the approach
can evaluate the key entropy in realistic scenarios. The
results also point to a general finding: Concerning helper
data leakage, short codes with a high rate are preferable.
Both aspects emphasize that our approach is important to
assess the security of constructions based on PUFs.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Statements and Declarations 

Funding  The authors acknowledge the financial support by the Federal
Ministry of Education and Research of Germany in the project “VE-
FIDES” (16ME0257).

Competing Interests  The authors declare no competing interests.

Author Contribution  CF, FW, and MP contributed to the concept of the
proposed method as well as to parts of the results, which TH detailed.
The first draft of the manuscript was written by CF, FW, and MP, and
all authors commented on previous versions of the manuscript. All
authors read and approved the final manuscript.

Data Availability  The source code of this paper is provided through [7].
The dataset analyzed in this paper is available via [21].

Table 3   Conditional min-
entropy for independent
subgroups of b correlated bits
and a (1024,128) polar code

b H̄∞(X) per
message bit

H̄∞(X|Y)
per message
bit

1 0.91 0.90
2 0.74 0.20
4 0.70 0.10

146	 Journal of Hardware and Systems Security (2023) 7:138–146

1 3

Ethical Approval  Not applicable

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 ISO/IEC 20897-1 (2020) Information security, cybersecurity
and privacy protection - physically unclonable functions - part
1: Security requirements. Norm, International Organization for
Standardization

	 2.	 ISO/IEC 20897-2 (2021) Information security, cybersecurity and
privacy protection - physically unclonable functions - Part 2: Test
and evaluation methods

	 3.	 Pehl M, Hiller M, Sigl G (2017) Secret key generation for physical
unclonable functions. Information Theoretic Security and Privacy
of Information Systems 362

	 4.	 Delvaux J, Gu D, Verbauwhede I, Hiller M, Yu M-DM (2016)
Efficient fuzzy extraction of PUF-induced secrets: theory and
applications. In: International Conference on Cryptographic Hard-
ware and Embedded Systems. Springer

	 5.	 Wilde F, Frisch C, Pehl M (2019) Efficient bound for conditional
min-entropy of physical unclonable functions beyond IID. In:
International Workshop on Information Forensics and Security
(WIFS). IEEE

	 6.	 Glowacz C, Grosso V, Poussier R, Schüth J, Standaert F-X (2015)
Simpler and more efficient rank estimation for side-channel secu-
rity assessment. In: Fast Software Encryption

	 7.	 Source code of this work (2023) https://​gitlab.​lrz.​de/​tueis​ec/​puf/​tools/​
histo​gram_​convo​lution_​for_​condi​tional_​minen​tropy_​estim​ation

	 8.	 Becker GT, Wild A, Güneysu T (2015) Security analysis of index-
based syndrome coding for PUF-based key generation. In: Inter-
national Symposium on Hardware Oriented Security and Trust
(HOST). IEEE

	 9.	 Delvaux J, Gu D, Verbauwhede I (2017) Security analysis of PUF-
based key generation and entity authentication

	10.	 Juels A, Wattenberg M (1999) A fuzzy commitment scheme. In:
Proceedings of the 6th ACM Conference on Computer and Com-
munications Security

	11.	 Dodis Y, Reyzin L, Smith A (2004) Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. In: Advances in

Cryptology-EUROCRYPT 2004: International Conference on the
Theory and Applications of Cryptographic Techniques. Springer

	12.	 Carter JL, Wegman MN (1977) Universal classes of hash func-
tions. In: Proceedings of the Ninth Annual ACM Symposium on
Theory of Computing, pp. 106–112

	13.	 Barak B, Dodis Y, Krawczyk H, Pereira O, Pietrzak K, Standaert
F-X, Yu Y (2011) Leftover hash lemma, revisited. In: Advances
in Cryptology–CRYPTO 2011: 31st Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings
31:1–20. Springer

	14.	 Håstad J, Impagliazzo R, Levin LA, Luby M (1999) A pseudor-
andom generator from any one-way function. SIAM J Comput
28(4):1364–1396

	15.	 Chen B, Ignatenko T, Willems FM, Maes R, van der Sluis E, Selimis
G (2017) A robust SRAM-PUF key generation scheme based on
polar codes. In: Global Communications Conference. IEEE

	16.	 Hiller M, Kürzinger L, Sigl G (2020) Review of error correction for
PUFs and evaluation on state-of-the-art FPGAs. J Cryptogr Eng (3)

	17.	 Satpathy S, Mathew SK, Suresh V, Anders MA, Kaul H, Agarwal
A, Hsu SK, Chen G, Krishnamurthy RK, De VK (2017) A 4-fJ/b
delay-hardened physically unclonable function circuit with selective
bit destabilization in 14-nm trigate CMOS. IEEE J Solid-State Circuits

	18.	 Koeberl P, Li J, Rajan A, Wu W (2014) Entropy loss in PUF-
based key generation schemes: the repetition code pitfall. In: 2014
IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pp 44–49. IEEE

	19.	 Wilde F (2021) Metrics for physical unclonable functions. PhD
thesis, Technische Universität München

	20.	 Wilde F (2017) Large scale characterization of SRAM on infineon
XMC microcontrollers as PUF. In: Proceedings of the Fourth
Workshop on Cryptography and Security in Computing Systems

	21.	 Wilde F (2021) PUF data from XMC4500 microcontrollers.
https://​gitlab.​lrz.​de/​tueis​ec/​PQAS

	22.	 Bösch C, Guajardo J, Sadeghi A-R, Shokrollahi J, Tuyls P (2008) Effi-
cient helper data key extractor on FPGAs. In: International Workshop
on Cryptographic Hardware and Embedded Systems. Springer

	23.	 Merli D (2014) Attacking and protecting ring oscillator physical
unclonable functions and code-offset fuzzy extractors. PhD thesis,
Technical University of Munich

	24.	 Griesmer JH (1960) A bound for error-correcting codes. IBM J
Res Dev 4(5)

	25.	 Maiti A, Casarona J, McHale L, Schaumont P (2010) A large scale
characterization of RO-PUF. In: 2010 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pp 94–99. IEEE

	26.	 Wilde F, Gammel BM, Pehl M (2018) Spatial correlation analysis
on physical unclonable functions. IEEE Trans Inf Forensics Sec
13(6):1468–1480

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://gitlab.lrz.de/tueisec/puf/tools/histogram_convolution_for_conditional_minentropy_estimation
https://gitlab.lrz.de/tueisec/puf/tools/histogram_convolution_for_conditional_minentropy_estimation
https://gitlab.lrz.de/tueisec/PQAS

	A Practical Approach to Estimate the Min-Entropy in PUFs
	Abstract
	1 Introduction
	2 Background
	2.1 Helper Data Algorithms
	2.2 ECCs for PUFs
	2.3 Expected Conditional Min-Entropy

	3 Min-Entropy Estimation Through Histogram Convolution
	3.1 Response Mass Function
	3.2 Convolution of Histograms for RMF
	3.3 Expected Conditional Min-Entropy Based on the RMF
	3.4 Optimization of Error Bound

	4 Results
	5 Conclusion
	References

