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Proteomic meta-study harmonization, mechanotyping and
drug repurposing candidate prediction with ProHarMeD
Klaudia Adamowicz 1, Lis Arend 1, Andreas Maier 1, Johannes R. Schmidt 2, Bernhard Kuster 3, Olga Tsoy1, Olga Zolotareva1,4,
Jan Baumbach 1,5 and Tanja Laske 1✉

Proteomics technologies, which include a diverse range of approaches such as mass spectrometry-based, array-based, and others,
are key technologies for the identification of biomarkers and disease mechanisms, referred to as mechanotyping. Despite over
15,000 published studies in 2022 alone, leveraging publicly available proteomics data for biomarker identification, mechanotyping
and drug target identification is not readily possible. Proteomic data addressing similar biological/biomedical questions are made
available by multiple research groups in different locations using different model organisms. Furthermore, not only various
organisms are employed but different assay systems, such as in vitro and in vivo systems, are used. Finally, even though proteomics
data are deposited in public databases, such as ProteomeXchange, they are provided at different levels of detail. Thus, data
integration is hampered by non-harmonized usage of identifiers when reviewing the literature or performing meta-analyses to
consolidate existing publications into a joint picture. To address this problem, we present ProHarMeD, a tool for harmonizing and
comparing proteomics data gathered in multiple studies and for the extraction of disease mechanisms and putative drug
repurposing candidates. It is available as a website, Python library and R package. ProHarMeD facilitates ID and name conversions
between protein and gene levels, or organisms via ortholog mapping, and provides detailed logs on the loss and gain of IDs after
each step. The web tool further determines IDs shared by different studies, proposes potential disease mechanisms as well as drug
repurposing candidates automatically, and visualizes these results interactively. We apply ProHarMeD to a set of four studies on
bone regeneration. First, we demonstrate the benefit of ID harmonization which increases the number of shared genes between
studies by 50%. Second, we identify a potential disease mechanism, with five corresponding drug targets, and the top 20 putative
drug repurposing candidates, of which Fondaparinux, the candidate with the highest score, and multiple others are known to have
an impact on bone regeneration. Hence, ProHarMeD allows users to harmonize multi-centric proteomics research data in meta-
analyses, evaluates the success of the ID conversions and remappings, and finally, it closes the gaps between proteomics, disease
mechanism mining and drug repurposing. It is publicly available at https://apps.cosy.bio/proharmed/.
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INTRODUCTION
Technological advancements in proteomics technologies, such as
mass spectrometry (MS), have made it possible to study the
proteome extensively and on a large scale1. The number of articles
in proteomics has significantly increased over the past two
decades regarding yearly publications from 463 in 2000 to 15,433
in 2022 according to the PubMed database2.
The integration of published data is imperative for increasing

the sample size and statistical power of own unpublished data. A
way to leverage published data is meta-analysis, which is a
systematic review of the findings of prior research on a particular
topic and combining the results of individual studies. While single
studies conducted by the same research group may be influenced
by lab-specific biases, meta-analyses can provide a more robust
and reliable level of evidence. In fact, meta-analyses are at the top
of the evidence hierarchy, which ranks clinical evidence based on
its level of independence from different biases that plague
medical research3. Since meta-analyses can reveal rather global,
multi-species biological phenomena, their findings are more likely
to be referred to as benchmarks, which is also reflected in the

number of citations that are on average higher compared to
individual studies4.
To facilitate meta-analysis of proteomics data, measurements

