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Abstract

Urban Air Mobility (UAM) represents an emerging mode of transportation, garnering signifi-

cant research interest due to its potential to reduce travel time notably. The strategic selection

of vertiport locations critically influences the effectiveness of UAM services. Initial studies on

UAM vertiport siting primarily utilized existing infrastructure, Multi-Criteria Decision Analysis

(MCDA) based on expert opinions, clustering methods, and optimization methods. Among

these, optimization methods are preferred for their efficiency, generalizability, and ability to

ensure optimal solutions. However, previous research using optimization for UAM vertiport

siting has largely overlooked the stochastic nature of travelers’ mode choice, particularly in

the context of disaggregated demand data. This study formulates the vertiport siting prob-

lem as a two-stage stochastic optimization problem by considering mode choice to address

the above research gap. In the designed framework, the first-stage decision involves se-

lecting the most appropriate vertiport locations from the vertiport candidates (siting), and

the second-stage decision entails pairing each trip with the optimal access and egress ver-

tiports (matching). This study developed and employed heuristic approaches to solve the

optimization problem based on the above facts.

Utilizing the proposed framework, the case study was designed to select 74 vertiports from

200 candidates, aiming to maximize the total saved generalized travel costs across all trips

within the Munich metropolitan area (MUC), Germany. Notably, Greedy Forwards-Update

(GRDF-U), Genetic Algorithm (GA), and Simulated Annealing (SA) yielded remarkably simi-

lar and superior outcomes regarding optimization efficacy, demand coverage, and accessibil-

ity improvement. All optimization-based solutions outperformed benchmarks from previous

studies using MCDA and clustering methods in terms of saved generalized costs. Addition-

ally, an exploratory experiment on the impact of vertiports’ numbers was also conducted.

The results indicate that saved generalized travel costs continue to increase as the num-

ber of vertiports increases but exhibit diminishing marginal returns. In contrast, construction

costs almost linearly increase. This proves that building excessive vertiports is not a sensible

endeavor.
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1. Introduction

1.1. Background

As modern cities continue to expand and evolve, they encounter a significant and multi-

faceted problem in transportation. This issue is chiefly characterized by escalating con-

gestion and inadequate infrastructure. Urban sprawl, a common feature in rapidly growing

metropolitan areas, exacerbates the issue by stretching transportation networks to their lim-

its and beyond. This expansion invariably results in longer commutes, putting excessive

strain on existing roads and public transit systems that were not designed to handle such

high volumes of traffic or such vast geographic coverage. At present, there exists a wealth of

research focused on mitigating traffic congestion. Broadly, these efforts can be categorized

into two domains: transportation demand management (TDM) and transportation system

management (TSM), in accordance with classical traffic theories (Meyer, 1999). The for-

mer seeks to reduce private traffic demand through enhanced land-use planning (e.g., the

concepts of 15-minute city (Moreno et al., 2021)) or modal shifts (e.g., promoting the use

of public transport (Cullinane, 2002)). The latter employs various traffic control measures

(e.g., traffic signal control (Mirchandani and Head, 2001), high-occupancy vehicle lanes for

carpooling (Hanna et al., 2017)) to optimize the operation efficiency and carrying capacity

of the transportation system. However, as highlighted by Wang and Qu (2023), such mea-

sures failed to address the underlying contradiction between rising traffic demand, limited

land use, and the capacity constraints of road transport. Consequently, some have shifted

their perspective to the realm of airspace.

Recent technological advancements, including battery and fuel cell electric vehicles, au-

tonomous vehicles, and unmanned aerial vehicles (UAVs), have brought about rapid transfor-

mations in the field of transportation (Biswas et al., 2021). Urban Air Mobility (UAM) emerges

as a nascent airborne transportation concept, typically involving on-demand, station-based,

inter- and intra-urban passenger transportation services facilitated by electric vertical takeoff

and landing (eVTOL) aircraft (conceptual design shown in Figure 1). UAM holds the poten-

tial to become a competitive mode of passenger transportation, offering safer, more efficient,

and sustainable travel options (Rothfeld, 2021).

Existing research highlights numerous economic benefits and opportunities stemming from

the integration of UAM into existing transportation systems. Tuchen et al. (2022) qualita-

tively asserted that UAM development could stimulate job creation through the manufacture

of aircraft-related materials and vertiport construction. Moreover, both business and com-

munity development could be amplified, especially in the vicinity of manufacturing centers

and vertiports. Numerous studies have also explored the potential of UAM as a solution for

freight transportation (Gunady et al., 2022; Li et al., 2022). These studies collectively sug-

UAM Vertiport Siting Optimization 1



Figure 1 Conceptual design of UAM aircraft (Technische Hochschule Ingolstadt, 2022).

gest that UAM could revolutionize the logistics industry, primarily due to its rapid and efficient

transport capabilities. UAM could potentially ease the transportation of goods to remote ar-

eas, which are often inaccessible via conventional transportation modes. Furthermore, UAM

holds promise in providing high-performance services for emergency traffic or commuting

between rural, suburban, and urban areas, thus enhancing citizens’ accessibility (Pukhova

et al., 2021). However, consensus remains elusive regarding whether UAM introduction can

effectively alleviate traffic congestion. Pukhova et al. (2021) contended that, when account-

ing for access and egress legs to UAM stations, total car travel kilometers increased by

0.3%, casting doubt on UAM’s ability to reduce traffic congestion effectively. Wang and Qu

(2023) further noted that modal shifts to UAM could intensify ground travel demands near

vertiports, exacerbating congestion in those areas. Kellermann et al. (2020) acknowledged

that a substantial reduction in traffic remains elusive due to the technological limitations of

UAVs, suggesting that redistribution of traffic is a more likely outcome, offering the potential

to alleviate congestion. Doole et al. (2018) conducted simulations in the Paris metropolitan

area, concluding that if eVTOL aircraft traffic reached 180,000 flights per hour, it would be

possible to divert 70% of ground traffic to the air. Despite some controversies, the positive

impact of UAM on existing transportation systems and regional economic development is

undeniable. Maximizing the benefits of UAM involves multiple aspects, including planning,

design, and operation. Among these, the siting of UAM vertiports is a critical component.

1.2. Motivations

The performance of UAM service is influenced by various parameters, including the number

and location of vertiports, speed, number of seats, and passenger processing time (Ploet-

ner et al., 2020). The placement of UAM vertiports is a pivotal factor that has undergone

extensive study, demonstrating its substantial impact on both UAM demand and accessibil-

ity (Ploetner et al., 2020). According to Liu et al. (2023), the establishment of an adequate

UAM Vertiport Siting Optimization 2



number of vertiports and meticulous site planning are crucial for facilitating efficient and sus-

tainable UAM system operations. For instance, Guo et al. (2024) stated proper vertiport

siting not only enhances the transport efficiency but also the accessibility of the UAM sys-

tem. On top of that, as with any other public facility site selection, once a vertiport location

has been established, it cannot be easily changed again for a considerable period, and re-

siting often means rebuilding the infrastructure, which is quite expensive. Lim and Hwang

(2019) underscored that the feasibility of UAM is more determined by the location of verti-

ports than their number, especially when integrated with public transport. Furthermore, from

the operator’s perspective, Onat et al. (2023) indicated that the distance between vertiports

is a crucial factor influencing fleet utilization, i.e., sparse vertiports siting results in reduced

total idle time and increased cruise and charge times, leading to more efficient fleet utiliza-

tion but also longer passenger delays. Consequently, the selection of vertiport locations is

critical from both UAM service performance and cost perspectives. Therefore, a comprehen-

sive consideration of UAM vertiport siting is crucial for realizing the full potential of the UAM

system. This study introduces a generic method for UAM vertiport siting using a two-stage

stochastic optimization approach with the objective of maximizing cost savings for all trips.

Given a set of potential vertiport candidate locations and the desired number of vertiports,

the algorithms can identify at least an approximate optimal solution for vertiport siting.

1.3. Contributions

This study’s first contribution lies in formulating the choice of vertiport locations as a two-

stage stochastic optimization problem. This framework proposes the expression of an indi-

vidual’s mode choice through a series of binary stochastic variables. In this study, individual

mode choices are determined by employing Monte Carlo sampling, in which probabilities are

computed by using discrete choice models. This approach encompasses both utility-based

and stochastic behavioral aspects of travelers’ mode choices and could provide a more reli-

able mode choice estimation.

The second major contribution of this study lies in the development of two heuristic algorithms

for the large-scale network optimization problem. This study used five heuristic algorithms in

the first-stage optimization, of which the Greedy Forwards Update (GRDF-U) Algorithm and

Greedy Backwards (GRDB) Algorithm are constructed by the authors themselves. More-

over, the experiment results show that GRDF-U yields superior performance regarding the

optimization solution, which is comparable with the GA and SA solutions. GRDB delivers the

most efficient computation time while still achieving satisfactory optimization outcomes.

Lastly, from a policy development perspective, this study introduces a universally applica-

ble method, even in cases where expert support is limited, and data is scarce. It enables

the fool-proof selection of optimal (or near-optimal) vertiport locations based on predefined

objectives, which yields excellent performances concerning saved generalized travel cost,

demand coverage, and accessibility improvement, compared with benchmarks. Additionally,
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the exploratory study qualitatively analyzes the trade-off between the number of vertiports

and the associated benefits and costs. The marginal diminishing benefit effect of vertiports’

number is verified. When future cost estimations become more precise, determining the

optimal number of vertiports can be conveniently incorporated into the formulation of this

study.

1.4. Thesis Structure

The remainder of this thesis is structured as follows: Chapter 2 critically reviews existing

research concerning factors influencing vertiport location selection and approaches for ver-

tiport siting. Before delving into the methodology of this thesis in detail, Chapter 3 proposes

the procedures of two alternative vertiports siting approaches, namely MCDA and cluster-

ing. Chapter 4 and 5 delineate the key assumptions, problem formulations, and procedures

for model choice modeling, demand allocation optimization, and the utilization of heuristic

algorithms for vertiport siting optimization. Chapter 6 outlines the design and configuration

of the experiment, which is followed by the presentation and thorough analysis of the results

in Chapter 7. Subsequently, the limitations and directions for future research are discussed

and highlighted in Chapter 8. The study concludes in Chapter 9, providing a summary of the

study’s findings as well as policy insights for UAM network planning based on the findings.
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2. Literature Review

2.1. Overview of Vertiports Siting Related Studies

The choice of vertiport locations, often referred to as vertiport siting, represents a substantial

and pivotal challenge in the successful implementation of UAM. Consequently, this aspect

has garnered significant attention within the realm of UAM research. As demonstrated by a

systematic review of UAM-related literature conducted by Schweiger and Preis (2022), the

selection and establishment of vertiport locations, as well as the development of associated

networks, constitute a substantial portion of all UAM ground infrastructure publications. A

subset of these studies concentrates on identifying the factors that influence the selection of

vertiport locations, while others introduce innovative methods for siting. Nearly all of them

rely on case analyses. Before delving into the methodological aspects of these studies, it

is valuable to examine the geographic distribution of the regions selected for these case

analyses. Figure 2 indicates the locations chosen for case studies in recent years concern-

ing UAM vertiport siting. On a global scale, Europe, the United States, and South Korea

emerge as the primary focal points for vertiport location research. More precisely, multiple

case analyses have designated Munich, Seoul, San Francisco (Northern California), Los An-

geles, and New York as their primary study areas. These regions share a common trait of

being economically developed with a high level of resident income (The World Bank, 2022).

This aligns with the prevailing consensus in previous research, which suggests that UAM is

generally better suited for populations with higher income levels (Ploetner et al., 2020).

Figure 2 Distribution of UAM vertiport siting case studies around the world.

Understanding the factors that impact the selection of vertiport locations is equally impera-

tive. Fadhil (2018) identified ten factors that could influence the placement of UAM ground

infrastructure, taking into account both demand-side factors (population density, median in-

UAM Vertiport Siting Optimization 5



Figure 3 Word cloud of UAM vertiports siting’s influencing factors.

come, office rent prices, points of interest, major transportation hubs, annual transportation

costs, job density, and extreme commuting) and supply-side factors (existing infrastructures

and noise). These factors are prioritized by experts in his study, in which points of inter-

est, major transport nodes, and median income are the top 3 factors of concern. Based on

the work of Fadhil (2018), Arellano (2020) supplemented several factors that would have a

significant impact on the location of UAM vertiports, namely company headquarters, travel

demand, and accessibility. Similarly, a review of recent air taxi developments by Rajendran

and Srinivas (2020) highlighted key factors contributing to a location being chosen as a UAM

vertiport, which can be summarized as follows: demand density, the availability of adequate

space for safe takeoff and landing, the presence of suitable areas for charging facilities, and

ease of accessibility. Figure 3 shows a word cloud created from the factors mentioned in

these contributions. The size of the font depends on the frequency of occurrence. It is

clear that Density (indicating population density, job density, employment density), Existing

(helipads, infrastructure, facilities), Accessibility (indicating opportunity accessibility, UAM

station accessibility), and Demand (indicating travel demand, UAM demand, demand in-

ducement) are the words that stand out from the crowd. In short, most scholars agree that

UAM Vertiport siting is primarily demand-oriented and aims to improve residents’ accessibil-

ity while integrating with existing infrastructure.

