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Abstract

Understanding crowdedness patterns at public transport stations is crucial for enhancing op-
erational efficiency, providing better service, and promoting the use of public transit. However,
forecasting crowdedness accurately, especially in non-regular scenarios such as holidays or
special events, presents significant challenges. Moreover, data availability and accessibility
are often limited, further complicating the problem.

In this research, we analyze crowdedness patterns at urban public transport stations and
develop a spatio-temporal dataset construction pipeline that integrates various data sources
to capture both spatial and temporal characteristics of the transit environment. Specifically,
we utilize Google Popular Times (GPT) data as the crowdedness data, which is open-source
and easy to access. Subsequently, we evaluate the performance of various prediction models,
including traditional statistical models, time series models, and our proposed spatial-temporal
model with a graph attention module enhanced by a position embedding mechanism (APT-
GCN). This GNN-based model is designed to effectively evaluate crowdedness patterns and
measure shifts in crowdedness within the network. Furthermore, the attention weights from
the attention layer are further utilized to model the crowdedness shift.

Our experimental design includes evaluating model performance under both regular and spe-
cial event scenarios to assess robustness. Results show that the proposed APT-GCN model
outperforms all baseline models, achieving superior performance in both regular and spe-
cial event scenarios. Additionally, the crowdedness shift modeling reveals unique patterns
of passenger flow transfers across different cities and metro lines. Our findings contribute
to a deeper understanding of crowdedness at public transport stations and provide valu-
able insights for urban planners and transport operators to optimize station management and
enhance the overall public transport experience, particularly under challenging, non-regular
conditions.
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1. Introduction

1.1. Background

Public transportation systems have become an essential element of modern urban mobil-
ity, significantly contributing to environmental sustainability, reducing road congestion, and
improving the quality of life in densely populated areas. Their importance continues grow-
ing as cities face increasing levels of urbanization, along with the associated challenges of
pollution, traffic, and limited space for road expansions (Balcombe et al., 2004). Efficient
public transportation networks enable citizens to access services, employment, and educa-
tion while simultaneously alleviating the reliance on private vehicles, thus reducing carbon
footprints and energy consumption (Mugion et al., 2018).

However, public transportation systems face operational challenges, particularly with regard
to the crowdedness of stations. Crowdedness refers to the degree to which a space is occu-
pied by people and can have a direct impact on service quality, including increased waiting
times, reduced comfort levels, and potential safety concerns due to overcrowding (dell’Olio
et al., 2011). Crowdedness at public transport stations is a key factor that influences passen-
gers’ perceptions of service quality. For instance, longer waiting times or overly crowded
environments can lead to dissatisfaction, potentially driving passengers to opt for private
vehicles, which counteracts efforts to reduce traffic congestion and promote sustainability
(Millonig et al., 2012). In this context, analyzing and understanding crowdedness patterns
becomes crucial, not only to improve the operational efficiency of public transportation sys-
tems but also to enhance the overall passenger experience.

Furthermore, addressing crowdedness is not merely about improving the passenger experi-
ence; it also impacts the long-term sustainability and attractiveness of public transportation
systems. By improving service levels and reducing waiting times, public transit systems can
become more competitive with private transport modes, thus encouraging more citizens to
opt for sustainable transportation solutions. In turn, this helps cities achieve their goals re-
lated to reducing emissions and promoting eco-friendly urban mobility (Mugion et al., 2018).
Analyzing crowdedness patterns in urban transit systems is critical for optimizing operational
strategies and ensuring efficient public transportation management. This can be particularly
useful during peak hours or special events, where proactive planning based on predictive
models can help mitigate congestion and improve service delivery.

In the context of public transport stations, crowdedness at stations is particularly dynamic,
driven by factors such as time of day (Vlahogianni et al., 2014), weather conditions (Pelletier
et al., 2011b), and special events (Villiers et al., 2019). Large-scale gatherings, such as
sports matches and concerts, can lead to significant surges in passenger numbers, resulting

Forecasting crowding pattern evolution at subway stations using opportunistic data 10



in operational challenges at transit hubs (Carvajal and Garcia-Colon, 2003; Goodwill and
Joslin, 2006). Studies on crowdedness at public transport stations have explored how such
factors affect passenger flow and system efficiency. For instance, research has examined
how video data and crowd-counting algorithms can be used to estimate and forecast station
congestion levels, helping transport authorities manage flows effectively (Thilakasiri et al.,
2021). Other studies have used sensor-based and ticketing data to model crowdedness,
providing insights into peak traffic times and helping to improve station operations (Niu et al.,
2017).

In modern urban environments, crowding pattern analysis is particularly relevant within the
context of ITS (Intelligent Transport Systems), which leverage real-time data and advanced
analytics to optimize transit operations (Nuzzolo and Comi, 2016). Accurately predicting pas-
senger flow and crowdedness at transit stations is a complex task, especially in dynamic ur-
ban settings where passenger numbers can fluctuate. Traditional forecasting models, such as
ARIMA, are often used to predict traffic flows but may struggle with capturing nonlinear rela-
tionships and volatile fluctuations in urban transit systems (Li et al., 2017). Recent advances
in machine learning and deep learning models, particularly GNNs, have shown promise in
addressing these limitations by leveraging spatial and temporal dependencies within transit
networks while more adaptive across diverse scenarios than traditional models (Wu et al.,
2021). GNNs enable the modeling of interactions between stations, capturing the interde-
pendencies of different network transit nodes and improving forecasting accuracy. With the
capabilities of GNNs, we can better predict the crowdedness levels at individual stations and
identify potential hotspots. Beyond merely predicting crowdedness at each station, under-
standing the shifts in crowdedness between stations is also crucial. Modeling the transfer of
crowdedness across the network can provide deeper insights into the evolution of crowding
patterns and support more effective management strategies and decision-making processes
for urban transit systems.

In conclusion, accurately modeling and forecasting the evolution of crowding patterns in urban
transit systems is essential for effective management and strategic planning. The integration
of advanced GNN techniques and other mathematical techniques enables a comprehensive
understanding of these patterns by capturing both spatial and temporal dependencies. Such
an approach supports the implementation of dynamic operational strategies to alleviate con-
gestion, particularly during peak hours or special events. By leveraging these techniques,
public transportation authorities can optimize network performance, ensuring sustainable and
efficient operations. Ultimately, enhancing the management of crowded public transit stations
contributes to improved urban mobility and quality of life for city residents, aligning with the
goals of modern cities striving for sustainable growth and better service quality.
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1.2. Research Objectives

This thesis focuses on forecasting crowdedness patterns at public transport stations, paying
particular attention to variations caused by special events, and studying crowdedness shifts
within transit networks. The primary objectives of the research are as follows:

• To integrate various data sources to construct a robust pipeline for spatio-temporal dataset
development tailored to this type of analysis.

• To propose and develop a robust forecasting model based on a GNN framework to accu-
rately predict crowdedness patterns across an entire urban transit network, considering
both spatial and temporal dependencies.

• To thoroughly investigate the impact of special event scenarios on crowdedness patterns
in public transportation systems. This involves assessing how these events affect the
performance of forecasting models and determining the specific challenges they pose to
urban transit management.

• To analyze the temporal and spatial dynamics of crowdedness shifts within the public
transport network, providing insights into how crowdedness propagates through the sys-
tem.

1.3. Thesis Structure

This thesis is organized into several chapters, each addressing a distinct aspect of the re-
search:

Chapter 2 provides a comprehensive literature review, discussing previous research on traffic
forecasting and crowdedness pattern analysis in public transport systems. Particular empha-
sis is placed on the forecasting methods employed, ranging from traditional statistical models
to advanced machine learning techniques, including GNN. Additionally, a separate section is
dedicated to discussing the influence of special events on crowdedness and their impact on
traffic prediction models.

Chapter 3 outlines the data development process, detailing the collection, preprocessing,
and construction of the dataset used for the models. The dataset consists of three key com-
ponents: spatial data representing the public transport network, station-related temporal data
that reflects or can be processed to represent real-time crowdedness at the station, and spe-
cial event data.

Chapter 4 describes the methodology used in building the forecasting models, including sta-
tistical models, time-series models, and the proposed GNN model. This chapter provides a
detailed discussion of the model architectures and the specific approaches taken to ensure

Forecasting crowding pattern evolution at subway stations using opportunistic data 12



robust predictions.

Chapter 5 details the experimental setup, including the study areas, preprocessing steps
applied to the data, model training configurations, and the evaluation metrics employed to
assess the performance of the models.

Chapter 6 presents and discusses the results obtained from the models, offering an overview
of the crowdedness patterns observed, the prediction results under different scenarios using
various models, and a proposed method for analyzing crowdedness shifts within the transit
network.

Chapter 7 concludes the thesis by summarizing its key contributions and offering insights
into potential future research directions. Special emphasis is placed on furthering research
in the area of crowdedness prediction in urban transit systems, particularly in the context of
special event scenarios.

The thesis overview structure is shown in Figure 1.

Chapter 1. Introduction

Chapter 2. Literature Review

Chapter 3. Dataset Development

Chapter 4. Crowdedness Pattern
Evaluation Models

Chapter 7. Conclusion and Outlook

Chapter 5. Experiment Setup

Chapter 6. Result and Discussion

Figure 1 Structure of thesis
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2. Literature Review

2.1. Traffic Forecasting

Traffic forecasting is an essential tool in urban planning and the efficient operation of trans-
portation systems. As cities continue to urbanize, the growing demand for transportation
systems, particularly public transport, has made the accurate prediction of traffic flows in-
creasingly important (Balcombe et al., 2004). Traffic forecasting involves predicting not only
road traffic but also flows in public transit, rail systems, and pedestrian networks. This variety
in traffic types makes forecasting a challenging task, requiring models capable of handling
both spatial and temporal dependencies. The dynamic nature of traffic, influenced by fac-
tors like time of day, special events, and weather conditions, has led to the evolution of more
advanced traffic prediction methodologies (Ermagun and Levinson, 2018).

Traditional traffic forecasting models have predominantly focused on road traffic, with the main
goal being congestion reduction and vehicle flow improvement (Vlahogianni et al., 2014).
These models typically employ statistical methods, which use historical traffic data to make
short-term predictions. However, public transportation has only recently become a significant
focus in forecasting studies. Models addressing public transport aim to predict passenger
flows, evaluate operational efficiency, and handle demand fluctuations due to events or sea-
sonal changes (Vlahogianni et al., 2014). The inclusion of these variables adds another layer
of complexity, necessitating a broader approach to traffic forecasting.

Accurate traffic predictions rely heavily on the diversity and quality of data sources. Tradi-
tionally, fixed-position sensors, such as inductive loops, magnetic sensors, and video proces-
sors, have been used in ITS to monitor vehicle counts and classify traffic at specific points.
However, these sensors offer only localized insights and are spatially limited to particular
intersections or road segments (Ermagun and Levinson, 2018). To address this limitation,
mobile sensors, primarily using GPS-enabled devices in vehicles or smartphones, provide a
more dynamic and widespread view of traffic patterns. These mobile sensors contribute to
real-time predictions by tracking vehicle trajectories, speeds, and congestion levels (Jin et al.,
2016). GPS-based data, coupled with vehicle-to-infrastructure communication systems, can
significantly enhance the granularity of traffic forecasting models.

In public transport systems, smart card data from automatic fare collection systems offers de-
tailed insights into passenger behaviors, such as boarding times, locations, and travel routes
(Pelletier et al., 2011b). However, the availability of smart card data is not universal. In some
cities, for instance, most cities in Germany, automatic fare collection systems are not yet
widely implemented, making it difficult to obtain accurate travel patterns for research or oper-
ational purposes (Transperth, 2018). In cities where this data is available, it has proven highly
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effective for estimating ridership demand and evaluating operational efficiency, although the
lack of alighting information often requires the use of trip-chaining algorithms to reconstruct
complete journeys (Pelletier et al., 2011b).

Crowd-sourced data from platforms such as Waze and Moovit, which gather real-time traffic
information from users, have recently emerged as significant contributors to traffic prediction
models. These platforms allow for real-time traffic monitoring by relying on user-contributed
data to update conditions dynamically, providing an additional layer of insights beyond tradi-
tional fixed sensors (Lau and Sabri Ismail, 2015). Furthermore, social media platforms like
Twitter can provide real-time information on events, disruptions, or even public sentiment re-
garding traffic conditions, which can be integrated into forecasting models (Vlahogianni et al.,
2014). Additionally, environmental data such as weather conditions, holidays, and special
events need to be considered when predicting irregular traffic patterns (Ermagun and Levin-
son, 2018). The integration of these various data sources is critical for developing robust
traffic forecasting models capable of adapting to both regular and irregular traffic conditions.

The methodologies used in traffic forecasting have evolved significantly, transitioning from
simple statistical models to advanced machine learning and deep learning techniques. Early
methods like ARIMA have been widely applied for short-term traffic prediction. However,
ARIMA and its seasonal variant SARIMA are limited in handling non-linear relationships and
spatial dependencies in traffic data (Ermagun and Levinson, 2018). To address this, non-
parametric models such as KNN have been introduced. KNN is capable of handling non-
linearities by comparing new traffic instances to similar historical cases. However, its compu-
tational expense limits its practicality for large-scale datasets (Vlahogianni et al., 2004).

Machine learning techniques, including SVM (Support Vector Machines) and decision trees,
provide more flexibility in handling non-linear patterns. These methods have shown promise
in capturing more complex relationships in traffic data, though they remain sensitive to hyper-
parameters and require careful tuning to generalize across various traffic conditions. Despite
their advantages, these methods often struggle with large-scale urban traffic data due to their
computational costs and sensitivity to parameter tuning (Ermagun and Levinson, 2018).

The advent of deep learning has marked a significant shift in traffic forecasting. Models
like LSTM networks are particularly effective at capturing temporal dependencies, making
them well-suited for forecasting dynamic traffic patterns (Ma et al., 2015). LSTM networks,
by preserving long-term dependencies, outperform traditional time-series models in scenar-
ios where traffic patterns exhibit significant temporal variations. More recently, GNN have
emerged as a leading approach for capturing spatial dependencies in traffic data. GNN
model traffic systems as graphs, with intersections, stations, or road segments represented
as nodes and traffic flow as edges (Wu et al., 2021). Hybrid models that combine GNNs with
recurrent neural networks, such as the DCRNN (Diffusion Convolutional Recurrent Neural
Network), have demonstrated success in capturing both spatial and temporal dependencies,
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offering improved performance over traditional models (Li et al., 2018).

In summary, the combination of increasingly diverse data sources and advanced modeling
techniques—ranging from traditional statistical models like ARIMA to more complex models
like LSTM and GNN, has significantly improved the accuracy of traffic forecasting. However,
challenges remain, particularly in integrating real-time data sources and improving model
interpretability for practical applications in urban traffic management.

2.2. GNN for Traffic Forecasting

GNN have emerged as a powerful tool for traffic forecasting, particularly when dealing with
graph-structured data, such as transportation networks. In these systems, traffic nodes, such
as intersections or public transport stations, are modeled as graph nodes, and the flow of
traffic between them is represented by edges. This graph-based approach is especially well-
suited to capturing the complex spatial dependencies inherent in urban traffic networks (Ye
et al., 2022). Unlike traditional neural networks, which struggle to represent non-Euclidean
data, GNNs are specifically designed to operate on graphs, making them ideal for modeling
transportation systems. Figure 2 provides a general overview of GNN architecture.

Figure 2 A genereal overview of GNN architecture

The earliest versions of GNNs were extensions of RNN (Recurrent Neural Network)s, specif-
ically tailored to handle graph-structured data (Scarselli et al., 2009a). However, the intro-
duction of convolutional GNNs marked a significant advancement, enabling more efficient
learning from graph data through spectral and spatial convolutions. These approaches uti-
lize either spectral methods, which operate in the Fourier domain, or spatial methods, which
aggregate information from neighboring nodes, to learn effective node representations (Wu
et al., 2021). This capability has made GNNs particularly useful in traffic forecasting, where
both spatial and temporal dependencies must be modeled to capture the dynamic nature of
traffic flows.

