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Abstract
Setting an optimal image exposure is crucial for acquiring dense point clouds using 3D active optical sensor systems 
such as structured light sensors [structured light sensors (SLSs)] and active stereo sensors. One of the most common and 
seamless ways to optimize the image brightness of an image exposure is to adjust the camera’s exposure time. However, 
optimizing the image exposure alone is ineffective for acquiring surfaces of large-scale objects with a complex topology 
if a spatial understanding of the scene is neglected. Hence, the present paper proposes a data-driven approach using two 
Gaussian processes [Gaussian processes (GPs)] regression models to select a proper exposure time considering the nonlinear 
correlations between image exposure and the scene spatial relationships. To model these correlations, our study introduces 
first the generic synthesization of seven inputs and two target variables. Then, based on these inputs, two independent 
GPs are designed: one for predicting the measurement quality and one for estimating the exposure time. The performance 
and generalizability of both models are thoroughly evaluated using an SLS and an active stereo sensor. The evaluation 
demonstrated that the point cloud quality models adequately matched observations with an R2 exceeding 90%. Specifically, 
the models predicted point cloud quality with an root mean square error (RMSE) of 10%. Additionally, the assessment of 
the performance of the exposure time models showed a model fit with an R2 above 97%. The exposure time prediction 
accuracy, as evidenced by the RMSE values, was within 10% of the corresponding exposure time range for each sensor. The 
present research shows the potential and effectiveness to completely automate the assessment of a point cloud quality and 
the selection of exposure times with the help of data-driven models.

Keywords 3D active optical sensor systems · Exposure time estimation · Point cloud quality prediction · Gaussian Process 
regression · Structured light sensor · Active stereo sensor

1 Introduction

The increasing performance of 2D and 3D sensors com-
bined with the falling prices of electronic components over 
the last two decades have enabled researchers and industry 
to develop cost-effective solutions [1] for improving vision 
tasks, such as image-based quality inspection, digitization, 
reverse engineering, object detection, surveillance, and 
navigation. In particular active 3D imaging sensors, such as 

structured light sensors (SLSs), comprising at least one cam-
era and a light projecting source, have been established as 
the leading acquisition technology for high precision vision 
tasks due to their accuracy and large working volumes [2]. 
By combining optical triangulation and pattern illumination, 
active sensors can generate an accurate 3D sampled repre-
sentation of a probing object’s surface, known as a point 
cloud. The generated point clouds can then be interpreted 
and processed to solve different vision tasks.

However, obtaining a robust and reliable sampling 
of an object’s surface, i.e., a high-density point cloud, 
requires that an adequate camera exposure has been pre-
viously selected. Correctly setting the camera exposure 
of imaging sensors is a non-trivial task that requires the 
consideration of several influencing variables, e.g., cam-
era parameters (exposure time, lens aperture, sensitivity), 
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projecting device parameters (light intensity, pattern) [3], 
probing object surface material [4]. Figure 1 exemplifies 
the complexity of this task for measuring highly reflec-
tive large-scale objects, such as a car door, using an SLS. 
The camera image (left) shows that the scene illumination 
is mostly inhomogeneous and that a globally optimized 
exposure time is likely ineffective to obtain a high-density 
point cloud (right) for acquiring all features. Furthermore, 
this example illustrates the importance of considering the 
spatial relationships between the features and the sensor in 
order to achieve an appropriate image exposure.

Due to the many factors influencing scene illumination, 
selecting a proper exposure time is still a challenging 
task generally performed manually, which can take up to 
several hours and strongly depends on the vision system 
characteristics, the object’s geometric complexity and size, 
and user expertise. Therefore, automated optimization of 
image exposure to ensure dense point cloud quality is a key 
step toward effective and resource-efficient performance 
of vision tasks using active 3D optical sensors. For 
this reason, the present study proposes a data-driven, 
supervised learning approach using two independent 
Gaussian processes (GPs) regression models for predicting 
the local quality of a point cloud and for estimating the 
required camera exposure time. The introduced models 
were developed in the context of coordinate metrology 
applications, where the robust acquisition of individual 
features (related terms: inspection feature, artifact, region, 
area, or point of interest) has a higher priority than the 
entire object’s surface. For this reason, the current research 
follows a local feature-driven optimization rather than 
a global approach. Both proposed data-driven models 
are trained using first the camera image’s local light 
intensity around a feature and the spatial relationships 
between the features and the sensor. The models are 
iteratively developed and analyzed to gain a better 
general understanding of the model outputs and input 
spatial correlations. Our work aims at providing users and 
researchers with a novel method to assess and automate 

the acquisition of robust point clouds without considering 
any hardware or software alteration of the vision system.

1.1  Related work

Effective control of the camera exposure for measuring high 
reflective surfaces is a well-known challenge faced by any 
active sensor. Hence, several researchers have analyzed this 
problem over the last three decades and proposed different 
solutions comprising hardware- and software-based 
techniques to address it.

One of the most common and pragmatic methods to 
obtain uniform reflectivity is matte coating the surface 
of the measuring object [5]. Although this technique is 
still considered to be highly effective for eliminating the 
overexposure of the camera image, this approach also 
has disadvantages, e.g., not all workpieces can be coated, 
the process is difficult to automate, and the measurement 
accuracy is affected by the powder thickness and its 
distribution homogeneity [6].

In addition, there are a handful of methods that combine 
multiple camera images with different exposures to optimize 
image intensity. Such approaches strive for targeted exposure 
control of individual pixels and fall under the category of 
High Dynamic Range (HDR). The targeted spatial image 
exposure can be achieved using different techniques, e.g., 
multiple exposure times [7], modulation of the fringe 
projector [3], pixel-wise adaptation of the fringe projection 
[8], or hybrid approaches using external filters [9] and 
multiple cameras [10] or projectors [11]. Moreover, [12] 
proposed a software-based solution that generates synthetic 
fringe images without considering any system adaptation. 
This study refers to the following review papers [13, 14], 
which offer an overview of the various HDR approaches 
and their applications.

Although HDR techniques offer robust solutions, such 
methods are impractical for commercial or industrial 
active systems that do not allow the required hardware or 
software modifications. Additionally, many of the HDR 

Fig. 1  Measurement of a car 
door using an SLS: a camera 
image and corresponding, b 
3D point cloud. The 2D image 
provides a qualitative represen-
tation of the scene illumina-
tion. The red pixels indicate an 
over saturation of the camera 
impeding the acquisition of the 
surface points of the features 
in the point cloud (color figure 
online)

(a) (b)
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techniques require an a priori image analysis, which affects 
the resource-efficiency (computational and time) of the 
whole process [15]. Hence, [15] proposed a global exposure 
time optimization using a single acquired fringe image and 
an approximated linear model of the exposure time and 
the image intensity. Although the study demonstrated the 
validity and effectiveness of an approximated model, the 
investigation of the spatial relationships between camera and 
object was not further addressed. More analytical methods 
were used by [16], which proposed an offline planning 
system for predicting a valid exposure time based on the 
reflectance simulation model framework of [4] and a 3D 
surface model of the probing object to control the camera 
exposure time. The study of [16] utilized the reflectance 
model to compute a global optimized exposure time for a 
given ideal image intensity. Their study showed that the 
expected surface area could be estimated with a deviation 
of 20% to predict the quality of the resulting point cloud. 
Furthermore, [17] argues the importance and relevance 
of quantifying the quality of point clouds. To this end, 
the authors introduce a comprehensive set of performance 
indicators to assess, among other metrics, the quality of point 
clouds. However, their work focuses on post-acquisition 
evaluation rather than deriving optimized parameters to 
ensure high point density point clouds.

1.2  Approach

Based on the literature review, the automated optimization 
of exposure times for active 3D sensors remains an open 
issue within academia and industry. Moreover, the effective 
and efficient selection of exposure times can be regarded 
as a multi-dimensional problem that requires an imaging 
and spatial understanding of the acquiring scene taking into 

account a variety of different the influencing factors. For 
this reason, a human operator is still required for setting ade-
quately the camera exposure within complex vision applica-
tions such as depicted in Fig. 1. Motivated by the idea that 
an operator is capable of adjusting effectively the camera’s 
exposure time, where other approaches fail, our study first 
considers an analysis of the operator’s behavior based on an 
observation-action-assessment procedure:

• Observation (2D image exposure and spatial relations): 
Considering an initial exposure time, the operator 
observes the image intensity concentrating on the 
features to be acquired.

Fig. 2  An approach involv-
ing two data-driven models is 
utilized to predict measurement 
quality in order to determine the 
ideal exposure time subse-
quently. The quality model (top) 
predicts the quantitative point 
cloud quality for a particular 
feature to evaluate the measure-
ment’s validity. The second 
model (bottom) calculates the 
necessary exposure time to 
achieve a local image intensity 
for the same feature
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Fig. 3  Overview of the core components of the measurement cell 
AIBox: car door as probing object, SLS ZEISS Comet PRO AE, and 
six-axis industrial robot for automated sensor positioning. In addition, 
an alternative active stereo system, rc_visard 65 and dot projector 
from Roboception, was attached to the SLS for evaluating the trans-
ferability of the models



406 Production Engineering (2024) 18:403–434

1 3

• Action (exposure time): Based on the observed image 
and lighting conditions, the operator adapts the exposure 
time.

• Assessment (point cloud): The operator evaluates the 
measurement based on the resulting point cloud. The 
previous steps are repeated if the required quality has 
not been reached.

Towards replicating the cognitive visual and spatial 
capabilities and expertise of a human operator, our study 
proposes a data-driven approach using GP s trained on 2D 
images, point clouds and spatial data to predict the expected 
measurement quality and estimate an adequate exposure 
time for a given feature. To this purpose, our study considers 
two GP models, one for assessing the quality of the point 
cloud ( qGP ) and one for estimating the exposure time ( eGP ) 
given a local image intensity and the spatial relationships 
between the sensor and a given feature. Since the proposed 
approach does not globally optimize measurements, a local 
image intensity value is used to assess the quality of the 
point cloud or predict an exposure time matching it. The 
local image intensity represents the illumination around a 
feature and serves as an input for the point cloud assessment 
or nominal value for prediction of the exposure time.

• qGP : The present research assumes that the quality of 
the point cloud can be predicted (operator assessment) 
using a local image light intensity and the spatial 
relationships between the sensor and the features 
(operator observation). Hence, in a first step, this study 
considers a GP model to predict the local point cloud 
quality corresponding to a feature.

• eGP : On the assumption that the required local image 
exposure matching an expected point cloud quality 
can be found, a second GP model is used to estimate 
(operator action) the exposure time also considering the 
spatial relationships between the sensor and a feature.