Based on the consideration of these factors, various valuable efforts have been made in

recent years to identify suitable UAM vertiport locations. Prior studies have utilized a wide

array of both qualitative and quantitative methods to determine optimal locations for UAM

stations. The former is represented by the direct use of existing infrastructure and Multi-

Criteria Decision Analysis (MCDA), and the latter includes clustering and optimization-based

methods.
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2.2. Qualitative Vertiports Siting Approaches

In the early stages of UAM-related research, when the factors influencing station location

determination were not yet extensively explored, mainstream studies often recommended

the utilization of existing infrastructure as potential vertiport sites. For instance, Antcliff et al.

(2016), after analyzing the characteristics of existing infrastructure and airspace regulations

in Silicon Valley, USA, proposed the use of water barges, highway cloverleaf interchanges,

and private tech business campuses as suitable vertiport locations in bay-surrounding ar-

eas, urban settings, and private land-use areas, respectively. Similarly, in North Rhine-

Westphalia, Germany, Otte et al. (2018) suggested repurposing existing passenger, pub-

lic, and special-purpose airfields as UAM stations, while also considering adequately sized

rooftops within densely populated areas as potential UAM vertiport locations. Additionally,

Vascik (2017) explored the possibility of available takeoff and landing areas (TOLAs) in con-

junction with other infrastructures besides helipads as eVTOL Aircraft’s technology evolves

further. For instance, when considering reduced downwash effects or vehicles certified for

landing on smaller footprints, these TOLAs could be strategically co-located in gas stations,

superstores, or other geographically well-distributed businesses. This approach offers the

advantage of minimizing the construction cost of UAM ground infrastructure and is well-

suited for short- to medium-term UAM planning.

MCDA is a decision-making approach that involves evaluating and comparing multiple crite-

ria or factors when making decisions (Lloyd-Williams and Lloyd-Williams, 2019). It is partic-

ularly useful when decisions need to be made based on multiple, and sometimes conflict-

ing, criteria or objectives. In the context of UAM vertiport placement, more comprehensive

approaches that consider a multitude of factors, especially those related to demand, have

been employed. For example, Fadhil (2018) presented a methodology for strategically plac-

ing UAM vertiports in the Metropolitan areas of Los Angeles, USA, and Munich, Germany,

using a Geographic Information Systems (GIS)-based approach. The study employed the

weighted linear combination (WLC) technique to conduct a suitability analysis, identifying

appropriate areas for UAM vertiports. The minimum requirements and influential factors

were determined through a literature review. Weightings for each factor were generated

using an analytic hierarchy process (AHP)-Delphi method, along with interviews with “super-

experts”. The resulting suitability maps highlighted areas with high scores in city centers,

major transport hubs, and densely populated, high-income regions. In another case study

by Ploetner et al. (2020) in the Upper Bavaria Region, Germany, potential vertiport locations

were determined through workshops involving representatives from Munich Airport, the city

of Munich, Ingolstadt, and the Upper Bavarian Chamber of Industry and Commerce. This

process considered four main trip purposes: commuting, business, tourism, and leisure.

The research proposed three levels of vertiport archetypes: a low-density network with 24

vertiports covering large agglomerations, transport hubs, and densely populated areas with

a higher income; a medium-density network with 74 vertiports, including underground and

suburban line stations and employment areas; and a high-density network covering all rele-
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vant trips and groups. Similarly, Arellano (2020), focusing on the same study area as Fadhil

(2018) and Ploetner et al. (2020), employed a demand-based approach to determine UAM

vertiport locations. It developed a semi-automated procedure using a GIS multi-criteria deci-

sion analysis framework. Like the study by Fadhil (2018), influential factors for UAM vertiport

locations were collected and prioritized. The station allocation aimed to maximize coverage

for all demand points. The network’s performance was assessed by comparing UAM demand

and travel times to ground transportation and manually selected networks in the Oberbayern

Urban Air Mobility (OBUAM) project by Ploetner et al. (2020). The results indicated higher

UAM demand, but less time savings compared to manual networks. Both demand and travel

time savings were found to be influenced by geographical distribution and the effective place-

ment of vertiports.

Reviewing the methodologies and results of studies employing MCDA in UAM vertiport sit-

ing, it becomes evident that MCDA offers advantages of effective integration with land-use

patterns, consideration of multiple criteria, and stakeholder engagement. However, it also

has drawbacks, including a reliance on experts’ opinions, which may not be feasible in all

regions and can overly introduce subjectivity into the decision-making process.

Furthermore, some researchers have proposed specialized approaches that integrate the

UAM network planning with the city’s land-use patterns and geographic features. For in-

stance, Patterson et al. (2018) observed that many cities in the USA exhibit a “wheel-and-

spoke” configuration with beltways and highways, offering valuable insights for UAM net-

work design. Consequently, they developed a hexagonal model for the UAM network, where

vertiports are strategically positioned at the vertices of the hexagons. This model can be

expanded by adding equilateral triangles or individual vertiports around the inner hexagon.

The primary advantage of this approach lies in maintaining a consistent distance between

any two adjacent vertiports, enabling efficient mobility across the city. However, this equi-

lateral hexagonal UAM network is overly idealized and difficult to realize in developed areas

where site planning is already complete. In addition, it does not take UAM demand into

account and is difficult to apply in practice.

2.3. Quantitative Vertiports Siting Approaches

A commonly used quantitative approach for determining UAM vertiport locations is clustering,

a widely used machine learning and data analysis technique for grouping similar data points

or objects based on their inherent characteristics or features. The general methodology

for using clustering in vertiport siting involves taking demand locations as data points and

performing clustering on these points. The centroids of clusters are then considered as

potential vertiport locations.

For example, Syed et al. (2017) treated census tract population centroids in Northern Califor-

nia and Washington D.C., USA as demand points and weighted them based on population
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income. They applied K-means clustering to identify suitable UAM station locations. Sim-

ilarly, Lim and Hwang (2019) used K-means clustering for the origins of commute trips in

Seoul, South Korea. After implementing the simulation with NAVER Direction, the travel

time savings for the three most demanding routes were calculated to evaluate UAM vertiport

siting results. In a study focused on New York City, USA, Rajendran and Srinivas (2020)

considered taxi demand as potential demand points for UAM and applied a variant of K-

means clustering. This variant included two constraints: one constraining the total distance

of demand points to their cluster centroids and the other setting a threshold for demand ful-

fillment. Evaluation criteria in their research included the Davies-Bouldin index, travel time

savings, passengers’ willingness to fly, and demand fulfillment rate. As a follow-up study

to Lim and Hwang (2019), Jeong et al. (2021) further explored UAM vertiport selection in

Seoul, South Korea, using K-means clustering with residential locations of commuting pop-

ulations as demand points. They employed the Silhouette technique to evaluate clustering

results. As the first study highlighted the effects of initialization in employing K-means clus-

tering, Bulusu et al. (2021) chose K-means++ techniques in their research by taking origins

and destinations of cross-bay commute trips in San Francisco Bay Area, USA. They em-

ployed SF-CHAMP for a more realistic traffic simulation, and accordingly, travel time savings

and demand shift were chosen as evaluation metrics. While most of the above studies uti-

lized K-means clustering and its variants, Guo et al. (2024) utilized five clustering methods

from different clustering categories, namely K-means (KM) (++) clustering, Gaussian mix-

ture model (GMM) clustering, mean shift (MS) clustering, hierarchical clustering (HC), and

density-based spatial clustering of applications with noise (DBSCAN) clustering, to locate

UAM vertiports in the Munich metropolitan area, Germany. They used residential addresses

as demand points and employed Multi-Agent Transport Simulation (MATSim) to calculate

travel time savings and accessibility improvements.

Methods based on clustering for determining UAM vertiport locations are straightforward and

effectively consider potential UAM demand. Additionally, these methods are easily general-

izable. However, these methods cannot guarantee optimal solutions in general. Moreover,

factors such as land-use characteristics can be challenging to incorporate during the clus-

tering process. Besides, some clustering methods are highly sensitive to initialization, which

can result in relatively low robustness of outcomes.

Another commonly used method for determining vertiport locations is optimization. The ver-

tiport siting problem is often viewed as a variant of the classic hub location problem (HLP)

(Willey and Salmon, 2021). HLP involves identifying the optimal locations for hub facilities

from a list of candidates, such as warehouses, distribution centers, or airports, in a network

to minimize transportation costs and enhance the efficiency of goods distribution (O’kelly,

1987). Depending on the specific objectives and constraints, HLP can be categorized into

different variants, including the p-Hub Location Problem, p-Hub Median, p-Hub Center, and

p-Hub Maximal Covering Location Problem (Farahani et al., 2013).
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In the classical p-Hub Location Problem, the number of hubs is determined exogenously and

denoted by p. Every two hub nodes are directly connected. Each non-hub node is linked to a

single hub node, meaning that for a trip between non-hub nodes, at least one and at most two

hub nodes must be traversed. The objective is to minimize the total transportation cost be-

tween network nodes. This model was originally proposed and formulated by O’kelly (1987).

The p-Hub Location Problem is quadratic because a non-hub node can be allocated to a hub

node only when a hub is located at that node. This constraint is relaxed in the p-Hub Median

Location Problem, which allows multiple allocations of non-hub nodes and leads to a linear

mathematical formulation (Campbell, 1996). Originally introduced by Campbell (1994), the p-

Hub Center Location Problem has similar assumptions and constraints as the p-Hub Median

but focuses on minimizing the maximum transportation cost from origin nodes to destination

nodes. Due to this nature, it finds wide applications in emergency facility location problems

(Farahani et al., 2013). The p-Hub Maximal Covering Location Problem, also proposed by

Campbell (1994), shares similar assumptions and constraints with the p-Hub Median and

Center problems but aims to maximize the amount of transportation demand covered by the

p hubs. In this model, origin-destination (OD) pairs are considered covered only if there

are hub facilities within their predefined distance. Existing research on determining UAM

vertiport locations using optimization methods typically relies on one of the aforementioned

models.

As a seminal work in the field, Holden and Goel (2016) formulated the vertiport siting prob-

lem as a p-Hub Maximal Covering location problem with the objective of maximizing the total

trip coverage of long-distance riders. They first employed K-means clustering on the ori-

gins and destinations of long-distance trips to identify potential vertiport candidates. Then

they used integer programming to solve the above-mentioned optimization problem. The

UAM demand is obtained by adding a constraint that at least a 40% time saving could be

achieved by UAM service. With the objective of maximizing potential cumulative population

time savings compared with driving, Daskilewicz et al. (2018) used aggregate travel data

in San Francisco and Los Angeles, USA, and found the optimal vertiport locations from the

census tracts, which are treated as vertiport candidates. It is the first attempt at UAM net-

work optimization with the objective of time-saving; however, the uncertainty in mode choice

behavior was overlooked in their study. The potential UAM demand was constrained within

the trips whose origin and destination are in the catchment area of vertiports. Besides, the

UAM traveling time was not counted for access and egress legs, which could considerably

deviate from reality. Rothfeld et al. (2021) combined evenly spaced grid points and expert-

placed potential vertiport locations in Munich, Germany, as the candidate hub locations and

formulated the vertiport siting problem as a p-median problem with an objective of minimizing

the weighted travel time impedance between all zone centroids and vertiports. The weight

was determined by the aggregate travel demand of each zone. ESRI’s location-allocation

tool was used in their study to solve the optimization problem. Subsequently, Wu and Zhang

(2021) also formulated the problem as a p-median problem that aims to minimize the gen-

eralized travel cost of all trips using integer programming. Different from Daskilewicz et al.
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(2018) and Rothfeld et al. (2021), the travel data in their research were disaggregated and

represented the long-distance trips in Tampa Bay Area, USA. According to Wu and Zhang

(2021), the objective of minimizing generalized cost is equivalent to maximizing the saved

generalized cost brought by UAM service, which has provided a basis for many studies. In

this way, vertiport candidates were derived by dividing the study area into hexagonal grids,

followed by manual removal of unsuitable land-use areas and merging adjacent ones, signifi-

cantly reducing the number of candidates. Nonetheless, in the new formulation, mode choice

is usually treated as a decision variable with a constraint to ensure that UAM can generate a

positive generalized travel cost saving, indicating that the mode choice for individual trips will

always be optimized in a direction that minimizes the generalized travel cost. Unfortunately,

this assumption overlooks the stochastic nature of mode choice behaviors, leading to an

overestimation of the cost-saving effects of UAM. Willey and Salmon (2021) addressed the

vertiport selection problem by framing it as a modified single-allocation p-hub median loca-

tion problem, aiming to minimize travel time for all trips. This approach integrates subgraph

isomorphism elements to develop structured networks suitable for public transit operations.

Vertiport candidates were identified from existing airports and helipads, enhanced by poten-

tial locations identified through DBSCAN clustering. The study focused on three city pairs

within the USA for its experiment. To tackle the NP-hard nature of the problem, four heuristic

algorithms were utilized. However, the research’s travel demand, aggregated as zonal OD

pairs, limited the individual mode choice representation. The probability of choosing UAM

trips for an OD pair was determined by the minimum willingness to travel to hub nodes (verti-

ports) connected to the respective ODs. This model, reliant on drive time, oversimplifies the

mode choice aspect since willingness to travel varies individually. Wang et al. (2022) devel-

oped an integrated framework to maximize the efficiency and profitability of UAM operations.