A notable example of a successful GNN-based model is the STGCN (Spatio-Temporal Graph
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Convolutional Network) (Yu et al., 2018). STGCN combines GNNs with RNNs to model spatial
dependencies between traffic nodes (e.g., stations, intersections) and temporal dependen-
cies across different time intervals. By leveraging this hybrid approach, STGCN can capture
both spatial relationships within the transportation network and temporal trends in traffic flow.
These hybrid models have demonstrated remarkable success in improving the accuracy of
traffic forecasting, especially in complex, dynamic urban environments. Li et al. (2018) intro-
duced the Diffusion Convolutional Recurrent Neural Network (DCRNN), which extends this
concept by employing a diffusion process to capture spatial dependencies while using re-
current neural networks to model temporal dependencies. DCRNN has shown significant
improvements in handling irregular traffic flows and predicting traffic conditions in urban set-
tings. Another recent example is the ADSTGCN (Adaptive Deeper Spatio-Temporal Graph
Convolutional Network), which adapts both the graph structure and hidden layer connections
dynamically to improve multi-step traffic forecasting, as demonstrated by Cui et al. (2023).

In recent years, attention mechanisms have been integrated into GNN architectures, further
enhancing their predictive power. The attention mechanism is a technique that allows models
to focus selectively on the most relevant parts of the input, dynamically adjusting the weight
or importance given to each input feature. Originally inspired by human cognitive processes,
attention mechanisms have been widely used in NLP (Natural Language Processing) and
computer vision to improve model interpretability and performance by identifying the most
salient parts of the data (Vaswani et al., 2017).

When applied to GNNs, attention mechanisms allow the model to dynamically prioritize cer-
tain nodes or edges in the graph based on their relevance to the task at hand. For traffic
forecasting, this means that nodes or edges with higher levels of influence on overall traffic
flow or congestion are given more weight in the model’s predictions. For instance, during rush
hour or special events, certain intersections or stations may become more critical, and the
model can focus its attention on these areas, leading to more accurate predictions of traffic
surges and congestion (Niu et al., 2021). Attention mechanisms thus help improve the abil-
ity of GNNs to make contextually aware predictions by weighting the relative importance of
different nodes and edges (Zhang et al., 2022).

The use of attention mechanisms in GNNs has shown great promise, particularly in the con-
text of dynamic traffic systems. These mechanisms allow models to adapt to sudden changes
in traffic patterns, such as those caused by special events or accidents. By selectively focus-
ing on the most relevant parts of the graph, attention-enhanced GNNs can improve their
robustness and accuracy in handling real-time traffic forecasting scenarios (Chen and Liu,
2022). For example, Niu et al. (2021) highlights how attention mechanisms assign differ-
ent weights to nodes and edges in transportation networks, allowing the model to adapt to
fluctuating traffic conditions and make more refined predictions.

In conclusion, the integration of GNNs with attention mechanisms represents a significant
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leap forward in traffic forecasting. While GNNs are already well-suited for capturing spatial
dependencies in traffic data, attention mechanisms enhance the model’s ability to focus on
critical nodes and edges, thereby improving both accuracy and interpretability. This combined
approach is particularly useful for handling disruptions in traffic flow, such as those caused
by special events, and is expected to play a vital role in the future development of real-time
traffic forecasting systems.

2.3. Special Event for Traffic Forecasting

Special events, such as concerts, sports games, festivals, and public celebrations, introduce
unique challenges for traffic forecasting due to the sudden and substantial influx of large
crowds, which create irregular and complex patterns in transportation systems. These events
can significantly disrupt regular traffic flows, leading to increased congestion, delays, and the
need for rapid and effective traffic management strategies (Fernando, 2019). The complexity
lies in the temporal and spatial concentration of attendees, which often leads to surges in
transportation demand that cannot be captured by traditional forecasting models based solely
on historical data (Villiers et al., 2019).

Special events can be categorized in several ways depending on their nature and scale. One
common method is to distinguish between planned and unplanned events. Planned events,
such as concerts, festivals, and sporting events, are typically scheduled well in advance,
allowing authorities to anticipate and mitigate traffic impacts. In contrast, unplanned events,
such as accidents or spontaneous gatherings, are unpredictable and thus more difficult to
manage effectively (Villiers et al., 2019). Another useful categorization differentiates between
short-term and long-term events. Short-term events typically last only a few hours or a day,
while long-term events may span multiple days or even weeks, as seen with major festivals
or conventions (Goodwill and Joslin, 2006).

Additionally, special events can be categorized based on their location and size. For in-
stance, large-scale urban events like marathons or citywide festivals require different traffic
management strategies compared to localized events, such as a sports game at a stadium
(Noursalehi et al., 2018). Events held in central urban areas generally pose more significant
traffic challenges than those in suburban or rural locations, as they interact with the already
dense traffic patterns of city centers (Tempelmeier et al., 2020).

However, special events, particularly large-scale planned events, exert significant influence
on traffic patterns. The influx of attendees creates a surge in transportation demand, often
exceeding the capacity of the existing infrastructure (Fernando, 2019). Traffic congestion
around event venues typically occurs in two waves: first, as attendees arrive at the venue,
and second, as they leave. Both inbound and outbound traffic surges require efficient traffic
management strategies to avoid severe delays and gridlock. This surge in demand poses
unique challenges for traffic forecasting and management. Traditional traffic forecasting mod-
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els, which typically rely on historical data and assume stable traffic patterns, struggle to cap-
ture the nonlinear and stochastic nature of traffic surges during special events. For example,
models like ARIMA or simple regression approaches fail to capture the complex, nonlinear
effects that large-scale events can impose on urban transport systems (Carvajal and Garcia-
Colon, 2003). The limitations of these models have driven researchers to explore more ad-
vanced forecasting techniques that incorporate real-time data and external factors.

Recent advances in data collection technologies, such as GPS-enabled devices, smart cards,
and social media platforms, have provided valuable real-time data that can be integrated
into traffic forecasting models to capture the dynamic nature of traffic surges during special
events. For instance, social media platforms such as Twitter and Facebook provide real-time
updates on event attendance, road closures, and public sentiment, which can be leveraged to
improve the accuracy of traffic predictions (Lau and Sabri Ismail, 2015; Zhang et al., 2022). In
public transport systems, smart card data has become a vital source of information, offering
detailed insights into passenger flows, boarding times, and locations, particularly during large-
scale events. However, one of the main challenges in utilizing smart card data is its limited
availability in certain regions or systems that do not use automated fare collection (Pelletier
et al., 2011b).

Recent developments in deep learning have further improved the accuracy of traffic predic-
tions for special events. For instance, Xue et al. (2022) proposed a MDB-HDNN (Multivari-
ate Disturbance-based Hybrid Deep Neural Network) that has demonstrated superior perfor-
mance in modeling the spatio-temporal dependencies inherent in traffic data during special
events. Yu et al. (2018) generated a GNN-based model that is particularly adept at capturing
the intricate relationships between traffic nodes, such as stations or intersections, and excels
at dynamically adjusting predictions based on real-time updates from the surrounding event
environment. These kinds of deep learning models are capable of incorporating real-time
data and external factors such as weather, public sentiment, and event schedules, providing
a more holistic view of traffic conditions. These models not only improve predictive accuracy
but also help transit agencies design better traffic management strategies. By incorporating
real-time data and external factors like weather and social media trends, these models pro-
vide a more comprehensive understanding of how special events will impact traffic, enabling
authorities to make informed decisions about congestion mitigation measures (Goodwill and
Joslin, 2006).

2.4. Literature Gaps

Despite the substantial progress made in traffic prediction and forecasting in recent years,
several critical gaps remain in the literature that need further attention. This review has iden-
tified the following shortcomings in the existing body of work, specifically in relation to public
transport networks, the use of diverse data types, and considerations of special event sce-
narios.
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Firstly, there is a limited focus on public transport forecasting in the existing research on traffic
prediction. In a comprehensive review of 146 traffic prediction studies utilizing GNN (Jiang
and Luo, 2022), only a small subset of research, amounting to just 6% of the collected studies,
concentrated on urban transit networks and public transportation systems. Specifically, out
of 118 journal papers and 30 conference papers published in 2022, only 9 studies were
dedicated to subway flow prediction, and most of these relied on data from AFC (Automatic
Fare Collection) systems, such as smart card data. This reveals a significant imbalance in
research priorities, with the majority of efforts concentrated on road traffic prediction. While
road traffic studies are undeniably important, this disproportionate focus fails to address the
growing need for accurate forecasting in public transportation, especially in rapidly urbanizing
cities where efficient transit management is crucial.

Secondly, while there is a growing body of literature on crowdedness patterns and traffic
forecasting models, many of these studies primarily rely on publicly available datasets, such
as smart card data or automatic passenger counting data. For instance, studies such as
(Chen et al., 2020) and (Li et al., 2017) leverage transit smart card data for special event
forecasting. However, the availability of such data varies significantly across regions. For
instance, in Germany, the adoption of AFC systems is not uniform across all cities and public
transport lines. While cities like Bonn have implemented modern fare collection systems
that rely on contactless payment technologies, other areas still lack comprehensive smart
card systems (GmbH, 2020). This inconsistency in data availability presents a significant
challenge, while few have explored how heuristic data, such as social media trends or ad-hoc
survey data.

Furthermore, much of the existing work on both road traffic and public transport forecasting
tends to focus on predictions at specific points or individual stations rather than consider-
ing the entire network or interrelationships between multiple nodes across the system. For
instance, studies like (Noursalehi et al., 2018) explore station-level forecasting but do not
fully integrate the broader network effects, particularly the dependencies between stations
or nodes in complex urban transit systems. Network-based forecasting models, especially
those incorporating graph structures, remain underexplored, limiting the models’ capacity to
capture intricate spatial and temporal dependencies.

Finally, the impact of special events on traffic forecasting has been widely overlooked in the
literature. Special events, including planned events such as concerts, sports games, and
festivals, as well as unplanned disruptions, can significantly alter traffic and passenger flow
dynamics. Only a few studies, such as (Villiers et al., 2019) and (Kumar and Khani, 2021),
explicitly focus on special event scenarios, and these often pertain to road traffic. The dearth
of research addressing how special events impact public transportation systems, particularly
in an urban transit network context, leaves a critical gap in forecasting models’ ability to
perform reliably in real-world situations.
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In summary, the key gaps identified from the existing literature are as follows:

• Limited researches focus on public transport forecasting, with most studies prioritizing
road traffic systems.

• A reliance on publicly available datasets without incorporating heuristic data, which could
enhance forecasting accuracy, especially under dynamic and irregular conditions.

• Most forecasting models are point-based, lacking comprehensive network-level analyses
that account for interrelationships between different nodes or stations.

• Few studies consider the impact of special events on traffic and public transport systems
despite the frequent occurrence and potential significant disruption of such events.

These gaps highlight the need for further research to improve the robustness and applicability
of traffic forecasting models, particularly in the context of public transport systems and the
challenges posed by special events.
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3. Dataset Development

In this section, we present the preparation of the dataset used in the models. In our research,
to effectively model crowdedness at public transport stations under both regular conditions
and special event scenarios, we utilize three key data subsets: special event data, public
transport network data, and station-related temporal data. The following sections will detail
the contents and collection methods of each subset.

3.1. Public Transport Network Spatial Data

Unlike many previous studies that focus solely on isolated stations, our research emphasizes
the flow of passengers throughout the transport network and the interconnected influence
between stations when predicting passenger flow. Hence, obtaining the entire public trans-
port network as spatial data is necessary. There are two kinds of spatial data desired. One
is network topology data, and the other is coordinates of stations. After defining the spatial
scope of our study, we collected the corresponding urban rail transit network map. This data
captures the structure of the public transport network, including the relationships between
stations and transit lines. The network topology data will be utilized in various ways in subse-
quent stages of the research. For instance, it will be used to construct the adjacency matrix
for GNN models or to analyze passenger flow transfers across different stations within the
network. By incorporating the spatial structure of the network, our methodology goes beyond
single-station predictions, enabling more comprehensive modeling of how passenger flow
propagates through the entire transit system. This holistic approach allows a more accurate
representation of real-world dynamics and enhances the model’s ability to capture complex
interactions within the public transport network.

With a list of stations in the research scope, we utilize the geocoding (Open Street Map,
2024) API of OpenStreetMap to obtain the latitude and longitude of each station to build the
coordinate dataset. In later procedures, this dataset will be used to calculate the geometric
distance between stations to construct features.

3.2. Special Event Data

Special events, such as concerts, sports events, and fairs, can lead to a significant increase in
traffic demand, exerting substantial influence on public transportation usage and passenger
flow. These events can create crowding patterns that differ from regular conditions, posing
challenges for accurate passenger flow forecasting. Therefore, it is essential to collect data
on special events occurring within the spatio-temporal scope of our study to construct a ded-
icated special event dataset. The further usage of this dataset enables the model to adapt to
and capture these unique patterns, improving performance under special event scenarios. It
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will also be used to test the robustness of the models by evaluating their predictions during
both regular and special event conditions.

The dataset includes several key components. For each event corresponding to one or more
public transport stations, we collect the event’s start and end times along with details of the
associated stations. Table 1 outlines the data’s attributes and descriptions. The definition of
’station(s) affected by the event’ can vary based on different criteria. For instance, a specific
distance, such as Euclidean distance, Manhattan Distance, or walking distance catchments,
could be used to define the affected area. Additionally, official public transport information
provided by the event organizers may serve as a more precise means of defining affected
stations. Our research adopts the latter approach, relying on official transport information to
delineate the relevant stations.

Attribute Description

event Name of the special event.

start_time The start time of the event. In
’YYYYMMDD-HHMM’ format.

end_time The end time of the event. In ’YYYYMMDD-
HHMM’ format.

city City where the event takes place.

line Public transportation line(s) corresponding
to the event location.

station Public transportation station(s) affected by
the event.

Table 1 Attributes of the special event dataset

3.3. Station-Related Temporal Data

Station-related temporal data refers to time-series data collected at public transport stations
that capture dynamic changes in passenger flow or crowdedness over time. This data can
be gathered through various sources, such as sensors, smart traffic card systems, or crowd-
sourced data from mobile applications and social media platforms. Examples from prior re-
search include AFC data from smart card systems, which provide detailed information on
passenger entry and exit times, and data from GPS-enabled mobile apps that track passen-
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ger movement patterns. Heuristic data derived from social media check-ins and posts have
also been utilized to estimate public transport usage during specific time intervals (Cheng
et al., 2021a,b; Pelletier et al., 2011a).

This data is typically collected at regular intervals to create a continuous time series that
represents the real-time or near-real-time crowdedness at stations. Once gathered, the raw
data can be processed and transformed into meaningful features that characterize or relate
to the crowdedness of the station. These features, in turn, are used to model and predict
crowdedness at different stations under both regular and special event scenarios.

We have now completed the introduction of the dataset construction methodology. This
method allows us to capture passenger flow characteristics in the public transportation sys-
tem from both spatial and temporal dimensions, enabling the analysis of crowding patterns
under various spatiotemporal conditions. This approach provides a viable framework for ob-
taining datasets in studies of this nature.
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4. Crowdedness Pattern Evaluation Models

This chapter presents the methodology employed to evaluate the crowdedness patterns
within the public transportation system. First, we provide an overview of the framework used
to approach the evaluation and define the tasks. Following this, we introduce the models
designed to analyze and predict crowdedness using the previously constructed dataset. A
range of models, categorized into statistical and deep learning approaches, are implemented
to achieve this objective. Notably, this research proposes a neural network model based on
GNN, APT-GCN. Finally, the modeling of the crowdedness shift will be discussed.

