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Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare but potentially curable cause of pulmonary hyperten-
sion (PH). Currently PH is diagnosed by right heart catheterisation. Computed tomography (CT) is used for ruling out other 
causes and operative planning. This study aims to evaluate importance of different quantitative/qualitative imaging features 
and develop a supervised machine learning (ML) model to predict hemodynamic risk groups. 127 Patients with diagnosed 
CTEPH who received preoperative right heart catheterization and thoracic CTA examinations (39 ECG-gated; 88 non-ECG 
gated) were included. 19 qualitative/quantitative imaging features and 3 hemodynamic parameters [mean pulmonary artery 
pressure, right atrial pressure (RAP), pulmonary artery oxygen saturation (PA SaO2)] were gathered. Diameter-based CT 
features were measured in axial and adjusted multiplane reconstructions (MPR). Univariate analysis was performed for 
qualitative and quantitative features. A random forest algorithm was trained on imaging features to predict hemodynamic 
risk groups. Feature importance was calculated for all models. Qualitative and quantitative parameters showed no signifi-
cant differences between ECG and non-ECG gated CTs. Depending on reconstruction plane, five quantitative features were 
significantly different, but mean absolute difference between parameters (MPR vs. axial) was 0.3 mm with no difference in 
correlation with hemodynamic parameters. Univariate analysis showed moderate to strong correlation for multiple imaging 
features with hemodynamic parameters. The model achieved an AUC score of 0.82 for the mPAP based risk stratification 
and 0.74 for the PA SaO2 risk stratification. Contrast agent retention in hepatic vein, mosaic attenuation pattern and the ratio 
right atrium/left ventricle were the most important features among other parameters. Quantitative and qualitative imaging 
features of reconstructions correlate with hemodynamic parameters in preoperative CTEPH patients—regardless of MPR 
adaption. Machine learning based analysis of preoperative imaging features can be used for non-invasive risk stratification. 
Qualitative features seem to be more important than previously anticipated.
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Introduction

Chronic thromboembolic pulmonary artery hypertension 
(CTEPH) is a subtype of pre-capillary pulmonary hyper-
tension (PH) characterized by multiple chronic occlusive 
thrombi and emboli in the pulmonary arteries [1]. While 
its incidence ranges from 0.1 to 10% after acute pulmo-
nary embolism (PE), recent evidence suggests even higher 
associations with acute PE, making CTEPH a frequently 
underdiagnosed condition [2, 3]. Right heart catheteriza-
tion and ventilation/perfusion single photon computed 
tomography remain the cornerstone of CTEPH diagnosis. 
However, the value of computed tomography (CT), espe-
cially ECG-gated dual-source CT, is becoming increas-
ingly recognized [4]. Notably, CT parameters have been 
identified that correlate strongly with mean pulmonary 
artery pressure (mPAP) [5]. Historical studies, dating 
back to 1984, established correlations between CT param-
eters and mPAP [6]. Despite this, inconsistencies persist 
in literature regarding the significance and methodology 
of various quantitative CT parameters [7, 8]. Moreover, 
current research often overlooks qualitative features, 
potentially missing vital imaging insights [9, 10]. While 
machine learning's potential in CTEPH diagnosis is largely 
unexplored, recent reviews highlight its prospective utility 
in PH imaging [11]. CTEPH patients in particular are in 
need of special diagnostics and therapy at certified centres, 
therefore large scale evaluation is difficult and the current 
scientific knowledge insufficient [1].

Our study seeks to bridge these gaps by comprehen-
sively assessing the correlation of known quantitative and 
qualitative CT parameters with hemodynamic outcomes, 
considering their acquisition methods. Drawing from prior 
literature, we aim to provide a holistic overview and lev-
erage machine learning to gauge the clinical relevance of 
various CT imaging features.