This framework uniquely captures the interdependence among strategic vertiport planning,

tactical UAM operations, and passenger demand. Furthermore, to address the multi-level

complexity of the optimization problem, the authors introduced an adaptive discretization

algorithm. The study utilized aggregated travel demand data from New York City, Boston,

Dallas, and San Francisco, USA, for its numerical experiments. The mode choice analysis in

their study was conducted using a multinomial logit (MNL) model combined with distributional

robust optimization. However, while the model effectively solves for the “end-state” network,

it falls short in addressing dynamic network expansions. Rath and Chow (2022) developed

two distinct optimization models targeting separate objectives: one to maximize the ridership

of air taxis and another to maximize the revenue. Employing linear programming techniques,

these models were designed to select optimal skyport locations from the 149 taxi zones in

New York City, USA. The study primarily focused on taxi trips to and from airports, utilizing

a binary logit model to predict the shift in mode choice from traditional taxi services to air

taxis. This integration of a discrete choice model into the network optimization highlighted

the complexities of modeling user behavior in such problems. However, a key limitation iden-

tified was the binary logit model’s assumption that modal shifts occur exclusively from taxis

to air taxis. Building upon Rath and Chow (2022)’s work, He et al. (2023) introduced the

hierarchical optimization method (HOME), significantly enhancing the computational speed
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of integer programming. This method was validated through a case study conducted in Los

Angeles, USA, demonstrating its effectiveness.

The optimization problems mentioned above all pertain to single optimization objectives.

Nevertheless, there are also models that incorporate multiple optimization objectives within

a single framework. Boo et al. (2023) employed the ϵ-constraint method to formulate a multi-

objective optimization model. Their objective was to maximize the accessibility of vertiports

to tourist attractions, transportation hubs, and commercial centers, while simultaneously min-

imizing the overall cost of land acquisition and the total aerial distance between vertiports.

They substantiated the practicality of this optimization model by utilizing nine major cities in

South Korea, including Seoul and Busan, as illustrative instances for the siting of vertiports.

Similarly, Brulin and Olhofer (2023) formulated an optimization model with the primary aim of

maximizing the demand covered by UAM vertiports while concurrently minimizing the count

of vertiports required. To accomplish this, they devised a bi-network comprising two layers

of loops. In the outer layer loop, the Pareto-optimal non-dominated sorting genetic algo-

rithm (NSGA-II) method was employed to pinpoint the optimal locations for UAM vertiports.

Meanwhile, the inner layer loop made use of MATSim’s proprietary algorithm, namely, the

co-evolutionary algorithm (CEA), to adapt the plans of individual agents to reflect changes

in travel behavior following the implementation of UAM (Horni et al., 2016). Remarkably, this

paper stands as a unique contribution in the field, as it integrates MATSim with UAM net-

work optimization. However, a conspicuous issue arises in which the inner layer optimization

objective seeks to maximize the total score of all agents’ trips and activities, a goal that is

incongruent with the objective of the outer layer optimization. As acknowledged by the au-

thors, the actual purpose of the inner layer loop is to reassess the network design, a fact that

may appear somewhat perplexing.

Since the research regarding optimization-based vertiports siting is intimately related to this

study and there are more points to focus on, all the related studies using optimization meth-

ods to site vertiports are summarized again in Table 1 in order to show a clearer presentation

of the methodologies provided by the past studies as well as their contributions and limita-

tions. Here, the optimization objective, the consideration of the vertiport’s capacity, the solu-

tion of the optimization problem, the type of demand (i.e., aggregate or disaggregate), how

mode choice is modeled, and how candidates are identified are the core issues of concern.

Furthermore, the proposed methodologies and considerations in this study are highlighted

in the last row of Table 1 for comparison.
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Table 2 Comparison of vertiports siting approaches.

Approach Pros Cons

Qualitative approaches

Existing
infrastructure

Low construction cost. Limited locations and flexibility.

Faster Implementation. Limited consideration of UAM de-
mand.

Regulatory precedence.

MCDA Good integration with land-use
patterns.

Expert opinion required, not gener-
alizable.

Stakeholder engagement. Subjectivity in decision-making pro-
cess.

Consideration of multiple criteria.

Quantitative approaches

Clustering Easy to perform. No guarantee of optimal solution.

Consideration of demand. No incorporation with land-use pat-
terns.

Good generalizability. Sensitivity in initialization.

Optimization Guarantee of optimal solution. Complexity in formulation and solv-
ing.

Easy to perform. No incorporation with land-use pat-
terns.

Consideration of demand.

Good generalizability.

2.4. Research Gaps

By reviewing the existing studies regarding qualitative and quantitative vertiports siting ap-

proaches, the advantages and shortcomings of each method are summarized in Table 2.

Among the various methodologies, optimization approaches have gained widespread ac-

ceptance due to their capability to yield optimal or nearly optimal solutions for predefined

objectives while adhering to specified constraints. Their simplicity and generality make them

highly practical. Nevertheless, in the context of selecting UAM vertiport locations, much of

the existing research employing optimization methods has tended to overlook the stochastic

nature of mode choice for disaggregated trips. Incorporating stochastic variables can indeed
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significantly augment the complexity of optimization problems, but it also aligns them more

closely with real-world scenarios. Furthermore, there has been a noticeable absence of em-

phasis on optimizing demand allocation, i.e., demand-vertiport matching. Previous research

on demand allocation has primarily revolved around allocating demand points to fixed hub

locations (e.g., the closest ones). To rectify these shortcomings, it becomes imperative to

introduce the two-stage stochastic optimization frameworks.

2.5. Approaches for Solving Two-Stage Stochastic Optimization
Problem

Two-stage stochastic optimization problems involve decision-making under uncertainty in two

stages. In the first stage, decisions are made without knowing the realization of uncertain

parameters, and in the second stage, decisions are made after the realization of uncertain

parameters. The approach to solving a two-stage stochastic optimization problem typically

involves formulating a mathematical model that incorporates the uncertainty and then using

specialized solution techniques such as scenario-based or sample average approximation

methods. It is a dynamic and evolving field, with ongoing research focusing on improving

computational efficiency and applicability to real-world problems. This section provides a

general introduction to the common and state-of-art solving approaches.

• Scenario-Based Approaches: These approaches involve creating a finite set of possible

future scenarios to capture the uncertainty in the model. Each scenario is associated with

a probability and specific outcomes, enabling the model to consider a range of possible

future states (Rockafellar and Wets, 1991). This method is particularly useful in modeling

complex uncertainties and is widely used in fields like finance and energy planning where

future states are uncertain.

• Benders Decomposition: Benders Decomposition is a mathematical technique that de-

composes a large-scale stochastic problem into smaller, more manageable sub-problems.

It iteratively solves these sub-problems and communicates the solutions to a master prob-

lem (Geoffrion, 1972). This method is highly effective for problems where the first-stage

and second-stage variables can be separated, significantly reducing computational com-

plexity.

• Monte Carlo Sampling: Monte Carlo Sampling is used to approximate the probability

distributions of uncertain parameters in stochastic models. It involves generating a large

number of random samples to estimate the outcomes (Infanger, 1992). This approach

is useful in scenarios where the probability distributions are complex or not analytically

tractable, offering a practical way to incorporate randomness in the model. Here, Monte

Carlo sampling refers to a set of algorithms for sampling from a probability distribution.

For instance, Markov chain Monte Carlo (MCMC) was applied in Lu et al. (2024).
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• Stochastic Dual Dynamic Programming (SDDP): SDDP is an algorithm designed for multi-

stage stochastic problems, extending the principles of Benders decomposition (Pereira

and Pinto, 1991). It is particularly adept at handling problems with a sequential decision-

making structure. SDDP has found significant application in the energy sector, especially

in hydrothermal scheduling, due to its efficiency in dealing with large-scale, multi-stage

problems.

• Column-and-Constraint Generation: This method combines aspects of column generation

(for efficiently handling a large number of scenarios) with constraint generation (for dealing

with a large number of constraints in the master problem) (Zeng and Zhao, 2013). It

is particularly useful for large-scale stochastic programming problems where traditional

methods may struggle with the size and complexity of the problem.

• Robust Optimization: Robust Optimization focuses on finding solutions that are feasible

and perform well across a range of different scenarios, rather than optimizing for a specific

expected outcome. This approach is particularly useful when the probability distribution of

uncertainties is unknown or unreliable (Rahimian and Mehrotra, 2019). It is a conservative

approach that ensures the solutions are safeguarded against the worst-case scenarios,

making it suitable for applications where reliability is crucial.

• Machine Learning Integration: Recent advancements integrate machine learning tech-

niques to predict scenario probabilities, and outcomes, or to accelerate the solving pro-

cess of stochastic programming models (Ning and You, 2019). This approach leverages

the power of data-driven methods to enhance model accuracy and computational effi-

ciency, particularly useful in dynamically changing environments where historical data

can inform future decisions.
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3. MCDA and Clustering Approaches for Vertiports
Siting

As introduced in Section 2.2 and 2.3, MCDA and clustering are both commonly utilized verti-

ports siting approaches in numerous studies. Although this thesis proposes an optimization-

based approach, it is still important to demonstrate the general processes and methodologies

of MCDA and clustering in this chapter, as some procedures in this thesis draw inspiration

from them.

3.1. Methodology of MCDA Approach

MCDA is a decision-making process that helps in evaluating and prioritizing different options

based on multiple conflicting criteria. It is particularly useful in complex scenarios where de-

cisions need to be made considering various factors, which may be quantitative or qualitative

in nature (Triantaphyllou et al., 1998).

In MCDA, decision-makers first identify the criteria important for the decision at hand. These

criteria represent different aspects or dimensions of the decision problem, such as cost,

efficiency, effectiveness, and environmental impact. The relative importance of these criteria

is then determined, often through weights that reflect their priority in the decision-making

process. The next step involves evaluating each option or alternative against the identified

criteria. This evaluation can be done through various methods, such as rating scales, cost-

benefit analysis, or using specific decision-making tools and software. The final stage of

MCDA involves aggregating the evaluations to rank the options. This can be done through

various techniques like the AHP, Technique for Order of Preference by Similarity to Ideal

Solution (TOPSIS), or the Simple Multi-Attribute Rating Technique (SMART) (Barron and

Barrett, 1996; Lin et al., 2008). The end result is a ranking or score for each option, which

guides the decision-maker in choosing the best alternative based on the given criteria and

their respective weights.

In the context of UAM vertiports siting, the processes are generally consistent with the classi-

cal MCDA stages. Existing studies that utilized this method for vertiport siting have adopted

AHP in the options ranking step. To better illustrate the application of MCDA to the vertiport

siting problem, the detailed steps of the methodology are shown in Figure 4. The process is

exemplified by the methodology described in the thesis of Fadhil (2018).
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Figure 4 Framework of MCDA approach in vertiports siting.

3.2. Methodology of Clustering Approach

Clustering methods play a pivotal role in vertiport siting by grouping potential locations based

on various criteria, such as proximity to demand centers, airspace safety, and infrastructural

feasibility. As discussed in Section 2.3, almost all current studies that apply clustering to

select UAM vertiport locations are demand-oriented. The consideration of demand in these

studies varies, the most common is to use population distribution as the demand point, some

others use trip data as the demand point, and so on. The clustering method is quite straight-

forward and simply involves clustering these demand points and then using the centroids of

the clusters as potential vertiport locations. Unlike the MCDA and optimization methods, the

clustering method does not require prior identification of candidate vertiport locations, which

simplifies the research process. However, this is also a disadvantage because there is no

way to artificially control that all these centroids are qualified to construct vertiports. Depend-

ing on the clustering algorithm, some can specify the number of clusters in advance to obtain

a fixed number of vertiports, while others cannot and must iteratively adjust the parameters

to obtain the specified number of vertiports.
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As a matter of practice, after executing the clustering, scholars often need to evaluate the

results, some of which are specific to the clustering itself (e.g., Davies–Bouldin index, Silhou-

ette technique) and others from the perspective of the effectiveness of UAM operations (e.g.,

travel time, accessibility). The general methodology of the clustering approach in vertiports

siting is demonstrated in Figure 5.

Figure 5 Framework of clustering approach in vertiports siting.

In summary, clustering methods in UAM vertiport siting are essential for systematically eval-

uating potential locations. They enable urban planners and UAM operators to make data-

driven decisions, optimizing the placement of vertiports for maximum efficiency, safety, and

urban compatibility. These methods consider a multitude of factors, from population density

and urban layout to regulatory frameworks, ensuring that the development of UAM infrastruc-

ture is both practical and sustainable.

3.3. Integration with Optimization Approach

Although the vertiports siting method used in this thesis is optimization-based, the MCDA

and clustering methods provide a lot of inspiration for the methodology of this thesis.

First, the initial step of the optimization-based vertiport siting method is to determine the

vertiport candidates. Identifying vertiport candidates can be done by applying the clustering

method, i.e., the centroids obtained from clustering are taken as the potential candidates.

This method has been practiced by Holden and Goel (2016) with good results, and thus the

same approach is used in this thesis. The detail of this part is explained in Section 6.2.

Second, as acknowledged in Section 2.4, it is often challenging for the optimization method

to take into account multiple factors during the optimization process, which happens to be

the strength of MCDA. Thus, this thesis will evaluate the results with the help of some of the

factors involved in MCDA, namely demand coverage and accessibility enhancement after the
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execution of the optimization algorithm. The detail of this part is explained in Sections 7.3

and 7.4.
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4. Modeling Methodology

This study aims to utilize optimization methods for selecting vertiport locations among can-

didates to minimize the sum of generalized travel costs of all trips. As highlighted in Section

2.4, existing literature on UAM vertiport siting has encountered challenges in effectively cap-

turing the stochastic nature of mode choice for disaggregated travel demand, which involves

individual trip data. Most studies typically treated mode choice as either an optimized objec-

tive, a decision variable within the objective function, or employed mode choice modeling for

aggregated travel demand. These approaches often struggle to precisely replicate the real

choices made by travelers. To this end, we adopt a novel approach by treating individual

Figure 6 Two-stage stochastic optimization framework for UAM vertiport selection.

mode choice as a stochastic variable, and incorporate decision optimization at the demand-

UAM Vertiport Siting Optimization 23



vertiport matching stage. This unique formulation transforms the problem into a two-stage

stochastic optimization. The general framework of this study is shown in Figure 6.