4.1. Framework and Definition

The methodology is structured into two main components within the pipeline. Using the
dataset collected and processed in previous stages, which captures spatial and temporal
crowdedness of public transportation system dynamics, the first task involves forecasting
crowdedness through various prediction models. The second component builds upon the
outputs from the first, utilizing the attention weights from the APT-GCN model to measure the
crowdedness shift along transit lines. Figure 3 shows the general framework of the method-
ology.

Following this, we define the problem for both subtasks. Table 2 provides a summary of the
variables used in this chapter.

Variable Description

Basic definition variables

G Graph to describe public transport network.

V Set of stations, V = {v1, v2, . . . , vN}.

N Station set size, number of stations.

E Edge of graph represent the connection between stations.

A Adjacency matrix.

Ã Ã = A+ I, representing adjacency matrix with seld-loop.

Xt Attribute matrix. Xt denotes the observed data for all stations at time t.
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Table 2 – Conti.

Variable Description

M Number of attributes.

yt Popularity at time t.

T Data collection interval in munites.

st+i Time seires. Time t is the start point, and the length of this vector is L.

L Length of time series.

Prediction model related variables

f(·) Prediction function mapping inputs data to popularity y.

p The order of autoregression (AR) part in ARIMA model.

q The order of moving average (MA) part in ARIMA model.

d The order of differencing.

✏t The error at time t in regression models.

� Coefficients for the feature X.

k Number of nearest stations in the K-Nearest Neighbors model.

�
2 Variance of the Gaussian Process model.

l Length scale parameter in Gaussian Process with RBF (Radial Basis Func-
tion) kernel.

W Weights for layers or units in neural networks.

b Bias items.

h
(l) Output of layer l in neural networks.

it Input gate of LSTM unit.

ft Forget gate of LSTM unit.
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Table 2 – Conti.

Variable Description

ot Output gate of LSTM unit.

C̃t Candidate cell content at time step t.

Ct Updated cell state at time t.

ht Hidden state at time t.

zt Update gate in GRU (Gated Recurrent Unit) unit at time t.

rt Reset gate in GRU unit at time t.

h̃t Candidate hidden state at time t.

D̃ Degree matrix, D̃ =
P

j Ãij .

�(·) Activation function.

✓
(l) Parameter of layer l + 1.

pv Position embedding for node v.

L(·) Loss function of unsupervised embedding model.

Crowdedness shift modeling related variables

evu Attention coefficient.

↵
k
vu Normalized attention coefficient of k-th attention head.

ut Crowdedness shift feature.

P Crowdedness shift matrix.

vi Weighted in-degree centrality.

vo Weighted out-degree centrality.

ve Weighted eigenvector centrality.

vp PageRank centrality.
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Table 2 – Conti.

Variable Description

Table 2 Summary of variable notations

Definition 1 Public Transport Network G. A public transport network is described as an un-
weighted, undirected graph G = (V,E), representing the inherent typologies of public trans-
port lines. Here, the graph’s node set V = {v1, v2, . . . , vN} represents the set of stations,
where N is the number of stations. The set of edges E represents the connections between
stations, with an edge existing between each pair of adjacent stations.

Definition 2 Adjacency Matrix A
N⇥N . The adjacency matrix A 2 RN⇥N is a binary matrix

that represents the connections between stations in the public transport network G. Each
element aij in the matrix is defined as follows:

aij =

8
<

:
1 if there is an edge between station vi and station vj ,

0 otherwise.
(4.1)

Definition 3 Attribute Matrix X
N⇥M . The features of stations during observation time are

represented by the feature matrix Xt 2 RN⇥M , where M denotes the number of attributes,
which include the popularity y along with other features. At time t, attribute matrix Xt 2 RN⇥M

represents the status at each node.

Definition 4 Time Series. Time series s
L⇥N⇥M
t+i is a vector consisting of a list of attribute

matrices, where L is the length of time series. i is the number of the intervals. Thus the
length of this vector L equals to i+ 1. st+L can be denoted by:

st+i = [Xt, Xt+1, . . . , Xt+i] (4.2)

Defination 5 Multi-Step Popularity Forecasting. The first task is framed as a multi-step fore-
casting task that focuses on short-term traffic prediction. The goal is to forecast the popularity
at future intervals, treating popularity as the target variable. The aim is to learn a function f

that maps the public transport network G and a time series st�i of length i+1 to future n-step
predictions of popularity y for each station. This forecasting model can be formally described
as follows:
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Figure 3 General framework of forecasting crowding pattern evolution

(yt+1, . . . , yt+n⇥T ) = f (G, st�i) (4.3)

Where st�i represents the time series containing the attribute metrics in the past i interval,
and yt is the popularity at the timestamp t. When n = 1, this multi-step forecasting model
degenerates into a single-step popularity forecasting model.

Defination 6 Crowdedness Shift Features ut 2 RN ·L. The crowdedness shift feature is
designed to represent the contributions to the popularity at each station from all other stations
in the network across different time steps. For a given station i, the features contain the
influence of each other station j 6= i in the network, along with the historical time-series data
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across L previous time steps.

4.2. Feature Engineering for Station-Related Temporal Data

In this section, we discuss the process of feature engineering. Beyond the current crowded-
ness index, which serves as the dependent variable, we have constructed eleven groups of
features for the station-related temporal dataset. We begin by introducing the property of the
station-related-temporal data, i.e., the crowdedness data. Following this, calculation methods
for these features will be introduced. A comprehensive list of the generated features, along
with their detailed descriptions, is provided in Table 4.

4.2.1. Crowdedness Data

To describe the level of crowdedness at specific transit stations during specific times, we
utilize the term popularity as an indicator of station crowdedness. Regardless of the data
source, the chosen crowdedness data should include the following attributes: current popu-
larity, which directly represents the level of crowdedness at the station at a given time, and
historical popularity, which provides an overview of typical busy periods at the station based
on past observations. In our dataset, two additional attributes—visit duration and wait time es-
timation—are included to capture passenger behavior more comprehensively (Google, n.d.).
However, these attributes are not mandatory for crowdedness estimation at this feature engi-
neering step. All of these attributes are listed in Table 3 and serve as features for modeling
or as raw data for constructing additional features in the analysis.

Attribute Description

Current Popularity Crowd level at a given POI at the present
time.

Historical Popularity Average popularity over the past several
weeks, providing a value for each hour of
each day of the week.

Visit Duration Average time customers typically spend at
a specific POI, estimated from visit patterns
over recent weeks.

Wait Time Estimates An estimate of the wait time a customer
would experience before receiving service
at different times of the day.

Table 3 Crowdedness data attributes
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4.2.2. Special Event

This feature group includes the attribute ’event’, which serves as a special event label for
the popularity data. This label is intended to capture the distinct passenger flow patterns
associated with special events. For each identified special event, the start and end times
are recorded, as detailed in Table 1. Utilizing this information, we introduce a new feature,
’event’, to reflect these unique temporal dynamics. The specific indicator is expressed in 4.4,
designating a buffer time before the start and after the end of the event. The value of ’event’
for the corresponding station j will be given according to the distance from the special event
in the time domain.

eventij =

8
<

:
10�

j
|d|
T

k
if |d|  tb +

�tevent
2

0 Otherwise.
(4.4)

In which |d| denotes the minimum distance between the timestamp and the event start or end
time, defined as:

|d| = min(|tij � tstart|, |tij � tend|) (4.5)

Where tij is the timestamp i at station j, eventij is the event feature at tij for station j,
tstart and tend represent the start time and end time of event. d denotes the event duration
in minutes while �tevent denotes the duration of the event in minutes, tb is the buffer time
around the event in minutes, i.e., the time before and after the event where the feature still
has non-zero values. T is the data collection interval in minutes. b·c is the floor function that
rounds the value down to the nearest integer.

4.2.3. Station Similarity

This feature group includes statistical values of popularity from k-most similar stations in the
same network. Specifically, two types of distances are employed to describe the similarity of
stations: DTW (Dynamic Time Warping) distance to capture the similarity of time series and
geometric distance to represent the physical distance in the real world. The DTW distance
can be computed as,

dDTW (sp+n, sq+m) = min

0

@
s X

(i,j)2⇡

(sp+n,i � sq+m,j)2

1

A (4.6)

Where dDTW (sp+n, sq+m) denotes the DTW distance between two time series starting at
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indices p and q, with length n + 1 and m + 1 respectively, representing the similarity of
crowdedness pattern. ⇡ is a warping path.

In this study, we calculate the geometric distance between stations as follows:

dgeo(i, j) =
q
(lati � latj)2 + (loni � lonj)2 (4.7)

where dgeo(i, j) represents the geometric distance between two station i and j. lati, latj are
the latitudes while loni, lonj are the longitudes from spatial dataset 3.1.

In total, four features are derived from this group: the average value and standard deviation of
popularity from the k-nearest stations based on both DTW distance and geometric distance.

4.2.4. Station Clustering

Finally, to further capture station features with similar crowdedness patterns, we apply K-
means clustering to the stations within the same network based on the obtained features.
K-means is an unsupervised clustering algorithm that aims to minimize intra-cluster variance
to form groups. The algorithm requires specifying the number of clusters. Given n clusters,
the K-means algorithm seeks to choose centroids µj that minimize the following objective:

J =
nX

j=1

X

xi2Cj

kxi � µjk2 (4.8)

where J represents the sum of squared distances between each data point xi and the cen-
troid µj of the cluster Cj , and n is the number of clusters.

Since the optimal number of clusters is not predetermined in our case, we utilize silhouette
analysis (Rousseeuw, 1987) to determine the best number of K-means clusters. By calcu-
lating and maximizing the silhouette scores, this method ensures that each point in a cluster
is as far away as possible from neighboring clusters while being close to its own cluster’s
centroid. The silhouette score is given by:

s(i) =
b(i)� a(i)

max{a(i), b(i)} (4.9)

Where s(i) is the silhouette score for data point i, a(i) is the average intra-cluster distance
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(i.e., the average distance between i and all other points in the same cluster), and b(i) is
the average nearest-cluster distance (i.e., the average distance between i and points in the
nearest neighboring cluster).

Through the clustering algorithm, we obtain classification information for each station. At each
time stamp, we calculate the mean and standard deviation of the popularity values for stations
in the same cluster, which serve as the final two features for stations within the cluster. With
this, the construction of station-related temporal data is complete.

Category Feature Description

Dependency
value

y Current popularity.

Time related
feature

week_year Week number of the year.

day_week Day number of the week, Monday =
1, Tuesday = 2, and so on.

no_interval Number of intervals in a day.

interval_weekly Number of intervals in a week.

interval_of_year Unique interval of the year.

Special event event Event index, equals 1 if during an
event, otherwise 0.

Rating
rating Overall user rating or satisfaction

level for the station.

rating_n Number of reviews contributing to the
overall rating.

Station type station_type_X Dummy features to define the type of
subway station. Equals 1 if the station
belongs to type X, otherwise 0. X =
{regional railway, subway, tram}.

Network scale network_index Number of rail transit lines in the cur-
rent city.
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Table 4 – Conti.

Category Feature Description

City city_X Dummy variable for city X, equals 1 if
the station is in city X, otherwise 0. X
2 {Set of cities}.

Holiday holiday Holiday label, equals 1 during a na-
tional holiday, otherwise 0.

Weather

temp Temperature.

rhum Humidity.

prcp Precipitation.

wspd Wind speed.

Historical
popularity

h_p Popularity at this time on this day in
history.

ha_p Popularity at this time on the previous
day in history.

hb_p Popularity at this time on the next day
in history.

h_w Waiting time data (in minutes) for this
time on this day in history.

ha_w Waiting time data (in minutes) for this
time on the previous day in history.

hb_w Waiting time data (in minutes) for this
time on the next day in history.

y_1, y_2, y_3 Popularity from the last three inter-
vals.

Nearest station knn_y_i_mean, knn_y_i_-
std

Average and standard deviation of
popularity from the k-nearest stations
using DTW distance (i 2 (1, k)).
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Table 4 – Conti.

Category Feature Description

Nearest station geo_knn_y_i_mean, geo_-
knn_y_i_std

Average and standard deviation of
popularity from the k-nearest stations
using geometric distance (i 2 (1, k)).

Station cluster cluster_mean, cluster_std Average and standard deviation of
popularity data from stations in the
same cluster.

Table 4 Station feature data description

4.3. Statistical Models

Statistical models refer to techniques that assume specific probabilistic structures or patterns
within the data to make predictions. Below, we introduce both traditional regression mod-
els and machine learning models used in this research, including Linear Regression, GPR
(Gaussian Process Regression), KNN, GBR (Gradient Boosting Regression), SVR (Support
Vector Regression), and MLP Model.

4.3.1. Linear Regression

Linear regression is one of the most basic and widely applied regression models, especially
useful for straightforward datasets. Given the attribute matrix Xt, we can directly apply linear
regression to predict the popularity at time t. This method is simple but efficient and effective,
Although it may struggle to capture complex relationships beyond the provided features. The
linear regression model is given as:

yt = �0 +
MX

j=1

�jXt,j + ✏t (4.10)

Where:

• yt is the predicted popularity at time t.

• �0 is the intercept.

• �j are the coefficients for the features Xt,j , where j is the index for the feature in the
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attribute matrix.

• ✏t is the error term.

4.3.2. Gaussian Process Regression

Unlike linear regression, a GPR offers a probabilistic approach, allowing the prediction to
be accompanied by empirical confidence intervals. Furthermore, it is flexible with respect to
different kernels as well. Using the RBF kernel as an example, a GPR can be formulated
as:

yt ⇠ GP(m(Xt), k(Xt, Xt0)) (4.11)

k(Xt, Xt0) = exp

✓
�kXt �Xt0k2

2`2

◆
(4.12)

Where:

• m(Xt) is the mean function of the process, often assumed to be zero.

• k(Xt, Xt0) is the covariance function (kernel) that defines the relationship between the
features of different stations.

• ` is the length scale parameter that controls the smoothness of the predictions.

4.3.3. K-Nearest Neighbors

KNN assumes that stations with similar attributes will have similar popularity predictions. The
predicted popularity at a given station vi can be formulated as the average popularity of its
k-nearest stations:

yt,i =
1

k

kX

j=1

yt,j (4.13)

Where:

• yt,i is the predicted popularity for station vi.

• yt,j is the observed popularity at the j-th nearest station.

• k is the number of nearest neighbors considered.

4.3.4. Gradient Boosting Regression

GBR is an ensemble learning method that builds models sequentially, where each model
corrects the errors of the previous one. The GBR model can be expressed as:
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yt =
MX

m=1

↵mhm(Xt) (4.14)

Where:

• yt is the predicted popularity.

• hm(Xt) is the m-th weak learner, often a decision tree.

• ↵m are the weights assigned to each weak learner.

4.3.5. Support Vector Regression

SVR aims to identify the most significant features for prediction by solving an optimization
problem. Given the feature matrix X 2 RN⇥(M�1), SVR solves the following primal prob-
lem:

min
w,✏

1

2
k�k2 + C

NX

i=1

✏i (4.15)

subject to yi(w
T
Xi + b) � 1� ✏i, ✏i � 0 (4.16)

Where:

• w are the model weights.

• ✏i are the slack variables for errors.

• C is the penalty parameter controlling the trade-off between margin size and misclassifi-
cation error.

The dual problem is given by:

min
↵

1

2

X

i,j

↵i↵jk(Xi, Xj)�
NX

i=1

↵iyi (4.17)

subject to

NX

i=1

↵iyi = 0, 0  ↵i  C (4.18)

Where ↵i are the Lagrange multipliers, and k(Xi, Xj) is the kernel function. Finally, the
prediction is made as:
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yt =
NX

i=1

↵ik(Xt, Xi) + b (4.19)

Where b is the bias term, and k(Xt, Xi) is the kernel function that measures the similarity
between station features.