A simplified overview of the proposed models, inputs, 
and outputs is shown in Fig. 2. In addition, the proposed 
approach assumes that the overall image exposure can be 
well controlled solely by the camera exposure time if the 
spatial relationships between the sensor and measurement 
object are known, and a constant scene illumination can be 
guaranteed during each measurement. This characteristic 
is mostly given for active sensors, where the projector can 
be considered as the dominant light source of the scene. 
Therefore, the influence of external light sources can usually 
be neglected [15].

1.3  Contributions

Our work presents a novel and data-based framework, which 
proposes a systematic and incremental design of two GP 
regression models for assessing the point cloud quality and 
estimating the exposure time for 3D active sensors. The 
main contributions of the study are the following:

• Synthesization of generic input and output variables 
for characterizing the point cloud quality, imaging, and 
spatial system state.

• Four-dimensional (4D) GP kernel to predict the point 
cloud quality (number of points) around a feature based 
on a given local image intensity and its relative position 
(3D) to the sensor.

• Six-dimensional (6D) GP kernel to estimate the required 
exposure time for a feature’s nominal local image 
intensity considering its relative position (3D) and 
rotation (2D) to the sensor.

1.4  Outline

This paper first introduces in Sect. 2 the experimental setup 
for training the proposed regression models and presents 
the fundamentals of GPs. Then, the core contribution of 
this paper, i.e., the development and evaluation of both 
regression models as well as the design of the model inputs 
and outputs, is discussed in detail in Sect. 3. A thorough 
validation based on experiments with different lighting 
conditions, surface finishes and the generalization of the 
framework to other sensors is presented in Sect. 4.

Fig. 4  Overview of the door’s inside features selected for training and 
evaluating the proposed GP models
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2  Experimental setup and Gaussian process 
models

2.1  Experimental setup for data collection

The integrated industrial robot vision system AIBox from 
ZEISS was utilized to acquire all training and evaluation 
datasets of the present study. The AIBox is an industrial 
robot-based measurement cell comprising an SLS (ZEISS 
Comet PRO AE) used for different vision tasks, e.g., 
dimensional metrology, digitization, and reverse engi-
neering. The SLS is attached to a six-axis industrial robot 
(Fanuc M20ia) to enable a free positioning of the sensor; 
hence, the full automation of the measurement process. 
Figure 3 shows the core elements of the AIBox, which are 
more detailed described in the following subsections.

2.1.1  Object

A sheet metal car door with different surface finishes 
as shown in Fig. 4 was used for acquiring training and 
evaluation datasets. Car doors are well-known reference 
objects in industry for the evaluation of measurement 
systems, since they exhibit a high feature density and 
variability (e.g., edges, pockets, holes, slots, and spheres) 
and different surface characteristics (e.g., finishes, 
topological complexity).

2.1.2  Features

The car door contains up to 500 features. Our study focuses 
exclusively on the acquisition and evaluation of hole fea-
tures. In coordinate metrology, holes are challenging to eval-
uate since they require an assessment of the surface around 

the perforation. Given their inherently hollow topology, con-
sidering this property within the data processing pipeline 
facilitates a seamless transferability of this approach to the 
assessment of similar features, such as pockets and slots. The 
pipeline should also be easily applicable to other geometric 
features, such as points, spheres, and squares. Additionally, 
the car door has a high variability (sizes, finishes, and loca-
tions) of hole features, which is useful for a comprehensive 
evaluation of the models. Fig. 4 visualizes some exemplary 
circular features used within this study. It is assumed that 
the 3D position and 3D orientation of all features are known 
with respect to a reference coordinate system.

Fig. 5  Exemplary GP regression models; the true function f (x) = x sin(2�x) is reconstructed by two different GP regression models with a SE 
(left) and a RQ (right) kernel. Both models are trained based on a set of 7 noisy observations
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Fig. 6  Generic incremental model development workflow



408 Production Engineering (2024) 18:403–434

1 3

2.1.3  Sensors

The SLS ZEISS Comet PRO AE consists of a monochrome 
camera and a blue-light digital fringe projector. The camera 
integrates a band-pass filter adjusted to the digital projector. 
Additionally, the SLS has a photogrammetric camera for 
high-accuracy image registration.

The sensor is controlled by the proprietary software 
ZEISS colin3D, which allows the setting of the camera 
exposure time. Furthermore, the software has an automatic 
exposure function and a proprietary HDR mode, which were 
deactivated for the acquisition phase. A parameterization 
of further camera settings, such as light sensitivity, lens 
aperture, or any light projector configuration is not allowed.

To evaluate the transferability of our approach with other 
sensors and acquisition principles (cf. Sect. 4.2), a stereo 
sensor (rc_visard 65) and a dot projector from Roboception 
were attached to the SLS (see Fig. 3). The imaging parameters 
of both sensors are given in Table 7.

2.1.4  Positioning devices

The AIBox integrates a six-axis industrial robot to position the 
SLS in six degrees of freedom. The rotary table enables the 
acquisition of the car door inside and outside.

2.1.5  Measuring environment

The whole system is enclosed by a cell box with tinted 
windows to minimize the influence of external lighting 
sources. The measurement cell is mounted in our laboratory, 
which resembles a real production hall and corresponding 
lighting conditions.

2.2  Gaussian processes

The present study proposes two GP regression models for 
predicting the point cloud quality and the exposure time. This 
subsection provides a brief overview of the GPs mathematical 
foundations and their general characteristics.

2.2.1  Fundamentals

Formally, a GP is a stochastic process, i.e., a collection of ran-
dom variables over a time or space domain, in which any finite 
subset of it has a multivariate Gaussian distribution. According 
to [18], a GP can also be seen as the probability distribution 
of an infinite number of functions over the output g(x) for a 
particular input value x . A GP is fully specified by its mean 
function m(x) and its kernel k(x, x�) representing the covari-
ance function between its inputs:

If a function g(x) follows a GP, this can be denoted as

Usually, the mean function corresponds to a zero mean func-
tion m(x) = 0 and the kernel k

(

x, x′
)

 remains as the key ele-
ment to determine the values of g(x).

(1)m(x) = �[g(x)],

(2)k
(

x, x�
)

= �
[

(g(x) − m(x))
(

g
(

x
�
)

− m
(

x
�
))]

.

(3)g(x) ∼ GP
(

m(x), k
(

x, x�
))

.

Table 1  Overview of the 
synthesized target variables 
and inputs with their respective 
units and descriptions

Notation Unit Description

Target variables
pnorm – Normalized number of 3D points from a defined area around a feature
texp ms Camera exposure time in milliseconds

Input variables
xtcp , ytcp , ztcp mm Feature’s relative position to sensor’s TCP
wx
tcp

 , pytcp , rztcp
◦ Feature’s relative orientation to sensor’s TCP

iavg – Average light intensity of 2D image in greyscale [0–255] from a 
defined area around a feature

Fig. 7  Simplified representation of the output variable npoints for 
assessing the quality of the point cloud for a specific circular feature. 
npoints represent the subset of points of the acquired point cloud npcl 
that are inside the hollow cylinder ccyl
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2.2.2  Kernel design

The kernel function k
(

x, x′
)

 defines the covariance between 
a pair of function values of f(x). This characteristic is 
considered one of the principal strengths of kernel methods, 
such as GPs, since the kernel function can be designed 
using explicit prior knowledge and assumptions about the 
unknown function f(x). Therefore, selecting or designing 
an appropriate kernel is crucial for effective training, 
as it influences how random variables and observations 
correlate and ultimately impact the model’s performance. 
The mathematical definition of some exemplary kernels is 
given in Appendix 1.

Moreover, Fig. 5 presents a graphical representation of 
the impact of the kernel through the utilization of two exem-
plary GP regression models trained on the basis of a dataset 
D =

{(

xi, yi
)}N

i=1
 with N = 7 observations. The models aim 

to predict the function f (x) = x sin(2�x) using a squared 
exponential (SE) kernel (left of Fig. 5) and a rational quad-
ratic (RQ) kernel (right of Fig. 5). The trends emphasize the 
significance of kernel design. Although both models mani-
fest effective performance on observations, the SE kernel 
provides better predictions within interpolation ranges. In 
addition, Fig. 5 depicts a further characteristic of GPs, which 
shows that model predictions are intrinsically associated to 
an uncertainty. This feature is illustrated in Fig. 5, which 
exhibits a 10% confidence interval which increases beyond 
the training regions in both scenarios. This characteristic 
is of great advantage in industrial applications, as it allows 
also to evaluate the reliability of the prediction and to act 
accordingly.

3  Model development

This section provides first an overview of the acquired data-
set used for the training and evaluation of the GP models. 
First Sect. 3.1 introduces the characterization of the models 
inputs and outputs. Then, an overview of the used trained 
data is given in Sect. 3.2.2. Section 3.3 outlines the develop-
ment of the GP model for predicting the point cloud quality 
and Sect. 3.4 presents the development of the GP model for 
the estimation of the exposure time. Following an incre-
mental and systematic model design, the models are evalu-
ated and compared with each other to find the best balance 
between complexity and performance. Fig. 6 provides an 
overview of the generic workflow followed in this research 
to develop, train, and evaluate the models.

3.1  Model input and target variables

The selection and synthesis of adequate model input and 
target variables are considered fundamental steps within 
the design and employment of data-based models. Given 
the proposed goals of our study, the synthesized variables 
should be able to describe the correlations between the local 
image exposure of a specific area corresponding to a feature 
and its spatial relationships to the sensor for predicting the 
resulting point cloud quality and the corresponding exposure 
time.

This section introduces the design of the target and 
input variables using linear algebra, geometric analysis, 
and machine vision algorithms. The characterization of the 

pnorm = 1.0

pnorm = 0.31

pnorm = 0.0

pnorm = 0.27

Fig. 8  Extraction of 3D points (red) npoints using the acquired point 
cloud (green) and a 3D Mask (red synthetic cylinder) (color figure 
online)

iavg = 52

iavg = 23

iavg = 117

iavg = 163

Fig. 9  Computation of the local light intensity iavg for each feature 
using one camera’s fringe image and a 2D Mask
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inputs aims at a high generalization and an automated dataset 
generation. An overview of the model target variables and 
the synthesized input variables is given in Table 1.

3.1.1  Target variables

This subsection introduces the synthesization of the target 
variables, i.e., the point cloud quality and the exposure time, 
for the quality and the exposure time prediction models.

Point Cloud Quality
Our study introduces a quantitative metric to express the 

acquisition quality of a feature. This metric is expressed by 
the absolute number of points npoints in an acquired point 
cloud that correspond to a given area of a feature.