should be ideally publicly available in raw, unprocessed form. To
this end, a measurable set of principles referred to as FAIR data
principles, which stands for findable, accessible, interoperable, and
reusable, was introduced5. Thus, providing raw mass spectra
alongside processed data is becoming more important in the
proteomics community, making it easier to assess, reanalyze,
reuse, compare, and extract new findings from published data.
However, many studies are still published with insufficiently
annotated raw data or provide only a selection of proteins or
genes specified by the authors based on differential expression or
other characteristics, such as patient stratification6,7. In order to
take advantage of published data to search for commonalities
and, consequently, potential new sets of biomarkers, which are
sets of proteins or genes that may be used to identify a certain
pathological or physiological process or disease, the study
findings have to be unified to a common ground, i.e., harmonized
with respect to the same identifier space and organism.
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However, if some studies only provide final lists of biomarker
candidates, the evaluation, integration and visualization of biomarkers
from different data sets become challenging. There are many
approaches to evaluate the discovered set of biomarkers, including
pathway enrichment analysis, which reveals biological pathways
enriched in a protein list8. In silico validation tools like DIGEST can be
used to determine the statistical significance of the obtained
enrichment scores in contrast to random background models9.
Additionally, the biomarkers usually only represent a portion of the
disease mechanism. Previous research has shown that genes or
proteins linked to diseases are not dispersed at random in biological
networks. Instead, disease drivers typically reside in structures known
as disease modules, which are essentially small subnetworks that
represent interconnected mechanisms and can be tied to phenotypic
traits10–13. In order to determine the underlying disease mechanism
and find additional candidate genes or proteins, identified biomarkers
can be integrated into a network-based approach for module mining
such as ROBUST11, DOMINO12, or DIAMOnD13. The identified disease
mechanism can furthermore be searched for known therapeutic
targets, i.e., proteins, in these mechanisms that are targeted by
registered drugs. The identified drugs can be leveraged as an
alternative with cheaper costs and shorter drug development
timetables, a process known as drug repurposing14,15. According to
reports, de novo drug research and development might take 10 to 17
years. Repurposed medications, on the other hand, are often
authorized sooner, within 3 to 12 years, and at roughly half the cost16.
While the majority of the above tasks can be addressed

individually by various tools and websites, a framework that
combines all necessary procedures in a user-friendly and
interactive manner is missing.
Therefore, we provide ProHarMeD (Fig. 1), a web tool to support

proteomic data integration by enabling users to harmonize
protein and gene IDs of different study data by utilizing existing
databases, such as UniProt17, MyGene.info18, and ID conversion
tools, such as g:Profiler19. Additionally, it evaluates the success of
ID conversion at every step of the remapping procedure.
Moreover, the web tool allows for identifying potential biomarkers
that may be utilized as seeds for interactive network integration.
The user may select from a variety of networks to identify
candidate disease mechanisms enriched with seed proteins and
examine the resulting candidate mechanisms for potential drug
targets and the corresponding drugs. Note, that ProHarMeD
supports any tabular user input having a column with either
protein IDs or gene IDs, which makes ProHarMeD also suitable for
other omics data types, e.g. transcriptomics.

RESULTS AND DISCUSSION
Tool development
ProHarMeD serves as a comprehensive platform, enabling users to
conduct meta-analyses on proteomics data, perform ID conversion
and remapping evaluation, and effectively bridge gaps between
proteomics, disease mechanism exploration, and drug repurpos-
ing. ProHarMeD’s functionality can be divided into three major
sections: harmonization, meta-study analysis, and disease
mechanisms mining. Data harmonization consists of the following
distinct steps: filtering, mapping, and reduction. Meta-analysis
comprises an intersection analysis for multi-study biomarker
identification, and disease mechanism mining allows for drug
target search and identification of repurposable drug candidates
(Fig. 2). A detailed description of each step can be found in the
method section.

Use Case 1: Proteomics datasets for meta-analysis
We demonstrate the functionalities of ProHarMeD for proteomics
meta-analysis harmonization on four studies investigating osteo-
blast differentiation and implant-guided bone healing (Table 1).
First, the study by Schmidt et al. (2016)20 assessed the impact of
implant coating compounds such as sulfated glycosaminoglycans
on osteogenic differentiation of human bone marrow aspirates.
Second, the study by Schmidt et al. (2018)21 examined the distinct
impact of both a low-sulfated hyaluronic acid derivative and
dexamethasone on the osteogenic differentiation of human bone
marrow stromal cells in vitro. Third, the study by Calciolari et al.
(2017)22 examined the protein expression in a Wistar rat calvarial
critical size defect model following treatment with scaffold-guided
bone regeneration in healthy and osteoporotic conditions and
identified up and down-regulated proteins between those two
conditions. The combination of mesenchymal stem cells (MSC)
and pre-osteoclasts used in bone tissue engineering can repair
bone defects more effectively than MSCs alone. Thus, the fourth
study by Dong et al. (2020)23 assessed the differentially expressed
proteins between two treatment groups, either using a combina-
tion of MSCs and pre-osteoclasts or MSC-only. Those four studies
were performed on different organisms and provided the data in
different forms. For two studies, i.e., Schmidt et al. (2016)20 and
Schmidt et al. (2018)21, the raw mass spectrometry data were
jointly re-analyzed with MaxQuant24. Briefly, mass spectra were
matched to protein sequences from UniProt (2021_4, canonical
without isoforms). Inferred proteins were organized into protein
groups, and only the groups with differential expression were

