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Abstract
Helper data algorithms reliably extract secrets from physical unclonable functions. The necessary helper data can leak 
information, though. One state-of-the-art approach to assess the remaining min-entropy is limited to homogeneous bias or 
correlation, not both. Another one extends this to only local bias without correlation but is limited to short code lengths. 
This work presents a new approach for determining the min-entropy based on convolving histograms. It provides a better 
bound and good approximation given arbitrary bias, more realistic correlation effects, and practically relevant code sizes. 
Experiments on real-world and synthetic data show the benefit of the new method compared with state-of-the-art ones. This 
work also facilitates a better understanding of how the error correction as post-processing impacts the min-entropy.
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1  Introduction

The technology of physical unclonable functions (PUFs) 
deriving secrets unique to each device from minuscule and 
unavoidable process variations promises security in low-cost 
devices. This is important for many applications on the Internet 
of Things and can help protect future supply chains. A secure 
way of using a PUF is to derive a key encryption key from it.

Therefore, the currently only PUF standard [1, 2] requires 
PUFs to be sufficiently unique.1 The standard suggests  
testing this property with statistical tests or entropy esti-
mations targeting the PUF response. However, real-world 
PUF designs usually do not provide responses that can be 
modeled as drawn from unbiased, independent and identi-
cally distributed (IID) random sources. Instead, a certain 

amount of imperfection in the PUF response is accepted and 
compensated by post-processing, which usually includes two 
steps: increasing the reliability of the output, e.g., through 
correction by an error-correcting code (ECC), and increasing 
the entropy per bit, e.g., by compression.

Helper data algorithms (HDAs) can correct a PUF 
response. They map the PUF response to a code word using 
public helper data. Good HDAs are designed such that the 
helper data do not leak about the secret as long as the PUF 
response bits correspond to unbiased IID random variables 
[3]. If the PUF response deviates from this requirement, 
though, helper data and information regarding the PUF’s 
statistical properties start leaking and reduce the effective 
entropy of the PUF. Since the helper data generated for a 
specific design also depend on the ECC, the ECC influences 
how information leaks. This phenomenon, called helper data  
leakage, is currently not considered in the standard, as men-
tioned earlier, and might lead to incorrect assumptions: After 
error correction, the entropy left for a key might be lower 
than expected when only considering the entropy in the PUF 
response. Besides, selecting an ECC must not only target 
the efficiency when implementing the required decoder but 
also the helper data leakage given the PUF in a specific 
design. In other words, if PUF designs with biased or non-
IID responses are used to generate a secret, methods are 
necessary to estimate the remaining key entropy.
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Contribution  Based on preliminary works providing a 
bound for the min-entropy after error correction in the light 
of helper data leakage [4, 5], which are discussed below, 
this work significantly improves and makes applying these 
bounds practically feasible. In particular, the contributions 
of this work are as follows:

•	 As a base for computing the min-entropy of PUF-derived 
secrets after error correction, we introduce the response 
mass function (RMF).

•	 Based on it, we introduce the convolution of histograms [6] 
into the domain of PUFs. This results in the first feasible 
approach to approximate the min-entropy in PUF-derived 
secrets in a wide range of practically relevant scenarios. In 
previous works, the practical relevance was limited due to 
unrealistic assumptions about the PUF behavior or due to 
only being feasible for very short ECCs.

•	 We demonstrate the practical relevance of our work 
using data from real-world SRAMs. Nevertheless, the 
proposed bound and approximation are independent of 
the PUF primitive.

•	 We demonstrate the influence of ECC parameters and 
conclude that short codes with a high rate are preferable 
regarding helper data leakage.

•	 We also show for synthetic correlated data that the leak-
age is significant for an overlapping comparison of ring 
oscillator (RO) frequencies.

•	 The source code to compute the bound is available at [7].

Structure  The rest of this paper is structured as fol-
lows: After providing the necessary background in Sec-
tions 2  and 3 introduces the RMF and the approach to 
compute the expected conditional min-entropy. Section 4 
presents and discusses the results when applying our 
approach. A conclusion is drawn in Section 5.