4.1. Assumptions

In the context of a defined study area, which includes a roster of potential UAM vertiport

candidates denoted as M with the size of n, and an assemblage of disaggregated travel

demand data represented by a list of trips, denoted as TR, this study endeavors to identify

the optimal set of vertiports, designated as V and encompassing p elements selected from

the set M . The primary objective of this endeavor is the minimization of the total generalized

travel costs associated with the trips in list TR. To facilitate this formulation, we introduce the

following assumptions:

Assumption 1 UAM service is exclusively accessible for each trip when there exist verti-

ports situated within the catchment areas of both its origin and destination. The catchment

area is defined as a neighboring circle with a fixed radius.

Assumption 2 The waiting times at UAM vertiports remain constant throughout this study.

Any potential additional waiting times incurred by UAM travelers due to capacity limitations

at vertiports or shortages of UAM vehicles (eVTOL aircraft) are not taken into account. In

essence, the problem formulation adopted in this study pertains to an uncapacitated facility

location problem.

Assumption 3 The UAM network is designed as a fully connected network, ensuring di-

rect connectivity between all vertiports. Consequently, UAM trips do not involve any flight

transfers at vertiports.

4.2. Problem Formulation

Before delving into the formulation based on this context, it is worthwhile to review the gen-

eral formulation of two-stage stochastic programming, as proposed by Birge and Louveaux

(2011). In accordance with their exposition, the general two-stage stochastic programming

framework is represented by Equation(4.1),

min
x∈X

g(x) = f(x) + Eξ[Q(x, ξ)] (4.1)

where x represents the first-stage decision and the first component f(x) constitutes an ob-

jective function solely dependent on the first-stage decision (deterministic component). The

symbol ξ denotes a random parameter vector characterizing stochastic variables. The actual
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realization of ξ remains unknown until an experiment is conducted. The experiment’s out-

come, denoted as ω, yields a specific realization of the random parameters, ξ(ω). The value

Q(x, ξ) represents the optimal solution of the second-stage problem once the first-stage

decision x has been determined. It is defined by the following optimization problem:

Q(x, ξ) = min
y
{q(y, ξ) |T (ξ)x+W (ξ)y = h(ξ)} (4.2)

where y represents the second-stage decision variable. Under this formulation, the first-

stage decision variable is determined before the realization of the uncertain vector because

its realization is unknown at the time of the first-stage decision. However, the objective func-

tion for the second-stage decision problem indeed calculates the expectation value. Once

the first-stage decision is made, the second-stage decision problem can be solved based on

specific realized parameter values at each time instance (Han and Lee, 2021).

Subsequently, Equation (4.1) and (4.2) need to be brought into the context of this vertiport

siting problem. In the vertiport siting problem, the first-stage decision variable denoted as

x is responsible for determining the locations of vertiports. Meanwhile, the second-stage

decision variable y allocates the demand points. The overarching objective is to minimize

the total generalized travel cost for all trips. They are bolded because they are actually both

vectors (matrices), and are used to differentiate them from the x and y that describe the

individual decisions. Apparently, the objective for optimizing, i.e., generalized travel cost,

is a function intertwined with both stages of decision-making. Consequently, the objective

function is reformulated as follows:

min
x∈X
{g(x) = Eξ[Q(x, ξ)]} (4.3)

where x is the decision variable vector that signifies the selection of vertiports. The element

xi is a binary variable, taking a value of 1 if vertiport candidate i is chosen and 0 otherwise.

In this study, the number of selected vertiports is fixed at p, and this constraint is represented

by: ∑
i∈M

xi = p (4.4)

xi ∈ {0, 1}, ∀i ∈M (4.5)

Once the selection of vertiports is determined, the second-stage objective function, which is

the sum of the generalized travel costs for all trips, is given by Equation (4.6). This formulation

draws inspiration from the generic p-median problem formulation by Farahani et al. (2013)
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and the vertiport siting optimization formulation by Wu and Zhang (2021).

Q(x, ξ) =min
∑

tr∈TR

{∑
g∈G

ztrg (ttrg γ
tr + ctrg ) + (1−

∑
g∈G

ztrg )
∑
k∈M

∑
m∈M,k ̸=m

ytrk ytrm

[
ckm + (tkm+

ttw + ttp)γ
tr +

∑
a∈A

ztra (ttrakγ
tr + ctrak) +

∑
e∈E

ztre (ttremγtr + ctrem)
]}

(4.6)

where,

tr ∈ TR: notation of trips.

g ∈ G: notation of ground-based transport modes.

ztrg : binary variable for ground-based transport mode. If trip tr is in mode g, ztrg = 1, other-

wise, ztrg = 0.

ttrg : travel time of trip tr in mode g.

γtr: value of time (VOT) of trip tr, which is dependent on the income of the traveler.

ctrg : monetary travel cost of trip tr in mode g.

k,m,M : k,m are the index of origin and destination vertiports of a UAM trip, M is the set of

all vertiports candidates.

ytrk , ytrm: binary decision variables for origin and destination vertiports allocation, ytrk = 1 if

vertiport k is chosen as origin vertiport for trip tr, otherwise ytrk = 0. Similarly, ytrm = 1 if

vertiport m is chosen as destination vertiport for trip tr, otherwise ytrm = 0.

ckm: monetary travel cost from vertiport k to m.

tkm: flying time from vertiport k to m.

ttw: waiting time before on-boarding.

ttp: processing time before onboarding and after landing.

a ∈ A: ground-based transport modes for access leg.

e ∈ E: ground-based transport modes for egress leg.

ztra : binary variable for ground-based transport modes for access leg, ztra = 1 if mode a is

taken for accessing origin vertiport in trip tr, otherwise ztra = 0.

ztre : binary variable for ground-based transport modes for egress leg, ztre = 1 if mode e is

taken for egressing destination vertiport in trip tr, otherwise ztre = 0.

ttrak: travel time of access leg to origin vertiport k in mode a of trip tr.

ctrak: monetary travel cost of access leg to origin vertiport k in mode a of trip tr.

ttrem: travel time of egress leg from destination vertiport m in mode e of trip tr.

ctrem: monetary travel cost of egress leg from destination vertiport m in mode e of trip tr.

As illustrated in Equation (4.6), the generalized travel cost for each trip tr comprises two

components based on the mode choice. The first component represents the generalized

cost when taking ground-based transport modes, while the second component represents

the generalized cost when using UAM. The latter includes the generalized costs associated

with the access, flight, and egress legs. In this two-stage optimization problem, the variables

x, yk, and ym are vectors (or matrices) of decision variables in the first and second stages.
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They respectively denote the choices for vertiport selection, origin-vertiport allocation, and

destination-vertiport allocation. To identify the feasible region of these decision variables as

well as the possible realizations of stochastic variables, the constraints will be discussed in

the following part.

In a single realization scenario for stochastic variables, for each trip denoted as tr, the pri-

mary transport mode can be either pure ground-based or UAM-based. To account for all

possible experimental outcomes related to mode choice for a trip, the following constraints

are formulated:∑
g∈G

ztrg +
∑
a∈A

ztra
∑
e∈E

ztre = 1 ∀tr ∈ TR (4.7)

∑
a∈A

ztra =
∑
e∈E

ztre ∀tr ∈ TR (4.8)

ztrg , ztra , ztre ∈ {0, 1} ∀g ∈ G, a ∈ A, e ∈ E, tr ∈ TR (4.9)

Furthermore, locations denoted as k and m are only eligible to be selected as the origin and

destination vertiports, respectively, if vertiports have been constructed at candidates k and

m. This constraint can be formulated as follows:

ytrk ≤ xk, y
tr
m ≤ xm ∀tr ∈ TR, k ∈M,m ∈M,m ̸= k (4.10)

ytrk ∈ {0, 1}, ytrm ∈ {0, 1} ∀tr ∈ TR, k ∈M,m ∈M,m ̸= k (4.11)

The demand allocation strategy in this study is single allocation, i.e., a demand point will

only end up being assigned to one vertiport in the second stage of decision-making. This

constraint can be expressed as follows:∑
k∈M

ytrk = 1,
∑
m∈M

ytrm = 1 ∀tr ∈ TR, k ∈M,m ∈M,m ̸= k (4.12)

So far, the formulation of this two-stage stochastic programming is completed, encompass-

ing the objective function in Equations(4.3) and (4.6) along with the constraints detailed in

Equations(4.4)-(4.5) and (4.7)-(4.12).

The constraints introduced above establish the feasible regions for the decision variables as

well as the random variables, providing a comprehensive framework for solving the problem.

The formulation given by Equations(4.3) and (4.6) is denoted as FM1. Furthermore, consid-

ering that the time, expenses, and generalized costs associated with ground-based transport

modes are known and constant for each trip, it becomes apparent that the primary objective

of minimizing the generalized cost for all trips in FM1 is essentially equivalent to maximizing

the savings in generalized travel costs facilitated by UAM services, as proposed by Wu and

Zhang (2021). The new formulation is denoted as FM2. In contrast to FM1, FM2 offers a
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more intuitive perspective on the genuine macroeconomic advantages introduced by UAM

services, specifically, the reduction in overall generalized travel costs. The mathematical

formulation is illustrated as follows:

max
x∈X

g(x) = Eξ[Q(x, ξ)] (4.13)

Q(x, ξ) =max
∑

tr∈TR

{
htr −

∑
g∈G

ztrg (ttrg γ
tr + ctrg )− (1−

∑
g∈G

ztrg )
∑
k∈M

∑
m∈M,k ̸=m

ytrk ytrm

[
ckm+

(tkm + ttw + ttp)γ
tr +

∑
a∈A

ztra (ttrak.γ
tr + ctrak) +

∑
e∈E

ztre (ttremγtr + ctrem)
]}

(4.14)

where,

htr: the generalized travel cost of trip tr taking ground-based transport mode.

tr ∈ TR: notation of trips.

g ∈ G: notation of ground-based transport modes.

ztrg : binary variable for ground-based transport mode. If trip tr is in mode g, ztrg = 1, other-

wise, ztrg = 0.

ttrg : travel time of trip tr in mode g.

γtr: VOT of trip tr, which is dependent on the income of the traveler.

ctrg : monetary travel cost of trip tr in mode g.

k,m,M : k,m are the index of origin and destination vertiports of a UAM trip, M is the set of

all vertiports candidates.

ytrk , ytrm: binary decision variables for origin and destination vertiports allocation, ytrk = 1 if

vertiport k is chosen as origin vertiport for trip tr, otherwise ytrk = 0. Similarly, ytrm = 1 if

vertiport m is chosen as destination vertiport for trip tr, otherwise ytrm = 0.

ckm: monetary travel cost from vertiport k to m.

tkm: flying time from vertiport k to m.

ttw: waiting time before on-boarding.

ttp: processing time before onboarding and after landing.

a ∈ A: ground-based transport modes for access leg.

e ∈ E: ground-based transport modes for egress leg.

ztra : binary variable for ground-based transport modes for access leg, ztra = 1 if mode a is

taken for accessing origin vertiport in trip tr, otherwise ztra = 0.

ztre : binary variable for ground-based transport modes for egress leg, ztre = 1 if mode e is

taken for egressing destination vertiport in trip tr, otherwise ztre = 0.

ttrak: travel time of access leg to origin vertiport k in mode a of trip tr.

ctrak: monetary travel cost of access leg to origin vertiport k in mode a of trip tr.

ttrem: travel time of egress leg from destination vertiport m in mode e of trip tr.

ctrem: monetary travel cost of egress leg from destination vertiport m in mode e of trip tr.
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4.3. Mode Choice Modeling

As explained in Section 4.2, it is important to note that the stochastic parameter vector, which

pertains to the mode choice variables for each trip in this context, can only be realized after

both stages of decision-making are completed. To elaborate, once the vertiport locations

are fixed, the OD for a trip are allocated to a specific vertiport pair without prior knowledge

of the chosen mode. Subsequently, based on the current allocation decision, various travel-

related variables, such as travel time, cost, and distance can be estimated for each potential

mode choice. The discrete choice model is a common approach for predicting future choices

based on observed preferences. Particularly in the field of transportation, it is used in many

studies to understand the mode choice preference of travelers (Straubinger et al., 2021).

Thus, in the subsequent step, the utility associated with each mode is estimated using a

discrete choice model. This model takes into account not only mode-specific attributes (e.g.,

travel cost, in-vehicle time, and waiting time), but also travel behavior attributes (including

car ownership, trip purpose, and previous mode choice), and sociodemographic attributes

(e.g., age, income, gender, and occupation). The probability of selecting each mode for all

travelers can be calculated as follows:

p(ztrg = 1|x,y, tr) = D(x,y, tr) ∀g ∈ G, tr ∈ TR (4.15)

p(ztra = 1|x,y, tr) = D(x,y, tr) ∀a ∈ A, tr ∈ TR (4.16)

p(ztre = 1|x,y, tr) = D(x,y, tr) ∀e ∈ E, tr ∈ TR (4.17)

where D refers to the function of the discrete choice model.