This area is calculated by intersecting the point cloud 
with a synthetic hollow cylinder. The hollow cylinder is 
built based on the geometry, position and orientation of the 
features. Given a circular feature with a radius rf  , a hollow 
cylinder ccyl , with an arbitrary height hcyl , an inner radius 
ri = rf + rtol,i and outer radius ro = rf + rtol,o is defined. The 
parameters hcyl , rtol,i and rtol,a define tolerance variables that 
must be selected based on the specific application, system 
or standards. npoints represent then the subset of points of the 
point cloud npcl that are within the hollow cylinder. npoints is 
given as the intersection of these elements:

The position of the cylinder corresponds to the feature’s 
origin and its orientation to the feature’s normal vector. 
Figure 7 shows a simplified 2D graphical representation of 

(4)npoints = npcl ∩ ccyl.

the circular feature, the hollow cylinder, and the npoints . The 
hollow cylinders and the resulting intersected points of some 
exemplary features of an exemplary real measurement are 
shown in Fig. 8.

Normalized Point Cloud Quality
Since the number of points depends theoretically 

on the feature’s radius and acquisition plane (the point 
density depends on the measurement’s depth), a further 
post-processing step must be considered to allow a better 
generalization of the local point cloud quality. Consequently, 
it can be assumed that an optimal measurement is given 
when the maximum possible number of 3D points denoted 
as nmax,3D is obtained. The normalized number of points 
given as pnorm is calculated as follows:

The maximum number of 3D points that can be acquired is 
equivalent to the total number of pixels of the camera image 
nmax,2D , hence:

Assuming that an acquired 3D point t3D ∈ ℝ
3 can be 

associated with one pixel of the camera image, the 2D 
projection of t3D can be approximated using a pinhole-
camera model and the projection matrix Ms:

The projection matrix comprising the camera’s intrinsic 
parameters can be obtained using a camera calibration 
procedure based on a calibration pattern [19].

Using Eq. 7 the 2D projection of the hollow cylinder at 
the feature ’s plane can be computed and the total number 
of pixels nmax,2D , which corresponds to nmax,3D , can be 
estimated. The 2D projection represents a 2D mask, 
which can be directly applied to the camera’s image. 
Figure 9 shows the corresponding masks of the hollow 
cylinders from Fig. 8.

Exposure time
The exposure time texp is used as the target variable of 

the second GP model. Since most active sensors, such as 
the examples shown in Sect. 2.1.3, allow for the specific 
setting of an exposure time, additional pre-processing of 
this variable is unnecessary.

3.1.2  Input variables

In the following subsection, the input variables and their 
pre-processing steps for their synthesization are described.

(5)pnorm =
npoints

nmax,3D
.

(6)nmax,3D ≅ nmax,2D.

(7)
(

xpixel
ypixel

)

∼ Ms ⋅ t3D.

Fig. 10  Trend of the normalized number of points and local light 
intensities for different features
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Local light intensity
Like other works [3, 20], this study assumes that the 

external lighting conditions remain constant, the projector 
provides the dominant lighting source of the scene, and the 
projector’s configuration remains constant. Hence, a single 
fringe image is considered to quantify the light intensity 
around each feature at each measurement.

Similar to [3, 20], this work proposes to utilize the camera 
image of a stripe pattern to determine the light intensity 
as accurately as possible. In contrast to the related works, 
this research follows a local approach to quantify the image 
intensity around a feature using the 2D mask of the hollow 
cylinder (cf. Sect. 3.1.1). The average light intensity of 
the masked section denoted as iavg characterizes the local 
illumination provided by the projector, which is given in an 
8-Bit grayscale range iavg ∈ [0,… , 255] (see Fig. 9).

Relative position and orientation
It is assumed that at least one reference frame of the 

sensor, e.g. at the tool center point (TCP) or the lens, is 
known. Hence, the rigid transformation between this 
sensor’s reference frame and a feature frame is utilized to 
characterize the spatial relationships between sensor and 
features for each measurement. The rigid transformation 
can be calculated using different methods, e.g., robot 
kinematics, feature extraction, surface-based registration, or 
photogrammetry. In the present study, the relative position 
is given in the sensor’s TCP by the following translation 
vector ttcp = (xtcp, ytcp, ztcp)

T and the orientation by the Euler 
angles rtcp = (wx

tcp
, p

y

tcp, r
z
tcp
)T . In addition, it is assumed that 

the sensor’s TCP lies in the middle plane of the sensor’s 
working volume. For example, Fig. 19 depicts the translation 
vectors between the sensor TCP and two features.

3.1.3  Implementation

The input and target variables are generated using a self 
developed processing pipeline considering following 
characteristics:

• Normalized number of points: The height of the cylinder 
and the radii tolerances were defined based on an internal 
defined norm as follows: h = 20 mm, rtol,i = 3 mm, and 
rtol,o = 5 mm. The generation of the synthetic cylinder 
and the estimation of npoints was computed using the 
trimesh Library [21].

• Exposure time: The exposure time texp does not require 
any special pre-processing. Hence, the raw value in 
milliseconds (ms) was stored for each measurement.

• Position and orientation: The position and orientation 
of the door features are known and given in the door’s 
coordinate system. The rigid transformations between the 
sensor’s TCP and all features were calculated using the 
aligned transformation of each measurement. To increase 

the accuracy of the alignment, most point clouds were 
aligned using the system’s photogrammetry capabilities. 
Otherwise, the robot’s kinematic model was utilized.

• Local light intensity: For the computation of the light 
intensity, the initial stripe pattern image was used for 
computing the image intensity. The initial stripe pattern is 
permanently projected and helps the manual operator to 
estimate the current camera exposure. The computation 
of the 2D masks, grayscale values, and projection matrix 
of the camera calibration was performed using the 
Python API of the OpenCV library [22].

An example dataset can be found in the supplementary files 
of this publication.

3.2  Data acquisition

The data acquisition phase represents a critical and resource-
demanding step during the design of data-based models. 
Therefore, this section presents a thoughtful design of 
experiments (DoE) that utilizes a uniform sampling method 
of the sensor’s workspace.

3.2.1  Design of experiments

In the first step, a measurement strategy was developed to 
estimate the positions at which the Comet PRO AE sen-
sor could acquire data within its workspace. This selection 
of the measurement positions followed the space-filling 
design strategy as suggested by [23], which advocates using 
an orderly grid pattern to evenly distribute the input values 
across the experimental range. Hence, the data collection 
positions were uniformly discretized using a grid along the 

Table 2  Performance overview of the QualityPrediction Model qGP 
considering different kernels and input variables

The bold values indicate the top performance of the trained kernel 
model on the test data

Evaluation

Kernel Data Data R2 MSE RMSE

set set in % in %

qk1 Xtrain
1

Xval
1

79.53 0.030 17.32
Xtest
1

77.57 0.034 18.44
qk2 Xtrain

2
Xval
2

96.03 0.006 7.75
Xtest
2

29.91 0.105 32.40
qk3 Xtrain

3
Xval
3

94.78 0.008 8.94
Xtest
3

11.06 0.134 36.61
qk4 Xtrain

4
Xval
4

96.96 0.005 7.07
Xtest
4

92.74 0.011 10.49
qk6 Xtrain

6
Xval
6

97.45 0.004 6.32
Xtest
6

89.51 0.016 12.65
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x and y planes for three distinct depths (z-plane) to guarantee 
the collection of training data throughout the entire sensor’s 
3D workspace (see Table 7). The resulting measuring sensor 
positions were generated using the feature f1 as reference. 
Figure 21 depicts the discretized workspace for the meas-
uring positions. Moreover, to minimize the data collection 
effort and for storage resource efficiency reasons, the expo-
sure time acquisition ranges were defined based on a loga-
rithmic scale enabling a finer discretization at low exposure 
time range. Moreover, the minimum and maximum exposure 
time range values were selected empirically for three differ-
ent depth planes (near, middle, and far). Table 9 summarizes 
the considered spatial and exposure time ranges compris-
ing 480 measurements at 48 different positions. The DoE 
regards a constant sensor orientation for all measurements. 
However, a minimal orientation variability was achieved by 
considering features with different normal surface orienta-
tions. The generated dataset is denoted as X.

In the final step, the planned 480 measurements were 
acquired automatically using the integrated robot. To ease 
and automate the generation of the robot’s path plan, the 
viewpoint planning framework introduced in our previous 
works [24, 25] was used. Moreover, the whole acquisition 

process was automated using the C# and Python API pro-
vided by the proprietary software of ZEISS, i.e., Visio7 
and colin3D. The acquisition of all measurements required 
approximately 105 min. The complete dataset size com-
prises 480 point clouds and 2D images with a resolution of 
4 megapixels.

3.2.2  Training, validation and test datasets

The input and target variables were synthesized from the 
acquired dataset X for a set of four features denoted as 
{f

1
,… , f

4
} using the parameters presented in Sect. 3.1.3. The 

resulting 6D spatial range spanned by the training features 
is given in Table 9 in the Appendix. Figure 21 visualizes 
the spatial distribution of the training data in the Euclidean 
space.

All models are trained with 80% of all observations; let 
this training dataset be given as Xtrain ⊆ X . Moreover, the 
model metrics are computed using the remaining 20% ( Xval ). 
Additionally, the trained models are evaluated against a test 
dataset Xtest ⊆ X with unknown observations from different 
features denoted as {f test

1
,… , f test

4
} to evaluate the models’ 

(a)

(b)

Fig. 11  Selection of the best (a) and worst (b) predictions of the 4D qGP4 at different positions
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performance. The total size of observations of each subset 
corresponds to Ntrain = 912 , Nval = 228 , and Ntest = 779 . 
Figure 4 depicts all training and test features , whose radii 
lie between 3 and 30mm.

The dataset Xtest includes individual observations (see 
Table  9) lying outside the 6D space range spanned by 
the training dataset. Hence, the models’ interpolation and 
extrapolation capabilities can be individually investigated.

Note: Some of the acquired measurements in the front 
plane could not be photogrammetrically aligned. These 
measurements were aligned using a less accurate method 
based on the robot and measurement cell kinematic model. 
The summed alignment error of some of these noisy 
observations corresponded up to 5 mm. These alignment 
inaccuracies led to a miscalculation of some 2D and 3D 
masks and ultimately to a miscalculation of pnorm . This effect 
can be observed in some observations within the red square 
of Fig. 10 showing a considerable drop of pnorm under 80%. 
However, these misaligned measurements are included in the 
dataset to consider a more realistic and biased acquisition 
scenario. Additionally, it is important to note that the present 
study does not aim to evaluate the sensor’s accuracy and that 
neither the DoE nor the input extraction pipeline is aligned 
to a standard for sensor qualification.

