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Abstract
Background  Pandemics such as the COVID-19 pandemic and other severe health care disruptions endanger 
individuals to miss essential care. Machine learning models that predict which patients are at greatest risk of missing 
care visits can help health administrators prioritize retentions efforts towards patients with the most need. Such 
approaches may be especially useful for efficiently targeting interventions for health systems overburdened during 
states of emergency.

Methods  We use data on missed health care visits from over 55,500 respondents of the Survey of Health, Ageing 
and Retirement in Europe (SHARE) COVID-19 surveys (June – August 2020 and June – August 2021) with longitudinal 
data from waves 1–8 (April 2004 – March 2020). We compare the performance of four machine learning algorithms 
(stepwise selection, lasso, random forest, and neural networks) to predict missed health care visits during the first 
COVID-19 survey based on common patient characteristics available to most health care providers. We test the 
prediction accuracy, sensitivity, and specificity of the selected models for the first COVID-19 survey by employing 
5-fold cross-validation, and test the out-of-sample performance of the models by applying them to the data from the 
second COVID-19 survey.

Results  Within our sample, 15.5% of the respondents reported any missed essential health care visit due to the 
COVID-19 pandemic. All four machine learning methods perform similarly in their predictive power. All models have 
an area under the curve (AUC) of around 0.61, outperforming random prediction. This performance is sustained 
for data from the second COVID-19 wave one year later, with an AUC of 0.59 for men and 0.61 for women. When 
classifying all men (women) with a predicted risk of 0.135 (0.170) or higher as being at risk of missing care, the 
neural network model correctly identifies 59% (58%) of the individuals with missed care visits, and 57% (58%) of the 
individuals without missed care visits. As the sensitivity and specificity of the models are strongly related to the risk 
threshold used to classify individuals, the models can be calibrated depending on users’ resource constraints and 
targeting approach.
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Background
Disruptions to the delivery of health care can have seri-
ous negative effects on individuals’ health. Pandemics 
are a particular threat to the delivery of health care, as 
they affect whole health care systems, leaving individu-
als without any alternative health care options. During 
the first COVID-19 wave in Europe, primary care visits, 
hospital admissions, and emergency department vis-
its all declined substantially, already before lockdowns 
were imposed [1–4]. Even hospital admissions for serious 
acute health conditions such as heart failure and myocar-
dial infarction decreased considerably [5, 6]. These care 
disruptions are thought to be a main reason why cardio-
vascular disease mortality increased in the early stages 
of the pandemic [7, 8]. Disruptions to essential care may 
also have longer term effects that persist beyond the pan-
demic [9]. In Germany, for example, diagnoses of diabe-
tes, dementia, depression and stroke decreased to a larger 
extent than the number of physician consultations [4], 
indicating that those in need of preventive care delayed 
essential health care visits.

Individuals at risk for care disruptions need to be effi-
ciently contacted and reconnected to health services to 
prevent them from forgoing or delaying essential care. 
Hospital administrators and health insurance providers 
are particularly well placed for this role as they can con-
tact patients quickly and at scale. However, they face two 
important challenges. First, targeting efforts need to be 
accurate and straightforward without requiring substan-
tial additional resources to not overwhelm the limited 
capacities of health systems already under pressure. The 
health system strain created by the COVID-19 pandemic, 
for example, makes contacting all patients challenging; 
instead, health administrators and insurance providers 
need a way of filtering patients by their risk of care dis-
ruptions and contacting those with the greatest needs. A 
second challenge is that while health administrators and 
insurance providers hold information on health care vis-
its, they usually cannot observe whether they were post-
poned or cancelled and why. Building prediction models 
using existing large-scale survey data has the potential 
to address both of these gaps. Survey data contain infor-
mation on patients and whether they missed visits. This 
allows for building models that predict the risk of missed 
visits using the patient characteristics available to health 
administrators and insurance providers. These models 
can then be applied by health administrators and insur-
ance providers to existing patient information to predict 

each patient’s risk of missed visits, and based on this pre-
dicted risk, target efforts to those who would benefit the 
most.

In this study, we employ four popular machine learn-
ing algorithms on data from multiple waves of the Survey 
of Health, Ageing and Retirement in Europe (SHARE). 
We build and evaluate models that use common patient 
characteristics to predict missed health care visits due 
to COVID-19. First, we build the models based on data 
from the first SHARE COVID-19 survey in summer 2020 
and evaluate them using cross-validation. Second, we 
assess the external validity and long-term suitability of 
these models by applying them to data from the second 
SHARE COVID-19 survey in summer 2021 and assess-
ing how well the models predict missed visits in this 
future wave. In addition, we analyze algorithmic fair-
ness to indicate potential gaps in targeting. Our findings 
have immediate and long-term relevance. The models we 
present here can be used by health administrators and 
insurance providers to target individuals with efforts to 
encourage continuity of care for current and future waves 
of the COVID-19 as well as other future health care 
disruptions.