2 � Background

2.1 � Helper Data Algorithms

In a practical context, PUF responses are subject to noise. 
Hence, error correction is necessary if, e.g., the PUF should 
provide a secret key. For this error correction, so-called 
HDAs first compute public helper data, which can then 
reconstruct the original secret together with a noisy PUF 
response. This work focuses on HDAs employing a linear 
error-correcting code. Pointer-based approaches are out 
of scope for this work because they significantly differ in  
their vulnerability: Other than the schemes considered in  
this work, they are susceptible to helper data manipulation  
attacks and they leak about the PUF through reliability informa- 
tion exploitable by machine learning [8]. In the following, 

we explain why for the considered HDAs—fuzzy commit-
ment scheme, code-offset fuzzy extractor, and syndrome 
construction—the conditional min-entropy of the secret 
given the PUF response is equivalent, and distinguishing 
these cases is not necessary, as presented in [4, 9].

During the enrollment phase, the fuzzy commitment scheme 
[10] encodes the secret into a code word, which is then XORed 
with the PUF response X to compute the helper data Y. During 
reproduction, the ECC can derive the correct original secret 
by decoding the XOR-sum of the noisy PUF response and the 
helper data if not too many errors have occurred.

The code-offset fuzzy extractor [11] is similar to the fuzzy 
commitment [10]. However, the hashed PUF response specifies 
the secret, and a random code word is XORed to facilitate error 
correction. The conditional min-entropy is the same because 
this XOR is the same as for the fuzzy commitment scheme. The 
hash function serves as a randomness extractor. It can be based 
on universal [12] or cryptographic hash functions. Hereby, uni-
versal hash functions are good randomness extractors, but they 
result in a larger min-entropy loss L ≥ 2 log(1∕�) if the input to 
the hash function is not perfectly uniform [13, 14]. A measure 
for this distance to uniformity is �.

A syndrome-based approach in general [11] or for polar 
codes [15] can be reformulated by mapping the syndrome to a 
corresponding code word. Thus, the conditional min-entropy 
can be computed equivalently for all three cases [4, 9].

2.2 � ECCs for PUFs

An overview of commonly used ECCs in the PUF domain 
is given in [16]. In summary, concatenations of linear block 
codes are the most common choice for error correction. Of 
those, concatenations of repetition and BCH codes seem 
to be favored due to their efficiency. Additionally, current 
research considers polar codes as a stand-alone solution for 
PUFs [15]. Therefore, our experiments focus on these three 
codes individually and on a concatenation of a repetition 
and a BCH code. This work denotes codes as tuples (n, k, t) 
where n is the code word length, k is the message length, and 
t is the number of correctable errors. We omit t below if not 
relevant at that point.

2.3 � Expected Conditional Min‑Entropy

For most real-world designs, the probability distribution 
of PUF responses is not uniform, i.e., the probability is 
not equal for each possible response x . An attacker might 
combine knowledge about a PUF design’s imperfections 
with the helper data of a particular device under attack to 
guess the corresponding PUF response and hence the key 
more easily. In this scenario, the expected conditional min-
entropy H̄∞(X|Y) is a measure for the expected chance that 
an attacker finds the correct key with the first guess given 
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the helper data. Therefore, it is a measure of the security of 
the construction, which incorporates deficiencies of the PUF 
and the HDA. We now explain the previous work of Delvaux 
et al. [4] in detail because it is a prerequisite to comprehend-
ing our approach. The PUF entropy estimation in [17] fol-
lows the so-called n − k bound, which is overly pessimistic 
[4, 5] and thus inefficient. A shorter PUF response would 
already suffice.2 The findings in [4] also refute [18], which 
tries to determine the entropy loss when the error correction 
for a PUF utilizes repetition codes. Delvaux et al. [4] simpli-
fied the approach in [11] using two assumptions: 

1.	 The input to the ECC encoder, a random number u ∈ U , 
u←U , is uniformly distributed. Hence, all code words 
v ∈ V are equally probable.

2.	 The space of PUF responses X  can be partitioned into a 
limited number of subsets �j with j ∈ [0, J] , where each 
subset contains PUF responses with equal probability of 
occurrence p�,j and p𝜑,j > p𝜑,j+1.

Two examples of distributions that fulfill these assumptions 
are given in [4]: 

(a)	 All n bits of the PUF response are IID from a Bernoulli 
source, i.e., P (xi = 1) = p for i ∈ {1,… , n} . The prob-
ability of a response then only depends on its Hamming 
weight (HW), but not on which bits are 1 or 0.