Monte Carlo sampling is then applied to determine the mode choice outcomes based on the

estimated probabilities. Each sample from Monte Carlo is referred to as a scenario, and it

can be represented as follows:

ztrg , ztra , ztre = MC[p(ztrg = 1), p(ztra = 1), p(ztre = 1)] (4.18)

where MC denotes the Monte Carlo sampling process. It is important to note that the

outcomes of Monte Carlo sampling must adhere to the constraints outlined in Equation (4.7)-

(4.9).

In the field of large-scale stochastic programming, a significant number of scenarios is often

required to encompass various potential realizations of stochastic variables. In this study,

due to the independence of trips from each other, it is feasible to sample and solve for each

trip separately. That means, for each trip, a list of mode choice scenarios will be drawn out

by Monte Carlo sampling, the generalized travel cost of this trip will then be calculated as the

expected value across all scenarios.

Up to this point, the mode choice modeling has been fully developed. It is important to
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highlight that in this problem, the stochastic variable z, representing mode choice, is only

realized after both stages of decision-making (vertiport siting and demand allocation) have

been completed. In other words, the stochastic variable in this problem is not independent;

rather, it depends on the outcomes of the decisions. This type of problem is referred to as an

endogenous uncertainty problem, as classified by Goel and Grossmann (2006), distinguish-

ing it from classical two-stage stochastic programming, which typically deals with exogenous

uncertainty problems. Particularly, the uncertainty in this problem depends on the decisions

made in both stages. To the best of the authors’ knowledge, there is no existing literature or

research on decomposition strategies specifically tailored to address this type of problem.
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5. Solution Approaches

5.1. Demand Allocation Optimization

(a) Identify all available vertiports located within the
catchment area of origin and destination.

(b) With a given allocation scheme, execute mode
choice modeling, estimate the expected value of saved
generalized travel cost across all mode choice scenar-
ios.

(c) Repeat the process for all possible allocation com-
binations.

(d) The optimal decision of second-stage for this trip is
the allocation scheme with the highest expected saved
generalized travel cost.

Figure 7 Demand-vertiport allocation processes.

To simplify the second stage of optimization, specifically the demand-vertiport matching pro-

cess, we employed a strategy of defining catchment areas to limit the feasible region for

decision variables. Practically, travelers are unlikely to select vertiports significantly distant

from their trip’s origin and destination for UAM services, as this could result in substantial

detours. Therefore, we assume that trip origins and destinations can only be allocated to

vertiports within their respective catchment areas, meaning a vertiport serves only nearby

demand points. For instance, the matching process for a single trip is illustrated in Figure 7.

Given that trips are independent, an ergodic search is suitable for demand allocation opti-

mization. The algorithm iterates through all vertiport pairs within a trip’s catchment area. For

each allocation scheme, the mode choice modeling, as described in Section 4.3, is applied,

and the expected savings in generalized travel cost for all scenarios are calculated. Ulti-

mately, the trip’s origin and destination are assigned to the vertiport pair offering the highest
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expected savings in generalized travel cost.

5.2. Vertiports Siting Optimization

This section outlines the first-stage optimization process, focusing on vertiport location selec-

tion, following our discussion on stochastic variable realization (mode choice modeling) and

second-stage optimization (demand-vertiport matching). As identified by Alumur and Kara

(2008) and supported by various studies (Wu and Zhang, 2021; Willey and Salmon, 2021;

He et al., 2023), the HLP is categorized as non-deterministic polynomial (NP)-hard, meaning

it is not solvable within polynomial time. To address this, we implemented five heuristic opti-

mization methods: Greedy Forwards (GRDF), Greedy Forwards Update (GRDF-U), Greedy

Backwards (GRDB), Genetic Algorithm (GA), and Simulated Annealing (SA), to determine

the most effective vertiport siting solution. Detailed descriptions of these algorithms’ applica-

tion to our specific problem will be presented in the following subsections.

5.2.1. Greedy Forwards (GRDF) Algorithm

(a) Calculate the score of each ver-
tiports pair route.

(b) Start from the vertiports pair
with the highest score.

(c) Select the next vertiport (green)
with the highest sum of scores of
routes (green) it forms with all al-
ready selected vertiports (blue).

(d) Repeat the selection process to
find the next vertiport.

(e) Algorithm stops when required
number of vertiports are selected.

Figure 8 GRDF algorithm processes.
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Algorithm 1 GRDF Selection Algorithm
1: Input: M , TR, p; Output: V
2: V ← ∅, R←M
3: MaxRouteScore← −∞
4: for each k in V do
5: for each m in V , m ̸= k do
6: Calculate route score S(k,m)
7: if S(k,m) > MaxRouteScore then
8: MaxRouteScore← S(k,m)
9: V ← {k,m}

10: end if
11: end for
12: end for
13: R← R \ V
14: while |V | < p do
15: MaxSumScore← −∞
16: for each r in R do
17: if

∑
v∈V

S(r, v) > MaxSumScore then

18: MaxSumScore←
∑
v∈V

S(r, v)

19: currentV ertiport← r
20: end if
21: end for
22: V ← V ∪ {r}, R← R \ {r}
23: end while
24: Return V

The design and implementation of the GRDF algorithm in this problem draws inspiration

from Willey and Salmon (2021). Before delving into the specifics of how GRDF operates, it’s

essential to clarify a fundamental concept: the scores of UAM routes. Imagine a scenario

where only two UAM vertiports, labeled k and m, are chosen from all candidates, creat-

ing the simplest UAM network or route. The score of this route, S(k,m), is defined by the

expected savings in generalized travel costs achieved after the second-stage optimization.

Understanding route scores is key to comprehending the GRDF process. Initially, the score

of each pair of vertiports among all candidates is calculated. The first two vertiports selected

are those forming the pair with the highest score. In each subsequent iteration, the process

entails computing the sum of scores for each unselected vertiport when combined with all

the already selected vertiports to form routes. The vertiport that yields the maximum sum is

selected in that particular iteration. This process continues until the target number of verti-

ports is reached. A key feature of the GRDF algorithm is its unidirectional nature, meaning

once a vertiport is selected, it will not be reconsidered for removal. An illustrative diagram

showing the selection of 4 vertiports from 6 candidates is presented in Figure 8. Besides,

the pseudo-code for this algorithm is also provided in Algorithm 1 for reference.
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(a) Calculate the score of each ver-
tiports pair route.

(b) Start from the vertiports pair
with the highest score.

(c) Select the next vertiport (green)
with the highest score of the net-
work (green) it forms with all already
selected vertiports (blue).

(d) Repeat the selection process to
find the next vertiport.

(e) Algorithm stops when required
number of vertiports are selected.

Figure 9 GRDF-U algorithm processes.

5.2.2. Greedy Forwards Update (GRDF-U) Algorithm
The fundamental approach of GRDF-U closely mirrors that of the GRDF algorithm, begin-

ning with a pair of vertiports and incrementally adding new ones. However, key differences

between GRDF-U and GRDF emerge upon a deeper exploration of the “score” concept.

As detailed in Section 5.2.1, a UAM route’s score reflects the maximum saved generalized

travel costs (from the second-stage objective function) achievable with just those two verti-

ports. This concept extends to a larger UAM network comprising multiple vertiports (e.g.,

k, l,m, n), where the network’s score, S(k, l,m, n), represents the maximum saved costs it

can generate. The divergence between GRDF-U and GRDF is evident in their selection cri-

teria during iterations. In GRDF-U, the decision to include a new vertiport is based not on the

sum of scores for potential routes formed with existing vertiports but on the score of the entire

UAM network formed by adding the new vertiport to the pre-selected ones. The chosen ver-

tiport is the one that maximizes the network’s overall score. Figure 9 visually demonstrates

the GRDF-U process, with legends and notations consistent with those in Figure 8. Similarly,

the pseudo-code of this algorithm is also shown below in Algorithm 2.
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Algorithm 2 GRDF-U Selection Algorithm
1: Input: M , TR, p
2: V ← ∅, R←M
3: MaxRouteScore← −∞
4: for each k in V do
5: for each m in V , m ̸= k do
6: Calculate route score S(k,m)
7: if S(k,m) > MaxRouteScore then
8: MaxRouteScore← S(k,m)
9: V ← {k,m}

10: end if
11: end for
12: end for
13: R← R \ V
14: while |V | < p do
15: MaxNetworkScore← −∞
16: for each r in R do
17: if S(V ∪ {r}) > MaxNetworkScore then
18: MaxNetworkScore← S(V ∪ {r})
19: currentV ertiport← r
20: end if
21: end for
22: V ← V ∪ {r}, R← R \ {r}
23: end while
24: Return V

5.2.3. Greedy Backwards (GRDB) Algorithm
Another variant of the greedy algorithm is the GRDB algorithm. As indicated by its name,

the GRDB algorithm operates under the premise that initially, all vertiport candidates are

selected and each is assigned an initial weight of zero, symbolized as ω.

Algorithm 3 GRDB Selection Algorithm
Input: M , TR, p; Output: V
V ←M
for each v in V do
ωv = 0

end for
for each tr in TR do

Execute demand allocation Optimization, get the matched vertiports pair o and d
Calculate saved generalized travel cost Qtr

ωo ← ωo +Qtr/2, ωd ← ωd +Qtr/2
end for
Sort the V in descending order by ω
V ← first p elements of V
Return V

In our application, this approach diverges from conventional backward algorithms, as verti-

ports are not eliminated in each iteration. Rather, iterations in GRDB are characterized by
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modeling for a single trip, not by the addition or subtraction of vertiports. In every iteration,

demand-vertiport matching and mode choice modeling are performed for a specific trip, as

detailed in sections 4.3 and 5.1. The origin and destination of the trip are assigned to the

optimal pair of vertiports, and the expected value of saved generalized travel cost, Q, is cal-

culated. This value, Q, is then evenly distributed among the weights of the two allocated

vertiports. Upon completing iterations for all trips, vertiports are ranked based on their accu-

mulated weights, and the top p vertiports with the highest weights are selected. Figure 10

visually depicts this process for clarity. The legend and notations used are in alignment with

those in Figures 7, 8, and 9. Additionally, for a comprehensive understanding, the pseudo-

code for the GRDB algorithm is provided in Algorithm 3, highlighting their deviations from

classical greedy algorithms.

(a) Assume all vertiport candi-
dates are selected. All of them
are assigned an initial weight ω of
0.

(b) For a trip, identify all available vertiports located within the catch-
ment area of origin and destination.

(c) Execute demand allocation and mode choice modeling of the
trip, find the optimal allocation scheme and the expected saved gen-
eralized travel cost Q. Distribute Q to weights of the vertiport pairs.

(d) After iterating over all trips,
select the required number of ver-
tiports with the highest weights.

Figure 10 GRDB algorithm processes.

5.2.4. Genetic Algorithm (GA)
The GA employed in this research is a search meta-heuristic, deriving its principles from

Charles Darwin’s theory of natural evolution. This algorithm emulates natural selection,

where the most suitable individuals are chosen for reproduction to generate the subsequent

generation’s offspring.
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(a) Encode of Chromosomes of Generation 0

(b) Selection

(c) Crossover and Validation

(d) Mutation

(e) Generation 1 and Legend

Figure 11 Evolution processes in GA.

In our application, a set containing selected vertiport IDs, with a size of p, is encoded as

a binary “chromosome” with a length of n. A population comprises q such chromosomes,

thereby defining the population size as q. The initial population is formed by encoding q
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randomly generated solutions into chromosomes. Each iteration of the evolution process

involves calculating the fitness value for every chromosome, based on the saved general-

ized travel costs in this context. A selection strategy is employed to choose q parent chro-

mosomes for the next generation. These parents undergo crossover to produce offspring

chromosomes. Given the constraints of this study, each binary-encoded chromosome must

maintain exactly p “1” codes. Post-crossover, adjustments in the non-crossover segments

of the chromosomes ensure that offspring chromosomes also contain exactly p “1” codes, a

step termed “validatio”. Additionally, the mutation occurs with a certain probability in the off-

spring chromosomes, promoting genetic diversity and averting local optima stagnation. This

mutation involves swapping a selected “0” and “1” code in the chromosome. The algorithm

iterates until a predefined termination condition, such as reaching the maximum number of

generations or consecutive generations without improvement, is met. These conditions are

known as “maximum generation” and “maximum generation without improvement”, respec-

tively. Figure 11 illustrates the algorithm’s workflow in detail. Due to the classical nature of

this algorithm and minor modifications in our study, a pseudo-code is not provided.

5.2.5. Simulated Annealing (SA) Algorithm
Simulated Annealing (SA) is a probabilistic optimization algorithm used for approximating

solutions to complex optimization problems, particularly when exact solutions are computa-

tionally infeasible. This algorithm, inspired by the metallurgical process of annealing, begins

with an initial solution and progressively explores adjacent solutions through random modi-

fications. If a neighboring solution is superior, it is always accepted; however, the SA algo-

rithm can also accept inferior solutions based on a probability influenced by a “temperature”

parameter. Higher initial temperatures allow for more frequent acceptance of less optimal

solutions, aiding in avoiding local optima. As the temperature gradually cools down, the like-

lihood of accepting worse solutions diminishes, steering the algorithm towards an improved

solution.

Within this study’s framework, a solution is defined as an array of selected vertiport IDs. The

search for neighboring solutions involves randomly substituting one ID with an unselected

candidate’s ID. The effectiveness of each solution is gauged by its “energy”, calculated from

the saved generalized travel cost. The energy function plays a crucial role in Simulated An-

nealing, as it provides a quantitative measure of a solution’s quality. Solutions with higher

energy are considered more optimal. This energy-based evaluation allows the algorithm to

quantify and compare different configurations of vertiport IDs effectively, ensuring a compre-

hensive search of the solution space.