Methods
Sample
We use data from the SHARE waves 1–8 and the first 
and second wave of the COVID-19 survey [10–19]. The 
SHARE panel includes health and socioeconomic infor-
mation on respondents aged 50 or older and their part-
ners, and covers the European Union (except Ireland), 
Switzerland and Israel [10]. While the in-person data 
collection for wave 8 had to be stopped due to the out-
break of COVID-19 in March 2020, computer-assisted 
telephone interviews were conducted between June and 
August 2020 for a special survey on COVID-19, covering 
57,559 individuals [20]. One year later, between June and 
August 2021, these individuals were contacted again for 
a second COVID-19 survey, in which 49,253 individuals 
participated.

The SHARE study was approved by the Ethics Com-
mittee at the University of Mannheim (waves 1-4) and by 
the Ethics Council of the Max‐Planck‐Society (waves 
5‐8). Additionally, country-specific ethics committees 
or institutional review boards approved implementations 
of SHARE in the participating countries. All study par-
ticipants provided informed consent.

Conclusions  Pandemics such as COVID-19 require rapid and efficient responses to reduce disruptions in health care. 
Based on characteristics available to health administrators or insurance providers, simple machine learning algorithms 
can be used to efficiently target efforts to reduce missed essential care.

Keywords  Missed care, COVID-19, Prediction, Machine learning, Europe
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Missed health care visits
Our primary outcome is whether an individual did not 
attend an essential health care visit. The SHARE COVID-
19 questionnaire asked individuals whether they expe-
rienced three types of missed health care visits due to 
COVID-19: (1) forgone medical treatment due to fear 
of becoming infected; (2) postponement of scheduled 
treatments by the health provider due to COVID-19; (3) 
denied appointment since the outbreak of the pandemic. 
Our main analyses consider any reported missed health 
care visit; secondarily, we also examine the different rea-
sons for missed health care visits separately. We excluded 
missed visits to dentists and specialists (one mutual 
answer category in the questionnaire) as we deem it likely 
that missed visits in this category are mainly driven by 
postponed dentist check-ups and thus do not constitute 
essential care. We include missed visits to general practi-
tioners, planned medical treatments or operations, phys-
iotherapy, psychotherapy, and rehabilitation.

Predictors
We focus our analysis on possible predictors of missed 
health care visits that health insurance providers and 
hospital administrators are likely to have access to. This 
includes age, sex, education, latest reported employ-
ment status, past diagnoses, and past medication use. 
We defined past diagnoses and medication as the respon-
dent stating in any of the past SHARE waves that a cer-
tain condition was (ever) diagnosed/a certain medication 
was taken. We dropped diagnoses and medications that 
were asked for irregularly across SHARE waves (asthma, 
arthritis, osteoporosis, benign tumor, chronic kidney dis-
ease, drugs for asthma, drugs for osteoporosis, drugs for 
suppressing inflammation) to circumvent sample selec-
tion problems. Except for age, all predictors are categori-
cal. Sex is measured with an indicator for being female 
(the data distinguishes between male and female), edu-
cation with six distinct categories (none, primary, lower 
secondary, upper secondary, post-secondary, and tertiary 
education), and employment with six categories as well 
(retired, working, unemployed, disabled, homemaker, 
other).

Missingness
This was a complete case analysis. Of the 57,559 indi-
viduals interviewed in the SHARE COVID-19 wave 1, 
we excluded 1,821 individuals (3% of the eligible sample) 
that had missing data on either the outcome or predic-
tors (Fig. 1). This resulted in a sample of 55,738 individu-
als (97% of the eligible sample). We additionally excluded 
three randomly selected individuals to enable an even 
split into five samples for cross-validation procedures 
(more details below). Of the 49,253 individuals inter-
viewed in the SHARE COVID-19 wave 2, we excluded 

1,629 (3%) individuals due to missingness. All data prepa-
ration was conducted in Stata 17.