(b)	 The first bit is uniform, and all following bits are equally 
correlated to their predecessor, i.e., P (xi = xi−1) = r 
with i ∈ {2,… , n} . Here, the probability of a response 
only depends on its amount of transitions, but not their 
direction ( 1 → 0 vs. 0 → 1 ) or where they happen. Both 
examples are illustrated for a response with three bits 
in Table 1.

The first assumption, combined with Bayes’ rule, leads to

for a general ECC. For linear ECCs, it can be further simpli-
fied to

where � ∈ E is a coset leader. Coset leaders are bit strings 
of minimum HW so that {v⊕ 𝜖|v ∈ V, 𝜖 ∈ E} = Y  with 

(1)H̄∞(X�Y) = − log2

⎛⎜⎜⎝
1

�V�
�
y∈Y

max
v∈V

P
�
X = y⊕ v

�⎞⎟⎟⎠

(2)H̄∞(X|Y) = − log2

(∑
𝜖∈E

max
v∈V

P
(
X = 𝜖 ⊕ v

))
,

Y being the space of all possible helper data. Note that 
|U| = |V| = 2k , and |V||E| = |Y| = |X| = 2n . A 3-repetition 
code, for example, has code word space V = {000, 111} and 
E = {000, 001, 010, 100}.

In both formulae, the max operator selects for given 
helper data y the most probable PUF response that is reach-
able by any valid code word v . For linear codes, this pro-
duces the same response for all elements of a coset, so it is 
sufficient to consider the coset leader � . Since all code words 
are equiprobable, the expectation boils down to a sum. In 
this form, the computational cost is |V| ⋅ |Y| operations for 
(1) respectively |Y| operations for (2). Therefore, usage is 
limited to ECCs with n approximately up to 60 with today’s 
computing resources.

The computational cost can be further reduced by con-
sidering that the max operator in (1) and (2) always selects 
the most probable x that is reachable by adding any v for the 
given y or � . Since all v are assumed equally probable, the 
same x is selected for every 2k elements in Y.

For example, if x = 100 is more probable than x = 011 , the 
former is chosen for y = 100 and y = 011 , by an XOR with 
v = 000 and v = 111 , respectively. It is thus sufficient to con-
sider |X|∕|U| = 2n−k = |E| elements of X in (1) and (2). Which |E| 
elements of X  to consider depends on the probability distribu-
tion of X and the specific ECC. For example, for a repetition 
code with odd n , which can correct up to t bit errors, and an IID 
distribution, the set of coset leaders E either equals the |E| most 
probable elements of X or the coset leaders can be derived from 
the bitwise inverse of the most likely responses.

For correlated distributions, as depicted in Table 1, the ele-
ments of E are instead distributed among all �j for repetition 
codes. For ECCs that are not maximum distance separable 
(MDS), some elements of X  with HW larger than t have to be 
considered because the ECC can still correct them. Neglecting 
this and instead always choosing the |E| most likely x overes-
timates the sum in (1). Hence, this overestimation results in a 
lower bound for H̄∞(X|Y) . The bound holds with equality for 
MDS ECCs and uncorrelated distributions.

(3)E =

�⋃t

j=0
𝜑j p < 0.5

{x⊕ 1… 1�x ∈ ⋃t

j=0
𝜑j} p > 0.5

Table 1   Examples of partitioning for IID ( p < 0.5 ) and correlated 
( r > 0.5 ) distribution

Example (a) Example (b)

j p�,j �j p�,j �j

0 (1 − p)3 000 r2∕2 000, 111
1 p(1 − p)2 001, 010, 100 r(1−r)∕2 001, 110, 011, 100
2 p2(1 − p) 011, 101, 110 (1−r)2∕2 010, 101
3 p3 111

2  A direct comparison is not possible, as we cannot deduce the bias 
behavior of the PUF in [17].
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Since |E| operations may still be infeasible to compute, it 
is necessary to utilize that all x in a subset �j have the same 
probability. Therefore, the contribution of a subset �j to the 
sum equals |�j| ⋅ p�,j . This allows processing |�j| elements 
of X  at once so that for a linear (n, k, t), block code t or 
t + 1 operations suffice. However, this requires the second 
assumption to hold, i.e., X  can be partitioned into several 
subsets �j , which are feasible to iterate. This partitioning 
has previously been shown only for the types of distribution 
depicted in Table 1.