4.3.6. Multi-Layer Perception

The MLP is a widely adopted neural network architecture, particularly effective for regres-
sion tasks. Unlike traditional linear models, MLP is capable of capturing complex, non-linear
relationships between the input features and the target variable. As shown in Figure 4, the
MLP consists of an input layer, one or more hidden layers, and an output layer, all of which
are connected through weighted directed connections. Once the inputs pass through the
network, they traverse these directed connections between layers and eventually reach the
output layer. Thus, the MLP operates as a forward network, also known as a feedforward
neural network.

Figure 4 An example of MLP network

The computation at each layer and the final prediction can be expressed mathematically as
follows:

h
(l) = �

⇣
W

(l)
h
(l�1) + b

(l)
⌘
, l = 1, 2, . . . , L� 1 (4.20)

ŷ = �o

⇣
W

(L)
h
(L�1) + b

(L)
⌘

(4.21)
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Where h
(l) represents the output of the l-th layer (hidden or output layer), W (l) and b

(l) are
the weight matrix and bias vector at the l-th layer, �(·) is the activation function applied at
each hidden layer, such as ReLU or sigmoid, �o(·) is the activation function applied at the
output layer, typically a softmax function for classification or a linear function for regression,
L is the total number of layers.

During training, the weights are updated through a learning process. The most well-known
learning algorithm for MLPs is backpropagation, where the error is propagated backward from
the output layer to the input layers to adjust the weights. This is mathematically expressed
as:

�W
(l) = �⌘

@L
@W (l)

, l = L,L� 1, . . . , 1 (4.22)

Where: ⌘ is the learning rate, controlling the step size for weight updates, L is the loss
function, typically cross-entropy for classification or mean squared error for regression, @L

@W (l)

is the gradient of the loss function with respect to the weights of the l-th layer.

Unlike traditional regression or statistical models, the performance of deep learning models
like MLPs depends not only on the data and the choice of structural parameters, such as the
number of hidden layers and nodes but also on training parameters like the learning rate and
number of iterations. These factors significantly influence how well the model generalizes to
unseen data.

4.4. Time Series Models

In this section, we will discuss two time series models: ARIMA and LSTM. Unlike the regres-
sion models mentioned previously, time series models do not treat the attribute matrix Xt at
a specific time t for a station as an independent input. Instead, these models consider the
impact of the temporal ordering and position of these values within the sequence. By utiliz-
ing time series st+i as input, time series models can better capture the evolution of patterns
over time, which is crucial for making accurate predictions in dynamic systems such as urban
transport networks.

The main advantage of time series models lies in their ability to capture both short-term fluc-
tuations and long-term trends in data. For example, ARIMA models are designed to handle
linear relationships in time series data, leveraging auto-regression and moving averages to
predict future values based on past observations (Box et al., 2015). In contrast, LSTM mod-
els are particularly well-suited for modeling non-linear temporal relationships and longer-term
dependencies due to their ability to retain memory over long sequences of data (Hochreiter
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and Schmidhuber, 1997). This memory capability makes LSTM models ideal for capturing
the complex, multi-step temporal dynamics often observed in real-world transport systems
(Ma et al., 2015).

4.4.1. ARIMA

The ARIMA model is a classic time series forecasting model that has been widely applied in
transportation prediction, with numerous variations such as SARIMA. The fundamental idea
behind ARIMA is that future values generally follow long-term historical trends but fluctuate
around these trends due to short-term random events. An ARIMA model is composed of AR
and MA components and can be represented as:

ARIMA(p, d, q) : �p(B)(1�B)dyt = ✓q(B)✏t (4.23)

Where:

• yt is the predicted popularity (the target variable).

• c is a constant.

• �p(B) is the autoregressive (AR) polynomial of order p.

• ✓q(B) is the moving average (MA) polynomial of order q.

• d is the order of differencing.

• ✏t is the error term at time t.

Here, p and q are the orders of the AR and MA models, determining the abstraction level of
information extraction. A higher order leads to the loss of some of the original information but
allows the model to better focus on underlying trends and patterns in the data.

Additionally, as a variant of ARIMA, the SARIMA model accounts for seasonal variations in
the data by adding a seasonal component. This seasonal term helps mitigate the effects of
periodic fluctuations that are characteristic of time series data, such as daily, weekly, or yearly
cycles. The general form of the SARIMA model is expressed as:

SARIMA(p, d, q)(P,D,Q, s) : �p(B)�P (B
s)(1�B)d(1�B

s)Dyt = ✓q(B)⇥Q(B
s)✏t

(4.24)

Where:
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• �p(B) is the autoregressive (AR) polynomial of order p.

• ✓q(B) is the moving average (MA) polynomial of order q.

• �P (Bs) is the seasonal AR polynomial of order P .

• ⇥Q(Bs) is the seasonal MA polynomial of order Q.

• (1�B)d is the non-seasonal differencing term.

• (1�B
s)D is the seasonal differencing term.

• s represents the length of the seasonal cycle.

• ✏t is the white noise error term at time t.

• B is the backshift operator such that Byt = yt�1.

ARIMAX (Autoregressive Integrated Moving Average with Exogenous Variables) is another
extension of ARIMA model. In this model, exogenous regressors are incorporated to provide
more information from the external factors when making predictions. This model could be
specified as:

ARIMAX(p, d, q) : �p(B)(1�B)dyt = ✓q(B)✏t +
KX

k=1

�kxt�k (4.25)

Where:

• yt is the predicted popularity (the target variable).

• �p(B) is the autoregressive (AR) polynomial of order p.

• ✓q(B) is the moving average (MA) polynomial of order q.

• d is the order of differencing.

• ✏t is the error term at time t.

• xt�k represents the exogenous variables at lag k.

• �k are the coefficients corresponding to the exogenous variables.

4.4.2. LSTM

LSTM is a variant of RNNs. Unlike Feedforward Neural Networks (FNNs), which process
inputs in a fixed-length manner and lack memory of prior inputs, RNNs are designed to han-
dle sequence data and capture dependencies across time. This makes RNNs particularly
effective in tasks involving sequential data, which is favorable to our time series forecasting
problem.
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RNNs have been extensively studied due to their ability to model temporal sequences. How-
ever, despite their potential, traditional RNNs suffer from certain limitations, particularly the
problem of vanishing gradients, which makes it difficult for them to capture long-term de-
pendencies over extended sequences. This issue often results in poor performance when
modeling long-range temporal dependencies.

To address these limitations, Hochreiter and Schmidhuber (1997) introduced the LSTM net-
work, which modifies the RNN architecture by adding a more sophisticated gating mecha-
nism. LSTMs incorporate input, forget, and output gates, enabling the network to control the
flow of information more effectively and maintain long-term dependencies. Figure 5 illustrates
the structure of an LSTM unit.

Figure 5 The unit structure of LSTM

The expressions governing the operations within an LSTM cell are given as follows:

it = �(Wi[ht�1, xt] + bi) (4.26)

ft = �(Wf [ht�1, xt] + bf ) (4.27)

ot = �(Wo[ht�1, xt] + bo) (4.28)

C̃t = tanh(WC [ht�1, xt] + bC) (4.29)

Ct = ft � Ct�1 + it � C̃t (4.30)

ht = ot � tanh(Ct) (4.31)

Where it is the input gate, controlling how much new information is written to the cell state,
ft is the forget gate, determining how much of the previous cell state Ct�1 is retained, ot
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is the output gate, deciding the amount of cell state to pass through to the hidden state.
The candidate cell state C̃t represents the new cell content at time step t, while Ct is the
updated cell state at time step t. ht is the hidden state at time step t and Wi,Wf ,Wo,WC

are the respective weight matrices, and bi, bf , bo, bC are bias vectors. � is the element-wise
product.

The LSTM network’s architecture overcomes the vanishing gradient problem faced by tradi-
tional RNNs (Cho et al., 2014b), allowing it to capture long-term dependencies in sequence
data.

Unlike the GRU, which has a simpler structure with only update and reset gates, the LSTM
uses three gates—input, forget, and output—along with a cell state that is updated iteratively.
This allows LSTM to balance how much information from previous time steps is remembered
or forgotten and how much new information is introduced at each step. Specifically, the reset
gate Rt in GRU allows the model to forget parts of the past selectively, while LSTMs achieve
finer control with their three gates and separate cell state.

4.5. APT-GCN Model

4.5.1. Overview

In this study, we proposed a spatial-temporal model with a graph attention module enhanced
by a position embedding mechanism (APT-GCN). Fig 6 illustrates the structure of the APT-
GCN model. In the first part, the method to capture temporal-spatial dependencies is based
on the TGCN (Temporal Graph Convolutional Network) proposed by (Zhao et al., 2020). It
begins by taking time series data s for each node, and the adjacency matrix A as input. A
GCN (Graph Convolution Network) is then used to capture spatial features from this data.
The output of the GCN is subsequently fed into a GRU, which allows for the temporal flow
of information across different time snapshots. Following the T-GCN module, the output is
further processed by an attention mechanism designed to integrate historical information from
non-adjacent stations. At the same time, the attention mechanism evaluates the contribution
of other stations at time t to our secondary objective: the modeling of crowdedness shift. This
is accomplished through position embedding, which enhances the attention module’s ability
to incorporate information from distant nodes. Finally, the results from the attention module
are aggregated along the temporal dimension to produce predictions. This model effectively
combines short-term historical data for each node with information from other nodes in the
graph, enabling more accurate predictions of future popularity trends.

4.5.2. Spatio-Temporal Module

Gathering neighbors’ influence via graph convolution layer

GCNs are a type of semi-supervised model introduced by Kipf and Welling in 2016 (Scarselli
et al., 2009b). GCNs enhance traditional CNN (Convolutional Neural Network)s within the
domain of GNN. While CNNs can capture local spatial features in Euclidean space, such
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Figure 6 An overview of the APT-GCN network

as those in images, they fall short in domains like transportation, where spatial dependen-
cies arise from network topological structures. GCNs address this limitation by performing
convolution operations on non-Euclidean data.

The fundamental idea of GCNs is to aggregate features from neighboring nodes and then
transform these features. By stacking k layers, a GCN can capture the features of k-order
neighbors. Given the adjacency matrix A, which represents non-Euclidean graph data, a
GCN typically performs two operations: propagation and transformation. Propagation in-
volves using filters in the Fourier space to capture and aggregate features from first-order
neighbors. The aggregated spatial information is then transformed between layers through
linear transformations or activation functions. Given the feature matrix X and the matrix Ã

representing the network structure, the output of GCN layer l + 1 is computed as follows:

H
(l+1) = �

⇣
D̃

� 1
2 ÃD̃

� 1
2H

(l)
✓
(l)
⌘

(4.32)

where H
(l) is the output of layer l, Ã = A + I denotes adjacency matrix adding self-loop,

I 2 RN⇥N is an identity matrix. D̃ is the degree matrix computed by D̃ =
P

j Ãij . ✓(l) denote
the parameter of layer (l + 1). �(·) represents the activation function. Â = D̃

� 1
2 ÃD̃

� 1
2 is a

pre-process of adjacency matrix.

Thus, a graph convolutional network can be defined as:

H
(l) = g(H, Ã) = �(ÃH(l�1)

W
(l)) (4.33)

Z = g
(n)(X, Ã) = g

⇣
g

⇣
. . . g(X, Â) . . .

⌘⌘

| {z }
n layers

(4.34)

Where n is the number of layers to capture spatial dependencies from n-order neighbors. In
our model, n is set to 2. X is input feature matrix and Z 2 RN⇥C is the final output of GCN
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network.

Gated recurrent units for temporal domain

When addressing transportation issues—whether they pertain to road traffic, rail transit, or
a combination of public transportation types—participants invariably move through a specific
network along the time dimension. In the short term, historical data significantly influences
the prediction of traffic related variables at a given moment. This relationship has been high-
lighted in various studies, which emphasize the importance of incorporating historical data to
enhance the accuracy of traffic forecasts (Żochowska and Pamuła, 2024). Therefore, one of
the primary objectives in traffic forecasting is to capture temporal dependencies effectively.
This goal can be achieved using RNNs, which are designed to handle sequence data and
capture dependencies across time. RNNs have been extensively studied for their ability to
model temporal sequences and their applications in time-series forecasting.

RNNs come in several variants, with Gated Recurrent Units (GRUs) and LSTM units previ-
ously mentioned in (4.4.2) being among the most notable. Introduced by Cho et al. (2014a),
GRUs simplify this structure by combining the input and forget gates into a single update
gate, making them computationally less demanding (Cho et al., 2014a). In the context of our
research, The GRU cell processes the output from the graph convolutional network by:

zt = �(Wz[ht�1, xt] + bz) (4.35)

rt = �(Wr[ht�1, xt] + br) (4.36)

h̃t = tanh(Wh[rt � ht�1, xt] + bh) (4.37)

ht = (1� zt)� ht�1 + zt � h̃t (4.38)

Where zt is the update gate controlling how much of the past hidden state ht�1 is retained in
the current hidden state. rt is the reset gate, which determines how much of the past hidden
state is ignored for the candidate hidden state h̃t. h̃t is the candidate hidden state, computed
based on the current input xt and the previous hidden state ht�1, modulated by the reset gate
rt. ht denotes the final hidden state at time step t, as a combination of the previous hidden
state and the candidate hidden state, weighted by the update gate. Wz,Wr,Wh are the
weight matrices for the update, reset, and candidate hidden state, respectively, while bz, br, bh

are the corresponding bias vectors. � represents element-wise multiplication. In GRU, the
activation function � is the sigmoid activation function, which outputs values between 0 and
1, and tanh is the hyperbolic tangent activation function, which outputs values between -1
and 1.

While both models utilize gating mechanisms to control the flow of information, LSTMs gen-
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erally involve more complex operations, which can lead to longer training times (Chung et al.,
2014). In our study, we evaluated the performance of GRUs and LSTMs on sample data,
as well as the combination of these units with single-layer models. Experimental results in-
dicated that while LSTM and the combined models did not significantly improve accuracy
compared to GRU under the same conditions, they considerably increased the training time.
The GRU layer delivered comparable accuracy to LSTM, with only a marginal improvement
observed when using LSTM. However, this slight accuracy gain came at the cost of a notable
increase in computational time. Therefore, considering the trade-offs between accuracy and
computational efficiency, we ultimately chose GRUs as the recurrent units to capture temporal
information in our model.

4.5.3. Graph Attention Module

As a subset of general traffic prediction, crowdedness forecasting in public transport systems
inherits several characteristics from traffic forecasting while presenting distinct challenges.
At each station, crowdedness is influenced by various factors, including historical passenger
flow, the schedule of arriving and departing trains, inter-station transfers, and new demands,
which all contribute to the dynamic passenger load at any given moment. Public transport
operates on fixed service schedules, leading to periodic contributions from other stations in
the network to the crowdedness at any specific station. Capturing these inter-station rela-
tionships in forecasting is crucial for improving predictive accuracy, especially during special
events where sudden surges in passenger volume can impact multiple subsequent time steps
and nodes within the network (Caroleo et al., 2024). Additionally, modeling the shift in crowd-
edness of these connections, which is another objective of our research, provides valuable
insights into the operation and management of public transport.

The introduction of the graph attention module further enhances the model’s efficiency in ad-
dressing these challenges. In previous modules, GCNs were employed to capture spatial fea-
tures across the network. While GCN layers can access information from n-order neighbors
by stacking multiple layers, this approach becomes inefficient in rail public transport scenar-
ios where passenger flow transfers rapidly. For instance, the total trip duration on Munich’s
U-Bahn Line 6, which comprises 27 stations, is approximately 51 minutes (MVV open data,
2024). This implies that, within a single time interval in the data, passengers could transfer
to most of the stations along the line, considering the data collection interval is relatively long
(e.g., 30 minutes), which is often the case given the heuristic data collection methods and
associated resource constraints. To capture the features of distant neighboring stations, an
excessive number of GCN layers would need to be stacked, resulting in an inefficient and
computationally expensive model.