Statistical analyses
We use four different algorithms to predict missed health 
care visits: stepwise selection (R package step), group 
lasso (R package grpreg), random forest (R package 
ranger), and neural networks (R package keras). This con-
ceptually involved two steps. First, we identified which of 
the many available predictors should be included in the 
predictive models (known as feature selection). Second, 
we compared different ways of using these predictors – 
through different model types and algorithms – to pre-
dict missed visits.

Stepwise selection and group lasso approaches com-
bine both feature selection and prediction. Since our 
outcome is a binary indicator of whether an individual 
missed a visit, both approaches used logistic regression 
models for prediction. For stepwise selection, the algo-
rithm fits models of different sizes, sequentially deciding 
which predictor to add or drop to improve model perfor-
mance. Among the many candidate models, the model 
with the highest Akaike Information Criteria (AIC) is 
chosen. For group lasso, a penalty on the number of pre-
dictors is added to the logistic regression optimization, 
such that predictors with minimal predictive power are 
excluded [21, 22].

Both stepwise and group lasso approaches are appeal-
ing because they are based around logistic regression 
models – and thus are straightforward to interpret – and 
because they provide a principled way of deciding which 
predictors to include. However, they are limited in that 
they require the analyst to specify the functional form 
of each predictor (e.g. should age be included as a linear, 
quadratic, or cubic function?) and which interactions 
between predictors should be included. Random forests 
and neural networks, in contrast, do not explicitly decide 
which predictors to include, but they do identify which 
interactions and functional forms maximize predictive 
power. Random forests are based on decision trees [23]. 
Decision trees are built by splitting the sample predic-
tor by predictor such that the resulting sub-samples are 
more homogeneous regarding the outcome of interest. 
This results in a “tree”, where every split point (referred 
to as node) is essentially a decision rule on how to clas-
sify individuals based on the value of a predictor. We use 
the proportion of “positive” outcomes (i.e., missed health 
care visits) in a terminal subsample to estimate the prob-
ability of missed health care visits for a given individual 
(“probability tree”) [24]. Neural networks flexibly link 
predictors over several steps, known as “hidden” lay-
ers. In the simplest form (i.e., one “hidden” layer), linear 
functions with different weights for the predictors are 
combined to predict the outcome of interest. Then, the 
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algorithm compares the predicted with the actual out-
comes and adjusts the weights of the functions and the 
weights of the predictors within the functions to opti-
mize the prediction.

The predictive power of group lasso, random forests 
and neural networks depend on the choice of specific 
parameters. To avoid overfitting the data and to ensure 
out-of-sample predictive validity, we choose the param-
eters using cross-validation. This involves splitting the 

data into several random subsets (known as folds), and 
using all folds but one to estimate the model. The model 
is then applied to the remaining fold to measure its out-
of-sample performance. This procedure is repeated until 
every fold has been held out as a validation set. The spe-
cific characteristics we estimate through cross-validation 
are the penalty parameter for the group lasso, the optimal 
number of trees and the number of predictors among 
which the algorithm can choose to split the sample at 

Fig. 1  Sample selection process
Note: From the analysis sample in Panel A, four individuals were dropped randomly to allow for five evenly sized folds for cross-validation.
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each node for random forests, and the layer sizes and 
weights for neural networks. The final model parameters 
are depicted in the supplementary material.

Relatedly, the characteristics of each model depend on 
the input data, such that we assessed the performance of 
the final models using 5-fold cross-validation as well. All 
the models generate a predicted probability of missing 
a visit for each individual in the data (“risk score”). We 
average the predicted probability across all folds to assess 
the correlation between observed and predicted risk of 
missed health care visits. For a graphical representation, 
we calculate the average observed risk over percentiles of 
predicted risk scores in steps of 0.02.

We then assessed the predictive accuracy of the models 
when they are used not just to generate risk scores, but 
to classify individuals as at risk or not at risk. Whether 
the individual is classified as at risk of a missed visit 
depends on whether an individual’s risk score falls above 
or below a pre-specified probability cutoff. For all our 
results, we present the predictive performance measures 
across the entire range of potential probability cutoffs. 
This allows potential users to decide which cutoff meets 
their needs and resource constraints (e.g. a lower cut-
off will likely have a higher true-negative rate but at the 
cost of resources needed to contact more individuals). 
Within each fold, we note the predictive accuracy (the 
proportion of correctly classified individuals), the sensi-
tivity or true-positive rate (the proportion of individuals 
who were correctly classified among those who missed a 
care visit), and the specificity or true-negative rate (the 
proportion of individuals who were correctly classified 
among those who did not miss a care visit). We then 
graph these rates and average them over the five cross-
validation folds for each algorithm.