The grouping bound [5] achieved such a partitioning for 
local bias, i.e., each bit of the response may have a different 
probability to turn out as 1, but still required the assump-
tion of independence between the bits. It rounded each bias 
value to a chosen granularity, so bits with similar bias were 
approximated to have equal bias. Then, the partitioning by 
Delvaux et al. can be performed within each group of bits 
with equal bias. The partitions are combined to find the |E| 
most probable PUF responses.

These state-of-the-art methods have multiple drawbacks: 
First, assumptions about the PUF, such as an IID bias, do not 
hold in practice, and dropping these assumptions results in 
an infeasible long computation time. Second, the grouping 
bound still ignores correlation among response bits, and the 
combination of partitions becomes infeasible for long code 
words. This work closes the gap such that we can compute 
the conditional min-entropy for more realistic ECCs and 
distributions of PUF responses.

3 � Min‑Entropy Estimation Through 
Histogram Convolution

In this section, we propose a method that can deal with arbi-
trary biases like the grouping bound [5]. However, it pro-
duces a tighter bound with less computational effort. For this 
purpose, the response is considered a bit string partitioned 
into substrings, possibly each with a different number of  
bits. Additionally, our new approach requires independence 
only between substrings, not between all bits. If the sub-
strings are not independent, our metric is no longer a bound 
but an estimation of the conditional min-entropy.

3.1 � Response Mass Function

In this work, we use the RMF to find the |E| most likely PUF 
responses and their probability but are not interested in their 
values since this is not relevant for (1) and (2). The RMF fX 
[19] maps a log-probability to the share of outcomes of ran-
dom variable (RV) X that occurs with this log-probability. 
It can be seen as the inverse of the probability mass function 
(PMF), which maps outcomes to (log-)probability values. 
For the security assessment of PUFs, it is usually relevant 

that there are one or more PUF responses with at least a spe-
cific probability. This does not mean we need to know which 
responses have these specific probabilities. Thus, the RMF 
is also a potential metric for the quality of a PUF.

The support of the RMF is ] − ∞, 0] and has similar axi-
oms as a PMF, i.e.,

The RMF is a series of Dirac impulses �(⋅) , whose 
weights depend on how many outcomes occur with the same 
probability. Figure 1 illustrates the RMF for the distributions 
from Table 1 and selected values of p, r.3

The RMF of a sequence of independent RVs is found 
by convolving the marginal RMFs because the joint prob-
ability of independent events equals the product of their 
marginal probabilities, respectively the sum of their mar-
ginal log-probabilities. This holds for any discrete dis-
tribution, even if the log-probabilities or the number of 
events differ. Figure 2 exemplifies this for a single-bit 
and a two-bit substring. Iterating over all Dirac impulses 
(right to left, i.e., most likely PUF response to least likely 
one) results in the ranking of PUF responses necessary 
for (1) and (2).

3.2 � Convolution of Histograms for RMF

With longer substrings, i.e., more events per marginal 
distribution or many substrings being convoluted, the 

(4)fX(l) ≥ 0 ∀l ∈ ] −∞, 0] and �
0

−∞

fX(l)dl = 1.

Fig. 1   RMF of the distributions in Table 1 for selected values of p, r . 
The dashed line indicates the RMF for p, r = 0.5

3  With q = log2(p) and q� = log2(1 − p) for the biased distribution

and for the correlated distribution with q = log2(r) and q� = log2(1 − r),
fX(l) = 1∕8

(
�
(
l − 3q�

)
+ �(l − 3q)

)
+ 3∕8

(
�
(
l − q − 2q�

)
+ �

(
l − 2q − q�

))

fX(l) = 1∕4
(
�
(
l − q − 2q�

)
+ �

(
l + 1 − 2q�

))
+ 1∕2�

(
l + 1 − q − q�

)
.
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number of Dirac impulses can become inefficient to han-
dle. However, accepting some reduction in accuracy, the 
RMF of each substring can be approximated by a histo-
gram, as also shown in Fig. 2. Then, all outcomes whose 
log-probability falls into the same bin are approximated 
to occur with this bin’s central value. Designing the 
bin width allows us to adjust the approximation error. 
As Glowacz et al. [6] showed, the convolution of these 
histograms—more precisely the vectors of bin counts—
approximates the histogram of the entire string if all his-
tograms use the same bin width.