3.2.3  Preliminary data analysis

After synthesizing a dataset that can be used for the models’ 
design, the next step regards selecting the input variables 
with the highest correlation to the model outputs. Hence, 
a preliminary prioritization of the inputs is performed 
based on the maximum information coefficient (MIC) of 
the acquired data to evaluate these correlations. The MIC 
matrix of the training dataset Xtrain is depicted in Fig. 20 
and is used for supporting the incremental kernel design 
of each model. The MIC is often used as a measure of the 
correlation between features that exhibit partially nonlinear 
relationships, rather than relying on the more commonly 
used Pearson correlation coefficient. The interpretation 
of these values is individually addressed in the following 
subsections.

3.3  Quality prediction model

Given that light intensity is a characteristic used to estimate 
surface point depth utilizing image processing techniques, 
appropriate image illumination is vital to ensure accurate 
depth calculations. Moreover, measurement uncertainty in 
some sensors can lead to varying point cloud quality within 
the measurement volume, as noted by [26]. For these rea-
sons, to predict the local quality of the point cloud, expressed 
by the number of points belonging to a specific feature, this 

study employs a GP regression model that takes into account 
the local light intensity and spatial relation to the sensor. 
This subsection outlines an incremental and systematic 
approach for designing the kernel of a prediction model, 
which considers the local light intensity of the image and 
the spatial relationships between the sensor and a feature.

3.3.1  Formulation

According to Eq. 3, a simplified representation of the n 
dimensional GP quality regression model is given as follows:

with

and a zero mean GP (i.e., m(Xtrain) = 0 ). qkn denotes the 
model’s kernel and xn the input vector.

3.3.2  Inputs selection

The MIC correlation values between all inputs and the 
model’s output pnorm (see Fig. 20) are used to support the 
incremental kernel design of the quality regression model. 
As expected, the local light intensity iavg has the highest 
correlation with pnorm followed by the spatial inputs.

Moreover, the normalized number of points shows 
a considerable correlation to the features ’ radii rf  and 
positional inputs, i.e., xtcp , ytcp , and ztcp , suggesting a 
remaining dependency between pnorm and the individual 
features . A similar behavior can be observed with the inputs 
modeling the feature s’ orientation ( wx

tcp
 , pytcp , and rz

tcp
 ), which 

also exhibit a high correlation to pnorm , between themselves 
and the positional inputs despite the fact that the sensor’s 
orientation remained constant for all observations. For these 
reasons, our work considers primarily the positional inputs 
for the kernel design. Furthermore, the exposure time texp is 
disregarded because the information regarding the camera 
exposure is implicitly represented within the average light 
intensity iavg.

3.3.3  Base kernel

Based on a comprehensive evaluation of different kernel 
combinations and a visual interpretation of the data between 
pnorm and iavg (see Fig.  10), the following kernel was 
selected to be the most suitable for modeling the required 
correlations:

where kRQ(Xn) represents a RQ kernel.

(8)g(pnorm) ∼
qGPn,

qGPn ∶= GP(0, qkn(X
train(xn))),

(9)qkn(Xn) ∶= kRQ(Xn) ⋅ kCP,min(iavg) ⋅ kCP,max(iavg)
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First, the rational quadratic kernel kRQ,n(Xn) (see Eq. 23) 
is used to model the general relationships between the 
normalized points and the local light intensity and positional 
inputs. Furthermore, an improvement of the model’s 
performance and smoother progress was observed using 
a change point kernel for a targeted kernel activation. The 
change point kernel kCP,min(iavg) behaves like a step function, 
which changes from 0 to 1 at a minimal average brightness 
of iavg ≥ 10 (cf. Fig. 10). Consequently, an intensity value 
below 10 automatically yields pnorm = 0 . The reverse 
behavior applies for observations with an iavg value over 255 
with the change point kernel kCP,max(iavg).

3.3.4  1D kernel

In the first step a kernel including just the feature ’s light 
intensity was designed. Hence, the model was trained 
considering the following dataset:

and, consequently, the corresponding kernel (see Eq. 9):

The GP denoted as qGP1 is given as follows:

The notation is analogously used for the following kernels 
consisting of more dimensions.

The 1D GP regression model given by Eq. 12 and all fol-
lowing GP s were trained and evaluated using the GPy library 
[27]. The model hyperparameters were calculated using an 
L-BFGS optimizer and a triple restart optimization. Table 8 
provides an overview of the optimized hyperparameters.

The results of the evaluation using the corresponding 
datasets ( Xtest

1
,Xval

1
 ) are summarized in Table 2. The qGP1 

kRQ
(

x, x�
)

= �
2

(

1 +

(

x − x�
)2

2��2

)−�

.

(10)Xtrain
1

∶= Xtrain(x1(iavg))

(11)qk1 ∶= kRQ(X
train
1

) ⋅ kCP,min(iavg) ⋅ kCP,max(iavg).

(12)g(pnorm) ∼
qGP1

(13)qGP1 ∶= GP(0, qk1).

shows a solid performance and generalization for unseen 
features in view of the 1D kernel simplicity with an R2 score 
over 78%. However, the model’s predictions also demon-
strate that the image exposure is insufficient for predicting 
the point cloud quality for all validating and testing features 
with a root mean square error (RMSE) up to 18%. This effect 
can also be observed within various observations of Fig. 10, 
suggesting that the same local image intensity can lead to 
different values of pnorm.

3.3.5  2D and 3D kernel

The second model considers a 2D feature vector integrating 
ztcp due to its next highest correlation (cf. Fig. 20):

The regression model is trained similarly to the 1D model, 
but the 2D rational quadratic kernel ( qkRQ,2 ) uses the 
automatic relevance determination (ARD) variant (see 
Eq. 24), which allows an individual optimization of the 
lengthscale for each input. Table 2 presents the performance 
results, which suggest at first glance an outstanding 
performance for the validation data with a model accuracy 
of R2 = 96% and an RMSE of 8%. However, to judge by 
the generalization accuracy on the unknown observations 
( RMSE = 32%), it can be assumed that the model was 
overfitted.

Furthermore, a 3D kernel integrating the spatial feature 
with the following highest correlation, i.e, xtcp , was consid-
ered. However, the model showed a similarly poor perfor-
mance on the test features (see Table 2).

3.3.6  4D kernel

In the last step a 4D kernel integrating all spatial inputs was 
considered. The input matrix is given as follows:

The 4D kernel model yielded remarkable results with an 
R2 of 92% and an RMSE of 10.5% for the test features 
confirming the model’s transferability and performance (see 
Table 2).

The graphs from Fig. 11 depict the 2D model’s trend of 
some of the best and worst predictions at different positions. 
The curves show the model’s mean prediction and the 
corresponding confidence interval ( 2� , shaded region) for 
the whole light intensity range. On the one hand, Fig. 11b 
illustrates a selection of three of the worst predictions at the 
rising and falling slopes exhibiting that the model still has 
some difficulties making accurate predictions within these 

(14)Xtrain
2

∶= Xtrain(x2(iavg, ztcp)).

(15)Xtrain
4

∶= Xtrain(x4(iavg, ztcp, xtcp, ytcp)).

Fig. 12  Discretized visualization of the mean prediction �(pnorm) 
and corresponding double standard deviations 2� of the 4D 
GP quality regression model qGP4 at three different depths 
ztcp = [−150, 0, 150] mm (left, middle, right) for three different light 
intensities iavg = [25, 75, 125] (top, middle, bottom) for the SLS Zeiss 
Comet Pro AE. The graphs demonstrate that the point cloud around 
a feature depends on the image intensity but also on the 3D relative 
position between a feature and the sensor. The trends confirm the 
nonlinear correlation between the point cloud quality, the image light 
intensity, and the spatial variables

◂
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areas. On the other hand, the best predictions in Fig. 11a 
confirm the overall performance and generalizability of 
the model. A constant and overall acceptable prediction 
accuracy can be observed mainly at the curve’s plateau, 
where the highest number of points is expected.

A more comprehensive visualization of the model’s mean 
prediction and corresponding double standard deviation in 
the x-y plane and light intensities at different sensor-depth 
planes in the z direction is given in the form of 3D surface 
plots in Fig. 12. The 3D model slices also visualize the 
nonlinear characteristic of the problem and the existence 
of local maximum values depending on the image intensity 
and the spatial variables. Additionally, these trends further 
confirm the present study’s motivation showing the existence 
of local minima of the point cloud quality for different 
positions and light intensities.

3.3.7  6D Kernel

For the sake of completeness, a 6D kernel comprising 
the sensor orientation represented by the pytcpand wx

tcp
 

was considered. The results (see Table  2) showed a 
non-statistical performance improvement and even a 
poorer performance than the 4D kernel on the unknown 
observations. Thus, a detailed analysis is not further 
considered. However, it should be noted that the training 
dataset considered feature surfaces with a relative sensor 
orientation up to 13◦ . The present study does not rule out 
that higher incidence angles may have a higher correlation 
with the point cloud quality.

3.3.8  Discussion

This section outlined and evaluated different multi-
dimensional qGP s to predict the number of expected 3D 
points around a feature considering an increasing number of 
inputs. The best performance was delivered by a 4D model, 
whose characteristics and limitations are discussed more 
extensively below.

• Performance The considered 1D model (see Sect. 3.3.4) 
demonstrated that the number of 3D points assigned 
to a feature could be estimated with an RMSE of 18% 
using just the local light intensity of a 2D image. These 
initial results are consistent with the findings of [16] 
and suggest that the quality of the point cloud could be 
optimized using only the image exposure, for example, 
by adjusting the sensor exposure time or the projector 
illumination parameters. However, the performed 
evaluation also revealed that the image exposure alone 
would be insufficient to predict accurately the number 
of expected surface points. Hence, the present study 
considered spatial variables and the design of a 4D kernel 
to learn the missing correlations. The evaluation of the 
4D GP regression model showed that the prediction 
confidence could be increased to an RMSE of 10.5% 
( R2 = 93%), if the relative position between features and 
sensor are considered. Moreover, the qGP4 demonstrated 
a high computational efficiency, e.g., 100 predictions 
were calculated under 19 ms.

• Inputs The target variable pnorm and input variable iavg 
showed a significant validity for modeling the point 
cloud quality and image intensity independent of the 
feature dimensions. However, Fig. 20 shows that pnorm 
and iavg have a correlation to the features ’ radii. Hence, 
it can be hypothesized that the model’s performance 
and generalizability could be improved by considering 
further input variables, e.g., a discretization of the 2D 
mask, standard deviation or median of the light intensity.