An important question for predictive models is 
whether they will be accurate in different or new sources 
of data. While the cross-validation procedure improves 
this external predictive power, we additionally assessed 
the out-of-sample predictive accuracy of our model by 
applying it to data from the second round of the SHARE 
survey in 2021. Importantly, this second round of data 
was not used to build the models and thus this check 
helps us assess the external validity and long-term stabil-
ity of our models. This is especially relevant from a policy 
perspective to evaluate how the models can be used in 
the future: A low stability over time would hint towards 
a spurious correlation of our current models with missed 
health care visits, such that they would need to be 
updated continuously to maintain their predictive power. 
In contrast, a high stability over time would indicate that 
our models capture some persistent, underlying patterns, 
increasing their applicability for targeting individuals at 
risk of missing care visits.

We run all analyses separated by sex to account for 
sex-specific trends. In addition, we examine algorith-
mic fairness with respect to age, education, and employ-
ment based on stratum-specific AUC as a measure of 
model performance. Lastly, we assess the importance of 
each predictor. For stepwise selection and group lasso, 
the measure of importance was the coefficient estimates 
from a logistic regression run on the full sample, includ-
ing the predictors selected in the majority of the cross-
validation folds. For random forest, we measured the 
importance of each predictor as the mean decrease in the 
Gini impurity.

All analyses were conducted in R 4.1.2.

Results
Sample characteristics
Table  1 displays the unweighted sample characteristics. 
There are more women than men in the sample (58% 
vs. 42%). Only a few respondents are younger than age 
50 (< 1%); these respondents are partners of the main 
SHARE respondents. More than half of the respondents 
(56%) are between 60 and 74 years old. Correspondingly, 
most are retired (64%). More than two-thirds completed 
at least upper secondary education (71%).

Based on the previous diagnoses and medication, the 
majority of respondents require some form of regular 
care, especially for cardiovascular diseases such as hyper-
tension (diagnosed: 56%, past medication: 56%) or high 
cholesterol (diagnosed: 41%, past medication: 37%). In 
the first wave, every sixth respondent reported some type 
of missed essential health care (16%). More specifically, 
7% reported they forwent care due to fear of COVID-
19, 10% that the medical staff postponed treatment due 
to COVID-19, and 2% that they were denied health care 
(multiple answers possible). In the second wave, this 
reduced to 9% of respondents with any type of missed 
essential health care, with 4% due to fear, 5% due to post-
poned treatment, and 2% due to denied health care.

Prediction accuracy
Figure 2 depicts the share of missed visits by percentiles 
of the calculated missed visits risk score. Up to a risk 
score of approximately 0.2, the predicted risk score corre-
lates well with the mean share of missed visits for all four 
methods and both sexes (all correlations are above 0.9 
and significant at a level of 0.01). At higher risk scores, 
the correlation weakens especially for men, such that the 
correlation remains significant only for women and when 
using stepwise selection or group lasso. At the same time, 
the number of observations decreases strongly at higher 
risk scores, such that 80% of the sample have a risk score 
below 0.2, and more than 90% have a risk score below 
0.25. Thus, for the majority of our sample, the risk score 
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Outcome/predictor Mean (SD)a

Wave 1 Wave 2
Outcome
  Any missed essential care 0.16 (0.36) 0.09 (0.29)

  Forwent essential care 0.07 (0.25) 0.04 (0.19)

  Postponed essential care 0.10 (0.30) 0.05 (0.22)

  Denied essential care 0.02 (0.15) 0.02 (0.14)

Sex
  Female 0.58 (0.49) 0.58 (0.49)

  Male 0.42 (0.49) 0.42 (0.49)

Ageb

  Below 50 0.00 (0.07) 0.00 (0.06)

  50–54 0.02 (0.13) 0.01 (0.10)

  55–59 0.10 (0.29) 0.08 (0.27)

  60–64 0.17 (0.37) 0.16 (0.37)

  65–69 0.20 (0.40) 0.20 (0.40)

  70–74 0.19 (0.39) 0.20 (0.40)

  75–79 0.14 (0.35) 0.15 (0.36)

  80–84 0.10 (0.31) 0.11 (0.31)

  85–89 0.06 (0.23) 0.06 (0.23)

  90+ 0.03 (0.16) 0.03 (0.16)

Education
  None 0.03 (0.16) 0.03 (0.16)

  Primary 0.15 (0.36) 0.14 (0.35)

  Lower secondary 0.16 (0.37) 0.16 (0.37)

  Upper secondary 0.37 (0.48) 0.38 (0.48)