The example in Fig.  2 uses bin width w = 0.5 , and 
bins of marginal histograms are located to have an edge 
at an integer value. For the first substring, this produces 
the vector 

(
1∕2 0 0 0 1∕2

)
 with a central value of −0.25 

for the rightmost bin. For the second substring, the vec-
tor is 

(
1∕4 1∕2 0 1∕4

)
 with a central value of −1.25 for 

the rightmost bin.4 After the convolution, the vector is (
1∕8 1∕4 0 1∕8 1∕8 1∕4 0 1∕8

)
 with a central value of 

−1.5 for the rightmost bin. Note that the bin width does not 
change by convolution, and the central value of the rightmost 
bin of the convoluted histogram equals the sum of the cen-
tral values of the rightmost bins in the marginal histograms. 
Since the output vector grows linearly with the number of 
convoluted histograms, not exponentially as the number of 
Dirac impulses would, this approach remains feasible even 
for thousands of substrings, e.g., 1024 single-bit substrings 
that are necessary to evaluate the conditional min-entropy 
for polar codes.

Compared to a histogram after the convolution of the 
RMFs, which is shown by Dirac impulses in Fig. 2, the 
convolution of histograms in this example differs in the bin 
of the least probable event. This is because every event is 
approximated to occur with a log-probability equal to the 
corresponding bin’s central value. As shown by Glowacz 
et al. [6], the maximum error by this approach is j∕2 bins into 
each direction if j histograms have been convoluted.

3.3 � Expected Conditional Min‑Entropy Based 
on the RMF

The approximated RMF of the entire response string—obtained 
through the convolution of histograms of assumed independent 
substrings—provides a partitioning of X into a selectable num-
ber of bins. This is equivalent to the partitioning by Delvaux 
et al. [4], but more generally applicable. Each bin constitutes a 
group �j with |�j| events that—approximately—occur with log-
probability qj respectively probability pj . Therefore, the groups 
�j can be used the same way as the groups �j from Section 2.3 
to calculate the expected conditional min-entropy. So starting 
from the rightmost bin, as many bins as necessary are processed 
until |E| elements of X  are collected. The negative logarithm of 
their sum then is the expected conditional min-entropy. This 
corresponds to (1) and (2). Note that this approach only requires 
knowledge about the statistics of individual bits or substrings 
of the response, where substrings may comprise an arbitrary 
number of possibly correlated bits. It is entirely independent 
of the PUF primitive.

3.4 � Optimization of Error Bound

Convolving histograms rather than exact RMFs is an approxi-
mation. It is, therefore, crucial to consider the resulting error. 
Glowacz et al. [6] provided a general bound that assumes an 
error of half the bin width, but we can improve upon it. Only 
the rightmost bins are of interest for the expected conditional 
min-entropy. It is thus beneficial to minimize the approxima-
tion error in this area, even if it would cause larger errors in 
the leftmost bins. Histogram convolution only requires bins of 
equal width but not equal bin location. Thus, without restrict-
ing the applicability, the bins of each marginal histogram can 
be located so that the most probable event coincides with the 
central value of the rightmost bin. This reduces the approxima-
tion error to zero for each marginal distribution’s most prob-
able event and the entire distribution’s most probable event. 
The error for less probable events increases the more events 
with non-zero approximation error contribute to them. For 
single bits, the maximum error increases proportionally to 
the response’s Hamming distance (HD) to the most probable 
response. To demonstrate this, we choose an example where an 
exact calculation is feasible, and the error is known. Figure 3 
shows the difference in log-probability between exact calcula-
tion and histogram convolution for an exemplary 8-bit response, 
where pi ∀i ∈ {1,… , 8} is drawn independently from a uni-
form distribution between 0.1 and 0.9 and bin width w = 0.25 . 
Without bin alignment, the general error bound [6] holds, which 
is, in this case, ±1 for every response; hence, it is not depicted in 
Fig. 3. With our proposed alignment, the error bound decreases 
from the general case in the least probable bin toward zero for 
the most probable bin. Additionally, the actual observed errors 
are reduced.