Similar to the GA, SA continues until it either reaches the maximum number of iterations or

fails to enhance the optimal solution over a series of consecutive iterations. This termination

condition ensures that the algorithm does not run indefinitely and stops when it is no longer

yielding significant improvements. The gradual cooling schedule of the SA algorithm is pivotal

to its performance, as it balances exploration and exploitation of the solution space. Initially,
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the algorithm explores a wide range of solutions, including those that are not immediately

promising. As the temperature decreases, the focus shifts to exploiting the more promising

regions of the solution space, fine-tuning the solutions to achieve near-optimal results.

The flowchart demonstrating the processes of SA is shown in Figure 12. Given the well-

established nature of the Simulated Annealing algorithm and its wide recognition in the field

of optimization, providing a pseudo-code for SA is deemed unnecessary. This decision is

based on the assumption that the core concepts and operational mechanics of SA are suffi-

ciently covered in standard computational optimization literature and are familiar to individu-

als with a background in this area.

Figure 12 Processes of SA algorithm.
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6. Experiment Design

6.1. Data Description

The study area of the study is Munich Metropolitan Area (MUC), Germany which has an

approximate population of 4.5 million and encompasses 444 municipalities. The core cities

include Munich, Augsburg, Ingolstadt, Landshut, and Rosenheim. The geographical scope

of the study area coincides with that of previous UAM studies (Ploetner et al., 2020; Rothfeld,

2021; Rothfeld et al., 2021; Arellano, 2020; Fadhil, 2018; Guo et al., 2024). The trip data used

in this optimization problem is generated and calibrated by Simple Integrated Land Use Or-

chestrator (SILO) and Microsimulation Transport Orchestrator (MITO), developed by Moeckel

et al. (2020) and integrated the advantages of traditional trip-based and activity-based model.

The trip data generated for the study area represent the scenario of an exemplary workday

and encompass about 12.6 Million trips made by more than 4 million synthetic population.

According to the conclusions by Guo et al. (2024), UAM only begins to show an upper hand

in terms of time savings relative to ground transport over long-distance trips of 25 km or

more, which is also largely consistent with the conclusion by Rothfeld et al. (2021) and Wu

and Zhang (2021). Consequently, to reduce computational complexity, motorized trips ex-

ceeding 25 kilometers are selected for analysis. This subset of the dataset comprises a total

of 454,513 trips. A visualization depicting the origin and destination points within the study

area is presented in Figure 13.

Figure 13 Demand points of MUC.
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6.2. Vertiport Candidates Identification

In this study, vertiport candidates in the study area are identified by using K-means++ cluster-

ing, with the origins and destinations of long-distance trips mentioned above as data points,

since Guo et al. (2024) suggested that the K-means++ clustering yields the best performance

in both travel time savings and accessibility improvements in the context of vertiport siting.

The number of vertiport candidates is determined as 200, which is already largely greater

than it is in the densest UAM network (i.e., 130 vertiports) by Ploetner et al. (2020) and can

cover more than 90% of the travel demands. The distribution of UAM vertiport candidates and

covered demand points are shown in Figure 14(a) and 14(b), respectively. In order to have

a clear understanding of the demand coverage level, when visualizing, the entire research

area has been divided into 618 zones based on postal codes. The demand coverage rate

within each zone will be presented using different colors on the spectrum. This zonal system

is also applicable in the subsequent accessibility improvement assessment discussed in the

following sections.

(a) Vertiport candidates. (b) Vertiport candidates demand coverage rate.

Figure 14 Vertiport candidates and demand coverage rate of vertiport candidates.

6.3. Data Preprocessing
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(a) TripItem.

Figure 15 UML diagram of objects TripItem and VertiportCollector.
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(b) VertiportCollector.

Figure 15 UML diagram of objects TripItem and VertiportCollector (continued).

Since travel time is an essential component in calculating the generalized travel cost of a

trip as well as an important attribute in mode choice modeling, it is used in each iteration of

optimization in both stages. In order to save the computation resource, the potential travel

time of each trip/leg in each mode is pre-calculated. The simulation tool used in this study for

calculating the travel time is MATSim, in which a travel time calculator developed by Rothfeld

(2021) is available. This calculator requires background traffic for one-time simulation, based

on which a “NetworkChangeEvent” file records the network status in each time step could be

generated. In MATSim, “NetworkChangeEvent” is a container class for events that represent

time-variant changes for link attributes (in SI units) (Horni et al., 2016). Consequently, the

framework takes into account potential detours and congestion associated with car and pub-

lic transportation travel, as well as the scheduling of transit. In the preprocessing step, for

each trip, the travel time in each ground transportation mode from origin to destination at a

specific departure time could be estimated. Besides, the travel times of the access (egress)

legs between the origin (destination) and all vertiport candidates are also calculated for each

trip. Then the trip object that contains travel time information is saved as a serialized object

file (.dat). The objects involved in the programming implementation are mainly TripItem and

VertiportCollector, which contain attributes and methods as shown in Figure 15.

6.4. Parameter Configuration

When adapting the generic optimization formulation to the specific case study, it is essential

to define a set of parameters that pertain to the implementation of optimization procedures

and UAM operations. In this section, the configurations of these parameters will be explained

in detail.

6.4.1. Parameters in Formulation
As delineated in Section 6.2, this case study identifies 200 candidate vertiports. Conse-

quently, the size of the candidate vertiport set, denoted as M , is established at 200. To

ensure comparability with previous research (Ploetner et al., 2020; Guo et al., 2024; Arel-
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lano, 2020), we have kept the number of vertiports to be selected the same, at 74, i.e.,

|V | = 74. Besides, the search radius for access and egress vertiports are determined as 5

km.

Due to the limitation of trip data and logit model, the available ground-based modes in the

case study for pure on-ground trips and access/egress legs of UAM trips are limited to car

(both as car drivers and passengers), public transport and walk, i.e. G,A,E = {car, public

transport, walk}. When factoring travel time into the generalized cost, the VOT for each trip

is estimated based on individuals’ income, assuming an annual work time of 2080 hours.

Furthermore, the realization of stochastic mode choice variables z is executed by 100 times

Monte-Carlo sampling for a trip given a demand-vertiport matching decision.

Table 3 Cost estimation and breakdown of car trips.

Item Trip Cost
(C/ km)

Source Data

Fuel 0.1087
Fuel price: 1.812 C/L (Fleetcor, 2023);

Fuel Consumption: 6.0L /100 km (Volkswagen, 2023).

Cleaning 0.0560

Cleaning price: 80 C/time (Fleetcor, 2023);

Frequency: 11.6 times/year (Statistia, 2023);

Yearly range: 16570 km/year (Held et al., 2021).

Parking 0.0217 Yearly parking cost: 360 C/year (Karowski, 2023).

Insurance 0.0603 Yearly fare: 1000 C/year (ADAC, 2023).

Tax 0.0134 Yearly fare: 222 C/year (Autokosten, 2023).

Depreciation 0.1121
Purchasing price: 33625 C(Volkswagen, 2023);

Lifespan: 18.1 years (Held et al., 2021).

Interest 0.0205 Assumption: Loan of 20000 C, 10-year term (Sparkasse, 2023).

Maintenance 0.0449 Monthly Cost: 62 C/month (ADAC, 2023).

Sum 0.4376

6.4.2. Price Schemes of Car and Public Transport
The price schemes of car and public transport trips are determined based on some assump-

tions and cost structures from previous studies.

• Car: Since the detailed car ownership information (e.g., purchasing price, fuel consump-

tion performance) is not available in the acquired dataset, the car cost is estimated by
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taking the Volkswagen Golf 2.0 TDI Comfortline (Volkswagen, 2023) as the model and

the cost structure from Lu et al. (2023) as reference. The break-down of cost for car trips

is shown in Table 3.

• Public transport: The cost of public transport is estimated under the context of the “Deutsch-

land Ticke” policy in Germany, with which one can unlimitedly travel on regional public

transport all over Germany for a monthly fee of 49 C(Bissel, 2023). Consequently, the

cost of a public transport trip is estimated as 0.51 C/trip based on the assumption that ev-

eryone holds a “Deutschland Ticket” subscription and makes 3.2 trips per day according

to MiD 2017 report of Munich (infas et al., 2020).

6.4.3. UAM Operation Parameters and Price Scheme
The technical parameters regarding eVTOL vehicles and operational parameters for UAM

service are extrapolated from extant research. To enhance the competitiveness of UAM

relative to ground transportation, we selected parameters for the experiment based on high-

performance vehicles as delineated in the previous literature. Besides, the range and charg-

Table 4 Overview of UAM-related parameters in the experiment.

Parameter Existing Value Definition(s) Value

Processing
time+ wait-
ing time

Existing literature defines it as a variable with a wide range, as
shown below in minutes: 0, 10, 20 (Ploetner et al., 2020); 0,
10, 30 (Rothfeld, 2021); 0, 4, 8, 12 (Balac et al., 2019).

10 min

VTOL Alti-
tude

When flying over cities and dense areas, aircraft should oper-
ate 300 m above the highest obstacle, in other cases, oper-
ate at least 150 m above ground level (Bundesamt fuer Jusitz,
2015). For the study area, the height of the Olympic Tower
defines it to be at least 591.28 m (Guo et al., 2024).

600 m

Cruise
Speed

8 scenarios between 50-350 km/h (Ploetner et al., 2020);
50–200 miles per hour (Wang et al., 2022).

350 km/h

Vertical
Speed

Experts consulted the performance benchmark of eVTOL air-
craft as 10 m/s (Shamiyeh et al., 2018).

10 m/s

Price Holden and Goel (2016): 1.5 C/pkm (short term), 0.2 C/pkm
(long term); Balac et al. (2019): 6.1 C+ 0.6-4.2 C/pkm; Wu
and Zhang (2021): 9.2-27.6 C+ 0.5-1.0 C/pkm; Ploetner et al.
(2020): 4.94 C/km.

6.1
C+ 0.6
C/pkm

ing time of eVTOL aircraft are overlooked in this case study since the estimated range

could reach 200-300 km due to the enhanced technology, which is already greater than the

longest Euclidean distance between any two vertiport candidates in the experiment (165 km)

(Swaminathan et al., 2022; Beyne and Castro, 2022). The UAM-related parameters used in

the experiment are summarized in Table 4.

UAM Vertiport Siting Optimization 45



6.4.4. Parameters in Heuristic Optimization Algorithms
In this study, the optimization of vertiports siting (outer loop) is achieved by heuristic algo-

rithms. In the five kinds of heuristic algorithms developed and adopted in this study, GA and

SA are Meta-Heuristic algorithms, where the relevant parameters need to be defined exoge-

nously and can affect the search efficiency of the algorithms and the quality of the results. In

this experiment, the relevant parameters of the Meta-Heuristic algorithms are defined based

on trial and error, as shown in Table 5.

Table 5 Parameters in Meta-Heuristic algorithms.

GA SA

Parameter Value Parameter Value

Population size 50 Initial temperature 5000

Selection technique Tournament selec-
tion

Cooling rate 0.999

Tournament size 5 End temperature 0.1

Crossover probability 100%
Acceptance probability

for worse solution
e−∆E/T *

Crossover operation Single-point
crossover

Maximum iteration 10000

Mutation probability 5%
Maximum iteration

without improvement
2000

Maximum generation 10000

Maximum generation

without improvement
1000

*: ∆E: change in energy, T : current temperature.

6.5. Implementation of Mode Choice Modeling

As stated in problem formulation, mode choice variables, which are treated as stochastic

variables in this problem, are generated by discrete choice model and Monte Carlo sam-

pling. The discrete choice model used in this study is developed by Adamidis et al. (2023)

based on the stated preference (SP) survey regarding the travel behavior and willingness to

use UAM of residents in the catchment area of Munich International Airport, which is roughly

the same as the study area in this study. The panel data mixed logit (ML) model is developed

to account for the multiple observations from each individual (possible serial correlation) in
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the SP experiment. Among all models in the study by Adamidis et al. (2023), the ML model

illustrates the best performance regarding the Adj. Rho-Square. The ML model is shown in

Appendix A. The reported estimation results include statistically significant coefficients at a

10% significance level, with the alternative specific attributes having been scaled (reduced)

by a factor of 100. Unfortunately, due to limitations in the survey questions, the ML model

cannot encompass the modeling of access and egress modes. In other words, the nested

logit model is not available. Therefore, during the experimental process, the probability es-

timation and Monte Carlo can only be performed for the main transport mode. Access and

egress mode choices are simplified to selecting the one with the lowest generalized travel

cost. The process of mode choice modeling is illustrated in Figure 16.

Figure 16 Process of mode choice modeling for one trip.
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7. Results Analysis

7.1. Vertiports Layouts

(a) GRDF solution. (b) GRDF-U solution. (c) GRDB solution.

(d) GA solution. (e) SA solution.

Figure 17 Selected vertiports in all solutions.