  Post-secondary 0.06 (0.23) 0.06 (0.23)

  Tertiary 0.24 (0.43) 0.24 (0.43)

Employment
  Retired 0.64 (0.48) 0.64 (0.48)

  Working 0.21 (0.41) 0.22 (0.41)

  Unemployed 0.02 (0.14) 0.02 (0.14)

  Disabled 0.03 (0.16) 0.03 (0.16)

  Homemaker 0.08 (0.27) 0.08 (0.27)

  Other 0.02 (0.12) 0.02 (0.12)

Previous diagnosesc

  None 0.40 (0.49) 0.41 (0.49)

  Heart attack 0.20 (0.40) 0.20 (0.40)

  High blood pressure or hypertension 0.56 (0.50) 0.56 (0.50)

  High blood cholesterol 0.41 (0.49) 0.41 (0.49)

  Stroke 0.07 (0.26) 0.07 (0.25)

  Diabetes or high blood sugar 0.18 (0.38) 0.17 (0.38)

  Chronic lung disease 0.10 (0.30) 0.10 (0.30)

  Cancer 0.10 (0.30) 0.09 (0.29)

  Stomach or duodenal ulcer, peptic ulcer 0.10 (0.30) 0.10 (0.30)

  Parkinson disease 0.01 (0.11) 0.01 (0.10)

  Cataracts 0.17 (0.38) 0.17 (0.37)

  Hip fracture or femoral fracture 0.04 (0.19) 0.04 (0.19)

  Other fractures 0.14 (0.35) 0.14 (0.34)

  Alzheimer’s disease, dementia, senility 0.03 (0.17) 0.02 (0.16)

  Other affective/emotional disorders 0.12 (0.32) 0.12 (0.32)

  Rheumatoid arthritis 0.18 (0.38) 0.17 (0.38)

  Osteoarthritis/other rheumatism 0.31 (0.46) 0.30 (0.46)

  Other diagnosis 0.38 (0.49) 0.38 (0.48)

Table 1  Sample characteristics
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is highly predictive of the share of missed essential care 
visits.

Figure  3 displays the predictive accuracy of the four 
machine learning approaches. Each graph shows three 
different measures: (1) the true positive rate (sensitivity) 
(2) true negative rate (specificity) and (3) accuracy. The 
x-axis for each graph shows the cutoff point that is used 
classify individuals with a risk score above this cutoff as 
individuals with a missed visit.

The accuracy of the predictions depends on which cut-
off is used to classify individuals as at risk of missing a 
visit. Starting at a cutoff of approximately 0.08, the true 
positive rate starts to decrease and the true negative rate 
and the accuracy start to increase. This indicates that 
higher cutoffs increase accuracy by classifying a greater 
percentage of individuals as not at risk with the trade-
off that fewer individuals that missed visits are correctly 
classified as at risk. The random forest algorithm pro-
duces much steeper curves than the other three meth-
ods, especially for men, with a sharp decline in the true 
positive rate and a sharp increase in the true negative rate 
and accuracy between cutoffs of 0.1 and 0.25. This indi-
cates that the predicted probabilities of a missed health 
care visit mostly lie within this range and are thus more 
densely distributed compared to the other methods (Fig-
ure S1 in the supplementary material displays the pre-
dicted probabilities for each method and confirms this 
interpretation). Overall, this implies that for random for-
est, small changes in the cutoff come with relatively larger 
changes in the share of targeted individuals. The other 
three methods are less sensitive to changes in the cutoff.

To compare the performance of all four methods inde-
pendent of the choice of cutoff, we display the area under 
the curve (AUC) in Table  2. This is the area under the 
curve when plotting the true positive rate on the false 
positive rate (1 - true negative rate). A method that would 
perform no better than chance would have an AUC of 
0.5, an ideal method would have an AUC close to 1. Using 
this metric, all four methods perform very similarly with 
AUCs around 0.61. The results are qualitatively the same 
when disaggregating missed essential care visits into for-
gone visits due to fear, postponements by the medical 

Fig. 2  Predicted risk scores

 

Outcome/predictor Mean (SD)a

Wave 1 Wave 2
Previous medication
  Drugs for none 0.40 (0.49) 0.41 (0.49)

  Drugs for high blood cholesterol 0.37 (0.48) 0.36 (0.48)

  Drugs for high blood pressure 0.57 (0.50) 0.56 (0.50)

  Drugs for coronary diseases 0.18 (0.38) 0.17 (0.38)