• Dataset Size: It is well known that the performance of 
data-driven approaches depends on the available train-
ing dataset size. For this reason, the qGP4 was retrained 
with different training dataset sizes for analyzing the 
influence on the model’s performance. Figure 22 shows 
the results of this analysis based on the test dataset 
Xtest
4

 . The trend shows that the model’s accuracy ( R2 = 
92%, RMSE = 11%) starts converging with a dataset 
size of ≈ 450 observations. Therefore, it is reasonable 
to assume that collecting more data from the same 
training features would not improve the performance of 
the model. Furthermore, this analysis also demonstrates 
that an acceptable prediction accuracy can be obtained 

Fig. 13  Observations of the local light intensity iavg and exposure 
time texp of the training dataset eXtrain with a pnorm > 75% at different 
feature positions along the x-axis for ytcp = 0 mm and ztcp = 0 mm
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with a reduced number of observations, e.g., an RMSE 
of 13.8% with 114 observations. Nevertheless, it should 
be noted that the spatial distribution should still be 
maintained to obtain similar results.

• Kernel design The training loops of the models revealed 
showed that the kernel and its hyperparameters might 
considerably influence the model’s performance. In 
consideration of the findings, it can be concluded that 
the proposed kernel and hyperparameters are capable of 
adequately modeling the necessary system correlations. 
However, it is possible that a different set of kernel 
hyperparameters or an alternate kernel could yield a 
superior performance.

3.4  Exposure time prediction model

This section outlines the design of a GP to estimate the 
camera’s exposure time for a given local light intensity 
around a feature and its spatial relationships to the sensor.

3.4.1  Preliminary dataset analysis

Contrary to the qGP  , the performance and training 
efficiency of the eGP can be increased by considering 
exclusively observations leading to a satisfactory point 
cloud quality. Hence, taking advantage of the measurement 
quality quantification expressed by pnorm , the proposed 
models are trained and evaluated considering observations 
with pnorm ≥ 75% . The datasets’ sizes are then reduced: 
Ntrain
e

= 421 , Nval
e

= 106 , and Ntest
e

= 508 . The train, 
validation, and test datasets are denoted as follows eXtrain , 
eXval , and eXtest.

Figure 13 shows the trend between the exposure time 
and local light intensity of feature f

1
 at different posi-

tions considering a translation in the x-axis alone. At first 
glance, it can be assumed that a linear model would be 
sufficient to model the correlation between iavg and texp 
confirming the validity of the approximation of [3, 15]. 
However, this reduced set of observations, which consid-
ers the shift of a feature in only one direction, shows that 

(a)

(b)

Fig. 14  Selection of the best (top) and worst (bottom) predictions of the 6D eGP6 at different positions
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exposure time has a considerably high correlation with 
spatial inputs. This insight confirms the motivation of 
our work that spatial relationships must be considered 
for selecting an appropriate exposure time. Recalling the 
qualitative distribution of the projector illumination from 
Fig. 1, a nonlinear correlation is to be expected, suggesting 
the necessity of a more complex model.

3.4.2  Formulation

Aligned to the generic definition of GP s (see Eq. 3), the 
regression model for estimating the exposure time is given:

with

3.4.3  Input selection

Based on the MIC values from Fig. 20, the kernel design is 
supported by the correlation magnitude between the expo-
sure time texp and the rest of the inputs. Moreover, it should 
be noted that the input ztcp has an overestimated correla-
tion with the texp due to the different exposure time ranges 
considered at each acquisition depth plane (cf. Table 9). 
Once again the rotational variables are not considered in 

(16)g(texp) ∼
eGPn

(17)eGPn ∶= GP(0, ekn(
eXtrain(xn))).

Table 3  Performance overview of the Exposure Time Prediction 
Model eGP considering different kernels and input variables

The bold values indicate the top performance of the trained kernel 
model on the test data

Evaluation

Kernel Data Data R2 MSE RMSE

set set in % in ms

ek1
eXtrain

1
eXval

1
15.87 6586.35 81.16

eXtest
1

7.41 5644.60 75.13
ek2

eXtrain
2

eXval
2

31.47 5365.17 73.25
eXtest

2
31.66 4166.19 64.55

ek3
eXtrain

3
eXval

3
63.96 2821.29 53.12

eXtest
3

25.00 4572.26 67.62
ek4

eXtrain
4

eXval
4

88.38 909.33 30.16
eXtest

4
17.76 5013.19 70.80

eX
test,i

4
49.55 2478.58 49.79

ek+
4

eXtrain+

4

eXval+

4
95.32 255.07 15.97

eX
test,i

4
80.22 1059.81 32.55

ek+
6

eXtrain+

6

eXval+

6
95.72 233.38 15.28

eX
test,i

6
84.01 856.40 29.26

ek++
6

eXtrain++

6

eXval++

6
97.55 85.86 9.27

eX
test,i

6
86.25 736.42 27.14

ek∗
6

eXtrain++

6

eXval++

6
98.50 56.51 7.52

eX
test,i

6
95.88 220.63 14.85

ek6
eXtrain++

6

eXval++

6
98.91 38.32 6.19

eX
test,i

6
96.80 171.25 13.09

eklin
6

eXval++

6
49.47 1897.95 43.57

iavg=28

iavg=39

iavg=27

iavg=57

iavg=28

tGT
exp=27ms

texp=19ms

tGT
exp=27ms

texp=61ms

texp=28ms

tGT
exp=27ms

tGT
exp=27ms

texp=25ms

tGT
exp=27ms

texp=38ms pnorm=0.99

pGT
norm=0.90

pnorm=1.0

pGT
norm=0.91

pnorm=0.87

pGT
norm=0.43

pnorm=0.72

pGT
norm=0.76

pnorm=0.95

pGT
norm=0.93

Fig. 15  Performance overview of the GP models compared to the ground truth (GT) values for predicting the exposure time using the eGP6 (left) 
and for predicting the point cloud quality using the qGP4 (right) with five different features
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a first step due to their high correlation to the translational 
features.

3.4.4  Base kernel

Based on an exhaustive benchmarking of various kernel 
combinations, the exponential kernel kexp (see Eq. 22) was 
discovered to perform slightly best than the well-known 
SE kernel and was best suited for learning the necessary 
correlations to predict the exposure time:

with

3.4.5  1D kernel

In a first step, a 1D kernel considering just the light 
intensity iavg was evaluated. The input matrix is given as 
follows:

The hyperparameters of all models are also found in Table 8. 
Table 3 shows the model’s evaluation results considering the 
validation and test datasets. The model’s poor performance 
on the test data ( R2 = 16%, RMSE = 81ms) confirms the 
visual interpretation of Fig. 13 corroborating that the local 
light intensity is ineffective for predicting the corresponding 
exposure time and that a linear model alone would be 
ineffective. Consequently, the model’s accuracy on the 
test dataset confirms this thesis and suggests that a more 
complex model including spatial inputs must be applied.

(18)ekn(
eXn) = kexp(

eXn).

kexp
(

x, x�
)

= �
2 exp

(

−

(

x − x�
)

�
2

)

.

(19)eXtrain
1

∶= eXtrain(x1(iavg)).

3.4.6  2D kernel

Based on the previous observations, in the next step, a model 
with a 2D and a 3D kernel (without ARD) comprising the 
spatial inputs ztcp and xtcp is evaluated. Although a slight 
performance improvement for both models was achieved, 
the prediction accuracy remains unsatisfactory, cf. Table 3.

3.4.7  4D kernel

In the next step, a 4D kernel ek4(eX4) composed analogously 
to the 2D kernel and considering all positional inputs, i.e., 
xtcp , ytcp , and ztcp was evaluated. The evaluation results from 
Table 3 exhibit an overall improvement of the model’s 
performance compared to the 2D counterpart. However, 
the model’s accuracy between the validation ( R2 = 88% , 
RMSE = 30.1ms ) and test ( R2 = 18% , RMSE = 70.8ms ) 
dataset continues exhibiting major discrepancies requiring 
a detailed analysis of the data.

Given the qualitative and nonlinear trend of the light 
distribution and the door’s surface topology (see Fig. 1), 
it seems logical that the training dataset comprising 
four features fails to represent the high variability and 
complexity of the car door surface. Hence, in a further 
step the 4D model was reevaluated considering exclusively 
the interpolating test dataset denoted as eXval,i . The results 
confirmed the proposed thesis and showed a considerable 
improvement in the model’s performance ( R2 = 50% , 
RMSE = 49.8ms ) within the interpolated range. Note that 
hereafter the evaluation of the following models considers 
only observations within the interpolated spatial range of 
the training dataset.

Moreover, these findings confirm the high correlation 
between the exposure time and the spatial correlations and 
suggest that the model’s accuracy and generalization should 
be improved by increasing the spatial variability within 
the training observations. Hence, the training dataset was 
extended by considering five additional features ( f

5−9
 ). 

The extended dataset denoted as eXtrain+(f
1−9

) considers an 
increased number of observations with Ntrain+

e
= 758 and 

Nval+

e
= 190 . As expected, the extended dataset contributed 

to a considerable improvement in the model’s accuracy 
( R2 = 80% , RMSE = 32.7ms ). Nevertheless, the model’s 
performance difference between test and validation data is 
still significant suggesting that a more complex model needs 
to be considered.

3.4.8  6D kernel

In the last step, a 6D kernel ( ek+
6
 ) considering the local light 

intensity and three positional plus two rotational inputs is 

Table 4  Overview of the evaluation of the qGP
4
 and eGP

6
 considering 

different lighting scenarios

Model Evaluation

Dataset R2 in % MSE RMSE

qGP4 X
l,I

4
97.11 0.006 7.75 %

X
l,II

4
97.37 0.005 7.07 %

X
l,III

4
97.33 0.005 7.07 %

eGP6 X
l,I

6
87.11 144.69 12.03 ms

X
l,II

6
82.93 191.62 13.84 ms

X
l,III

6
80.41 219.90 14.83 ms
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investigated. The training input matrix for the 6D kernel is 
given as follows:

The results of the 6D model exhibit a slightly better 
performance ( R2 = 84% , RMSE = 29ms ) on the test 
dataset. Given the high correlation between exposure 
time and spatial inputs, an additional dataset with a finer 
discretization of the exposure time and displacement in 
the x and y axes was considered in a next step for training 
the model. Table 9 summarizes the considered DoE. The 
extended dataset is denoted as eXtrain++

6
 with Ntrain++

e
= 1936 

and Nval++

e
= 485 observations. Once again, the model’s 

accuracy and, in particular, the generalization performance 
could be improved to an RMSE below 27ms.

In a next step, an exponential kernel ( ek∗
6
 ) with ARD was 

considered. The kernel showed a significant improvement 
on the generalization performance yielding an RMSE of 
15ms. In the last step, a modification of the base kernel 
(18) was considered by using the multiplication of two 
exponential kernels, one for the light intensity and one for 
the spatial inputs:

The modified kernel (21) yielded the best performance, 
i.e., R2 = 97% and an RMSE of 13.1ms, for unknown 
observations.