To overcome these limitations and achieve our goals, we introduce a graph attention mod-
ule to capture non-local dependencies effectively. The graph attention mechanism allows
the model to weigh the importance of each node differently, thus providing a more nuanced
representation of the network. This module is further enhanced with a position embedding
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mechanism proposed by Ma et al. (2021), which helps in integrating historical information
from non-topologically adjacent stations into the current node’s prediction. This mechanism
is particularly effective for non-homophilic graphs, enabling us to capture features from sta-
tions that are not geographically or topologically proximate but share similar characteristics.
This significantly enhances the accuracy of popularity forecasting, especially under special
event conditions.

Our model comprises two graph attention layers and two positional embedding layers that
interact with each other, enhancing the model’s ability to capture complex spatial relationships
within the data. Taking the output from the last section and reshaping it into vectors of node
features, the attention coefficients are computed by

e
k
vu = a(Wkxv + Ukpv k Wkxu + Ukpu) (4.39)

where xv, xu is the vectors of node features, Wk, Uk and ak are the weights in the k-th
attention head. k is the concatenation operation. pv is the positional embedding for node v

computed by,

p
l
v = �(W l

embp
l�1
v ) (4.40)

L(pvv2N , G) =
X

v2N

X

u2N (v)

(�log�(pTv pu)�Q · Eu0 Pn(v)
log(�(�p

T
v pu0 ))) (4.41)

where l is the l-th position embeddings layer, and Wl
emb is the learned weight matrix of

position embedding layer l. Equation 4.41 describes the loss function of the unsupervised
embedding mechanism layers.

The attention coefficients evu are normalized by softmax function:

↵
k
vu = softmaxu(evu) =

exp(evu)P
j2Nv

exp(evj)
(4.42)

Then, a linear transform is applied to gain the output x
0
v by combining neighbors with normal-

ized coefficients,

x
0
v = �(

1

K

KX

k=1

X

u2Nv

↵
k
vuW

kxu) (4.43)
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In conclusion, the APT-GCN model effectively captures the spatial-temporal dependencies in
public traffic networks and efficiently predicts future popularity. The first module captures the
spatial information of topologically adjacent nodes on the public transit lines, as well as the
historical information of the time series. The second module utilizes a graph attention network
with position embedding mechanisms to obtain information on semantically adjacent stations
in crowdedness patterns while providing the attention coefficients for further crowdedness
shift modeling.

4.6. Crowdedness Shift Modeling

4.6.1. Regression Model for Crowdedness Shift Matrix

For public transport systems without an automatic fare collection system that lacks smart card
data, traditional methods such as sample data for calculating the OD (Origin-Destination) ma-
trix are not feasible (Bagchi and White, 2005). However, OD information is crucial at various
stages of traffic engineering, including planning, operation, and management. Generating
the OD matrix requires an awareness of the passenger flow dynamic between stations within
the network. In this section, we leverage the graph attention coefficients derived earlier to
construct time-based station weight features and build a regression model to estimate the
passenger flow volume between stations. It is important to note that in this research, instead
of measuring crowdedness based on real-world concepts like the number of people trans-
ferred per unit of time, we define passenger flow volume as the change in popularity over a
specific time interval.

The approach is as follows: In the previous objective, namely crowdedness forecasting, we
obtained attention coefficients ↵k

ij 2 RL from K attention heads through the APT-GCN model,
which represents the contribution of station j to station i’s popularity at each time step. We
reshape this data into a crowdedness shift feature matrix U 2 RN⇥(N ·L) as follows:

↵ij =
1

K

KX

k=1

↵
k
ij (4.44)

Where ↵ij can be denoted as:

↵ij = [ai,j,1, · · · , ai,j,L] (4.45)

(4.46)
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Then, reshape the matrix as,

ui = [ai,1,1, · · · , ai,N,L] (4.47)

ut = [u1,1, · · · , uN,1, · · · , uN,L] (4.48)

(4.49)

Next, we use the crowdedness shift features ut as the input and the popularity yt as the
dependent variable to train a Lasso regression model. The passenger flow volume is then
calculated as follows:

yt = �0 +
MX

j=1

�j,t�nTut�nT,j + ✏t (4.50)

pt�nT = yt ⇥ �j,t�nT (4.51)

Where yt is the predicted popularity at time t, M is the number of crowdedness shift features,
�j,t�nT represents the coefficients corresponding to the features ut�nT,j , and j is j

th station
on line, and t � nT represent previous n

th interval from current time. Finally, pt denotes the
estimated passenger flow volume matrix at time t.

The objective function for Lasso regression to minimize is,
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Where nsamples is the number of samples, M is the number of crowdedness shift features, yi
is the predicted popularity, and ↵ is the regularization parameter that controls the strength of
the penalty applied to the coefficients.

Since the features are composed of the attributes of station j at each previous interval n, the
coefficient �j,t�nT captures the contribution of the corresponding station to the crowdedness
of the current station. If any coefficient �j,t�nT is negative, indicating reverse flow, we adjust
it by taking the absolute value and adding it to station j’s coefficient �k,t�nT , while setting
�j,t�nT to zero. By summing the estimated passenger flow volumes from all previous inter-
vals, we construct the crowdedness shift matrix P for the entire network. A crowdedness shift
matrix is analogous to an OD matrix in RN⇥N . However, instead of representing the actual
number of passengers, each value in the matrix denotes the passenger flow volume defined
by the crowdedness index, the popularity.
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4.6.2. Network Centrality Analysis

Building on the previously derived crowdedness shift matrix, we now apply network centrality
analysis to further investigate the relationships and significance of stations within the urban
rail transport network. This analysis aims to identify how stations contribute to or absorb
passenger flows and determine their overall importance within the network. Based on the
nature of our study and the characteristics of the collected data, the following centralities
are selected to quantify station influence and connectivity: weighted out-degree centrality,
weighted in-degree centrality, weighted eigenvector centrality, and PageRank centrality.

The purpose of using these centralities is to capture different aspects of station influence:
Weighted out-degree and in-degree centralities are employed to directly express each sta-
tion’s role in either contributing to or absorbing crowdedness within the network. Weighted
eigenvector centrality and PageRank centrality are used to reflect the significance of a station
based on the overall crowdedness shifts in the surrounding area, emphasizing its importance
within the broader network structure.

The following equations define each centrality:

• Weighted In-degree Centrality: This measures the total incoming crowdedness at a station
i, indicating the extent to which the station absorbs passengers.

vi =
NX

j=1

Pji (4.53)

Where Pji is the passenger flow from station j to station i in the crowdedness shift matrix
P , and vi is the in-degree centrality of station i.

• Weighted Out-degree Centrality: This represents the total outgoing crowdedness from
station i, indicating the extent to which the station contributes to the overall crowdedness
in the network.

vo =
NX

j=1

Pij (4.54)

Where Pij is the passenger flow from station i to station j in the crowdedness shift matrix
P , and vo is the out-degree centrality of station i.

• Weighted Eigenvector Centrality: This centrality assigns higher scores to stations that are
connected to other well-connected stations, emphasizing the influence of stations based
on the connectivity of their neighbors.

ve =
1

�

NX

j=1

Pijve,j (4.55)

Where ve is the eigenvector centrality of station i, � is the eigenvalue, and ve,j represents
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the eigenvector centrality of station j.

• PageRank Centrality: This centrality takes into account both the quantity and quality of
connections, giving higher importance to stations that are connected to other influential
stations. The PageRank centrality is defined as:

vp(i) =
1� d

N
+ d

NX

j=1

PjiPN
k=1 Pjk

vp(j) (4.56)

Where vp(i) is the PageRank centrality of station i, d is the damping factor (typically set to
0.85), and Pji represents the crowdedness shift from station j to station i.

In this analysis, the weight of each edge in the graph is defined by the crowdedness volume
from the crowdedness shift matrix rather than using the actual adjacency matrix A of the
physical transport network. This choice is justified because, within the context of this study,
during the observed time intervals (spanning at least one data collection period), stations not
directly adjacent to the physical network may still be considered reachable due to passenger
flow shifts in such a period.
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5. Experiment Setup

This chapter outlines the preparations and configurations for our research. First, the study
area and data preprocessing are introduced, followed by model setup. Then, the evaluation
metrics for the prediction model performance assessment are presented.

5.1. Study Area

Our research focuses on twelve urban transit lines as the primary subjects of analysis. These
lines span eight European cities of varying sizes, collectively encompassing a total of 428
stations, which reflects the considerable scale and diversity of the dataset employed in this
study. Each transit line is treated as an individual public transport network, which is then
analyzed through the models. The popularity data for these stations were collected over a
period of nearly four months, from February 7, 2024, to June 4, 2024.

Special event scenarios are particularly taken into consideration. We have chosen football
matches as a representative example. Football, being one of the most globally popular sports,
frequently draws large crowds, enriching public life but simultaneously imposing substantial
pressure on urban transit systems. In our study, we focus on 12 football clubs from top
European leagues, along with their associated stadiums, which are related to one or more
stations within our study area. The matches held at these stadiums, including both league
and cup games, are classified as special events in our research.

For the purposes of this study, the start time of each match is considered the beginning of
the event. Given the typical 90-minute duration of a football match, along with halftime and
possible added time, we estimate the event duration to be two hours. Thus the end time is set
to two hours after the start. During the data collection period, a total of 122 football matches
took place.

Table 5 provides an overview of the study area, while Table 6 illustrates an example of the
special event data used in this research.
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City Line ID Stops Football Club

Munich U6 Fröttmanning Bayern Munich

Berlin S3 Berlin-Köpenick 1.FC Union Berlin

Madrid Line 10 Santiago Bernabéu Real Madrid

Madrid Line 7 Estadio Metropolitano Atletico Madrid

Madrid Line 12 Los Espartales Getafe

Madrid Line 1 Portazgo Rayo Vallecano

London Piccadilly Arsenal Arsenal

London District Fulham Broadway Chelsea

Newcastle Yellow St James Newcastle United

Marseille M2 Sainte-Marguerite Dromel Olympique de Marseille

Copenhagen M3 Trianglen St. F.C. Copenhagen

Lisbon Blue Colégio Militar/Luz Benfica

Table 5 Overview of study area
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City Line Event Start Time End Time

Copenhagen M3 FC
Copenhagen-
Manchester
City

13.02.2024,
21:00

13.02.2024,
22:55

Lisbon Blue Benfica-
Toulouse

15.02.2024,
21:00

15.02.2024,
22:58

Madrid Line 7 Atletico Madrid-
Las Palmas

17.02.2024,
14:00

17.02.2024,
15:51

London Yellow Newcastle-
Bournemouth

17.02.2024,
16:00

17.02.2024,
17:58

Lisbon Blue Benfica-Vizela 18.02.2024,
19:00

18.02.2024,
20:58

Marseille M2 Marseille-
Shakhtar

22.02.2024,
21:00

22.02.2024,
22:59

Table 6 Example of special event data

5.2. Data Preprocessing

In this study, we utilize GPT (Google Popular Time) data (Google, n.d.) as our primary source
to quantify crowdedness levels at public transport stations. GPT provides an index ’popular-
ity’ ranging from 0 to 100, where 0 represents the least crowded state, and 100 indicates
the highest level of congestion. Each public transport station is treated as a Point of Interest
(POI), and GPT data is collected periodically at predefined time intervals for these stations.
The raw GPT data includes several components, such as ’current popularity’, which indicates
the crowd level at a given POI at the current moment, and ’historical popularity’, which repre-
sents the average crowd level for each hour of each day of the week based on data collected
over the past several weeks, thus providing 168 (7 days × 24 hours) data points that illustrate
how crowded the location typically is during different times of the day. In addition, the attribute
’visit duration’ estimates the typical amount of time that customers spend at the POI based on
historical visitation patterns, while ’wait time’ estimation provides an estimate of how long a
customer might have to wait for service at various times of the day (Google, n.d.). Leveraging
GPT data helps to address potential gaps in data availability for specific regions or research
subjects and supports the construction of a robust dataset to analyze crowdedness patterns
effectively.
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Given the nature of GPT data collection and the constraints encountered during the data ac-
quisition process, it is necessary to perform a series of preprocessing steps to ensure data
consistency and quality. One significant challenge is that GPT data is not always recorded
at uniform time intervals. To mitigate this issue, we applied a rounding procedure to stan-
dardize the time stamps to 30-minute intervals, thereby harmonizing the data and enabling
further analysis. After standardizing the time intervals, we conducted a comprehensive data
quality analysis to identify and address any missing or anomalous values. This preprocessing
step ensures that the data is suitable for subsequent modeling and analysis, thereby improv-
ing the reliability and accuracy of our results. As detailed in Chapter 3, the preprocessed
station-related temporal data serves as the basis for constructing the feature set used in our
predictive models.

5.2.1. Data Quality Analysis and Assumption

During the data collection period, the GPT data was not consistently gathered for all stations
and times, despite the best efforts to ensure comprehensive coverage. Data collection failures
may result from network instability, inherent unavailability from Google, or other unforeseen
issues. Given these potential gaps, it is critical to assess the quality of the collected data.
This evaluation is performed at both the urban transit line and station levels and consists of
two main components.

First, the amount of data obtained from each station along the urban public transit line is as-
sessed to ensure sufficient coverage across all stations. Second, for each station, a statistical
analysis of the GPT current popularity values is conducted. Stations with a limited number of
data points or stations exhibiting abnormal statistical distributions of the "current popularity"
(e.g., an average value close to zero) are considered invalid and are subsequently deleted
from the dataset.

Using Madrid Line 1 as an example, Figure 7 presents the statistics of popularity values at
various stations over the data collection period, while Figure 8 illustrates the distribution of
data points collected over a typical week. Given that data was collected from each station
every 30 minutes, there should ideally be 336 data points per week. Stations with abnor-
mal, poor-quality data or significant gaps in data—such as Atocha station in this case—were
removed from the dataset.

The exclusion of invalid stations relies on two key assumptions. Specifically, we assume that
stations with insufficient or anomalous data do not exhibit unique or distinct passenger flow
patterns that would impact the overall analysis. In other words, the stations we retain are
sufficient for capturing the typical patterns in the network, and the removal of these stations
will not introduce new, uncaptured patterns. Therefore, the remaining data is adequate for the
models to effectively learn and make accurate predictions. Additionally, we assume that the
popularity, representing passenger traffic flow, will move fluidly along the transit line, includ-
ing any new or increased demand at the deleted stations. In this way, the flow of passengers
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Figure 7 Popularity value distribution of stations in Madrid Line 1

Figure 8 The distribution of popularity data collected for stations in Madrid Line 1 shows the distribution of data amounts
collected each week at various stations along Madrid Line 1. The x-axis represents the number of data points collected for a
given week at a given station, while the y-axis indicates the count of station-week observations corresponding to the number of
data points collected

at adjacent or nearby stations will naturally absorb and reflect the patterns that would have
occurred at the excluded stations. Thus, the retained stations provide a comprehensive and
accurate view of the overall passenger flow, ensuring that the models can still capture essen-
tial patterns and make reliable predictions without introducing significant bias.

5.2.2. Data Imputation

For stations where the number of collected data points exceeds the threshold, data imputation
is necessary to handle the missing values. Given the missing data patterns in our dataset, the
problem is defined as a random missing spatial-temporal data problem, where each sensor
loses observation completely at random. To address this issue, several algorithms can be ap-
plied, such as BPMF (Bayesian Probabilistic Matrix Factorization) (Salakhutdinov and Mnih,
2008), TRMF (Temporal Regularized Matrix Factorization) (Yu et al., 2016), BATF (Bayesian
Augmented Tensor Factorization) (Chen et al., 2019), among others. In this study, we utilize
TRMF. This model incorporates temporal dependencies into the matrix factorization process.
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Temporal dependencies are represented by xi,
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Our research applied the TRMF algorithm to address the missing data issue. After apply-
ing the imputation algorithms to complete the GPT data, we obtained a full set of temporal
data for the revised station set, which contains 4,617 data points per station recorded at 30-
minute intervals over the study period. These imputed temporal data are further calculated
to popularity-related features, combined with other constructed features, to form the final
station-related temporal dataset. The attribute matrix, combined with the adjacency matrix A

representing the network topology and the special event data, constitutes the dataset used in
our study.