Fig. 2   Convolution of RMF and histograms for a one-bit substring 
( p1 = 0.19 ) and a two-bit substring ( p2 = 0.36)

4  Zeros to the left and right of the largest/smallest non-zero value can 
be skipped.
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4 � Results

In this section, we apply the concept of Section 3.3 to differ-
ent linear ECCs. We incorporate the error term discussed in 
Section 3.4 to achieve a lower bound. If possible, we com-
pare the results in this work with [4] and [5]. We also give 
results for the n − k bound as a reference. Advancing over 
the results in [4, 5], this is the first work that can additionally 
analyze large codes in a scenario with locally biased PUF 
response bits. Therefore, it illustrates the impact of code 
selection when the underlying PUF exhibits bias effects. The 
problem with the methods in [4, 5] is the infeasibility of 
sorting sufficiently many PUF responses by their probability. 
This is because the respective groups become too small, and 
naively sorting, e.g., 21024 PUF responses for the polar code 
is impossible in practice.

Experiments on Real Data with Local Bias Effects  The PUF 
data for the experiments are from SRAM PUFs on commer-
cial XMC4500 microcontrollers [20, 21]. We assume that 
local bias is the predominant deficiency in this data set, and 
correlations, as illustrated in Table 1, are negligible [19]. 
Note that our approach does not depend on the PUF primi-
tive or the amount of PUF data per device. It only requires 
information about the probability for single bits or small 
groups of correlated bits (cf. Section 3.3). For all codes, 
the bias for 10,240 bits is evaluated. The information about 
the bias stems from averaging each bit at a specific position 
over 144 devices.

As many code words as possible are fit into these 10240 
bits, and the conditional min-entropy is computed for each 
one of them. For comparison, the average conditional min-
entropy per message bit of all code words (of the same code) 
is taken for comparison.

Table 2 summarizes the findings. The bin width for the 
convolution is set heuristically to 0.001. A smaller bin width 
would result in a higher accuracy of the entropy estimation at 
the cost of a longer runtime. A larger bin width would only be 

beneficial to speed up the computation if even longer codes 
than n = 1024 would be considered. Each row represents 
an error-correcting code with its corresponding conditional 
min-entropy. The top part of the table evaluates the impact of 
different code parameters, such as the rate or overall length 
of the code. Note that these codes do not have the same error 
correction capability. In the context of code concatenation, 
evaluating one of its components (e.g., a (7, 1, 3) repetition 
code) is insufficient, but the resulting code has to be analyzed. 
Primarily, it is based on a serial code concatenation as in [22]. 
The lower part thus presents the findings for codes that are 
tailored toward PUF applications. They can derive a 128-bit 
key with an error probability of < 10−6 even if the bit error 
rate on the input side is 15% . These numbers are common 
when comparing error correction for PUFs [16].

The table features a (1024, 128) polar code as proposed in 
[15] and a concatenation of a (127, 64, 10) BCH code with 
a 7-repetition code as in [23]. In the latter case, two code 
words form one 128-bit key. (815, 128, 173) are theoretic 
code parameters with a code rate of 0.16 according to the 
Griesmer bound [24]:

For a message length of k = 128 and the constraints 
regarding bit error probability and desired key error prob-
ability, we find the smallest possible n. While not every 
error-correcting scheme is based on linear block codes, and 
by utilizing reliability information error correction beyond 
dmin might be possible, this code rate still serves as a refer-
ence point and indicator of a PUF’s quality.

Table 2 shows the largest approximated min-entropy 
values for the approach in [4]. This is because by falsely 
assuming IID PUF bits, the approach by [4] does not hold for 

(5)n ≥
k−1∑
i=0

⌈
d

2i

⌉

Fig. 3   Difference in estimated log-probability between convolution of 
histograms and exact calculation, sorted by the HD to the most prob-
able response. Dashed lines indicate the improved error bound by the 
alignment of bins

Table 2   Conditional min-entropy for different error-correcting codes 
(n,  k,  t) as in [4, 5] and the convolution of histograms (bin width 
0.001). The data is taken from SRAM PUFs ( H̄∞(X) = 0.74 ) on com-
mercial microcontrollers [20, 21]. A dash indicates that the method is 
not computationally feasible for the respective code length based on 
our own experiments. For a comparison, the results according to the 
n − k bound [11] are included as well normalized to k 