  Drugs for other heart diseases 0.21 (0.41) 0.20 (0.40)

  Drugs for diabetes 0.16 (0.37) 0.15 (0.36)

  Drugs for joint pain 0.31 (0.46) 0.3ß (0.46)

  Drugs for other pain 0.31 (0.46) 0.31 (0.46)

  Drugs for sleep problems 0.15 (0.35) 0.14 (0.35)

  Drugs for anxiety or depression 0.13 (0.33) 0.12 (0.33)

  Drugs for osteoporosis (hormonal) 0.11 (0.32) 0.11 (0.32)

  Drugs for stomach burns 0.17 (0.37) 0.16 (0.37)

  Drugs for chronic bronchitis 0.05 (0.22) 0.05 (0.22)

  Drugs for other 0.39 (0.49) 0.38 (0.49)
aStatistics are unweighted. bAge is depicted as categories, but included as continuous predictor in the analyses. cMultiple answers possible.

Table 1  (continued) 
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Table 2  Performance measures
Wave 1 Wave 2
Stepwise Lasso Random 

Forest
Neural 
Networks

Stepwise Lasso Random 
Forest

Neural 
Net-
works

Male
AUC
(SD)

0.6084
(0.0148)

0.6130
(0.0136)

0.6150
(0.0134)

0.6120
(0.0113)

0.5857 0.5858 0.5923 0.5837

Accuracy 0.6104 0.6108 0.5531 0.5740 0.6137 0.6171 0.5425 0.5697

True positive rate 0.5364 0.5403 0.6171 0.5896 0.4943 0.4918 0.5844 0.5406

True negative rate 0.6220 0.6219 0.5432 0.5717 0.6240 0.6279 0.5389 0.5723

Female
AUC
(SD)

0.6128
(0.0086)

0.6142
(0.0099)

0.6110
(0.0092)

0.6124
(0.0055)

0.6066 0.6061 0.6335 0.6031

Accuracy 0.6163 0.6177 0.5760 0.5778 0.6224 0.6202 0.6093 0.5761

True positive rate 0.5255 0.5242 0.5836 0.5767 0.5138 0.5134 0.5760 0.5685

True negative rate 0.6350 0.6369 0.5747 0.5785 0.6345 0.6321 0.6130 0.5770
Accuracy, true positive rate and true negative rate are assessed at a cutoff of 0.135 for men and 0.17 for women. Models were trained on data from wave 1 and then 
applied on data from wave 2. For wave 1, all measures are means across the five cross-validation folds for each method. For wave 2, the measures for stepwise and 
lasso are retrieved by applying the model from wave 1 on the data from wave 2. The measures for random forest and neural networks are retrieved by applying 
the models from all five cross-validation folds from wave 1 on the data from wave 2, and taking the mean predicted probability across all folds. (SD) is the standard 
deviation of the AUC across the five cross-validation folds for wave 1, and hence cannot be computed for wave 2.

Fig. 3  Performance measures
Note: “TPR” is the true positive rate, “TNR” the true negative rate, and “Acc.” the accuracy. The outcomes for all five cross-validation steps are displayed. The 
cutoffs on the x-axis denote the predicted probability from which onwards individuals are labelled as “positive”, i.e. at risk of missing care
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staff, and denied care by the medical staff (Table S1 in the 
supplement).

We also display the accuracy, true positive rate, and 
true negative rate at a cutoff of 0.135 for men and 0.17 
for women to exemplify the performance of the models 
(performance at further cutoffs is displayed in Table S2 in 
the supplement). At a cutoff of 0.135, between 54% (step-
wise selection and lasso) and 62% (random forest) of the 
men missing care are correctly classified as at risk, while 
falsely targeting between 38% (stepwise and lasso) and 
46% (random forest) of the men not at risk. For women, 
between 52% (lasso) and 58% (random forest) of the indi-
viduals at risk would be targeted using a cutoff of 0.17, at 
the expense of falsely targeting between 36% (lasso) and 
43% (random forest) of the individuals not at risk. We 
choose different examples of cutoffs for men and women, 
as the distribution of risk scores is denser for men, such 
that at a risk score of 0.17, nearly all individuals would 
be labeled as not at risk (see Table S2 in the supplement). 
Also, women have on average a higher risk of a missed 
visit in our sample, resulting in a higher risk score. The 
optimal cutoff for targeting interventions depends on 
the trade-off the practitioner is willing to take between 
reaching out to the individuals at risk and falsely tar-
geting individuals not at risk. As the distribution of 
predicted probabilities differs across the methods, the 
optimal cutoff also depends on the choice of the method.