Methods

Study design

Data collection, processing and analysis were approved 
by the ethics committee of the university of Saarland Uni-
versity. The study was designed as a retrospective cohort 
study. Imaging and clinical parameters were collected by 
the department of diagnostic and interventional radiology. 
In total 127 Patients with previously diagnosed CTEPH 
were included in the study. CTEPH was defined as an 
increase in mean pulmonary arterial pressure (≥ 25 mm 
Hg at rest) due to persistent obstruction of the pulmonary 

circulation following pulmonary thromboembolism or 
DVT, which persists despite adequate anticoagulation, 
according to the definition of the European Respiratory 
Society [12]. Preoperative right heart catheterization and 
computed tomography angiography examinations of the 
thorax (with and without ECG-synchronization) were per-
formed for every patient. Patients from the local university 
medical center were included over a time span of five years 
(2015–2020). All patients were evaluated as operable and 
underwent pulmonary endarterectomy following imag-
ing and right heart catheterization. Inoperable patients, 
patients without right heart catheterization or marked 
imaging artifacts were excluded from this study.

Imaging data acquisition

Patients were scanned on a third generation dual-source 
scanner Siemens Somatom Force (Siemens Healthineers, 
Erlangen, Germany). Computed tomography examinations 
of the thorax included ECG-gated studies performed to rule 
out coronary artery disease (39 patients) in a preoperative 
setting before pulmonary endarterectomy. ECG-synchro-
nization included prospective triggering and retrospective 
gating depending on the heart frequency and rhythm. CT 
acquisition incorporated automated radiation exposure con-
trol with adjustments of tube voltage and current depend-
ing on the patient’s mass and body outline (CAREDose 
4D, CAREkV, Siemens Healthineers, Erlangen, Germany) 
with basic image parameters being: reference tube voltage: 
100 kVp, reference tube voltage: 288 mAs, collimation: 
192 × 0.6. Image reconstruction included 0.6 and 1 mm 
axial slices at end-diastole using a soft tissue convolution 
kernel (Bv40) and advanced model iterative reconstruction 
(ADMIRE, Siemens Healthineers) at strength level 3.

In 88 patients CT examinations consisted in a dual-energy 
angiography study of the pulmonary arteries without ECG-
synchronization using the following parameters: reference 
tube voltage: 90 kVp (tube A)/150Sn kVp (tube B), collima-
tion 192 × 0.6). Accordingly, automated radiation exposure 
control was applied with reference tube currents set to 100 
effective mAs (tube A) and 75 effective mAs (tube B). Image 
reconstruction included 1 mm axial slices using a soft tissue 
convolution kernel (Qr40) with advanced model iterative 
reconstruction (ADMIRE, Siemens Healthineers) at strength 
level 3.

All CTA studies were acquired with a single intravenous 
contrast agent bolus (Imeron 400, Bracco Imaging S.p.A., 
Milan, Italy) followed by a saline bolus administered with a 
double head power injector (Accutron CT-D, Medtron AG, 
Saarbrücken, Germany). Contrast agent volumes ranged 
from 60 to 90 mL with flow rates ranging from 3.5 and 
5 mL/s depending on the purpose of the CT scan as well as 
patient´s weight and the size of the venous access device.
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Imaging variables and hemodynamic parameters

We surveyed technical research on CTEPH imaging to iden-
tify and summarize known parameters. Consequently, the 
following quantitative parameters were measured in the CT: 
diameter of pulmonary trunk, left/right pulmonary artery 
(PA) and ascending aorta (AAo). Further, short axes of 
both left and right atrium (LA/RA) and ventricle (LV/RV) 
were measured. All diameters and short axes measurements 
were acquired once on the axial reconstructed image and 
once in the adjusted multiplanar reconstruction as exem-
plarily shown in Fig. 1. Three ratios were calculated from 
the named parameters: ascending aorta diameter/pulmonary 
trunk diameter, left ventricular diameter/right ventricular 
diameter and right atrial diameter/left ventricular diameter. 
According to previous literature, the ventricle septum angle, 
septum thickness and left/right ventricle area were measured 
as well [11, 13]. Both axes and area measurements were 
performed as cavity measurements, having the borders of the 
measurements defined by the endocard. Beyond the quanti-
tative parameters, qualitative parameters were included as 
well, including contrast media reflux in the inferior caval 
vein, contrast media retention in the hepatic veins, pericar-
dial effusion, mosaic perfusion as well as intrapulmonary 
ground-glass opacities. Exemplary images can be found 
in Fig. 2. In total 14 quantitative and 5 qualitative imag-
ing features were measured, calculated or acquired in the 
reconstructed planes described above and depending on the 
feature in either axial or multiplanar reconstruction (MPR). 
Measurements were performed once, but supervised by a 
second radiologist and corrected, if necessary.