Fig. 1 Overview of the pipeline provided by ProHarMeD. The input for ProHarMeD is either one study or a set of studies. Data integration
covers steps of filtering IDs, mapping from proteins to genes and finding orthologs of the genes. Finally, integrated biomarker lists can be
used as seed nodes for network-based mechanism mining of disease modules which then can be used for drug target and drug repurposing
candidate identification. Created with BioRender.com.
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considered. While both Schmidt et al. (2016)20 and Schmidt et al.
(2018)21 datasets provide a list of differentially expressed protein
groups, i.e., multiple protein IDs per row, Calciolari et al. (2017)22

provides a list of single protein IDs of proteins and Dong et al.
(2020)23 only provides a list of gene symbols rather than the
protein lists from which the authors mapped the gene symbols.

Fraction of incorrect IDs and redundant gene symbols
ProHarMeD’s function “filter_protein_ids” reviews protein IDs and
removes those of bad quality, i.e., that do not belong to the target
organism or are obsolete, which are IDs that were removed in
newer UniProt releases. We assessed each protein ID of the

protein groups in three datasets with available protein data and
filtered out IDs of bad quality (Fig. 3a). Most IDs were removed
from the data set Calciolari et al. (2017)22. This dataset was
generated by Proteome Discoverer which reports one representa-
tive protein per protein group. Thus, the removal of an ID leads to
the loss of the whole row in the data matrix. The highest fraction
of deleted IDs was obsolete (Fig. 3b). Interestingly, in the dataset
from Calciolari et al. (2017)22 the two IDs B4DQ80 and B7Z722 were
removed since they were assigned to the wrong organism, i.e.,
both IDs are from human, while the study was performed in rats. A
reason for the occurrence might be the high similarity of B4DQ80
to rat gene tropomyosin 3gamma (Tpm3), which is encoded by
the rat protein Q63610 and also present in the published protein

Table 1. Overview of the datasets Schmidt et al. (2016)20, Schmidt et al. (2018)21, Dong et al. (2020)23, and Calciolari et al. (2017)22 with source
organism and data availability.

Study Organism Assay Tissue MS raw data No. of protein groups/IDs No. of gene IDs

Schmidt et al. (2016)20 Human In vitro EVs PXD002498 24 groups with 66 IDs 23

Schmidt et al. (2018)21 Human In vitro EVs PXD009434 41 groups with 147 IDs 41

Dong et al. (2020)23 Mouse In vitro ECM Not provided Not provided 608

Calciolari et al. (2017)22 Rat In vivo Bone Not provided 170 IDs 144

The list of protein groups/IDs and gene IDs is a subset of the raw data which was generated by the authors of the publications by differential expression
analysis or other characteristics, such as the suitability to stratify patient groups. The listed studies are performed on either extracellular vesicles (EVs),
extracellular matrix (ECM) or bone.

Fig. 2 Proteomic data integration, meta-analysis, disease mechanism mining and drug repurposing candidate prediction with
ProHarMeD. While currently, many steps in proteomic meta-analyses need to be carried out individually and sequentially by data analysis
specialists (left side), ProHarMed offers a streamlined workflow integrated into an easy-to-use web interface closing the gap from multi-study
omics data integration via harmonization (right side) to network enrichment and drug candidate extraction (bottom). Created with
BioRender.com.
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list. Therefore, we assume that those IDs are not relevant hits due
to being from the wrong organism and filter out these IDs. The ID
removal is tracked in ProHarMeD’s log files which allow the user to
assess if the removal was appropriate.