Our models display consistent external validity and 
show similar prediction accuracies when fit to the second 
wave of the SHARE COVID 19 data. The AUC slightly 
drops from around 0.61 to around 0.59 for men and 
stays nearly stable for women (from around 0.61 for all 
methods to 0.61 for stepwise selection and lasso, 0.63 for 
random forest, and 0.60 for neural networks). Similarly, 
the accuracy and the true negative rate stay quite stable, 
while the true positive rate decreases slightly, especially 
for men (approx. 4% points across models).

Coefficient estimates
We compare the coefficient estimates of the two feature 
selection algorithms in Figure S3 in the supplement. Both 
algorithms retain most of the predictors, with the step-
wise selection dropping slightly more predictors than the 
group lasso. For both algorithms, more predictors are 
retained for the female than the male subsample. Being 
disabled is a consistent and large predictor of missed 
health care visits across the models, which is in line with 
findings from the US [25]. Other important predictors 
are previous osteoarthritis/other rheumatism, emotional 
disorders, cataracts, or cancer diagnosis, and medica-
tion for joint pain, anxiety/depression, or stomach burns. 
Alzheimer’s disease is consistently correlated with a 
lower risk of missed health care visits. This partly mirrors 

findings from a survey based on Medicare beneficiaries 
in the US [26].

Performance by sociodemographic group
We analyze the algorithmic fairness of our models by 
comparing the AUC for different sociodemographic 
groups. As depicted in Fig. 4, the AUC in wave 1 is lower 
for individuals younger than 60 and with lower levels of 
education. It is particularly low for male disabled respon-
dents and female respondents with primary education. 
The strongest differences between the models emerge 
for the different occupational groups. For example, com-
pared to the other models, the random forest model is 
relatively effective at predicting which individuals are 
at risk of a missed care visits for unemployed individu-
als (irrespective of sex), and men who are working or are 
homemakers. At the same time, it is relatively ineffective 
at predicting missed care visits for individuals who are 
disabled or categorized as “other”.

In wave 2, the differences in AUC by age are diminished 
for men, but slightly increased for women. For men, the 
decreases in AUC occur especially for individuals with 
lower secondary or tertiary education, while for those who 
are disabled, homemakers or have some other occupational 
status, the AUC strongly increased. For women, the AUC 
increased particularly for individuals with primary educa-
tion and those who are homeworkers, especially when con-
sidering the random forest algorithm.

Discussion
We show that machine learning algorithms based on few 
common patient characteristics can be used to predict 
which individuals are most likely to miss essential health 
care visits during disruptions to health care such as the 
COVID-19 pandemic. Importantly, these models all per-
form better than random chance. We also find that simple 
feature selection algorithms (stepwise selection and group 
lasso) perform similar to more complex algorithms (random 
forest and neural networks). This means that health care 
providers or insurance companies do not need high com-
puting power or specialized staff to implement our models 
in real-world practice. Importantly, our models retain their 
performance over time and consistently predict missed 
health care visits when applied to new data collected one 
year after the data used to build our models: Our models 
may thus be applicable beyond COVID-19 and be used to 
reduce missed visits during future disruptions to health care 
services.

Previous studies demonstrated that machine learning 
algorithms can be powerful tools to predict health care vis-
its or no-shows [27–32]. But their applicability in practice 
depends on the availability of predictors and the measurabil-
ity of the outcome of interest: For example, while data from 
electronic health records might contain a large number of 
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predictors, including medical findings, health insurance 
providers might have access to claims data only [33]. Still, a 
recent study showed that administrative data alone can be 
a powerful predictor for health care visits, with little addi-
tional improvement when adding further anthropometric 
data or information on neighborhood socioeconomic status 
[28]. Similarly, non-attendance of appointments can be pre-
dicted very well based on previous appointments [30–32], 
but this data might not be available to health insurance pro-
viders. Moreover, even if such data is available, decisions to 
not visit a facility will not be recorded in administrative or 
clinical data. Our approach bridges this gap by using sur-
vey data, albeit at the costs of having fewer and more coarse 
predictors at hand, resulting in a lower predictive power 
than reached by studies on health care visits or missed 
appointments. More specifically, our models reach an AUC 
of approximately 0.6 across specifications and outcomes, 
while studies predicting missed appointments or health 
care visits often reach an AUC of approximately 0.8 [27–31]. 
While most of them rely on detailed data on previously 
missed appointments or electronic health records, the study 
perhaps closest to ours uses administrative records (though 
including a predicted cost score) to predict health care visits, 
and reaches an AUC between 0.78 and 0.84, depending on 
the outcome [28]. Thus, although the SHARE data already 
includes a comprehensive set of diagnoses and medication, 
future research could investigate whether extending these 

categories further would improve the predictive power of 
models for missed health care visits.