For the qualitative features, the presence or absence of 
hepatic and cava reflux of contrast, mosaic attenuation, peri-
cardial effusion and ground-glass opacity were assessed by 

two board-certified radiologists in a blinded fashion. In case 
of disagreement, a consensus decision was reached in retro-
spect. Hepatic and inferior cava reflux was assessed using 
the semi-quantitative methods described by Groves et al. 
[14].  Groves scale 3 (reflux into the inferior cava vein but 
not the hepatic veins) and Groves scale 5 (reflux into the 
IVC and opacifying the midpart of the hepatic veins) were 
used to properly separate between the two discrete findings. 
Although often appearing together in CTEPH, mosaic perfu-
sion and ground-glass opacities were included regardless of 
their size and distribution (e.g. regional versus peri-arteri-
olar).Right heart catheterization was performed at the local 
university hospital, usually via cubital vein using a Swan-
Ganz balloon tipped catheter. Our study focused on three 
parameters, acquired by right heart catheterization: the mean 
pulmonary artery pressure (mPAP), which was measured 
for all 127 patients. Further, the right atrial pressure (RAP), 
which was available for 101 patients and oxygen saturation 
of the pulmonary artery (sPO2), which was available for 55 
patients. Clinical parameters (sex and age) were collected 
for all patients.

ML modelling and statistical analysis

Statistical analysis and machine learning modelling was 
conducted using Python (Version 3.9.5), Scikit-learn (Ver-
sion 1.1) and JMP (SAS, USA). Univariate analysis was 
performed by computing the coefficient of determination 
(R-squared) for quantitative features and calculating the 
student's t-test for qualitative features. Firstly, all features 
were compared between the different acquisition proto-
cols (ECG, non-ECG gated). Both measurement methods 
(reconstructed multiplanar planes vs. standardized axial 

Fig. 1   Measurements of computed tomography parameters in axial 
plane and multiplanar reconstruction. Shown is the different measure-
ment technique in simple axial (left) and multiplanar reconstruction 

(right) for the same parameter—pulmonary trunc diameter. Differ-
ence in pulmonary trunc diameter was 0.1  mm in this patient. Fur-
ther, the exemplary measurement of the left atrium in MPR is show
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planes) were tested for correlation and outcome predic-
tion. A p value of ≤ 0.05 was considered to be statistically 
significant.

For the ML-modelling the quantitative features were 
normalized to the (0,1) interval. Based on Cannon et al. 
a cut-off of 38 mm Hg was chosen to define high risk and 
low risk patients [15]. Additionally, a cut-off of 60% was 
chosen for the PA SaO2. A random forest algorithm was 

trained on the respective groups for both classification 
tasks. For testing, 3-folded random sampling was used to 
evaluate the model. Lastly, fast correlation-based filtering, 
a technique to prove model stability by reducing the fea-
ture set down to the most relevant and robust parameters, 
was used to compute the individual feature importance 
[11, 16].

Fig. 2   Exemplary images of qualitative findings. Shown are exemplary images of the different qualitative findings (from upper left to lower 
right): pericardial effusion, mosaic perfusion, groundglass opacities, contrast media retention in hepatic veins

Table 1   Absolute differences of 
measurement in axial and MPR 
measurements

*=significant
**=highly significant

Axial mean meas-
urements (mm)

MPR measure-
ments (mm)

Mean differ-
ence (mm)

p value

Mean pulmonary trunc 3.44 3.43 0.007 0.499
Mean left pulmonary artery 2.62 2.64 0.019 0.0129*
Mean right pulmonary artery 2.77 3.06 0.29  < 0.0001*
Mean asc. Aorta 3.37 3.54 0.17  < 0.0001*
Short axis left atrium 3.83 3.93 0.1 0.0004*
Short axis right atrium 5.80 5.83 0.03 0.47
Short axis left ventricle 4.07 4.07 0.002 0.89
Short axis right ventricle 5.11 5.31 0.2  < 0.0001*
Septum thickness 0.89 0.89 0.002 0.8
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Results

Comparison of ECG- and non-ECG-guided CT showed no 
significant differences in quantitative and qualitative charac-
teristics and for further analyses both groups were merged.