5.3. Model Setup

In this experiment, all models are implemented using Python with specific libraries for different
models. The ARIMA model is implemented with the statsmodels API (Seabold and Perktold,
2010), while the MLP, along with other regression models such as Linear Regression, KNN,
and SVR, are constructed using scikit-learn (Pedregosa et al., 2011). For the deep learning
models such as the LSTM and our proposed APT-GCN model, we use TensorFlow 2.16.1
(Abadi et al., 2015). All experiments were conducted on a MacBook Pro with an Apple M2
Max chip, featuring 32 GB of memory and 12 cores.

For the statistical models employed in this study, we conducted extensive performance test-
ing to determine the most suitable kernels and parameters. This involved testing on a small
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sample of data, specifically data from Line 1 and Line 7. We observed no significant perfor-
mance differences among the variations tested, including Lasso, Ridge, and Bayesian Linear
Regression. As a result of this rigorous testing, we selected the standard Linear Regression
model for its simplicity and efficacy. In the case of the Gaussian Process model, we found
that the linear kernel outperformed the other options tested, providing reassurance about the
reliability of our model selection. For the SVR model, we chose the linear kernel based on
its superior performance in the preliminary tests. When configuring the KNN model, we used
cross-validation techniques to select the optimal number of neighbors for each line, as shown
in Table 7. All the settings for the models used in this study are summarized in Table 9.

Line Number of neighbors

Line 1, Madrid 14

Line 7, Madrid 10

Line 10, Madrid 9

Line 12, Madrid 9

Line Blue, Lisbon 9

Line District, London 10

Line Piccadilly, London 11

Line M2, Marseilles 8

Line M3, Copenhagen 9

Line S3, Berlin 9

Line U6, Munich 10

Line Yellow, Newcastle 9

Table 7 Number of neighbors selected for KNN models across different lines

For the ARIMA model, different combinations of (p, d, q) and (P,D,Q, s) were tested on a
small sample of data (data from line 7) to determine the optimal parameters. The model
performance was evaluated using the AIC (Akaike Information Criterion) as the performance
metric. The results are summarized in Table 8. It was observed that the performance differ-
ences among various parameter combinations were not very significant. Ultimately, for the
ARIMA model, we selected the combination (3, 1, 1) for the non-seasonal parameters and (2,
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1, 1, 8) for the seasonal parameters. Here, 8 represents the length L of the seasonal cycle,
which will be consistently applied across all models that use time series as input.

(p, d, q) (P,D,Q, s) AIC

(2, 1, 1) (2, 1, 1, 0) 824.9142

(2, 2, 1) (2, 1, 1, 0) 843.2799

(3, 1, 1) (2, 1, 1, 0) 824.7306

(3, 2, 1) (2, 1, 1, 0) 841.9540

(4, 1, 1) (2, 1, 1, 0) 823.2314

(4, 2, 1) (2, 1, 1, 0) 836.5101

Table 8 Performance comparison of ARIMA models with different parameters

The MLP model was implemented using scikit-learn’s MLPRegressor. The architecture con-
sists of two hidden layers, each containing 64 units, and the ReLU (Rectified Linear Unit)
activation function was applied to introduce non-linearity. The model was trained with the
Adam optimizer and a learning rate of 0.001. The number of epochs was set to 500, and the
batch size to 64. Early stopping was also applied with a patience of 30 to prevent overfitting.
The model outputs continuous predictions for the station crowdedness based on the input
features.

The LSTM model, implemented using TensorFlow 2.16.1, was designed with two LSTM lay-
ers. After conducting parameter searches for the optimal number of units in each layer and
the batch size on a small set of example data, the final configurations were determined based
on the evaluation results presented in Figure 9. Since we employed the early stopping tech-
nique to prevent overfitting, allowing the model to stop training at the optimal epoch, we did
not exhaustively test the number of epochs. The results indicated that the best configuration
includes 128 units in the first layer, 32 units in the second layer, and a batch size of 64. A
dropout rate of 0.2 was applied to mitigate overfitting, and the Adam optimizer with a learning
rate of 0.001 was used. The model was trained for up to 1000 epochs, with early stopping
triggered by a patience of 50 epochs, monitored by the validation loss to enhance training
efficiency.

For our proposed APT-GCN model, the training process spans 1000 epochs, utilizing a batch
size of 128. The dataset is split into training, validation, and test sets in a 7:1:2 ratio. The
Adam optimizer is used with a learning rate of 0.001. During training, the MSE (Mean
Squared Error) loss function is applied, and early stopping is implemented to enhance ef-
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(a) Layer 1: 128 units, layer 2: 32 units

(b) Batch size: 128, Layer 2: 1 unit

(c) Batch size: 128, Layer 1: 128 unit

Figure 9 The influence of hyper-parameter selection for LSTM model
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ficiency, with validation loss as the monitor and a patience value of 50. The model’s hidden
layers are configured with 64 units. The historical time series length L is set to 8, and the
model performs one-step predictions, with the prediction length being 1.

Table 9 summarizes the settings for all models used in the experiment.

Model Parameter Settings

Linear Regres-
sion

Kernel Standard

Gaussian Pro-
cess

Kernel Linear

SVR Kernel Linear

glaknn Number of neighbors Automatically decide by cross-
validation

ARIMA models (p, d, q) (3, 1, 1)

(P,D,Q, s) (2, 1, 1, 8)

Maximum iteration 200

Exogenous features for
SARIMAX

Popularity from the last three
intervals4, event index4

MLP Hidden layers 2

Units 64

Activation ReLU

Optimizer SGD

Learning rate 0.001

Epochs 500

Batch size 64

LSTM Units of first layer 128

Units of second layer 32
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Table 9 – Conti.

Model Parameter Settings

LSTM Optimizer Adam

Learning rate 0.001

Epochs 1000, with early stopping

Batch size 64

Early stopping patience 50

APT-GCN Units 64

Optimizer Adam

Learning rate 0.001

Epochs 1000

Batch size 128

Early stopping patience 50

Loss Function MSE

Exogenous features Popularity from the last three inter-
vals 4, event index 4

Table 9 Model settings for experiments in this research

5.4. Evaluation Metrics

To comprehensively evaluate the performance of the crowdedness prediction models, we
employ several standard metrics. These metrics are used to compare the predicted values
against the actual values to assess the model’s accuracy and consistency. The following
evaluation metrics are introduced:

• RMSE (Root Mean Squared Error): RMSE measures the square root of the average of the
squared differences between predicted and actual values. It gives higher weight to larger
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errors, making it useful for assessing models where large errors are undesirable.

RMSE =

vuut 1

M

MX

i=1

(yi � ŷi)2 (5.4)

• MAPE (Mean Absolute Percentage Error): MAPE computes the average percentage dif-
ference between the predicted and actual values, making it useful for comparing models
across datasets with different scales.
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• R
2 (Coefficient of Determination): R2 provides a measure of how well the predicted values

explain the variance in the actual values. An R
2 value of 1 indicates a perfect predictions,

while a value of 0 indicates that the model does no better than a simple mean prediction.

R
2 = 1�
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(5.6)

• Var (Explained Variance Score): This metric measures the proportion of the variance in
the actual data that is explained by the model. It ranges from 0 to 1, with 1 indicating
perfect explanation of variance.

Var = 1� Var(Y � Ŷ)

Var(Y)
(5.7)

Here, M is the number of samples, yi, ŷi, and ȳi represent the actual, predicted, and average
popularity values for the i-th sample, respectively. Y and Ŷ represent the full set of actual
and predicted values, while k·k denotes the Frobenius norm.
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6. Result and Discussion

6.1. Crowdedness Pattern Overview

This section provides an overview of the crowdedness patterns at urban rail transit stations,
represented using the popularity data from GPT, as introduced earlier.

6.1.1. Weekday and Weekend Comparison

Pattern 1: Similar waveforms with higher weekday popularity

This is the most common station crowdedness pattern observed. The peaks and troughs
in the popularity curve occur at similar times on both weekdays and weekends, which is
shown in Figure 10. Within this pattern, we can further distinguish between two sub-patterns:
single-peak and double-peak curves. In the single-peak pattern, the station’s crowdedness
peak typically occurs during the evening rush hour, which varies between 16:00 and 22:00
depending on the city and metro line. The double-peak pattern, in addition to the evening
peak, exhibits a midday peak, usually between 10:00 and 14:00. Notably, for the double-peak
pattern, the weekend peak is often less pronounced than the weekday peak, or the two peaks
may even merge altogether(Figure 10d, 10b). Furthermore, the midday peak on weekends
tends to occur later compared to weekdays (Figure 10a, 10c).

There are, however, exceptions. For instance, in stations along Madrid Metro Line 12, the
midday peak on weekends can be observed more significantly than on weekdays (Fig: 10c).
Another intriguing phenomenon observed is that, despite the near-parallel nature of the week-
day and weekend curves, many stations exhibit a higher average popularity during midnight
hours (typically 0:00–4:00) on weekends compared to weekdays.

Although the waveforms are similar under both scenarios, there are notable differences in the
values of crowdedness. In some cases, the curves remain close during non-peak hours, while
the differences between weekday and weekend crowdedness grow significantly during peak
periods. While at some stations, the curves are nearly parallel throughout the day, indicating
stable crowdedness fluctuations across the week (Figure 10f).

Pattern 2: Diverging peaks between weekday and weekend (weekday double-peak,

weekend single-peak)

This pattern is almost exclusive to stations in London. In this pattern, the weekday curve
exhibits two peaks, while the weekend curve shows only one, i.e., the evening peak. However,
this weekend peak reaches or surpasses the weekday peak at the same time of day. Similar
but rare occurrences of this pattern are also found in a few stations on Copenhagen’s M3 and
Marseilles’s M2 lines (Figure 11a).
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(a) Cuzco, Madrid Line 10 (b) Wilhelmshagen, Berlin Line S3

(c) El Carrascal, Madrid Line 12 (d) Parque, Lisbon Line Blue

(e) Tynemouth, Newcastle Line Yellow (f) Partnachplatz, Munich Line U6

Figure 10 Crowdedness pattern 1: Similar waveforms with higher weekday popularity
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(a) Gèze, Marseilles Line M2 (b) Elm Park, London District Line

(c) Hatton Cross, London Line Piccadilly (d) Northfields, London Line Piccadilly

Figure 11 Crowdedness pattern 2: Diverging peaks between weekday and weekend

Pattern 3: Overlap of Weekday and Weekend Curves

Figure 12 illustrates this pattern. This pattern is primarily observed along Madrid Metro Line
1 and London Line Piccadilly, where most stations display similar crowded patterns on week-
days and weekends. Interestingly, the average weekend popularity is slightly higher than that
on weekdays at some stations, a rare phenomenon among the stations in our research area.
Noticeably, not all stations on line 1 appear to adhere to this pattern, and several stations fall
into the first category above.

Based on the analysis, we classify station crowdedness patterns into three main types: similar
waveforms with higher weekend crowdedness, weekday double-peak, and weekend single-
peak, and nearly identical weekday and weekend curves. Additionally, we observed that
stations on the same metro line tend to exhibit a dominant pattern. For instance, the majority
of stations on the London Piccadilly Line follow the second pattern, while Madrid Line 10 pre-
dominantly features the first pattern, with most stations even sharing the same sub-type (the
double-peak form), highlighting significant consistency along the line. In contrast, stations on
Munich’s U6 line mainly belong to the single-peak sub-type within pattern one. However, no
specific pattern emerges for stations across different lines within the same city. For example,
in our analysis of four Madrid metro lines (Lines 1, 7, 10, and 12), no commonality in crowd-
edness patterns was observed between the lines. Similarly, we found no distinctive pattern
shared by cities within the same country.
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(a) Alvarado, Madrid Line 1 (b) Antón Martín, Madrid Line 1

(c) Bromley by Bow, London Line District (d) Valdeacederas, Madrid Line 1

Figure 12 Crowdedness pattern 3: Overlap of Weekday and Weekend Curves

These classifications enhance our understanding of public transport station crowdedness pat-
terns and provide insights into transport demand studies, public transport network analysis,
and comparative studies of station usage characteristics across cities and metro lines. This
knowledge can also contribute to urban mobility planning, transit system optimization, and
demand-responsive transit service design.

6.1.2. Crowdedness Pattern under Special Event Scenario

Figure 14, 16, 17 and 19 illustrates the spatio-temporal distribution of station popularity along
selected metro lines during special event periods. The events, along with their details, are
listed in Table 10. In the popularity heatmaps, stations are ordered according to their real-
world placement on each line (Madrid Line 12 is a loop), with the stations corresponding to
event venues displayed in blue text.

For Madrid Line 12, as seen in Figure 13, this line is relatively distant from the city’s core,
fully located in fare zones B1 and B2. In contrast, Line 1 traverses central Madrid, although
the stadium on Line 1, Estadio de Vallecas, is not located in the city center, and its capacity
is relatively small compared to larger venues like Santiago Bernabéu. The District and Pic-
cadilly Lines are part of the London Tube system, characterized by their branch structures.
For the District Line, we focus on the Ealing Broadway branch, and for Piccadilly, we analyze
the Heathrow Terminal 4 branch. Both lines run through multiple key areas of London, serv-
ing as essential corridors for commuter and tourist traffic, reflecting their central role in the
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City Line Event Start Time End Time

Madrid Line 12 Getafe - Las
Palmas

20240302-
1830

20240302-
2030

Madrid Line 12 Getafe - Sevilla 20240330-
1400

20240330-
1600

London District Chelsea -
Manchester
Union

20240404-
2115

20240404-
2315

Madrid Line 1 Rayo Vallecano
- Getafe

20240413-
1615

20240413-
1815

Madrid Line 1 Rayo Vallecano
- Osasuna

20240420-
1615

20240420-
1815

London Piccadilly Arsenal -
Chelsea

20240423-
2100

20240423-
2300

London District Chelsea -
Bournemouth

20240519-
1700

20240519-
1900

London Piccadilly Arsenal - Ever-
ton

20240519-
1700

20240519-
1900

Table 10 Details of football matches near selected stations
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transportation network of this bustling metropolis.
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Figure 13 Madrid metro map (Metro de Madrid, 2024)

As shown in Figures 14a and 14b, during special events, the stations near stadiums on Line
12 experience significantly higher popularity compared to surrounding stations. Figure 15
demonstrates that during game times, the popularity is markedly higher than on regular days,
confirming the substantial impact of special events on crowdedness patterns, which can intro-
duce challenges for prediction models that must effectively capture and adapt to these shifts.
Moreover, by comparing the event start and end times, we can observe a certain delay in peak
popularity in the heatmaps. Conversely, stations on Madrid Line 1, aside from those near the
stadium, show patterns similar to regular weekday peaks, particularly during the evening
rush hour, unaffected by event participants. At the Portazgo station, however, the crowded-
ness pattern during special events differs significantly from typical days, with elevated levels
of crowding. Interestingly, at other high-traffic stations on Line 1, such as Gran Vía and Antón
Martín (the former being an interchange station with Line 5 and located in Madrid’s historic
city center), the crowdedness remains unaffected by events, indicating that these stations do
not pose additional challenges for the predictive model during special events.