After conducting the experiments, each optimization algorithm eventually yielded the cor-

responding vertiports placement results. The vertiports layouts of these five solutions are

shown in Figure 17. Obviously, the three algorithms GRDF-U, GA, and SA obtained remark-

ably similar solutions. Among the 74 vertiport locations identified, 60 were consistent across

all these three solutions. On the other hand, the solutions obtained by the GRDF and GRDB

algorithms are also highly similar, with 61 vertiports overlapping between the two. In terms

of the geographical distribution of vertiports, the GRDB and GRDF solutions tend to place

vertiports more concentrated in the vicinity of the municipal area of Munich. Furthermore,

the Augsburg neighborhood also has a considerable number of vertiports, while the rest of

the region is very sparsely settled. In contrast, the GRDF-U, GA, and SA solutions tend

to distribute vertiports more evenly throughout the study area. Although there are indeed

relatively more vertiports near major cities (e.g., Munich, Augsburg) compared to rural ar-

eas. It is worth noting that vertiports are fairly concentrated near the southwest corner (e.g.,
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Landsberg, Weilheim) of the study area in all solutions. Furthermore, the vertiport place-

ment schemes manually selected by experts in the OBUAM project (Ploetner et al., 2020)

and generated by clustering methods (Guo et al., 2024) are used as benchmarks to compare

with the optimization methods used in this study. The vertiports displacement schemes from

benchmarks are shown in Appendix B for reference.

7.2. Optimization Performance Evaluation

Table 6 Saved generalized travel costs and computation time in each solution for the comparison with benchmarks.

Algorithm Saved Generalized
Travel Cost (C)

Computation
Time (min)

Source

GRDF* 32521.2 12.17 Willey and Salmon (2021)

GRDF-U** 41387.8 33.67 own development

GRDB** 35374.7 0.02 own development

GA 41316.1 342.36 -

SA 41657.9 15.15 -

Benchmarks from preliminary studies

OBUAM 15484.3 -∗∗∗ Ploetner et al. (2020)

DBSCAN 9456.7 - Guo et al. (2024)

KM++ 29068.9 - Guo et al. (2024)

KMOBUAM 24065.1 - Guo et al. (2024)

GMM++ 18564.5 - Guo et al. (2024)

GMMOBUAM 27839.4 - Guo et al. (2024)

HC 26355.6 - Guo et al. (2024)

MS 22227.5 - Guo et al. (2024)

Note: *: The algorithm is adapted from others. **: The algorithms are developed by the authors of
this research. ***: Computation time is not mentioned in the source papers.

As a large-scale network NP-hard problem, the global optimal solution can only be found

by exhaustively trying all possible solutions (Willey and Salmon, 2021). All heuristic algo-

rithms cannot guarantee the global optimal solution but aim to get as close to it as possible.

Therefore, we compare the solutions obtained by these algorithms and their corresponding

objective function values (i.e., saved generalized travel costs) to assess the quality of the

solutions. The results are presented in Table 6.
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Subsequently, the optimization results are compared with the benchmarks. The trips, de-

mand allocation, and mode choice modeling processes used in the optimization approaches

are exactly the same as in this experiment. The results are also presented in Table 6 and

show that the solutions obtained by all optimization algorithms lead to significantly greater

saved generalized costs compared to the benchmarks’ solutions. This demonstrates the

superiority of the optimization methods.

As is convention in optimization algorithm-related research, computation time is also an im-

portant metric for evaluating algorithms. The computational experiments were conducted

on a high-performance system powered by a 13th Gen Intel(R) Core(TM) i7-13700K pro-

cessor. This processor, belonging to the x86_64 architecture, operates with 24 CPUs (0-23

online). It has a maximum frequency of 5400 MHz and a minimum of 800 MHz. The sys-

tem is equipped with a substantial 125 GB of RAM. This setup runs on Ubuntu 22.04.3 LTS,

which ensures a stable and efficient operating environment for the algorithms’ performance

evaluation. As shown in Table 6, the computation times for all the algorithms are within an

acceptable range. As expected, the GRDF and GRDB algorithms run quickly. The GRDB

algorithm runs extremely fast because it only performs one-time saved generalized cost cal-

culations (for all trips) for exactly one network. GRDF-U and SA algorithms have slightly

longer computation times. GA has the longest computation time because it requires fitness

calculations for every chromosome in the population in each iteration. For more information

on the evolutionary processes of the GA and SA algorithms, refer to Figure 18.
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Figure 18 Evolution processes in GA and SA.

Similar to the comparison of vertiport layouts, the objective function values for GRDF and

GRDB solutions are very close, while the solutions for GRDF-U, GA, and SA are also very

close to each other but significantly surpass the former two solutions. It is evident that the

simple Greedy algorithm, whether forward or backward, struggles to efficiently produce so-

lutions close to the global optimum. The GRDF-U algorithm brings about a significant im-

provement in the results. The more advanced meta-heuristic algorithms (GA and SA) also
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generate superior solutions compared to the simple Greedy algorithm.

7.3. Demand Coverage Assessment

Although demand coverage is not the primary objective of the p-hub location problem, it

has a crucial impact on the UAM service level. Therefore, this study also includes it in the

evaluation for vertiport placement.

Table 7 Demand coverage, and weighted average accessibility improvement ratio (definition in Section 7.4) in each solution
for the comparison with benchmarks.

Algorithm Demand Coverage
Rate (%)

Weighted Average
rai (%)

Source

GRDF 34.3 6.0 Willey and Salmon (2021)

GRDF-U 50.8 7.7 own development

GRDB 39.5 7.7 own development

GA 51.3 7.9 -

SA 50.9 7.9 -

Benchmarks from preliminary studies

OBUAM 27.2 4.3 Ploetner et al. (2020)

DBSCAN 28.4 4.2 Guo et al. (2024)

KM++ 52.0 5.8 Guo et al. (2024)

KMOBUAM 46.5 4.5 Guo et al. (2024)

GMM++ 37.1 6.0 Guo et al. (2024)

GMMOBUAM 45.5 4.4 Guo et al. (2024)

HC 47.6 5.4 Guo et al. (2024)

MS 32.4 5.4 Guo et al. (2024)

As shown in the second column of Table 7, GRDF and GRDB algorithms still have unsatis-

factory performance in terms of demand coverage, with both having coverage rates below

40%. On the other hand, the remaining three solutions are still similar and superior, with

coverage rates exceeding 50%. When compared to the benchmarks, it can be observed

that while the KM++ solution generated by clustering outperforms the optimization solutions,

considering that clustering methods are demand-oriented in nature and only slightly better,

the optimization solutions can still be considered promising concerning demand coverage.
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Figure 19 illustrates the demand coverage ratio for each zone, in which areas where there is

a clear difference are highlighted with blue circles. Clearly, the solutions from GRDF-U, GA,

and SA cover a broader range of areas with their vertiports’ service areas. Particularly, in

the southwestern part of the study area (Weilheim) (shown by the middle blue circle in the

figures) and the rural area between Munich and Augsburg as well as the counties around

Rosenheim, the demand coverage rates in GRDF-U, GA and SA solutions are significantly

superior compared to the results from GRDF and GRDB.

(a) GRDF (b) GRDF-U (c) GRDB

(d) GA (e) SA (f) Legend

Figure 19 Vertiports demand coverage ratio in all solutions.

7.4. Accessibility Improvements Assessment

The accessibility measure chosen in this study is a cumulative opportunities measure, as

defined by Geurs and Van Wee (2004), which was also adopted in many reference papers

(Rothfeld, 2021; Guo et al., 2024). The quantified accessibility is calculated by taking cumu-

lative opportunities and travel costs into a gravity negative-exponential model. In the case

of this study, the number of opportunities was measured in terms of the number of activity

opportunities including job, education, and amusement opportunities at the destination zone,

whereas the impedance is measured by travel time between zones, which is consistent as

the work by Rothfeld (2021) and Guo et al. (2024). For a given zone i, the accessibility level

UAM Vertiport Siting Optimization 52



Figure 20 Cumulative frequency of accessibility improvement ratio.

is equal to the sum of job opportunities to all other zones by counting the diminishing effects

of opportunities requiring longer travel time. The definition is mathematically expressed in

Equation (7.1),

Ai =

n∑
j=1

Dje
−βcij (7.1)

where, Ai is the quantified measure of accessibility in zone i, n is the number of zones,

Dj is the number of opportunities in zone j, cij is the generalized cost for trips from zone

i to j, β is the cost sensitivity parameter, which was according to Rothfeld (2021) set as

0.2. The accessibility of each zone with ground-based transportation modes and UAM is

calculated and compared. The accessibility improvements ratio rai is calculated accordingly.

The accessibility in this context is zone-based. Thus, from a macroscopic level, a decrease

in accessibility after the introduction of UAM makes no sense, and therefore, rai is set to 0,

correspondingly. The mathematical expression is shown in Equation (7.2).

rai =
Auam

Ag
− 1 (7.2)

The weighted average accessibility improvement ratio among all zones of each solution is

shown in the third column of Table 7. The weight of each zone is determined by the number

of opportunities. The results yield a promising overall accessibility improvement brought by

all solutions. When compared to benchmarks, it can be seen that the weighted average rai of

the solutions produced by all the optimization methods outperform benchmarks, which again

proves the superiority of the optimization method. Among the optimization solutions, GRDF-

U, GA, and SA still show superior enhancement levels compared with the GRDF solution.

Unexpectedly, the weighted average rai of GRDB solution is also significantly higher than that
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of GRDF. One possible reason for this is that this average is more influenced by individual

zones with exceptionally high rai. Therefore, to eliminate the effect of extreme values, we

sorted all zones in each solution based on rai and extracted zones within the 5%-95% interval

to plot the cumulative distribution, as shown in Figure 20, from which, it can be seen that the

GA, SA, and GRDF-U solutions perform better than GRDF and GRDB in terms of overall

accessibility enhancement.

(a) GRDF (b) GRDF-U (c) GRDB

(d) GA (e) SA (f) Legend

Figure 21 Accessibility improvement ratios of zones.

In addition to the degree of accessibility improvement, its geographical distribution is also of

concern. Figure 21 shows the distribution of accessibility improvements in different zones

for various solutions. The areas that yield significant differences are also encircled in blue.

Similar to the conclusion drawn by Guo et al. (2024), all solutions do not provide significant

accessibility improvements to major cities (especially Munich). One possible reason is that

for residents in major cities, their primary opportunities are limited to the local urban area,

and the travel needs concerning the opportunities are primarily short-distance. Almost all

previous research on UAM supports the idea that UAM is not competitive compared to cars

for short-distance trips. Therefore, UAM may not bring significant accessibility improvements

to major cities overall. In a cross-comparison of the solutions, GA, SA, and GRDF-U still

bring greater accessibility improvements to rural and suburban areas, as shown in Figure

21.
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7.5. Sensitivity Analysis of the Number of Vertiports

All the experiments and results assessments mentioned above were based on a fixed num-

ber of vertiports. The reason for choosing 74 vertiports in the experiment is to facilitate

comparison with benchmarks provided by previous studies, as explained in parameter con-

figuration (Section 6.4). However, in practice, when conducting vertiport siting studies in a

new area, such knowledge is often unavailable, and determining the appropriate number of

vertiports can be challenging. In transportation engineering projects, cost-benefit analysis

(CBA) is a commonly used method for construction-related decision-making (Damart and

Roy, 2009). This can be achieved by changing the formulation and treating the number of

vertiports (p) as a decision variable to be determined by the optimization results. In this

case, it is necessary to introduce terms related to cost in the objective function to prevent the

number of vertiports from growing indefinitely. However, based on existing research results,

the estimates for vertiport construction and operation costs are rough, and the relationship

between cost and saved generalized travel cost (benefits) has not been thoroughly studied.

Therefore, it is almost impossible to determine the weights of both objectives in the formula-

tion. Hence, in this study, the authors used a qualitative approach to discuss the relationship
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Figure 22 Saved generalized travel cost and construction cost across various numbers of vertiports.

between the number of vertiports and costs, as well as benefits. Subsequently, a series of

exploratory optimization experiments were conducted with the number of vertiports set to

start from 10 and increment by 10 up to 200. The SA approach, which has performed well

in terms of optimization results and computation time, was used. The approximate construc-

tion costs of vertiports were estimated based on the cost structure by Malaek et al. (2019)

(shown in Appendix C) and the local land price data from Immoportal (2023) (shown in Ap-

pendix D). The estimated cost for building a vertiport in each county is shown in Appendix
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E. The objective function value and total vertiport construction cost in each experiment are

shown in Figure 22. It is evident that with the increasing number of selected vertiports from

the given vertiport candidates, saved generalized travel costs continue to increase, but the

rate of increase tends to slow down. This validates the diminishing marginal utility in the con-

text of vertiport siting (Easterlin, 2005). On the other hand, although the construction costs

of vertiports at different locations vary significantly, the growth of total cost with an increasing

number of selected vertiports remains approximately linear. This demonstrates that having

an excessive number of vertiports is not cost-effective, and it also indicates that there is

an equilibrium between saved generalized travel costs and construction costs, although this

point cannot be quantitatively determined at present due to data deficiency in infrastructure

cost estimations.
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8. Limitations

In terms of framework building, like many similar studies (Willey and Salmon, 2021; Wu and

Zhang, 2021), this research framed the problem as an uncapacitated hub location problem,

which did not account for the capacity of vertiports and the availability of eVTOL aircraft.

As a result, dynamically modeling travelers’ waiting times at vertiports and the interactions

between travelers, stated in Husemann et al. (2023), was not achieved. This limitation can

potentially impact the results, as demand allocation and mode choice may yield different

outcomes when vertiports lack available vehicles or require longer waiting times. Addressing

this issue will be a focus of future research.