Code H̄∞(X|Y) per message bit

(n, k, t) [4] [5] n − k [11] Histogram

(3, 1, 1) Rep 0.63 0.59 0.22 0.62
(15, 5, 3) BCH 0.59 0.49 0.22 0.55
(31, 6, 7) BCH – 0.36 -0.34 0.43
(127, 8, 31) BCH – 0.09 -3.13 0.15
(256, 32) Polar – 0.18 -1.08 0.27
(1024, 128) Polar – – -1.08 0.25
(889, 64, 73) Rep+BCH – – -2.61 0.12
(815, 128, 173) Griesmer bound – – -0.66 0.31
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the given data set. It hence overestimates the min-entropy. 
Compared to [5], the min-entropy estimation based on the 
convolution of histograms results in slightly larger values. 
However, assuming that no correlations are in the data set, 
it is still a lower bound and thus closer to the actual value. 
Most importantly, it is also feasible for larger codes and thus 
codes relevant in the PUF context. In [5], computing the 
conditional min-entropy for a (127,8,31) BCH code required 
about 20 min on a commodity computer compared to 5 s 
with histogram convolution (with an Intel® Core™ i7-7600U 
CPU @ 2.8GHz × 4 cores and 16 GB RAM). For larger 
codes such as the (1024, 128) polar code, our approach 
requires 30 s whereas [4, 5] do not provide a bound for the 
min-entropy in feasible time based on our experiments re-
implementing their methods for local bias effects. Even for 
smaller codes than n = 1024 , several days of computing [4, 
5] did not provide a result on our commodity computer, and 
the computation was aborted. Furthermore, the results show 
that the n − k bound is too pessimistic regarding the remain-
ing entropy given helper data.

To put the results in a larger context and for a better com-
parison of the impact of code parameters, Fig. 4 visualizes 
the conditional min-entropy over the code rate for different 
codes. As a reference, the data on a bit level have an average 
min-entropy H̄∞(X) = 0.74 , as indicated by the black hori-
zontal line. It is computed by summing the min-entropy of 
each bit divided by the total amount of bits. Beyond what is 
provided in Table 2, repetition codes of lengths 3, 5, 7, and 
21 are shown. The code parameters for the BCH codes are 
(7, 4, 1), (15, 5, 3), (31, 6, 7), (63, 7, 15), and (127, 8, 31). 
The figure also shows the results for the following (n, k) 
polar codes: (8, 3), (16, 4), (64, 12), (128, 16), (256, 32), 
(512, 64), (1024, 90), (1024, 128). Note that several polar 
codes have a rate of 0.125 and form a stack of blue lines 
close to marker P in Fig. 4. Of these codes with the same 
rate, the one with the shortest overall length, the (128, 16), 
has the highest H̄∞.

While a higher H̄∞ is beneficial, sufficient error correc-
tion capability is necessary. Therefore, Fig. 4 does not imply 
that, e.g., a 3-repetition code is more suitable for PUFs than, 
e.g., a (128, 16) polar code. Instead, Fig. 4 includes three 
exemplary codes labeled as PUF-ECC that achieve said 
error correction capability. They are the same codes as in 
the lower part of Table 2.

Experiments on Synthetic Data with Independent Groups 
of Correlated Bits  Illustrating the efficiency and efficacy 
of our approach to correlated data requires a large data set 
with known correlation effects. We enforce such correla-
tion effects for a simulated PUF scenario by sampling RO 
frequencies and deriving the responses as the sign bit of an 
overlapping comparison: Instead of comparing RO frequen-
cies as differences A–B, C–D, and E–F, in the overlapping 

comparison, differences like A–B, B–C, C–D, D–E, and E–F 
are taken. This way, more bits are derived from the same 
oscillators. However, neighboring bits are likely different, 
which corresponds to a negative correlation. This correla-
tion effect has been studied for real data by Maiti et al. [25] 
in [26]. Unfortunately, the data set in [25] is too small to 
derive 1024 bits for a polar code (1024, 128). Hence, for this 
experiment, we replicate the effect of overlapping compari-
sons with synthetic data.

First, we sample random frequencies from a standard nor-
mal distribution. We then define the number of correlated 
bits b = #ROs − 1 , i.e., how many bits are derived from a 
group of #ROs ring oscillators. b = 1 means, e.g., that two 
ROs are compared, and no correlation exists; b = 4 cor-
responds to comparing five frequencies in an overlapping 
manner so that four neighboring bits are pairwise correlated. 
To derive probability data as input to the convolution, we 
repeat this experiment as a Monte Carlo simulation and 
observe the 2b probabilities for every possible resulting bit 
sequence. Asymptotically, each bit group has the same prob-
ability distribution regarding its bit sequences. However, to 
not necessitate each bit group having the same probability 
distribution, we determine the probability distributions indi-
vidually for each bit group.