Gain of enrichment terms related to the reduction of newly
mapped gene names
Since the dataset by Dong et al. (2020)23 only provides a list of
gene symbols, which we refer to as gene names here, it is
necessary to translate the protein IDs from studies Schmidt et al.
(2016)20, Schmidt et al. (2018)21, and Calciolari et al. (2017)22 into
the same gene annotation. To accomplish this, ProHarMeD’s
“remap_gene_names” function uses the UniProt API linking the
protein IDs to the primary gene names included in the UniProtKB.
Calciolari et al. (2017)22 dataset contains a list of individual protein
IDs, whereas datasets from Schmidt et al. (2016)20 and Schmidt
et al. (2018)21 contain protein groups discovered by the previously
described MaxQuant re-analysis of raw MS data (Section
Proteomics datasets for meta-analysis). As a result, datasets from
Schmidt et al. (2016)20 and Schmidt et al. (2018)21 contain several
gene names assigned to each row (Fig. 4a). Additionally, 10

protein IDs from the Calciolari et al. (2017)22 dataset are missing
gene name annotations based on UniProt. Although the user can
choose to keep the rows with such IDs in the dataset by setting a
checkmark on “keep empty”, allowing to search for missing names
manually, these rows are eliminated here for simplicity. Conse-
quently, we only rely on fully annotated protein IDs by UniProt.
Redundancy after remapping to gene names from a protein group
inside a single row may occur because a particular gene may have
more than one name. The fact that different databases use varying
gene names as primary identifiers is an additional issue. This can
be tackled by ProHarMeD’s “reduce_gene_names”, for instance,
on the ground of Ensembl IDs25 (Fig. 4b), or other grounds listed
under the method section “Reduction of gene names.”
In order to assess the influence of the reduction step the 10

gene names of study Calciolari et al. (2017)22 that were replaced
by their annotated gene name in Ensembl (Fig. 3b, third column)
have been further inspected by comparing the original gene
names to their replacements (Fig. 5). For that we ran an
enrichment analysis with g:Profiler19 on the set before reduction
and after the reduction separately and compared the significantly
enriched annotation terms. Noticeably, new associations were
determined as significant, particularly those related to biological

Fig. 3 Overview of the “filter_protein_IDs” method results for Schmidt et al. (2016)20, Schmidt et al. (2018)21, and Calciolari et al.
(2017)22 datasets. Filtering of Protein IDs cannot be performed on Dong et al. (2020)23 data since only Gene IDs are provided. a The number
of kept and removed IDs for each dataset. b Evaluation of reasons that lead to the removal of IDs.

Fig. 4 Mapping and reduction to common identifier space of gene names. a Distribution of the number of gene names mapped from
protein groups per dataset. Ten protein IDs shown in the table as source IDs (first column) do not have an official gene name in UniProt and
are, therefore, filtered out. b Reduction of the resulting mapped gene names, upon removal of the 10 protein IDs from (a), based on
mappability in Ensembl ID space.
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processes, while associations related to molecular functions
became insignificant. The reason for that is the two genes Ppia
(reduced: Ppial4d) and Serpina3n (reduced: RGD1565462) for which
either only the pre-reduction or post-reduction gene name has
annotations according to g:Profiler.

Comparing biomarkers of different organisms
Since gene names differ between organisms, ProHarMeD harmo-
nizes gene names by mapping them to the organism of choice,

selected by the user from the list of supported organisms, which
currently consists of human, rat, mouse and rabbit. Most studies
publish gene lists mapped to human gene names, such that further
downstream analysis can be performed, e.g. searching for potential
drug targets. Datasets from Schmidt et al. (2016)20 and Schmidt
et al. (2018)21 already contain human genes. The function
“map_orthologs” maps gene IDs in the datasets from Calciolari
et al. (2017)22 and Dong et al. (2020)23 from rat and mouse to
human orthologs, respectively. Figure 6a shows how many genes in
each dataset lack orthologs in human according to the Ensembl

Fig. 5 Enrichment results for the replaced 10 genes from Calciolari et al. (2017)22 (Fig. 3b), ran with the set before and the set after
reduction by applying the method “reduce_gene_names” colored by the set source, respectively. The significantly annotated enrichment
terms (FDR < 0.05) are sorted by the Gene Ontology67 categories cell component (CC), molecular function (MF) and biological process (BP) and
colored by their p-value for each of the 2 gene sets. For each gene, black denotes inclusion in the intersection for the enrichment term and
gray denotes exclusion. Finally, to indicate each pre and post-reduction candidate combination, the groups are summarized into pairs and
colored accordingly.