Furthermore, some limitations regarding the experiment were brought about by the shortage

and constraints of available data. On one hand, due to constraints in trip data and the

logit model, this experiment could not include additional ground-based transport modes such

as car sharing, bicycles, e-bikes, and taxis. Since the survey in Adamidis et al. (2023)

yielded the conclusion that the shares of those modes are relatively low, the overlook of

those modes might not have significant influences on the optimization results. Additionally,

the absence of a nested mode choice model prevented the simulation of access and egress

mode choices for UAM trips, restricting the choice to the mode with the lowest generalized

cost. This compromise introduced some bias into the experimental results compared to

real-world scenarios. On the other hand, due to the lack of accurate cost estimation from

existing literature, such as public transport travel cost, UAM price, and vertiports construction

cost, the cost-related parameters configuration for the economic evaluation were estimated

roughly. In the future, when more research and data on these topics are available, more

accurate calculations will become possible.

Finally, in the experiments, the calculation of travel time for ground-based trips did not con-

sider the impact of the introduction of UAM on existing ground transportation. According to

Wang and Qu (2023), the induced traffic in the vicinity of vertiports, resulting from the ac-

cess and egress legs of large-scale UAM applications, will inevitably exacerbate congestion

in these areas. The omission of this effect from our model was due to the limited share of

UAM potential trips, which constitute less than 1% of all trips, as highlighted in the study

by Ploetner et al. (2020). Furthermore, the implementation of traffic simulations, particu-

larly those using MATSim, requires significant computational resources for each scenario. In

future works, enhanced simulation speeds or advanced simulation tools may enable more

realistic travel time calculations, incorporating the effects of UAM on ground traffic.
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9. Conclusions and Policy Insights

9.1. Conclusions

This study addresses the UAM vertiports siting problem by constructing a two-stage stochas-

tic optimization model to determine the optimal subset of selected vertiports from a given set

of vertiport candidates. In this framework, the decision variables in the first stage are the

vertiport selections, and in the second stage, the decision variables are the matching of

trip origins and destinations with vertiports (demand allocation). To achieve a more realis-

tic and accurate simulation of travelers’ transport mode choice, mode choice is included in

the framework as a stochastic variable in the objective function. Its realization relies on the

probabilities computed by the discrete choice model and Monte Carlo sampling. From an

optimization algorithm perspective, the inner loop (demand allocation) of this framework is

achieved through enumeration, assuming that each trip is independent of others. The outer

loop (vertiport siting) is optimized using five different heuristic algorithms, namely GRDF,

GRDF-U, GRDB, GA, and SA.

Subsequently, numeric experiments were conducted using the Munich metropolitan area as

the study area. In this region, 200 vertiport candidates were identified using the K-means++

clustering method. The optimization algorithm will select 74 vertiports from these candidates.

Although heuristic algorithms cannot guarantee global optimal solutions, carefully designed

and tuned algorithms can provide close to optimal solutions within acceptable computation

time. In terms of optimization results, the saved generalized travel costs obtained by the

GRDF-U, GA, and SA solutions are significantly better than those of the GRDF and GRDB

solutions, and these three solutions are quite close to each other. This suggests that approx-

imate optimal solutions have been obtained. Furthermore, when compared to benchmarks

obtained from previous studies, it can be seen that the solutions obtained through optimiza-

tion methods clearly result in more significant savings in generalized travel costs. This also

demonstrates the effectiveness of the optimization algorithms. The computation time for all

algorithms is generally acceptable.

In addition to the most straightforward criterion, i.e., objective function values, this study also

evaluates the various solutions in terms of demand coverage and accessibility improvement.

To more intuitively illustrate the differences between the results, demand coverage ratios

and accessibility improvement ratios are presented in a zone-based format. In terms of

demand coverage, GRDF-U, GA, and SA still perform excellently, with demand coverage

rates exceeding 50% across the entire area, comparable to the best benchmarks. On the

other hand, GRDF and GRDB fall short, with an overall demand coverage rate of less than

40%. Looking at the distribution in various zones, the vertiports layouts yielded from GRDF-

U, GA, and SA can serve more zones, particularly those located southwest of the study
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area. Regarding accessibility, the results show that GRDF-U, GA, and SA outperform the

other two solutions in terms of both the extent of accessibility improvement and the breadth

of benefiting areas. They can provide over 5% accessibility improvement for approximately

30% of all zones.

Finally, to explore the impact of the number of vertiports, the authors conducted exploratory

experiments where the number of vertiports ranged from 10 to 200. The findings indicated

that while the overall savings in generalized travel cost escalated with the addition of ver-

tiports, a pronounced diminishing marginal effect was observed, characterized by a decel-

eration in the rate of increase. On the other hand, based on the author’s estimate of each

vertiport’s construction cost, the total construction costs of vertiport siting schemes for differ-

ent numbers of vertiports were calculated. It essentially increased linearly with the number

of vertiports. This provides a foundation for future cost-benefit analyses to determine the

optimal number of vertiports.

In conclusion, the two-stage optimization framework designed in this study has been vali-

dated through experiments and demonstrated superior performance in various aspects com-

pared to benchmarks.

9.2. Policy Insights

In the concluding section (Section 9.1), the paper synthesizes the intuitive insights derived

from the experimental outcomes and exploratory research. This section will discuss the

contributions of this study’s findings from the policy-making perspective, highlighting how it

informs policy decision-making. As introduced before, UAM holds the potential to revolution-

ize urban transportation. The strategic siting of vertiports is central to unlocking this potential,

offering a range of societal and economic benefits.

When planning a UAM network for a new area, policymakers often have a predetermined

budget for the total construction cost of vertiports. Consequently, the number of vertiports is

usually pre-established (refer to Figure 22), consistent with the scenario outlined in this study.

The two-stage stochastic optimization model introduced here provides optimal vertiport siting

solutions, resulting in significant generalized travel cost savings, increased demand cover-

age, and enhanced accessibility and transport equity.

• Substantial Reductions in Travel Costs: In this study, travel-related costs are encapsulated

by the concept of “generalized travel cost”, which encompasses both monetary expenses

and travel time. This metric serves as a crucial indicator for assessing the social benefits

of UAM. The experimental results demonstrate that our proposed model, aimed at opti-

mizing the total generalized travel cost, significantly reduces total expenses compared to

traditional ground transportation. Moreover, the effectiveness of our optimization methods
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is further underscored when compared to previous studies with an equivalent number of

vertiports.

• Enhanced Demand Coverage: Strategic placement of vertiports significantly broadens

the service coverage of UAM, thereby extending its benefits to a larger portion of the

population. This expansion makes UAM a more inclusive and extensively utilized mode of

transportation. Although not the primary focus of this optimization problem, the optimization-

based approach for vertiport placement has also demonstrated effective demand cover-

age. Compared to benchmarked methods, these optimization techniques maintain robust

performance. This strategy is particularly valuable in densely populated regions where

the need for efficient transportation solutions is paramount.

• Enhanced Accessibility and Transport Equity: The proposed UAM siting model signif-

icantly improves access to various activity opportunities, thereby augmenting regional

economic benefits following the introduction of UAM services. In addition to its primary

objective, the optimization process also achieves notable gains in accessibility. Exper-

imental results indicate that certain optimization solutions yield an approximate 8% in-

crease in weighted average accessibility across different zones, surpassing the typical 5%

fluctuation observed in benchmarks. This enhancement is particularly vital for promoting

transport equity, especially in communities historically underserved by conventional trans-

portation systems. Establishing vertiports in these areas can offer more efficient mobility

options, playing a key role in bridging the urban mobility divide.

When devising regional UAM networks, policymakers sometimes also confront uncertainties

concerning the precise number of vertiports required. Their decision-making process fre-

quently involves a careful evaluation of the potential benefits in relation to the incremental

costs associated with varying numbers of vertiports. To address this issue, our study offers

pertinent policy insights.

• Marginal Diminishing Effect of Benefits: While this study does not perform a quantitative

Cost-Benefit Analysis (CBA) on the number of vertiports, it qualitatively illustrates the rela-

tionship between the savings in generalized travel costs, the estimated construction costs,

and the number of vertiports. This relationship highlights a marginal diminishing effect of

benefits. Specifically, as the number of vertiports escalates, there is an increase in the

generalized cost savings from optimized siting, but this increase exhibits a decelerating

rate. In contrast, the construction costs tend to rise almost linearly with each additional

vertiport.

From a practical perspective, the vertiport siting methodology proposed in this study is gen-

eralizable, and its reliance on straightforward data significantly reduces the necessity for ex-

tensive expert input, which can be prohibitively costly in certain regions. Heuristic algorithms

ensure that the solutions approach near-optimality and maintain computational efficiency,

even when processing extensive datasets like the disaggregated travel demand analyzed in
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this study. This approach is instrumental in facilitating UAM network planning and lays a

foundation for subsequent research in the field.
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Appendices
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A. Panel Data Mixed Logit (ML) Model

The panel data mixed logit model shown in Table A.1 is developed by Adamidis et al. (2023)

based on their SP survey conducted in the same area as in this thesis.

Table A.1 Panel data mixed logit (ML) model.

Car Public Transport UAM

Parameters (βi) Value Rob. T-
stat.

Value Rob. T-
stat.

Value Rob. T-
stat.

ASC 8.11*** 4.45 0 - 8.77*** 6.06

Travel cost -6.36*** -5.44 -6.36*** -5.44 -2.48*** -8.02

In− vehicle time -7.98*** -6.26 -4.28*** -3.82 -4.28*** -3.82

Waiting time - - - - -6.79*** -4.22

Travel behavior

Car ownership - - - - -1.28* -1.84

Previous modeCar 1.26* 1.85 - - - -

Previous modePT - - 4.11*** 4.31 1.98** 2.56

Business trip - - - - 1.83** 2.38

Sociodemographics

Age ≥ 50 - - - - -0.94** -2.33

Household
income < 3000
C

- - - - -0.76* -1.93

Household
income ≥ 7000
C

- - - - 3.33** 2.14

ASC(σerror) 2.47*** 5.56 2.55*** 5.45 - -

Summary of statistics

No.of observations 1280 LL(0) -1406.22

Adj. Rho-Square 0.65 LL(final) -476.53
AIC

987.05 BIC 1044.59

Significance levels (Rob.p-value): 0‘***’, 0.01‘**’, 0.05‘*’, 0.1
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B. Vertiports Layouts of Benchmarks

Figure B.1 indicate the vertiport layouts schemes from Ploetner et al. (2020) and Guo et al.

(2024).

(a) OBUAM (b) DBSCAN

(c) KM++ (d) KMOBUAM

Figure B.1 Vertiports layouts of benchmarks.
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(e) GMM++ (f) GMMOBUAM

(g) HC (h) MS

Figure B.1 Vertiports layouts of benchmarks (continued).
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C. Break-down of Vertiport Construction Cost

The cost structure is derived from the work by Malaek et al. (2019). Table C.1 presents the

converted currency in C.

Table C.1 Break-down of vertiport construction costs.

Item Cost Per Unit

($)

Cost Per Unit

(C)

Quantity Subtotal

(C)

Station for landing and take-

off

37100 34503* 6 207018

Chargers 1200 1116 1500 1674000

Robotic Lift Truck 15000 13950 12 167400

Elevator 50000 46500 2 93000

Hydraulic lift equipment for

batteries

5000 4650 60 279000

Portable Foam Unit 1000 930 3 2790

Safe Melt 65 60.45 10 604.5

Perimeter Light 575 534.75 96 51336

Flood Light 595 553.35 24 13280.4

Light Control Unit 4425 4115.25 2 8230.5

Weather Station 5450 5068.5 1 5068.5

Wind Cone 3200 2976 1 2976

Light Replacement 405 376.65 30 11299.5

Crash Rescuer Locker 2250 2092.5 2 4185

Hydraulic Power Cutting 4250 3952.5 2 7905

Continued on next page
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Table C.1 continued from previous page

Item Cost Per Unit

($)

Cost Per Unit

(C)

Quantity Subtotal

(C)

First Air Kit 950 883.5 8 7068

Trolling Case with Tools 3400 3162 2 6324

Surge Protector 2300 2139 2 4278

Portable Lighting System 8950 8324 2 16647

Stretcher (ST66011) 190 176.7 6 1060.2

Ambulance Stretcher 500 465 6 2790

Construction Cost 163** 10740*** 1750553

Land price 268**** 10740 2878320

Total 7195024

Note:

*: 1 US $=0.93 C.

**: Average material cost in Germany (Statista, 2022).

***: In source paper the area of the vertiport is estimated as 115600 square feet.

****: Take the average land price in Neumarkt i.d. OPf. as an example. The land price in

each county will be shown below.
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D. Land Price of Each County in MUC

The land price in 2023 is captured from the “Immoportal” website (Immoportal, 2023).

Table D.1 Land price of each county in MUC.

County Land Price (C/m2) County Land Price (C/m2)

Neumarkt i.d. OPf. 268 Dachau 992

Eichstätt 265 Freising 864

München 3840 Erding 960

Kelheim 288 Mühldorf a. Inn 307

Ingolstadt 768 Lkr.München 1632

Neuburg-
Schrobenhausen

320 Ebersberg 576

Pfaffenhofen a.d. Ilm 467 Fürstenfeldbruck 1136

Lkr. Landshut 540 Landsberg am Lech 576

Landshut 640 Starnberg 1504

Dingolfing-Landau 300 Lkr. Rosenheim 515

Dillingen a.d. Donau 160 Rosenheim 704

Lkr. Augsburg 610 Weilheim-Schongau 684

Augsburg 896 Bad Tölz-
Wolfratshausen

1024

Aichach-Friedberg 364 Miesbach 1024
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E. Estimated Cost for Constructing a Vertiport in
each County

Figure E.1 illustrates the construction cost for a single vertiport in each county within the

study area.
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Figure E.1 Estimated vertiport’s construction cost in each county.
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