(20)
eXtrain+

6
∶= eXtrain+(x6(iavg, xtcp, ytcp, ztcp,…

wx
tcp
, p

y

tcp)).

(21)

ek6 ∶=
ek6(

eX++

6
) = kexp(

eX++

1
(iavg))

⋅ kexp(
eX++

5
(xtcp, ytcp, ztcp,…

wx
tcp
, p

y

tcp)).

A graphical evaluation of the model’s performance is 
provided in Fig. 14, which depicts three of the best and 
worst predictions including a confidence interval of 95% 
( 2� ). The best predictions visualized in Fig. 14a demon-
strate that the model can accurately predict the exposure 
time at various positions for different light intensities. 
On the contrary, the worst trends shown in Fig. 14b are 

Fig. 16  Trend of the normalized number of points and local light 
intensities for different features

Fig. 17  Observations of the local light intensity iavg and the exposure 
time texp of the training dataset eXtrain with a pnorm > 75% and ytcp = 
0 mm

Table 5  Overview of the validation and test results of the qGPs
2 and 

eGP
s
2 of the 3D active stereo sensor

The bold values indicate the top performance of the trained kernel 
model on the test data

Training Evaluation

Kernel and dataset Dataset R2 in % MSE RMSE in

Model: qGPs2

qk
s2
1
(X

s2,train

1
) X

s2,val

1
69.37 0.039 19.75%

X
s2,test

1
68.80 0.042 20.49%

qk
s2
4
(X

s2,train

4
) X

s2,val

4
89.16 0.014 11.83%

X
s2,test

4
63.96 0.059 24.29 %

X
s2,test,i

4
84.72 0.022 14.83%

qk
s2
6
(X

s2,train

6
) X

s2,val

6
91.27 0.011 10.49%

X
s2,test,i

6
79.48 0.028 16.73%

Model: eGPs2

ek
s2
1
(eX

s2,train

1
) eX

s2,val

1
46.73 12.80 3.58 ms

eX
s2,test

1
46.90 13.37 3.66 ms

ek
s2
4
(eX

s2,train

4
) eX

s2,val

4
96.08 0.94 0.97 ms

eX
s2,test

4
54.94 11.35 3.37 ms

ek
s2
6
(eX

s2,train

6
) eX

s2,val

6
97.54 0.59 0.77 ms

eX
s2,test

6
65.72 8.63 2.94 ms

eX
s2,test,i

6
97.44 0.62 0.79 ms
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mainly in the observations of the more distant acquisi-
tion plane. This behavior was to be expected, considering 
that in the more distant plane, the illumination provided 
by the projector loses its dominance, and other lighting 
sources might more easily influence the image exposure. 
Nevertheless, the model generally shows a high prediction 
confidence and demonstrates that even the worst predic-
tions lie within the 2� interval.

A more comprehensive visualization of the model’s 
trend and corresponding double standard deviation is pro-
vided by Fig. 24, which shows 3D surface plots in the x–y 
plane for a constant sensor orientation with three different 
light intensities at different depths. Similar to the trend of 
qGP4 , these graphs visualize and quantify the nonlinear-
ity behavior of the problem. Furthermore, the graphs also 
agree with the qualitative light distribution of the SLS 
shown in Fig. 1, confirming that the right side (positive 
x-axis) is more overexposed than the left side.

3.4.9  Discussion

This section outlined the design of a Gaussian Process 
regression model for predicting the exposure time of a 3D 
measurement using a feature ’s local image exposure and its 
relative displacement and orientation to the sensor. Moreo-
ver, the incremental and systematic design of the model’s 
kernel contributed to a better general understanding of the 
correlations between the exposure time, input variables, 
dataset size, and data entropy. A more detailed discussion 
regarding these correlations follows below.

• Performance Our 1D model analysis showed that the 
light intensity alone was insufficient to predict an ade-
quate exposure time ( R2 = 7%, RMSE = 75 ms). Hence, 
by increasing the model’s complexity and integrating 
spatial inputs the 6D model (cf. Sect. 3.4.8) demonstrated 
that the prediction accuracy ( R2 =97%) could be con-
siderably improved up to an RMSE of 13 ms for unseen 
observations. In addition, a model with a 6D linear ker-
nel ( eklin

6
 ) was trained for performance comparison with 

previous research proposing linear models. The results 
showed that the performance of the linear model ( R2 ≈ 
50% and an RMSE = 44 ms) was insufficient to compen-
sate the inhomogeneous and nonlinear surface illumina-
tion.

• Inputs Our study revealed that the exposure time exhib-
ited a high correlation to the spatial inputs. Based on 
our incremental kernel design, this observation could 
be corroborated, confirming that the model requires 
a dataset comprising a high variability of exposure 
times combined with a good spatial distribution of the 
observations. Our experiments showed that the model’s 

accuracy held well for observations within the training 
space (interpolation), which covered the sensor’s work-
space and considered a relative sensor orientation up to 
10◦ between sensor and feature’s normal plane. A more 
exhaustive acquisition and comprehensive analysis to 
evaluate the model’s performance and correlation for 
higher sensor inclinations are required to be further 
investigated.

• Dataset size Furthermore, the correlation between 
dataset size and model performance was analyzed 
for efficiency purposes. The evaluation results of 
the eGP6 trained with a different number of test 
observations are displayed in Fig. 23. In contrast to 
the quality prediction model, the exposure time model 
requires more observations throughout the sensor’s 
workspace. Hence, for replication purposes and 
efficient and effective data acquisition, we recommend 
a thoughtful design of the probing object considering a 
heterogeneous spatial distribution of the features with 
different surface orientations.

3.5  Summary

This section outlined and investigated the design of two 
multi-dimensional GP s trained on the basis of a local image 
exposure and spatial relationships to predict the point cloud 
quality around a feature and to estimate the corresponding 
exposure time. Both models showed promising performance 

Measurement cell
with opened
enclosure

Internal LED
lamp

f o
4 , f

o
5

f o
2 , f

o
3

f o
1

Fig. 18  Overview of the lighting conditions and outdoor features
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and demonstrated that spatial variables are necessary for 
increasing the models’ prediction accuracy. A visual repre-
sentation of the performance of both models using five dif-
ferent test features is depicted in Fig. 15. The image on the 
left displays a 2D sensor image taken with an exposure time 
of 27ms, while the image on the right shows the correspond-
ing point cloud. The selected exposure duration and resulting 
point cloud quality set the ground truth (GT) values as the 
benchmark to qualitatively evaluate model performance for 
this empirical measurement. In this scenario, the GT values 
for the point cloud quality model are the individual normal-
ized points for each feature, while for the exposure regres-
sion model, the chosen exposure time tGT

exp
 denotes the GT 

value. The exposure time predictions on the left demonstrate 
that the GP eGP6 can accurately predict the exposure time for 
different features and image intensities. The performance of 
the GP qGP4 is confirmed on the right side for estimating the 
expected point cloud quality at different locations. Moreo-
ver, the left bottom feature can be considered as an outlier 
showing a poorer prediction for both models. However, it 
must be noted that this feature lies outside the training range 
due to its surface orientation. Hence, a model’s performance 
improvement should be expected by extending the dataset 
with different sensor orientations.

Note that some of the results, including the proposed 
kernels, are to some extent limited to the considered experi-
mental setup. Hence, to evaluate the transferability of our 

approach to other systems, Sect. 4 presents a further evalua-
tion of both models regarding their transferability to differ-
ent surfaces, sensitivity to external conditions, and gener-
alizability of kernel design for an alternative active sensor.

4  Extended evaluation

This section considers a comprehensive evaluation of the 
4D qGP and the 6D eGP outlined in Sect. 3 considering 
the models sensitivity to external lighting conditions, 
transferability to other active sensors, and performance 
on alternative surface finishes.

4.1  External lighting conditions

Within our work it is assumed that the stripe projector of 
an SLS can be considered the predominant lighting source 
within the acquisition environment. This requirement 
can be well fulfilled by the employed measurement 
setup which comprised a closed measurement cell with 
tinted windows and the band-pass filter of the sensor (cf. 
Sect. 2.1). However, the performance of the models may 
be affected under different lighting conditions. Hence, 
the models’ sensitivity to external lighting sources is 
evaluated in this subsection.

4.1.1  Dataset

The DoE considered three different use-cases and the 
acquisition of their corresponding datasets with following 
lighting conditions: I) equal lighting as training, i.e., 
closed measurement cell without external lighting ( Xl,I ), 
II) closed measurement cell with internal LED light of 
the AI-Box ( Xl,II ), and III) open measurement cell with 
the typical external lighting of a production hall ( Xl,III ). 
Figure 18 depicts the internal LED light and the opened 
measurement cell as considered for the third scenario. The 
three evaluation datasets considered just one single sensor 
position and five exposure times for each lighting scenario 
(see Table 9). The models were evaluated only with the 
features f test

1−3
 , because f test

4
 could not be captured from the 

selected sensor position.

4.1.2  Evaluation and discussion

The sensitivity of the qGP4 (see Sect. 3.3.6) and eGP6 (see 
Sect. 3.4.8) to external light sources was evaluated with 
the acquired datasets of the previously mentioned lighting 
scenarios. The results are summarized in Table 4.

Table 6  Evaluation of the 4D quality prediction model ( qGP ) and the 
6D exposure time prediction model ( eGP ) for the SLS and active ste-
reo sensor ( s

2
 ) for different surface finishes

Model Evaluation

Dataset Features R2 in % MSE RMSE

Model qGP
qGP4 Xout

4
f o
1−5

88.12 0.018 13.42%
f o
1

93.69 0.010 10.00%
f o
2−3

91.26 0.015 12.25%
f o
4−5

77.84 0.026 16.12%
qGP

s2
4

X
s2,out

4
f o
1−5

70.59 0.040 20.00%
f o
1

84.48 0.017 13.04%
f o
2−3

84.31 0.018 13.42%
f o
4−5

61.73 0.058 24.08%
Model eGP

eGP6
eXout

6
f o
1−5

75.66 286.28 16.92 ms
f o
1

63.67 436.48 20.89 ms
f o
2−3

67.07 385.49 19.63 ms
f o
4−5

90.93 94.35 9.71 ms
eGP

s2
6

eX
s2,out

6
f o
1−5

89.81 2.60 1.61 ms
f o
1

95.01 0.90 0.95 ms
f o
2−3

85.56 3.56 1.89 ms
f o
4−5

84.54 4.14 2.03 ms
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On the one hand, the qGP4 showed an encouraging and 
constant performance with statistically insignificant dif-
ferences for all lighting scenarios. The results are also in 
line with the previous validating results from Table 2 and 
confirm the robustness and usability of the qGP4 to some 
measure for different lighting conditions.