Axial versus MPR measurement

Based on the measurement methods, significant differ-
ences were found for 5 features: left and right PA diameter, 
AAo diameter, RV diameter and LA diameter [p = 0.0129 
to < 0.0001 (Table 1)]. Differences in absolute values of 
the above-mentioned features were below 0.3 mm. When 
looking at the endpoint prediction (mPAP, RAP, sPO2) no 
significant differences were found between axial and MPR 
measurements.

Predictive power of univariate imaging variables

Univariate analysis revealed multiple parameters signifi-
cantly correlating with the hemodynamic outcomes. The 
best predictive power for each hemodynamic parameter is 
as follows:

mPAP—left PA diameter r = 0.49,
RAP—short axis RA r = 0.5,
PA SaO2—ratio RA/LV r = − 0.51.
All coefficients of determination for both measurement 

methods are depicted in Table 2. Regarding the hemody-
namic parameters evaluated, the ratio-based features tend to 
be superior representations compared to the measurement-
based features, exemplified by the coefficient of determina-
tion of the left PA diameter compared to the RA/LV-ratio for 
RAP, mPAP and PA SaO2 of 0.18, 0.49, − 0.14 and 0.41, 
0.44, − 0.51, respectively. The corresponding coefficients of 
determination for all quantitative features and hemodynamic 
parameters are shown in Fig. 3.

For the qualitative features contrast media retention in the 
hepatic veins and inferior vena cava as well as pericardial 
effusion showed significant differences for mPAP, PA SaO2 
and RAP. Interestingly in regard of contrast media reten-
tion in the hepatic veins highly significant differences were 
found in all three cases (p value = 0.001 and < 0.0001). In 
comparison contrast media retention in the vena cava infe-
rior displayed highly significant differences just for RAP 
(p value = 0.0005) and pericardial effusion altogether only 
showed mildly significant differences for the three hemo-
dynamic parameters (p-value between 0.0023 and 0.0447). 
Mosaic attenuation indicated highly significant differences 
for both RAP and mPAP (p value = 0.0009 and < 0.001).

Overall the most significant differences (p ≤ 0.0001) 
were found for the appearance of contrast media retention in 
hepatic veins for mPAP and PA SaO2. Boxplots displaying 
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the differences for the qualitative features for each hemody-
namic parameter are shown in Fig. 4.

Non‑invasive risk stratification using ML‑models

Using random sampling for algorithm assessment on the test 
dataset the random forest reached an AUC of 0.82 (sensi-
tivity of 0.97; specificity of 0.52, positive predictive value 
of 0.92) for the binary prediction of the mPAP and 0.74 
(sensitivity of 0.90; specificity of 0.50, negative predictive 
value of 0.81) for the prediction of the PA SaO2. Fast corre-
lation-based filtering yielded four highly important features 
(Table 3). For the binary mPAP prediction the RA/LV ratio, 
mosaic attenuation pattern, left PA diameter and contrast 
retention in hepatic veins were the most important features 
in descending order. Similarly, contrast retention in hepatic 
veins, MP/AAo ratio, pericardial effusion and the RA/LV 
ratio were the most important features in descending order 
for the binary prediction of the PA SaO2.

Discussion

In our study, we demonstrate the correlation of different 
quantitative and qualitative imaging features with hemody-
namic parameters in preoperative patients with CTEPH and 
show that although measurement methods (axial vs MPR) 
may differ significantly with respect to the imaging features, 
both the absolute value and the correlation with the hemo-
dynamic parameters are not significantly affected. We found 

that several quantitative features show moderate to strong 
correlation with the hemodynamic parameters and that 
qualitative features were able to significantly differentiate 
hemodynamic endpoints. Of particular note is the contrast 
retention in the hepatic veins and inferior vena cava, which, 
beside pericardial effusion, show significant differences for 
all hemodynamic endpoints and may be a morphological 
correlate for right heart dysfunction [17]. Lastly, an ML 
model was used for a non-invasive risk stratification of the 
patients, with relevant features being both quantitative and 
qualitative. Our study harnesses machine learning to surpass 
traditional univariate analysis by simultaneously interpreting 
complex feature interactions for enhanced diagnostic accu-
racy, as substantiated by our robust, cross-validated random 
forest model.