For the experiment, we set b ∈ 1, 2, 4 , and the amount 
of Monte Carlo simulations is 2b ⋅ 1000 to ensure sufficient 
accuracy for the empirically determined probabilities. We 
evaluate our method using the aforementioned (1024,128) 
polar code as an ECC.

Fig. 4   Estimated H̄∞ for different codes and rates. PUF-ECC denotes 
codes that achieve a 128-bit key error rate of less than 10−6 : C for 
code concatenation of repetition and BCH code, P for polar code, and 
G for Griesmer bound
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Table 3 compares the conditional min-entropy per mes-
sage bit after the convolution of histograms with the actual 
min-entropy in the PUF. The deviation for b = 1 from the 
ideal value of 1.0 appears by chance since there are extreme 
cases where the resulting zero/one probability is not exactly 
0.5 for a bit. However, these extreme cases are the ones that 
determine the min-entropy. The results of this experiment 
provide three insights: First, the convolution of histograms 
is possible for a realistic setting of partially correlated PUF 
bits and practical code sizes. Second, as to be expected, 
the entropy per bit decreases already in the original PUF 
response the more overlapping comparisons are made, i.e., 
for increasing b. Third, this decrease in entropy is even more 
significant in the experiment after considering the helper 
data for the conditional min-entropy.

To put the results about overlapping comparisons into 
perspective, this means, e.g., for a (theoretical) array of 
10,240 ring oscillators, that different amounts of effec-
tive entropy can be extracted. For b = 1 , we can extract 
5 ⋅ (1024, 128) codes; for b = 4 , we have more bits and thus 
more codewords: 8 ⋅ (1024) . However, the remaining con-
ditional min-entropy in the overall messages is nonetheless 
higher for b = 1 (576bit) than for b = 4 (102bit).

Discussion  From the experiments, we draw several conclu-
sions. A higher code rate leads to an increased conditional 
min-entropy. This means that the smaller implementation 
complexity of concatenated codes comes at the price of a 
possibly lower security level: Due to combining two simpler 
individual codes, the resulting code rate is smaller than for 
a stand-alone code such as the polar code or optimally for 
the code based on the Griesmer bound. For the exemplary 
data, the average conditional min-entropy for a polar code 
is approximately twice the one for the code concatenation 
due to having a higher code rate (point P in Fig. 4 vs. point 
C). A higher code rate means an attacker has less knowledge 
(in the form of helper data) about the underlying secret. This 
shows that when designing a code for a practical scenario, 
the choice of the code significantly impacts the entropy 
given helper data and a non-ideal PUF.

If the code rate is the same for two codes, but they have 
different lengths (such as for the exemplary polar codes), this 
effect is similar. The additional attacker knowledge due to 

more helper data outweighs the additional information due to 
a longer underlying message. Thus, in principle, it might also 
be advantageous not only for a reduced implementation com-
plexity but also for a higher min-entropy to split the key into 
several smaller chunks. But this does not necessarily result in 
improved security with regard to other attack vectors such as 
side-channel attacks. It might be easier for an attacker to focus 
on two 64-bit chunks instead of a single 128-bit one. While in 
other PUF scenarios, a different number of key bits might be 
required; the general observations remain the same as for our 
case with 128-bit: Regarding the conditional min-entropy, a 
higher code rate as provided by stand-alone codes is preferable.

Furthermore, based on the new approach of convolving his-
tograms, we show that overlapping comparisons of ring oscil-
lator frequencies exhibit a high decrease regarding conditional 
min-entropy. So, although an overlapping comparison is benefi-
cial for extracting more bits in theory, the effectively extracted 
entropy is less than for a non-overlapping comparison.

5 � Conclusion

Within this work, we have introduced an approach to bound 
and approximate the conditional min-entropy in a PUF-
derived key given the helper data. Our approach is the first 
one which is feasible for practical code lengths and realistic 
PUF weaknesses. Such an evaluation method is essential 
to ensure security and for future certification approaches, 
which also have to support PUFs with non-ideal response 
statistics. The results of this work show that the approach 
can evaluate the key entropy in realistic scenarios. The 
results also point to a general finding: Concerning helper 
data leakage, short codes with a high rate are preferable. 
Both aspects emphasize that our approach is important to 
assess the security of constructions based on PUFs.
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