Fig. 6 Loss of gene names after ortholog mapping. a Assessment of the effectiveness of the “map_orthologs” method on datasets from
Dong et al. (2020)23 and Calciolari et al. (2017)22 that reveals the number of genes that have an ortholog partner in the target organism.
b Overview of the distribution of ortholog partners in each row for the datasets.
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database. Even if some individual entries in a row do not have an
ortholog partner, this row can be matched to an ortholog if at least
one has an ortholog partner. For instance, only 38 rows in the Dong
et al. (2020)23 dataset remain without a single ortholog gene while
44 genes in the dataset lack a human ortholog partner (Fig. 6b).

Comparison of study results before and after ID
harmonization
Upon mapping each study’s IDs to the same gene identifier space,
we assess shared IDs, so IDs present in more than one study, with
an intersection analysis between the harmonized study results
and the published gene lists to demonstrate the benefit of
ProHarMeD (Fig. 7). Before harmonization, intersection analysis
showed that no gene was present in all four studies (Fig. 7, blue
tiles). Moreover, the study by Dong et al. (2020)23 has little overlap
with the other studies, which is due to the utilization of a murine
model and thus, reporting of murine IDs as published gene lists.
After harmonization, POSTN is found in all four studies. This is a
reasonable finding since POSTN’s biological functions for regen-
eration and wound-healing processes suggest that it is a
biomarker for bone healing26. Additionally, ProHarMeD greatly
increased the overlap of Dong et al. (2020)23 study results with the
results of other studies due to the mapping of murine genes to
human orthologs. This led to a better agreement between studies
by Dong et al. (2020)23 and Calciolari et al. (2017)22, which is
expected given that rats and mice are more closely related to one
another than humans. Even though a rat osteoporosis model was
applied in the study by Calciolari et al. (2017)22, most but not all of
the genes in the published list have already been mapped to
human IDs by the original study’s authors.
The remaining genes still allocated to the rat organism were

mapped to orthologous human genes. This introduced four
additional human genes (GAPDH, HSPG2, PGAM4, SERPINC1) that
overlap with the remaining three studies. As previously men-
tioned, the published gene list of the Calciolari et al. (2017)22

dataset contains a few rat genes, leading to the intersection of
Serpinc1 with the published murine gene list of the study by Dong
et al. (2020)23. After harmonization, this overlap is changed to the
human ortholog SERPINC1. Lastly, the gene Col12a1 is missing in
the harmonized gene list. This is expected, because the rat
proteins P70560, A0A8I6B493, A0A8I5ZRE6, and A0A0G2KAJ7, which
are encoded by Col12a1, are not included in the published protein
list of Calciolari et al. (2017)22. Unexpectedly, Col12a1 is listed in
the published gene list of this study. Since these proteins are not

found in the corresponding published protein list, the raw data
from this study would be necessary to verify the validity, which
highlights the importance of FAIR. However, Calciolari et al.
(2017)22 raw mass spectra data is not available.
For our meta-analysis, we only consider proteins that are

present in at least two studies. Before harmonization, 21 genes
fulfilled this criterion in the “uncleaned” published data sets (see
Supplementary Table 1). Thanks to ProHarMeD, the intersection
size, which is the number of occurrences of the genes in the four
studies, for 5 out of the 21 genes was increased (Fig. 7). More
importantly, the intersection analysis after harmonization identi-
fied 10 additional genes, representing an increase of about 50%. In
one case, the rat gene Serpinc1 identified before harmonization,
was replaced with the human ortholog SERPINC1 after harmoniza-
tion, bringing all identified genes to the same organism space.
Together, this demonstrates the utility of ProHarMeD, enriching
the set of potential biomarkers to 31 genes of interest.

Identification of drug candidates using meta-study
mechanotyping
To perform network-based drug repurposing, we used the 31
biomarkers obtained from our meta-analysis (Fig. 7) as seeds. For
seed protein integration, network computation and visualization,
we build in the Drugst.One27 package, which taps into the NeDRex
database14, incorporates data from numerous biomedical data-
bases like OMIM28, DisGeNET29, UniProt17, NCBI gene info30, IID31,
MONDO32, DrugBank33, Reactome34, and DrugCentral35, and offers
a combined protein-drug-disease network. After mapping the
31 seeds to that network, 24 of them spanned a connected
subnetwork in the human protein-protein interactome. We then
used the “Drug Target Search” option under the “Analysis” section
in the ProHarMeD web app, where the Multi-Steiner Trees
(MuST)36 approach is used to discover connector nodes that are
required to connect the seven isolated proteins to the already
connected seed nodes. This resulted in the identification of seven
connector proteins (see Supplementary Table 2), including EGFR
and CTFR, which are known for impacting bone healing. EGFR is an
epidermal growth factor receptor that has been found to
influence bone formation by negatively inhibiting mTOR signaling
during osteoblast differentiation37. Cystic fibrosis transmembrane
conductance regulator (CFTR) mutations affect both osteoblast
and osteoclast development38. The statistical significance of the
resultant network is evaluated using DIGEST9, which compares the
network to 1000 random networks with the same network