On the other hand, the exposure estimation model 
eGP6 showed a more significant variance for the different 
lighting scenarios. As could have been anticipated, the 
best performance is observed in the scenario I, which 
corresponds to the same lighting conditions as for the 
training dataset. On the contrary, the scenarios II and III 
consider a more illuminated environment compared to the 
first scenario and exhibit an acceptable overestimation of the 
exposure time around 2 ms to 3 ms. From these results, it 
can be concluded that the image exposure is not significantly 
affected by external light sources and the projector can be 
assumed to be the dominant lighting source. Consequently, 
it can be assumed that the prediction accuracy of the eGP6 
should hold for different lighting conditions as long as the 
projector can be considered the dominant light source.

Even though these experiments demonstrate the usabil-
ity of the proposed models under different lighting condi-
tions, a more exhaustive design of experiments comprising 
more observations and different light sources is necessary 
to assess the models’ light sensitivity and prediction limita-
tions properly.

4.2  Transferability to an active stereo sensor

In the following subsection, the transferability of the kernel 
design of the qGP4 and eGP6 using a different active system 
is evaluated. The combination of a dot projector and the 
rc_visard 65 can be classified as a 3D active stereo sensor 
system (see Sect. 2.1). Such configurations are not rare in 
industrial applications and even encouraged to improve the 
point cloud density for acquiring homogeneous surfaces. 
Similar to the SLS, it is assumed that the dot projector is the 
constant and predominant active lighting source. Hence, our 
study evaluates the transferability of the proposed inputs and 
kernels with a 3D active stereo system.

The GP models of the stereo sensor are denoted as qGPs2 
and eGPs2 . Note that the stereo system GP models were 
trained and evaluated independently of the SLSmodels.

4.2.1  Dataset

Similar to the proposed DoE from Sect. 3.2, the uniformly 
discretization of the measurement volume was also applied 
for this dataset acquisition. Taking into account the storage 
size of one measurement and the acquisition speed of the 
stereo sensor, a finer discretization of the acquisition space 
was used (see Table 9).

The models were trained and validated considering the 
same features as for the SLS. Due to the high number of 
acquired observations and based on the findings associated 
to the influence of the dataset size (cf. Figs. 22 and 23 ), 
just 20% (2693) of the observations were used for training 
and the rest for validation. The datasets are denoted Xs2,train , 
Xs2,val , and Xs2,test.

The models’ input and target variables were generated 
analogously as suggested in Sect.  3.1.3. In view of the 
sensor’s short baseline (65 mm) and based on empirical 
experiments, it was assumed that the image light intensity 
is similar for both cameras. Hence, the iavg was calculated 
just for the left camera of the rc_visard 65.

4.2.2  Quality prediction model

Figure 16 illustrates the relation between the number of 
normalized points ( pnorm ) and the local light intensity ( iavg ) 
for two features. The curve shows, similar to the SLS, a 
nonlinear decrease after a certain number of points has been 
reached. Unlike the SLS, the stereo sensor can still capture 
some surface points for higher exposures. Moreover, these 
observations demonstrate that the same light intensity can 
also lead to a different number of points. Hence, it can be 
assumed that a more accurate prediction should be expected 
if spatial inputs are considered.

In the first step, a 1D model was trained using the 
same kernel (9) to evaluate the influence of the image 
exposure represented by iavg . The evaluation results (see 
Table 5) yielding an RMSE approx. of 21% for the unseen 
observations indicate a similar correlation between the 
number of points and the local light intensity compared to 
the SLS. Hence, the model’s performance could be increased 
to an RMSE of 15% by considering a 4D model integrating 
positional inputs and observations within the training spatial 
range ( Xs2,test,i

4
 ). Note that if observations outside the spatial 

range (extrapolation) are considered, the model accuracy 
falls to an RMSE of 24%. In general these insights further 
confirm the high correlation of the spatial inputs to the 
quality of the point cloud. A more detailed visualization of 
the model trend and double standard deviation at different 
light intensities and depths is given in Fig 25. The graphs 
show, similar to the SLS model (see. Fig. 12), a nonlinear 
trend with multiple local optimum values depending on the 
spatial inputs and light intensity.

Furthermore, a detailed analysis showed that the model 
performed significantly better (up to an RMSE of 8%) on 
features with bigger radii agreeing with the average perfor-
mance of the SLSmodel. The poorer accuracy on the smaller 
features can be easily justified given that the stereo sensor 
has a lower resolution and point cloud density. Since the 
camera’s resolution directly affects the accuracy of the 2D 



424 Production Engineering (2024) 18:403–434

1 3

and 3D masks, the computation of pnorm and iavg is conse-
quently less accurate for features with small radii.

4.2.3  Exposure time model

Similar to the SLS, the observations on the graph displayed 
in Fig. 17 show mostly a linear trend between the light 
intensity and the exposure time for different positions. 
Moreover, it can also be appreciated that the curves have a 
high correlation with the feature’s position. For this reason, 
it is assumed that a eGP could also be used for the active 
stereo system to predict more effectively the exposure 
time based on the feature ’s local light intensity and spatial 
relationships.

Analogously to the SLS, a training dataset eXs2 was con-
sidered with a threshold of pnorm > 75%. The same incre-
mental kernel design as proposed in Sect. 3.4 was followed. 
In the first step, a 1D kernel was considered to analyze the 
correlation magnitude between texp and iavg . The results 
( R2 = 46.7%, RMSE = 3.6ms) of the 1D kernel (shown in 
Table 5) confirm that the light intensity is also ineffective 
for setting an adequate exposure time. Hence, the model 
was extended first to a 4D kernel considering just posi-
tional inputs and then to a 6D kernel considering the sensor 
inclination. The 6D model denoted as eGPs2

6
 with the kernel 

ek
s2
6
(eX

s2,train

6
) (see Eq. 21) showed a considerable improve-

ment on the test data as well as on the unseen observations 
with an R2 = 65.7% and an RMSE of 2.9ms.

Moreover, a more detailed analysis showed that a 
performance equivalent to the test dataset could then 
be obtained by considering features ( eXs2,test,i

6
 ) within 

the training range (interpolation), i.e., R2 = 97.4% and 
RMSE= 0.79ms. These findings align well to our previous 
observations from Sect. 3.4.8 confirming that the the DoE 
for the training dataset should consider an heterogeneous 
spatial distribution of the features . Furthermore, Fig. 26 
confirms the nonlinear trend of the problem and the 
existence of local maxima and minima at different positions 
with different light intensities.

4.2.4  Discussion

The results of this subsection confirmed that spatial 
relationships must also be considered when adjusting the 
camera exposure of active 3D stereo systems. Moreover, 
the model evaluations showed that the quality of the point 
cloud and the exposure time can be predicted analogously 
to the SLSfollowing the proposed data-driven approach of 
the present study.

The GP models of the active stereo system showed a 
comparable performance to the SLSmodels demonstrating 
the high transferability and generalizability of the designed 
model inputs and GP kernels. However, it must be noted 

that the kernels’ validity is limited to the camera-projector 
configuration of the present study (cf. Sect. 2.1). For replica-
tion purposes, the suggested kernels can be used as a solid 
initial base. However, to optimize the accuracy of the mod-
els, a thorough and systematic kernel design should always 
be considered.

4.3  Different surface finishes

To evaluate the models’ performance with different surface 
finishes, exemplary features from the car’s exterior were used. 
Figure 18 provides an overview of the selected features.

4.3.1  Dataset

To properly evaluate the GP models of both sensors, addi-
tional datasets with random sensor positions were collected 
for the SLS Xout and the active stereo sensor Xs2,out . The 
feature s are categorized into three groups depending on their 
surface finishes. The dataset characteristics for both sensors 
are given in Table 9. The evaluation of all models comprises 
exclusively observations lying within the spatial range of the 
training dataset.

4.3.2  Quality prediction model

The results of the evaluation of the quality prediction 
models from both sensors are summarized in Table 6. For 
both sensors, it must be mentioned that the models show a 
performance similar to that of the test dataset (see. Tables 2 
and 5 ) for the features f o

1
– f o

3
 . These results confirm the 

models’ accuracy and transferability to similar surfaces.
However, both models show a higher uncertainty for the 

features ( f o
4
, f o
5
 ), limiting to some extent the models’ usability 

for this surface finish. Moreover, it should be noted that most 
predictions exhibited an average overestimation of pnorm . 
This observation agrees with a common understanding that 
the model’s accuracy could be improved by considering an 
additional input variable representing the surface reflectance 
properties.

4.3.3  Exposure time model

The accuracy of the exposure time models for both 
sensors showed a performance similar to that of the test 
features from the inside of the door (compare Table 3 and 
Table 5 with Table 6). While for the SLS model, eGP6 , 
the predictions of the first two feature groups yielded an 
acceptable RMSE of 20ms, the evaluation of the features f o

4−5
 

showed an outstanding performance with an RMSE below 
10ms. On the contrary, the performance of the stereo sensor 
prediction model eGPs2

6
 revealed an even better prediction 

accuracy compared to the test features from the door’s inside 
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with an average RMSE under 2ms. These results also seem 
plausible, given that the radii of the outside features were 
bigger than those from the inside.

On the one hand, our experiments showed that the SLS 
is more sensitive to the surface reflectance properties. For 
this reason, it can be expected that the model performance 
could be improved by integrating an input representing the 
surface reflectivity. On the other hand, the active stereo sen-
sor seemed less sensitive to the surface reflectivity showing 
a better model’s generalizability for similar surfaces. Given 
the results from Sect. 3.4.5, it is also reasonable to assume 
that a 6D model trained with the interior door surface would 
outperform a 1D model trained on each specific surface from 
the outside.

4.3.4  Discussion

The evaluation results in this subsection demonstrate that 
the performance of the respective sensors’ qGP and eGP 
apply to similar surface surfaces to some extent. While the 
surface reflectance properties seem to have little influence 
on the qGP s’ performance, the material reflectivity showed 
a higher correlation to the exposure time affecting the eGP s’ 
prediction accuracy more significantly. Hence, our results 
suggest that the models’ performance should improve by 
considering an input variable characterizing the object’s 
reflectance properties. Such investigations fall outside the 
scope of this paper. Therefore, future studies should consider 
a more exhaustive evaluation including different surface 
finishes with more observations.

5  Conclusion

A well-known challenge when using active optical 3D 
sensors (e.g., SLSs, active stereo systems) for scanning 
an object’s surface is to adjust the image brightness using 
the camera’s exposure time to produce a dense point cloud 
without holes. This task becomes even more complicated 
in dealing with highly reflective materials with a complex 
surface topology that produce nonlinear and inhomogeneous 
illumination for the camera image. Therefore, the optimal 
parameterization of the sensor for such use cases is still done 
manually, as it requires an advanced multisensory perception 
(spatial and visual) of the acquisition environment.