The correlation between hemodynamic parameters and 
CT features has been heavily investigated as described 
above. Recent studies, for example by Swift et al. [18], have 
focused on etiological independent pulmonary hyperten-
sion and included non-ECG-gated CT examinations. Roller 
et al. analysed a heterogeneous cohort of 45 CTEPH patients 
with ECG-gated CT scans [19]. In our study, we included 
127 CTEPH patients all of whom underwent PE and CT, 
to facilitate a homogeneous and standardised analysis. No 
significant differences in quantitative and qualitative char-
acteristics were found between ECG-gated (n = 39) and non-
ECG-gated (n = 88) CT scans, which is in line with current 
literature [20, 21]. Furthermore, we included qualitative 
imaging features and extended the analysis to RAP and PA 
SaO2 as two additional hemodynamic endpoints. While the 

Fig. 3   Coefficients of determination for all quantitative features with 
respect to the hemodynamic parameters. Measurement ratios show 
moderate to strong correlation with all three hemodynamic param-
eters. Shown are the correlations strengths of the quantitative com-
puted tomography parameters and the hemodynamic parameters from 

right heart catheterization. Strongest correlations were found for: pul-
monary trunc pressure—left pulmonary artery diameter (r2 = 0.49), 
right atrial pressure—short axis right atrium (r2 = 0.5) and pulmonary 
trunc SaO2—ratio right atrial diameter/left ventricle diameter (r2 = − 
0.51)
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Fig. 4   Boxplots in regard to 
qualitative features. Shown are 
the differences in qualitative 
features regarding right atrial 
pressure, pulmonary trunc 
pressure and pulmonary trunc 
partial oxygen pressure. Highly 
significant differences are 
marked with *** and significant 
differences with *
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conventional diagnosis of CTEPH requires RHC, V′/Q′ scan 
and a pulmonary angiography, a current statement paper of 
the European respiratory society discusses the use of dual-
source CT (DSCT) as an alternative method [22]. In par-
ticular, for a proximal CTEPH manifestation, DSCT seems 
to be a sufficient alternative [23]. Our results confirm the 
utility of CT in CTEPH and demonstrate the potential for a 
non-invasive prediction of the mPAP, RAP and PA SaO2. 
The evaluation of the axial and the reconstructed measured 
features showed that although significant differences exist 
for individual features, there were no relevant differences in 
accuracy for the univariate analysis and the ML model. Con-
sequently, the quantitative and qualitative features can be 
measured from readily available axial image slices. Similar 
results were described for cardiac measurements.

Although we were able to prove not only the importance 
of qualitative features, but gave an overview regarding avail-
able quantitative CT features including predictive power, 
several limitations must be addressed. Although measure-
ments have been reevaluated by a second, experienced 
reader, measuring the quantitative features multiple times 
and averaging them, might have provided an even higher 
data quality. Due to the limited size and retrospective mono-
institutional nature of our study, the ML-model may not 
generalize to unseen data. Although 127 CTEPH patients 
is respectable in regard, that only three hospital centres in 
Germany are specialized for this disease, further studies are 
required to test the capability of ML-models for this task. 
We have constrained the algorithm's input data to observ-
able or measurable features and used a decision tree-based 
architecture. The rapid development of neural networks, 
especially convolutional neural networks, is achieving 
outstanding results in the medical computer vision field. 
Accordingly, the utility of CNNs in the hemodynamic end-
point prediction using the image data should be investigated. 
Although a significant correlation between imaging param-
eters and hemodynamic outcomes has been demonstrated in 
a preoperative group of patients with CTEPH, the benefits 

for patient management in operable cases remain unclear and 
need to be evaluated.

Conclusion

In our study we were able to show through a generalized 
overview of correlations between quantitative and qualitative 
imaging features with hemodynamic parameters in CTEPH 
patients the importance of individual features. Especially the 
significance of qualitative features, such as contrast reten-
tion in hepatic veins, have been underestimated in the past. 
ML models trained on the quantitative CT features allow 
a basic risk stratification of preoperative patients, making 
non-invasive preoperative evaluation conceivable in future 
clinical applications.
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