Fig. 7 Comparison of the genes present in the published gene lists and the harmonized gene lists with ProHarMeD (see Data Availability
Section) using intersection analysis. Only genes identified in at least two studies are displayed.
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attributes regarding functional coherence and calculates an
empirical p-value. The resultant network outperforms random
networks in terms of gene ontology based on biological process
(P-Value: 0.041), cellular component (P-Value: 0.001), and KEGG (P-
Value: 0.001) (see Supplementary Note 1).
Finally, we used the 31 seeds and seven connector proteins to

retrieve known drugs using the “Drug search” option under the
“Analysis” section of the ProHarMeD web app. The seeds and
connector proteins were examined as potential drug targets by
retrieving known protein-drug interactions from DrugBank and
DrugCentral and visualizing those interactions within the network
(Fig. 8). The top-20 identified drugs (see Supplementary Table 3)
targeting this network are mostly connected to MMP2 or ANXA1.
However, the drug with the highest score was Fondaparinux,
which targets the gene Serpinc1 and has previously been linked to
a positive histological effect on bone healing39. Nevertheless, the
drug target MMP2 and a number of other identified drug
repurposing candidates have been associated with bone regen-
eration, protection or loss in the literature. The matrix metallo-
proteinase 2 (MMP2) inhibitor 1 (MMP2-I1) has a beneficial
function in the osteogenesis of human bone marrow mesench-
ymal stem cells (hBMSCs) by activating the p38/mitogen-activated
protein kinase (MAPK) signaling pathway, resulting in increased
bone production40. The nine drugs connected to MMP2 include
Doxycycline, which is a tetracycline antibiotic that is used to treat
various bacterial infections41. However, Doxycycline is also known
to stimulate bone healing and alter Wnt signaling42. Zoledronic
acid and Tiludronic acid, both bisphosphonate compounds, were
explored separately for their influence on bone regeneration but
appear to neither improve nor impair it43,44.
Annexin A1 (ANXA1) has anti-inflammatory activity45 and the

identified drugs targeting this gene are steroids used to down-
regulate inflammation46–49. However, a few specific drugs target-
ing ANXA1 have been also reported in the context of bone healing.

Dexamethasone, a glucocorticoid, aided metaphyseal injury
healing, yet long-term glucocorticoid therapy is known to have
a deleterious effect on bone growth50,51. Some of the identified
top-20 drug candidates are known to negatively influence bone
healing. Cefuroxime, which is used for the treatment of a variety of
infections52, was reported to interfere with fracture healing more
than a placebo53. Doxorubicin, a frequently used chemotherapy
treatment, is associated with bone loss54. Lastly, the anti-
inflammatory drug Sulindac was connected to enhanced osteo-
blast cell death after hypoxia, leading to a delay of fracture healing
in bone tissue under hypoxic injury55. The top-20 drugs
mentioned here are approved drugs, serving as a starting point
for investigating their potential repurposing for bone healing,
while ProHarMeD’s flexibility also enables the inclusion of drugs,
that are not approved yet, such as those in clinical trials (see
Supplementary Table 4).
Of note, our main goal was to present the functionalities of

ProHarMeD rather than providing a comprehensive drug-
repurposing study for improved bone healing. However, the results
identified drugs and drug targets that have previously been studied
for their potential in bone healing and regeneration. This confirms
the analysis method, which should be utilized on a larger number of
studies in the future to guarantee the generalizability of the findings.
In summary, ProHarMeD not only boosted the number of

detectable biomarker candidates across several studies by harmo-
nizing the data, but it also facilitated the interactive extraction of
disease mechanisms and the selection of drug-repurposing targets
and drug candidates. All steps can be performed online at
ProHarMeD’s user-friendly web interface for users without any
programming experience. In addition, ProHarMeD is available as R
and Python packages to allow for pipeline integration. Note that, the
datasets used in the example are available on the web interface,
allowing the user to recreate the use case. The user can either
append the collection of tutorial studies or analyze and integrate