5.1  Summary

To tackle this challenge and automate finding an adequate 
exposure time while ensuring a successful acquisition, the 
present study introduced a data-driven approach using two 
GP models. In the first step, seven input and two output 

variables were synthesized to model the imaging and spatial 
model of a generic measurement setup. For example, the 
local image intensity around a defined feature (region of 
interest) was used to model the projector illumination, and 
the rigid transformation between features and sensor were 
used to characterize the spatial correlations. In the next 
step, the present publication outlined a 4D GP to predict 
the measurement quality and a 6D GP for estimating the 
exposure time. Both models were trained and evaluated on 
an exhaustive dataset that was collected using an SLS and a 
car door as probing object.

On the one hand, the 4D quality regression model 
achieved a promising performance on unknown observations 
with an RMSE of 10% of the number of expected scanning 
points belonging to a feature’s surface. On the other hand, 
the 6D exposure time regression model was able to predict 
the required exposure time for a local camera image 
brightness with an outstanding accuracy of an RMSE = 
13ms (exposure time range 1–350 ms). The results from 
both models indicate considering spatial inputs is critical 
to making accurate predictions. Moreover, within a more 
comprehensive evaluation, the transferability of the models 
was assessed for different lighting conditions and surface 
finishes. Additionally, the overall usability of our framework 
(data pipeline, model inputs and outputs, and GP kernels) 
was evaluated satisfactorily considering a 3D active stereo 
sensor.

5.2  Outlook

Although the proposed models and designed kernels delivered 
promising results, it is worth noting that their validity and 
performance are limited to the measurement setup of this 
study. Therefore, we do not dispute that alternative data-based 
models could perform better with other systems. Furthermore, 
the validation of our models is limited to the finish of the car 
door sheet. Future work should consider a broader range of 
materials with different reflectance properties and lighting 
conditions to investigate the robustness and validity of the 
model and proposed inputs. Further fundamental research 
should explore transfer learning techniques to alleviate 
the effort required to collect data and retrain models. In 
addition, future work should comprehensively compare the 
proposed solutions with different approaches. This analysis is 
beyond this study’s scope since most of the related strategies 
consider static environments requiring an individual model 
calibration for each operating point. However, in Sect. 3.4.9, 
the evaluation of a linear kernel (which could be to some 
extent compared to a linear model as suggested by the related 
research) demonstrated that such an approximation would be 
insufficient (R2= 10%, see Table 3) to accurately predict a 
valid exposure time. Also, due to the configuration limitations 
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of the used sensors, a comparison with other approaches that 
propose hardware modifications would not be feasible.

Finally, a strategy that delivers an end-to-end solution, 
which combines both GP models to calculate the optimal 
exposure time for a nominal, optimal image brightness tak-
ing into account the relative location between a feature and 
the sensor, was beyond the scope of this study. In particular, 
designing a multi-objective optimization strategy that guar-
antees the acquisition of multiple features while minimizing 
the number of needed exposure times remains an open issue 
for future research. Following this idea, future studies should 
also explore integrating and combining the proposed approach 
with HDR techniques to optimize multiple exposure times. 
The design of such a strategy will also allow a thorough com-
parison of the proposed models with other approaches.

As far as we know, the present study outlines a first, effec-
tive, data-driven approach to predict the local point cloud 
quality of a feature and corresponding exposure time for 3D 
active optical sensors systems based on a local light intensity 
value and spatial relationships. We are convinced that this pub-
lication will provide a new stimulus for researchers and the 
industry to consider data-based approaches to an automated 
parameterization of 3D active sensors.

Appendix 1. Kernel definition

Popular kernels which are also used in this study are the 
so-called SE kernel and the RQ kernel. They are defined as 
[28]:

where � , � and � are hyperparameters to be learned during 
the training phase of the model.

In Eqs. 22 and 23, a single so-called length scale hyper-
parameter � is learned. If this length scale hyperparameter 

(22)kSE
(

x, x�
)

= �
2 exp

(

−

(

x − x�
)2

2�2

)

,

(23)kRQ
(

x, x�
)

= �
2

(

1 +

(

x − x�
)2

2��2

)−�

,

is to be learned separately for every dimension of x , this can 
be achieved by multiplying kernels defined on each dimen-
sion xd . Such kernels are called ARD kernels. For example, 
the ARD variant of the SE kernel is given as follows [28]:

Valid kernels can be recombined to form new valid ones 
using algebraic operations such as addition or multiplication. 
A list of valid kernel combinations can be found in [29]. In 
the next subsection, the use of GPs in regression tasks will 
be briefly introduced.

Appendix 2. Tables and figures

See Figs. 19, 20, 21, 22, 23, 24, 25, 26 and Tables 7, 8, 9

(24)
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Sensor
frustum

Sensor TCP
frame

Translation and rotation
between features and TCP
ttcp = (xtcp, ytcp, ztcp)TFeature

frames rtcp = (wx
tcp, p

y
tcp, r

z
tcp)

T

Fig. 19  Overview of the kinematic model for extracting the relative 
position and rotation between sensor and features
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Fig. 20  Graphical representation of the data correlation using the 
MICs and the dataset Xtrain

Fig. 21  Positional distribution of the four training features ( f
1
– f

4
 ) of 

the dataset X 

Fig. 22  Performance overview of the 4D Quality Prediction Model 
qGP4 for an increasing number of training observations based on the 
test dataset Xtest

4

Fig. 23  Performance overview of the 6D Exposure Time Prediction 
Model eGP6 for different numbers of training observations using the 
test dataset eXtest,i

6
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Fig. 25  Discretized visualization of the mean prediction �(pnorm) and 
corresponding double standard deviations 2� of the 4D GP quality 
regression model qGPs2

4
 at three different depths ztcp = [−150, 0, 150] 

mm (left, middle, right) for three different light intensities 
iavg = [25, 75, 125] (top, middle, bottom) for the active stereo sensor 
rc_visard 65 
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Fig. 26  Discretized visualization of the mean prediction �(texp) 
and corresponding double standard deviations 2� of the 6D GP 
exposure time regression model eGP

s2
6

 at three different depths 

ztcp = [−150, 0, 150] mm (left, middle, right) for three different light 
intensities iavg = [25, 75, 125] (top, middle, bottom) with a sensor ori-
entation of wx

tcp
= p

y

tcp = 0◦ for the active stereo sensor rc_visard 65 
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Table 7  Overview of the imaging parameters of the used active optical sensors

Sensors

Model COMET Pro AE rc_visard 65 monochrome and RandomDot projector
Manufacturer Carl Zeiss Optotechnik GmbH Roboception

GmbH
3D acquisition method Digital fringe projection Stereo vision and active projector
Devices Monochrome camera and blue light 

LED fringe projector
Two monochrome cameras and dot projector

Measurement planes at working distances @0.40 m:
0.40 m × 0.27 m
@0.60 m:
0.59 m × 0.39 m
@0.80 m:
0.78 m × 0.52 m

@0.10 m:
0.17 m × 0.18 m
@0.50 m:
0.54 m × 0.45 m
@1.00 m:
1.14 m × 0.90 m

Transformation between camera and projector Position in m:
(0.22, 0.0, 0.08) Rotation in ◦:
(0.0, − 20.0, 0.0)

Position in m:
(0.18, − 0.05, 0.21) Rotation in ◦:
(0.0, − 20.0, 0.0)

Exposure time setting range 1–1000 ms 0.07–18 ms

Table 8  Overview of the optimized kernel hyperparameters

Kernel Hyperparameters: variance ( �2 ), lengthscale (l), power(� ) and Gaussian noise ( �)

qk1 �2 = 0.60, l = 17.00, � = 0.39, � = 0.04
qk2 �2 = 0.94, l = [0.94,0.03], � = 0.004, ARD=1, � = 0.00

qk3 �2 = 1.41, l = [1.33,0.71,0.08], � = 0.04, ARD=1, � = 0.00

qk4 �2 = 1.45, l = [1.06,0.52e2,0.18e2,0.33e2], � = 0.010, ARD=1, � = 0.00

qk6 �2 = 0.98, l = [1.50, 1.63e2, 0.37e2, 0.51e2, 7.2, 0.1], � = 0.01, ARD=1, � = 0.037

ek1 �2 = 1.63e4, l = 1.26e2, � = 4.67e3
ek2 �2 = 1.71e4, l = 1.07e3, � = 3.48e3
ek3 �2 = 1.25e5, l = 3.41e3, � = 9.92e2
ek4 �2 = 3.74e5, l = 5.61e3, � = 0.00
ek+

4
�2 = 6.19e5, l = 2.13e4, � = 6.07

ek+
6

�2 = 6.94e5, l = 2.49e4, � = 6.05
ek++

6
�2 = 7.34e5, l = 4.63e4, � = 0.58

ek∗
6

�2 = 1.14e6, l = [1.20e5, 5.45e5, 4.63e5, 5.51e5, 2.59e4, 1.86e4], ARD=1, � = 0.58
ek6 kexp(iavg) :{ �2 = 0.66e2, l = 2.20e2}, kexp(xtcp, ytcp, ztcp,wx

tcp, p
y
tcp) :{ �2 = 3.31e2, l = [9.97e3, 2.97e3, 3.77e3, 2.47e2, 

1.73e2], ARD=1}, � = 0.04
eklin

6
�2 = [8.69e−1, 6.7e−2, 2.6e−2, 2.4e−2, 5.08, 5.73], � = 1543.51

qk
s2
1

�2 = 1.16, l = 1.94, � = 0.02, � = 0.04
qk

s2
4

�2 = 1.17, l = [0.69, 8.42, 3.73, 54.4], � = 0.01, ARD=1, � = 0.00

qk
s2
6

�2 = 1.13, l = [1.08, 87.01, 30.05, 36.4, 2.00, 0.05], � = 0.01, ARD=1, � = 0.00

ek
s2
1

�2 = 0.88e2, l = 7.50e2, � = 11.2
ek

s2
4

kexp(iavg) : { �2 = 0.17e2, l = 2.93e2} kexp(xtcp, ytcp, ztcp) : { �2 = 2.22, l = [3.11e4, 2.79e2, 2.20e2], ARD=1}, � = 0.00
ek

s2
6

kexp(iavg) ∶ { �2 = 5.10, l = 2.62e2} kexp(xtcp, ytcp, ztcp,wx
tcp
, p

y

tcp) : { �2 = 5.1, l = [1.35e4, 3.47e2, 1.09e3, 2.61e3, 
9.22], ARD=1}, � = 0.00
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