The same phenomenon can be observed at Arsenal station on London’s Piccadilly Line.
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(a) Match at the stadium near Los Espartales station on Madrid Line 12, March 2, 2024

(b) Match at the stadium near Los Espartales station on Madrid Line 12, March 30, 2024

(c) Match at the stadium near Portazgo station on Madrid Line 1, April 13, 2024

(d) Match at the stadium near Portazgo station on Madrid Line 1, April 20, 2024

Figure 14 Spatio-temporal distribution of station popularity along urban transit lines during football matches in Madrid
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(a) Los Espartales, Madrid Line 12 (b) Portazgo, Madrid Line 1

(c) Antón Martín, Madrid Line 1 (d) Gran Vía, Madrid Line 1

Figure 15 Crowdedness pattern under special event scenario, Madrid

Located in the borough of Islington, East London, Arsenal station serves Emirates Stadium,
home to Arsenal Football Club, one of the largest stadiums in the country with a substantial
fanbase. As shown in Figures 16a and 16b, stations along this line, including Arsenal, exhibit
significantly higher popularity during events compared to surrounding stations. Upon further
examination of Figures 16a and 16b, a pattern similar to that of Madrid Line 1 emerges: while
Arsenal station shows significantly increased popularity during events compared to regular
days, other stations along the Piccadilly Line, such as Piccadilly Circus (a major interchange
station with high footfall), do not display such increases in crowding.

An interesting observation is that on May 19, 2024, two simultaneous football matches took
place in London: one at Arsenal’s Emirates Stadium and another at Chelsea’s Stamford
Bridge. Figures 16b and 17b show the spatial and temporal distribution of popularity on the
corresponding metro lines. While the Piccadilly Line’s Arsenal station saw a significant crowd
gathering, the District Line’s Fulham Broadway station, serving Stamford Bridge, did not ex-
perience similar crowding despite hosting an event. Figure 17a further confirms this. This
highlights that the impact of special events on station crowdedness patterns is not uniform
and may be influenced by multiple factors, such as the event’s scale, venue accessibility, and
even cultural or geographical differences across cities.

Lastly, let us consider an example from Munich’s U6 line. The Fröttmaning station is situated
on the city’s outer periphery and primarily serves Allianz Arena, home to FC Bayern Munich,
with few other facilities in its vicinity. Given this, daily footfall at this station is relatively low,
but football matches at Allianz Arena have a significant impact. As seen in Figure 20a, the
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(a) Match at the stadium near Arsenal station on London Line Piccadilly, April 23, 2024

(b) Match at the stadium near Arsenal station on London Line Piccadilly, May 19, 2024

Figure 16 Spatio-temporal distribution of station popularity along urban transit lines during football matches at Line Piccadilly,
London
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(a) Match at the stadium near Fulham Broadway station on London Line District, April 4, 2024

(b) Match at the stadium near Fulham Broadway station on London Line District, May 19, 2024

Figure 17 Spatio-temporal distribution of station popularity along urban transit lines during football matches at Line District,
London

(a) Arsenal, London Line Piccadilly (b) Piccadilly Circus, London Line Piccadilly

(c) Fulham Broadway, London Line District (d) Westminster, London Line District

Figure 18 Crowdedness pattern under special event scenario, London
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special event curves show a clear double-peak pattern, corresponding to the pre- and post-
game crowdedness, perfectly reflecting the event’s contribution to crowdedness at the station.
Similar to previous analyses, we compared this station to another high-traffic station on the
same line. Marienplatz, located in Munich’s city center, typically experiences high passenger
volumes. As shown in Figure 20b, Unlike other metro lines in different cities, the impact of
special events on Marienplatz is evident, indicating that the influence of such events is not
just dependent on the station’s proximity to the venue, but also on the broader characteristics
of the city’s transportation network and the spatial distribution of its urban functions.

(a) Match at the stadium near Fröttmaning station on Munich Line U6, March 3, 2024

(b) Match at the stadium near Fröttmaning station on Munich Line U6, April 23, 2024

Figure 19 Spatio-temporal distribution of station popularity along urban transit lines during football matches in Munich

(a) Fröttmaning, Munich Line U6 (b) Marienplatz, Munich Line U6

Figure 20 Crowdedness pattern under special event scenario, Munich
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6.2. Crowdedness Forecasting Result

6.2.1. Results of Statistical Models

In this study, six distinct statistical models were evaluated for predicting station popularity un-
der both regular and special event scenarios using data from various lines. The performance
of these models is summarized in Figure 21.

(a) RMSE (b) MAPE

(c) R2 (d) Var

Figure 21 Performance evaluation of statistical models across different lines under regular and special event scenarios. The
models evaluated are as follows: Linear = Linear Regression, Gaussian = Gaussian Process, GBR = Gradient Boosting
Regression, SVR = Support Vector Regression, KNN = K-Nearest Neighbors, and MLP = Multi-Layer Perceptron

An examination of the RMSE metrics reveals that, in general, the performance metrics are
slightly worse under special event conditions compared to regular scenarios. This indicates
that the models tend to be less accurate in predicting popularity during special events. Specifi-
cally, RMSE values are higher in the special event scenarios, reflecting the increased difficulty
in predicting station popularity when events cause atypical spikes in passenger flow.

Interestingly, the MAPE shows a different trend. Except for the KNN model, other models ex-
hibit a decrease in MAPE during special events. This result is likely due to the higher baseline
popularity values during special events, which make percentage errors appear smaller even
if the absolute prediction errors are larger. Therefore, a lower MAPE does not necessarily
imply better predictive accuracy in this context.

When comparing the performance of different models, it is observed that Linear Regression,
GPR, GBR, SVR, and MLP models exhibit relatively similar average performance. However,
GBR, SVR, and MLP models demonstrate greater stability across different lines compared to
the other models. This stability can be attributed to their ability to handle complex, non-linear
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relationships and interactions between features, which are more prevalent across various
lines.

On the other hand, the KNN model shows comparatively poorer performance, especially un-
der special event conditions. This decline in performance may be due to the nature of the
KNN algorithm, which relies on local patterns in the data. KNN’s effectiveness is sensitive to
the choice of the number of neighbors, and even though cross-validation was used to select
number of neighbors, the model may still struggle with the high variability and non-linearity as-
sociated with special events. Moreover, KNN models can be adversely affected by the curse
of dimensionality, where the performance deteriorates as the number of features increases,
which might be exacerbated in scenarios with complex patterns and high-dimensional data.

Model Scenario RMSE MAPE R
2

Var

Linear Regular 9.8144 20.6555 0.7905 0.7906

Special
Event

10.3990 18.9880 0.7491 0.7516

Gaussian Regular 9.8312 20.6635 0.7899 0.7901

Special
Event

10.4135 19.0478 0.7485 0.7510

GBR Regular 9.1819 18.9715 0.8161 0.8163

Special
Event

9.5513 16.7502 0.7878 0.7886

SVR Regular 10.0132 20.3924 0.7827 0.7829

Special
Event

10.3861 18.5003 0.7484 0.7537

KNN Regular 11.1350 23.6239 0.7331 0.7335

Special
Event

14.6723 28.9877 0.5011 0.5182

MLP Regular 9.5041 19.8998 0.8030 0.8033

Special
Event

9.9848 17.8577 0.7696 0.7737

Table 11 The crowdedness forecasting performance of statistical models. ’Linear’ = Linear Regression, ’Gaussian’ = Gaussian
Process

Table 11 summarizes the average performance metrics of all statistical models across the
data from various lines. In summary, while most models show similar average performance,
the stability of GBR, SVR, and MLP across different lines suggests a robust handling of
diverse data characteristics. The KNN model, despite cross-validation optimization, performs
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less effectively, particularly in special event scenarios, highlighting potential limitations of KNN
in capturing the complex dynamics of passenger popularity during such events.

6.2.2. Results of Time Series Models

Results of ARIMA models

Figure 22 provides a comprehensive overview of the performance of various ARIMA mod-
els across different scenarios. The most striking observation from the plots is the significant
improvement in model performance when exogenous features are incorporated. Specifically,
the ARIMA model, when applied without exogenous variables and ignoring the seasonal char-
acteristics of the data (i.e., using only the popularity data from last 8 intervals for forecasting),
shows poor performance, even in regular scenarios. This is evident from the R

2 score, where
ARIMA without external data performs worse than some statistical models. For example,
the linear regression model in regular scenarios achieves an R

2 of 0.7905, whereas ARIMA
records a significantly lower value of 0.3487. This discrepancy is likely due to the fact that,
although ARIMA models account for temporal dependencies by leveraging past data points,
the statistical models benefit from a broader range of features, particularly the inclusion of
event-related factors. In the case of statistical models, incorporating time-related features
allows them to capture temporal patterns, mimicking the behavior of time series models in
certain respects.

(a) RMSE (b) MAPE

(c) R2 (d) Var

Figure 22 Performance evaluation of ARIMA models across different lines under regular and special event scenarios

When the seasonal component of the data is accounted for using the SARIMA model, the per-
formance improves marginally. The R

2 value increases from 0.3487 to 0.4251, indicating that
the model is better able to capture periodic fluctuations within the data. However, the inclu-
sion of seasonal parameters also introduces greater instability in the predictions, particularly
in special event scenarios. This suggests that while SARIMA models can capture seasonality,
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they may struggle to generalize under dynamic conditions such as special events.

The most notable improvement in model accuracy occurs when exogenous variables are in-
corporated. In regular scenarios, the R

2 jumps to 0.6999, and in special event scenarios, the
model performs almost on par with regular conditions, achieving an R

2 of 0.6802. This rep-
resents a dramatic improvement compared to ARIMA without exogenous data, where the R

2

was -0.0124, and SARIMA, where the value was 0.1739. The integration of exogenous vari-
ables, such as special event data, allows the model to better capture external influences that
affect station crowdedness, leading to more reliable predictions across different scenarios.

Figure 23 showcases the prediction results for selected stations across the three models. It
is evident that, at some stations, the SARIMA model demonstrates a significant improvement
in prediction accuracy compared to the ARIMA model. However, at other stations, the perfor-
mance difference between SARIMA and ARIMA is minimal. This observation suggests that
the seasonal periodicity, which SARIMA aims to capture, may not be effectively represented
within the eight intervals used for prediction at these particular stations. Additionally, these
patterns are not evenly distributed across different lines; within the same line, some sta-
tions show a significant improvement in prediction accuracy with the SARIMA model, while
at others, there is little to no difference between the predictions of the SARIMA and ARIMA
models.

Tables 12, 13, and 14 provide a detailed breakdown of the prediction performance for each
model across various metro lines. Table 15 summerizes the performance of different ARIMA
models.
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(a) Ascao, Line 7, Madrid

(b) Plaza de España, Line 10, Madrid

(c) Parque de los Estados, Line 12, Madrid

(d) Laranjeiras, Line Blue, Lisbon

(e) Bromley by Bow, Line District, London

(f) Friedrichshagen, Line S3, Berlin

Figure 23 Crowdedness forecasting of ARIMA models at example stations
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Line Scenario RMSE MAPE R
2

Var

1 Regular 13.9645 31.7307 0.3411 0.3411

Special Event 17.9973 43.5220 0.0796 0.0796

7 Regular 15.5236 38.1982 0.3340 0.3340

Special Event 13.9781 34.3623 0.0335 0.0335

10 Regular 16.5570 35.9993 0.2626 0.2626

Special Event 18.9234 44.3286 -0.0310 -0.0304

12 Regular 13.7963 26.2028 0.4568 0.4569

Special Event 12.8359 24.9617 0.0169 0.0265

blue Regular 13.5605 33.8878 0.4738 0.4738

Special Event 16.5007 39.9120 0.0949 0.0950

District Regular 12.8474 31.1548 0.3438 0.3438

Special Event 10.9183 32.6192 -0.0396 -0.0390

M2 Regular 16.1226 35.3037 0.6238 0.6238

Special Event 17.2816 27.1737 -0.1817 0.0345

M3 Regular 16.1647 37.9375 0.1949 0.1949

Special Event 15.3632 30.3852 -0.0427 -0.0411

Piccadilly Regular 12.7913 30.6525 0.3252 0.3252

Special Event 14.8333 35.5269 -0.0556 -0.0550

s3 Regular 16.9438 38.3299 0.2517 0.2517

Special Event 18.7512 41.9150 0.0184 0.0215

u6 Regular 15.7979 29.7825 0.2132 0.2132

Special Event 15.6858 35.9035 -0.0439 -0.0438

yellow Regular 13.3935 33.1561 0.3639 0.3639

Special Event 24.9022 60.7288 0.0021 0.0022

Table 12 The crowdedness forecasting performance of the ARIMA model

Forecasting crowding pattern evolution at subway stations using opportunistic data 80



Line Scenario RMSE MAPE R
2

Var

1 Regular 13.8146 31.2406 0.3552 0.3552

Special Event 17.5083 42.2013 0.1289 0.1290

7 Regular 10.4135 22.8223 0.7003 0.7003

Special Event 8.8445 18.7300 0.6130 0.6133

10 Regular 12.0716 24.3111 0.6080 0.6080

Special Event 9.0617 21.5190 0.7636 0.7639

12 Regular 13.7753 26.1393 0.4585 0.4585

Special Event 12.7322 24.3392 0.0327 0.0426

blue Regular 13.5016 33.7355 0.4783 0.4783

Special Event 16.5479 40.8607 0.0898 0.0898

District Regular 11.7902 28.8318 0.4474 0.4474

Special Event 8.9124 26.5962 0.3073 0.3074

M2 Regular 16.1853 35.1385 0.6209 0.6209

Special Event 16.8033 26.1475 -0.1172 0.1007

M3 Regular 16.0316 37.9433 0.2081 0.2081

Special Event 14.7532 29.1532 0.0384 0.0397

Piccadilly Regular 12.7888 30.6644 0.3254 0.3254

Special Event 14.9170 36.0882 -0.0675 -0.0669

s3 Regular 16.9210 38.1570 0.2537 0.2537

Special Event 18.9848 42.7159 -0.0062 -0.0029

u6 Regular 15.1781 33.0321 0.2737 0.2737

Special Event 13.1071 33.6286 0.2712 0.2712

yellow Regular 13.3121 32.9028 0.3716 0.3716

Special Event 24.5154 59.3170 0.0329 0.0329

Table 13 The crowdedness forecasting performance of the SARIMA model
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Line Scenario RMSE MAPE R
2

Var

1 Regular 9.6885 20.1698 0.6828 0.6828

Special Event 10.5587 24.5702 0.6832 0.6836

7 Regular 9.6799 21.3021 0.7411 0.7411

Special Event 7.6465 15.5209 0.7108 0.7108

10 Regular 11.3180 22.7586 0.6554 0.6554

Special Event 8.6350 18.3654 0.7853 0.7854

12 Regular 8.2013 16.3972 0.8081 0.8081

Special Event 8.3104 16.2276 0.5879 0.5879

blue Regular 8.9602 21.4465 0.7702 0.7702

Special Event 7.5169 15.9851 0.8122 0.8141

District Regular 8.9093 20.7091 0.6844 0.6844

Special Event 6.3709 18.4719 0.6460 0.6461

M2 Regular 9.5616 19.9540 0.8677 0.8677

Special Event 12.2971 16.6361 0.4017 0.5237

M3 Regular 11.6871 25.3112 0.5791 0.5791

Special Event 8.8514 15.9976 0.6539 0.6703

Piccadilly Regular 8.9271 20.2021 0.6713 0.6713

Special Event 7.6652 19.3084 0.7181 0.7181

s3 Regular 13.9522 29.5825 0.4926 0.4926

Special Event 14.4860 31.9298 0.4142 0.4142

u6 Regular 8.4160 23.0897 0.7767 0.7767

Special Event 4.8156 18.2554 0.9016 0.9033

yellow Regular 9.6583 22.6931 0.6692 0.6692

Special Event 9.7244 22.0117 0.8478 0.8479

Table 14 The crowdedness forecasting performance of the SARIMAX model
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Model Scenario RMSE MAPE R
2

Var

ARIMA Regular 14.7886 33.5280 0.3487 0.3487

ARIMA Special Event 16.4976 37.6116 -0.0124 0.0070

SARIMA Regular 13.8153 31.2432 0.4251 0.4251

SARIMA Special Event 14.7240 33.4414 0.1739 0.1934

SARIMAX Regular 9.9133 21.9680 0.6999 0.6999

SARIMAX Special Event 8.9065 19.4400 0.6802 0.6921

Table 15 The summary of crowdedness forecasting performance of ARIMA models

Results of LSTM

Table 16 presents the evaluation of the LSTM model’s prediction performance across the
datasets used in this study. A comparative analysis reveals that when juxtaposed with the
current leading time series model, SARIMAX, the LSTM model demonstrates slightly superior
performance in regular scenarios. This suggests that, under typical conditions, deep learning
models, such as LSTM, which leverage their capacity to uncover latent features within the
data, can outperform models that rely solely on explicitly provided features.