Fig. 8 Integrated network visualization of the 31 seeds (green) at the ProHarMeD website. Pink circles are found nodes used to connect
the seeds which were identified with MuST36. Pink diamonds are the top-20 drugs targeting proteins in the candidate mechanism(s).
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any number of datasets of their choice as long as there is a column
containing either protein IDs or gene IDs.

Use case 2: Transcriptomics datasets for meta-analysis
ProHarMeD is not per se restricted to proteomics data; it may also be
utilized for other omics data types, most notably transcriptomics
data. We exemplify its applicability to gene expression data using
two transcriptomics studies56,57 (see Supplementary Table 5) on
neuroendocrine cancer in human patients. The harmonization
procedures are analogous to proteomics pipelines but can be
bypassed here, since the two studies acquired data from human
patients. Afterwards, similar to proteomics data, all genes are
mapped to the molecular interaction networks integrated with
NeDRex, and the MuST algorithm was used to generate subnet-
works (see Supplementary Table 6). Finally, we used the Drugst.One
integration to identify the top five drugs that are linked to the newly
found genes (see Supplementary Table 7, Supplementary Fig. 1).
Sorafenib, the best-ranked drug, is used to treat hepatocellular
carcinoma, advanced renal cell carcinoma, and thyroid carcinoma58.
Despite being linked to genes that were not previously identified as
biomarkers for neuroendocrine carcinoma, Sorafenib is already
being investigated as a potential treatment for these malignancies59.

METHODS
Filtering of protein IDs
To verify and possibly remove incorrectly mapped or obsolete
protein IDs, ProHarMeD retrieves information from UniProt to
obtain the reviewed status and assigned organism. For that, we
use the most recent UniProt version, assessed via API. Additionally,
this method handles decoy and contaminant IDs (as flagged by
MaxQuant), allowing the user to keep or remove them.
The user can choose one or multiple filtering options for the

protein IDs:

● organism-based: All IDs assigned to other organisms than the
given one will be filtered out;

● reviewed-based: All IDs that do not have the reviewed status
in UniProt will be filtered out;

● decoy-based: All IDs that are contaminants (flagged “CON__”)
e.g. originating from cell culture medium or mycobacterial
contaminations, and decoy proteins (flagged “REV__”),
included from target-decoy FDR validation, will be filtered out.

The user also has a choice as to whether the data’s original
protein ID column should be replaced or a new column added.

Re-mapping of gene and protein names
Besides protein IDs, gene names are needed for easier naming in
plots and in analytical procedures such as enrichment analysis. In
some cases, genes associated with the quantified protein groups
in proteomic data are missing.
With direct API access to the UniProt database, ProHarMeD

facilitates retrieving the assigned gene names given protein IDs
and filling in any missing associations in the data matrix or even
replacing ones that already exist, to keep all the names consistent
within the same database version.
ProHarMeD implements numerous scenarios in which names

can be chosen, including:

● FASTA: Use information extracted from FASTA headers, if a
user would rather use gene information from their own FASTA
file than directly from the UniProt database;

● UniProt: Use mapping information from UniProt and use all
gene names that are annotated in the HUGO Gene
Nomenclature Committee (HGNC)60;

● UniProt_primary: Use mapping information from UniProt and
use only primary gene names;

● UniProt_one: Use mapping information from UniProt and use
only the most frequent single gene name;

● All: Use primarily information extracted from FASTA headers
and fill missing entries with data from UniProt.

Reduction of gene names
Some gene names have multiple synonyms, which creates a
potential source of errors when determining intersections
between studies, such as undetected overlaps.
Using several attributes and databases, ProHarMeD enables the

reduction of the gene names to a single gene name, preventing
redundancy.
ProHarMeD offers numerous scenarios for how names can be

reduced:

● Ensembl: Use the g:Profiler package to reduce gene names to
those having an Ensembl ID and use the gene name listed by
the Ensembl database;

● HGNC: Use the HGNC database60 to reduce gene names to
those having an entry in HGNC (only for human);

● MyGeneInfo: Use the MyGene.info database18 to reduce gene
names to those having an entry in MyGene.info;

● Enrichment: Use the g:Profiler package to reduce gene names
to those having a functional annotation.