The temporal stability of our predictions increases our 
confidence in the external validity of our models and their 
applicability beyond the first one and a half years of the 
pandemic. This is particularly important as, in contrast to 
previous pandemics such as the Severe Acute Respiratory 
Syndrome (SARS) or the Middle East Respiratory Syn-
drome (MERS) pandemics, COVID-19 is characterized by a 
longer duration with multiple waves. Thus, while the utiliza-
tion of health care services recovered quickly in the case of 
SARS and MERS [34, 35], current evidence indicates a slow 
recovery and repeated disruption of health care visits during 
COVID-19 [1, 3, 6]. The relentless nature of the COVID-19 
thus carries greater risks than prior pandemics. Individuals 
need to be contacted and transferred back to the health care 
systems before they chronically forgo essential care or delay 
necessary care so long that they increase their risk of severe 
health complications.

Our predictions can be directly used to improve the tar-
geting of efforts to prevent individuals aged 50 or older from 
missing health care visits in the European Union (except 
Ireland), Switzerland, and Israel. We will publicly post the 
required weights and model parameters online, such that 
health insurance providers or similar stakeholders can esti-
mate the probabilities of missed health care visits for their 
clients. Depending on the intended intervention, stake-
holders can choose the cutoff which yields their preferred 

Fig. 4  AUC by sociodemographic group
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trade-off between reaching out to clients at risk, and falsely 
targeting clients not at risk. Moreover, as our analysis does 
not assess the potential negative consequences of missed 
health care visits, stakeholders might choose to weight 
our predictions of missed health care visits with their own 
assessments of severity of missed health care visits for spe-
cific subgroups, such as clients with a chronic illness.

Our study faces several limitations. First of all, our data 
relies on self-reported information on missed essential 
health care visits. This might introduce a bias if discrepan-
cies between self-reported and objective missed health care 
visits are not random. In addition, participants were asked 
whether they had missed any health care visits since the 
onset of the COVID-19 pandemic. This might imply differ-
ent recall periods for participants, as the onset of the pan-
demic is not a clear date and varies across locations. Still, 
given that nearly all European countries imposed the first 
lockdown within a time span of two weeks [36], and that 
this lockdown was an unparalleled, significant event, the 
resulting bias might be low. Similarly, most of the interviews 
took place within two months. While this might increase 
the recall period for the later participants, the interviews 
were conducted between the first and the second COVID-
19 wave, in a time of comparatively low infection and death 
rates, such that most of the missed health care visits are 
expected to have already taken place before the start of the 
survey. Also, we do not include missed health care at spe-
cialists, as the data combines specialists and dentists in one 
item. Given the high share of missed regular dentist check-
ups recorded in other studies [37, 38], we expect that these 
contribute to the majority of missed visits in this item, and 
thus are confident that excluding it leads to a more accu-
rate identification of missed essential health care services. 
Finally, with the panel structure of the data and the fact that 
our predictors stem from previous waves, i.e., except for age 
did not change between the two COVID-19 surveys, we 
might ask whether the stability in performance across both 
ways might be driven by some form of path dependence: 
The same individuals who reported missed visits in the first 
wave might report missed visits in the second wave as well. 
However, a closer look at the data reveals some movement 
between the waves: Only about a fifth of the individuals with 
missed care in wave 1 reported a missed care visit in wave 
2, while about 7% of the individuals without missed care in 
wave 1 reported a missed care visit in wave 2. As well, indi-
viduals with missed visits in both waves have a higher risk 
score on average than individuals without any missed vis-
its or a missed visit in wave 1 only, as depicted in Figure S2 
in the supplement. This indicates that the models pick up 
some underlying pattern in the predictors which correlates 
with the risk of missing care in both waves, rather than the 
risk in wave 1 alone. Yet, as the stability of the model pre-
dictions varies across sociodemographic groups, there are 

possible gaps in targeting across these groups when apply-
ing the models.

Conclusions
The COVID-19 pandemic put health systems worldwide 
under pressure and led to severe disruptions in health care. 
With the support of machine learning methods, routinely-
collected survey data can be used to target individuals at 
risk of missed health care more efficiently during periods of 
severe and prolonged health care disruption.
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