Note that none of the data repositories is directly integrated
with ProHarMeD but queried on the fly such that always the
newest release of the respective database is utilized.

Mapping of orthologs
To perform meta-analysis on studies performed in different
organisms, the identifiers of each study must be mapped to the
same organism by assigning their orthologous counterpart.
This method converts the gene names of the current organism to

the ortholog genes of the target organism using g:Profiler, which
uses the information from the Ensembl database. The mapping is
carried out in two steps: first, the user-provided input gene IDs are
converted to Ensembl gene identifiers, and then the corresponding
orthologous gene information for the target organism is retrieved.
Both, the original organism and the target organism, must be from
the supported list of organisms, here, human, rat, mouse, or rabbit.
The user has the option to retain rows with empty entries

resulting from removed or unmappable IDs in all four harmoniza-
tion functions. Alternatively, they can choose to automatically
delete these rows, which is the default behavior.

Logging
ProHarMeD includes an automated logging function that tracks
the success of each of the identifier-changing methods listed,
which allows the user to determine the success of conversion.
In addition to returning the input data with altered identifiers,

each method call automatically returns logging information
separated into two types:

● Overview Log: A row-by-row listing of the previous IDs, the
altered IDs that remained, the removed IDs, and, if applicable,
the added IDs, along with the amount for each;

● Detailed Log: A list of the affected identifiers and any
additional information from the relevant databases, which
may vary depending on the method call but is typically used
to better understand the reason for identifier removal. For
instance, in the method “Filter_protein_ids” the linkage of the
protein ID with the incorrect organism can result in the
removal of the ID.

Additionally, ProHarMeD provides built-in visualizations for
displaying the logging results.
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Mechanotyping and drug repurposing prediction
With the use of ProHarMeD, the harmonization issue can be
resolved, allowing for the comparison of several studies in a meta-
study analysis. For this, ProHarMeD enables running an intersec-
tion analysis, rating the proteins according to the number of
studies they occur in. The user may then select a list of proteins
from these results and pipe them as seeds into the mechanism
mining pipeline available through the ProHarMeD website.

● Network Integration: The proteins are integrated into a
network of choice, such as BioGRID61, IID31, String62, APID63,
IntAct64, or into the whole NeDReX network14, which
combines all of them, in order to study their interconnections.

● Disease Module Mining: In cases where not all seeds are
directly connected, a Multi-Steiner Tree (MuST) algorithm36

can be employed using the “Connect genes” functionality to
connect the seeds. We also support other disease module
mining tools, available via the “Drug Target Search” task under
“Analysis,” e.g., KeyPathwayMiner65, TrustRank66, or centrality
measures such as harmonic, closeness, degree and between-
ness centrality.

● Drug Repurposing Candidate Identification: The user can
finally utilize the centrality measures or TrustRank to identify
and rank drugs known to target the proteins in the
mechanism displayed as a network and to visualize the
results accordingly.

Implementation
ProHarMeD is available as a Python package (https://pypi.org/
project/proharmed/) and an R package (https://github.com/
symbod/proharmed-R). Additionally, we offer a website (https://
apps.cosy.bio/proharmed) for direct usage for users without
programming experience. Using the web tool allows scientists
without programming knowledge to conduct all data analyses in
one place, create statistical summary plots, and employ the
integrated network-based analysis interactively (human in the
loop). However, for incorporation into existing pipelines, users and
software developers can opt for downloading either our R or our
Python ProHarMeD packages. Both offer the same functionalities.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The harmonized and not harmonized protein and gene lists20–23 utilized in this study
are made available through the source code repository (https://github.com/symbod/
proharmed). Additionally, all datasets used in this research have been integrated into
the website (see section Implementation). The website allows users to reproduce
each result step by step without requiring any additional programmatic knowledge.

CODE AVAILABILITY
The Python package source code can be accessed on GitHub at https://github.com/
symbod/proharmed or directly from the Python package repository https://pypi.org/
project/proharmed/. Furthermore, for those interested in the R implementation, the
corresponding R code is also available at https://github.com/symbod/proharmed-R.
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