However, this improved performance is not uniformly observed across all datasets. The LSTM
model’s predictive accuracy varies, with some lines exhibiting results that do not consistently
surpass those of the SARIMAX model. This variability indicates that while LSTM models
can capture complex patterns and relationships in data, their effectiveness may be contin-
gent on the specific characteristics of the dataset and the presence of underlying temporal
dependencies.

In special event scenarios, the performance of the LSTM model appears to be less favorable
compared to the SARIMAX model, although it still outperforms both ARIMA and SARIMA
models. This reduced efficacy in special event contexts may stem from several factors. Firstly,
LSTM models, despite their deep learning architecture, may struggle to adequately capture
and adapt to the abrupt and unique variations introduced by special events. Unlike SARI-
MAX, which integrates seasonal and event-specific parameters, LSTM models might not fully
leverage the temporal context and event-driven anomalies. Additionally, the inherent design
of LSTM networks, which focuses on learning patterns over long sequences, may not be
as adept at adjusting to sudden shifts or atypical patterns that are characteristic of special
events.

Overall, while the LSTM model showcases an improved performance in regular scenarios
and offers improvements over traditional time series models, its performance in special event
scenarios highlights the need for further refinement. This could involve incorporating addi-
tional features or hybridizing models to better capture and respond to unique and dynamic
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Line Scenario RMSE MAPE R
2

Var

1 Regular 4.9046 26.2883 0.7077 0.7079

Special Event 6.8650 57.4117 0.5269 0.5396

7 Regular 4.3651 22.2876 0.7479 0.7486

Special Event 5.0218 33.1555 0.7503 0.7513

10 Regular 7.8632 45.4060 0.2363 0.2715

Special Event 9.1237 165.7673 0.1730 0.1869

12 Regular 3.6801 19.0664 0.8219 0.8234

Special Event 6.1478 15.6613 0.6262 0.6262

blue Regular 4.8986 39.9652 0.6644 0.6917

Special Event 6.5062 34.1016 0.5780 0.5835

District Regular 5.2673 26.0498 0.6052 0.6054

Special Event 5.0267 18.5231 0.7475 0.7476

M2 Regular 5.1538 14.6668 0.6068 0.6094

Special Event 9.1255 13.9239 0.1526 0.1527

M3 Regular 5.4525 37.8743 0.6098 0.6132

Special Event 7.7330 15.9188 0.4080 0.4276

Piccadilly Regular 4.3985 22.4546 0.7302 0.7314

Special Event 5.8391 17.2203 0.6596 0.6606

s3 Regular 5.9636 47.1293 0.4952 0.5055

Special Event 6.9838 37.8180 0.5197 0.5249

u6 Regular 3.9298 34.9994 0.7685 0.7719

Special Event 5.7855 21.6637 0.6644 0.6645

yellow Regular 5.5479 38.8799 0.6469 0.6469

Special Event 7.5860 28.1077 0.4213 0.4340

Table 16 The crowdedness forecasting performance of the LSTM model
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aspects of special events.

6.2.3. Results of APT-GCN

Fig. 24 illustrates the prediction results of our proposed APT-GCN model on the same stations
previously shown in Fig. 23. It is evident that, with the structure specifically designed for
urban rail transport passenger flow and the incorporation of tailored exogenous features, our
GNN model not only leverages its capacity to uncover latent patterns within the data but
also effectively integrates the provided feature set. This is reflected in the model’s superior
prediction accuracy and robustness when compared to alternative models.

The evaluation metrics, as presented in Table 17, clearly demonstrate the enhanced perfor-
mance of APT-GCN.

Additionally, we conducted experiments on various exogenous features to assess their im-
pact on the model’s prediction capacity. The results suggest that the APT-GCN model is
already well-equipped to capture the dynamics of special events without needing additional
exogenous inputs.Fig. 25 compares the prediction results of the APTGCN model with and
without the use of exogenous features (denoted as APTGCN-X for the former and APTGCN
for the latter, where only popularity data was used for training and prediction). As seen, the
difference in prediction performance between the two models is minimal, further showcasing
the robustness of the APT-GCN architecture in capturing key dynamics without significant
reliance on external features.

Forecasting crowding pattern evolution at subway stations using opportunistic data 85



(a) Ascao, Line 7, Madrid

(b) Plaza de España, Line 10, Madrid

(c) Parque de los Estados, Line 12, Madrid

(d) Laranjeiras, Line Blue, Lisbon

(e) Bromley by Bow, Line District, London

(f) Friedrichshagen, Line S3, Berlin

Figure 24 Crowdedness forecasting of APT-GCN model at example stations
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Line Scenario RMSE MAPE R
2

Var

u6 Regular 3.8583 10.8266 0.9014 0.9015

Special Event 4.4148 13.5528 0.8946 0.8950

s3 Regular 5.0895 11.1217 0.5707 0.5708

Special Event 5.3321 18.3871 0.8964 0.8977

Piccadilly Regular 6.0523 14.8218 0.7089 0.7152

Special Event 5.2549 14.3049 0.8509 0.8512

blue Regular 6.4483 16.5839 0.8359 0.8379

Special Event 5.2389 18.2890 0.9079 0.9147

7 Regular 4.4556 13.0931 0.8097 0.8165

Special Event 4.9065 11.7224 0.9186 0.9191

1 Regular 4.7332 8.3860 0.7867 0.7895

Special Event 3.9400 8.5664 0.9421 0.9432

10 Regular 2.4463 5.0122 0.8420 0.8421

Special Event 4.2919 18.4991 0.9348 0.9358

M2 Regular 2.6022 9.0455 0.9880 0.9888

Special Event 2.7093 33.2585 0.9844 0.9845

M3 Regular 3.4771 9.9868 0.9677 0.9680

Special Event 4.3448 9.9769 0.9271 0.9280

yellow Regular 4.0616 48.5713 0.9661 0.9662

Special Event 4.4461 10.7655 0.9266 0.9273

12 Regular 3.2794 7.4966 0.9706 0.9709

Special Event 3.8675 9.4827 0.9516 0.9516

District Regular 2.8969 7.5806 0.4630 0.4851

Special Event 4.3524 12.2107 0.9018 0.9022

Table 17 The crowdedness forecasting performance of the APT-GCN model
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(a) RMSE (b) MAPE

(c) R2 (d) Var

Figure 25 Performance evaluation of APT-GCN models under regular and special event scenarios. APT-GCN-X: APT-GCN
model with special event feature as exogenous features, APT-GCN: APT-GCN model without exogenous features

6.2.4. Model Comparison and Conclusion

Finally, we summarize the performance of all models in forecasting crowdedness patterns.
Our research evaluated a total of 11 models across three major categories: statistical mod-
els, time series models, and the APT-GCN model. These models were applied to datasets
from 11 urban transit lines across eight European cities. The results show that traditional
regression models, as well as the MLP model from machine learning, performed reasonably
well. The prediction accuracy (R2) for both regular and special event scenarios exceeded
0.75, with only a slight decrease in accuracy during special events. This may be due to
the effectiveness of the event index feature 4, which successfully captured the fluctuation in
crowdedness during these scenarios.

However, the performance of the KNN model was less satisfactory, particularly in the special
event scenario, where the R

2 value dropped to 0.5011. We speculate that this is likely due
to KNN’s inherent limitations in capturing the complex, non-linear relationships present in
special event data, which often involve abrupt changes in crowdedness patterns that KNN
may struggle to model effectively.

For the time series models, ARIMA and LSTM, we found that whether leveraging our pro-
vided feature set or relying on the deep learning model’s ability to extract latent features
from the data, the ability to uncover these underlying features proved more critical for predic-
tion performance than solely relying on historical seasonal patterns. Specifically, the LSTM
model’s capacity to automatically learn complex temporal dependencies contributed signif-
icantly to its prediction accuracy, surpassing traditional time series approaches like ARIMA
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and SARIMA.

Finally, our proposed APT-GCN model demonstrated the best performance from all per-
spectives, exhibiting strong accuracy and robustness across both regular and special event
scenarios. This robustness stems from the model’s inherent design, which effectively cap-
tures spatio-temporal features, and does not rely heavily on additional exogenous data. The
model’s ability to incorporate both structural information from the transport network and dy-
namic temporal data enables it to outperform other models, making it a highly effective tool
for forecasting crowdedness patterns in urban transit systems.

6.3. Results of Crowdedness Shift Modeling

6.3.1. Crowdedness Shift Matrix Estimation by Regression

As described in Section 4.6.1, the Lasso regression was applied to the weight data obtained
from the attention layer of our APT-GCN model. This was used to estimate the crowdedness
shift across the transportation network. The Lasso regression parameter ↵ plays a key role in
controlling the regularization strength, where higher values of ↵ impose stronger regulariza-
tion, potentially reducing model overfitting but at the cost of higher bias. Conversely, smaller
↵ values allow the model to capture more complex relationships but may lead to overfitting. In
this analysis, we experimented with four different values of ↵: 0.005, 0.01, 0.05, and 0.1. The
performance evaluation of these models is presented in Figure 26, where the MAE (Mean
Absolute Error) and R

2 scores are used to compare model effectiveness. From these re-
sults, it is clear that the model with ↵ = 0.05 offers the best performance, striking a balance
between bias and variance. Therefore, the crowdedness shift matrix computed using this
optimal model is utilized for further analysis.

(a) MAE (b) R2

Figure 26 Performance evaluation of Lasso regression model for crowdedness shift modeling with varying regularization
parameters (↵)

Figure 27 provides an example of the crowdedness shift calculation for several stations along
Madrid Metro Line 7. The shifts are categorized into two types: one representing the outflow
of passenger volume from the station to others and the other showing the inflow of passen-
gers from other stations to the given station. Each stacked bar in the figure represents the
accumulated passenger flow during different intervals, with t � nT indicating the amount of
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(a) Arroyofresno, outflow (b) Arroyofresno, inflow

(c) Ascao, outflow (d) Ascao, inflow

Figure 27 Crowdedness shift patterns for Arroyofresno and Ascao stations on Madrid Metro Line 7, illustrating the inflow and
outflow distributions across different intervals and stations

passenger movement in the n
th past interval. The stations on the x-axis are ordered sequen-

tially according to their actual layout on Line 7, with the current station highlighted in purple.
It is worth noting that inflow and outflow patterns reveal a certain degree of self-flow, mean-
ing the station itself retains some passengers. This is due to the inclusion of self-attention
weights, which reflect either natural passenger growth or delayed passengers from previ-
ous intervals. Observing the outflow patterns of these two stations, it becomes evident that
the distribution of passenger flow is not strictly correlated with geographical distance. Some
farther stations attract more flow, indicating that attraction factors are not merely distance-
dependent. For instance, the Cartagena station on Line 7, located between Parque de las
Avenidas and Alonso Cano, attracts less inflow compared to its adjacent stations (Figure 27a,
Figure 27c).

The crowdedness shift results could aid in identifying key stations that attract significant pas-
senger volumes, which indicates that the location of that station is possibly a center area.
Figure 28 illustrates the attractiveness of Garching station on Munich Metro Line U6. Garch-
ing, located in the northern part of Munich, serves as a commercial center for the surrounding
suburban area. Comparing the passenger flow from other stations on the line, as shown in
Figures 28a, 28b, and 28c, it is evident that Garching attracts a considerable volume of
passengers. The inflow to Garching from other stations, as depicted in Figure 28d, is also
substantial. From an urban rail network topology perspective, Garching is not a transfer sta-
tion, as no other subway or urban rail lines intersect with it. This reinforces the idea that its
crowdedness results primarily from its role as a local center of activity rather than from its
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(a) Marienplatz, outflow (b) Studentenstadt, outflow

(c) Harras, outflow (d) Garching, inflow

Figure 28 Crowdedness shift modeling for Munich Metro Line U6

structural position in the transportation network.

6.3.2. Network Centrality Evaluation Based on Crowdedness Shift

Based on the crowdedness shift matrix, we further conducted a network centrality analysis,
calculating four types of centralities: weighted out-degree centrality, weighted in-degree cen-
trality, weighted eigenvector centrality, and PageRank centrality. The weight matrix used is
the crowdedness shift matrix. Fig. 31 displays results for several lines. From Fig. 31b, we
can further explore the hypothesis mentioned in the previous section—i.e., that the calcu-
lated passenger volume shifts can identify the stations and their surrounding areas with the
most attraction potential for passengers, possibly indicating their centrality in the urban con-
text. For example, Garching Munich shows a high weighted in-degree centrality. Interestingly,
Freimann station even exceeds Garching in terms of weighted in-degree centrality. Mean-
while, both Studentenstadt and Fröttmaning exhibit significantly high weighted out-degree
centrality, not only when compared to their other centrality metrics but also relative to other
stations on the line.

When we turn to the Yellow Line in Newcastle (Fig. 31c), South Shields station stands out.
Fig. 29 shows Newcastle’s metro map, highlighting that this station serves as both a ferry
and a main bus interchange. However, despite North Shields also connecting to the ferry
and bus services, it does not display a notable increase in centrality. For Marseilles’ Line M2
(Fig. 31a), one of the stadiums hosting special events in our study area lies between Rond-
Point du Prado and Sainte-Marguerite Dromel stations. Both stations exhibit a high weighted
degree centrality, with Sainte-Marguerite Dromel, the terminal station, showing a particularly
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Figure 30 Marseilles metro map (UrbanRail, 2024)
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high out-degree centrality. This could be explained by the fact that it integrates a major bus
terminal, suggesting the station gathers demand from surrounding areas via bus services and
transports it towards the city center along Line M2. Also noteworthy are the adjacent stations
Notre-Dame du Mont and Castellane, both in the busy downtown commercial area. However,
they display vastly different inflow and outflow characteristics: Castellane’s in-degree is much
higher than its out-degree centrality, while Notre-Dame du Mont exhibits the opposite. Fig.
30 shows that Castellane is a transfer station connected to Line M1, whereas Notre-Dame du
Mont is not. Additionally, Castellane’s eigenvector centrality is significantly higher.

(a) Line M2, Marseilles

(b) Line U6, Munich

(c) Line Yellow, Newcastle

Figure 31 Comparison of network centrality metrics across different stations on Line M2 in Marseilles, Line U6 in Munich, and
Line Yellow in Newcastle
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7. Conclusion and Outlook

7.1. Summary and Contribution

This thesis provides a comprehensive approach to analyzing crowdedness patterns in urban
public transportation systems, particularly under regular conditions and special event scenar-
ios. The core contributions of this work can be summarized as follows:

First, this study developed a comprehensive pipeline for constructing a dataset for crowded-
ness analysis, leveraging open-source data such as GPT. This pipeline addresses the chal-
lenge of data accessibility, especially in regions where public transport systems do not utilize
AFC systems or do not make the data available. The use of GPT data provides an effec-
tive alternative for analyzing passenger flow in cities with limited or unavailable AFC systems
(Chen et al., 2020; Carvajal and Garcia-Colon, 2003).

Second, a novel GNN-based model, the Attention-based Passenger Transport iGraph Con-
volutional Network (APT-GCN), was proposed. This model captures both the spatial and
temporal dimensions of passenger flow along transit lines, offering improved accuracy in
forecasting crowdedness patterns. By incorporating attention mechanisms into the GNN ar-
chitecture, the APT-GCN can dynamically adjust the importance of different nodes (stations)
based on their relationships and passenger flow interactions, which is especially crucial in
urban transit networks where station interdependencies are significant.

Third, this research collected and analyzed data from multiple cities and special events, en-
compassing eight cities, twelve transit lines, and over 100 special events. This comprehensive
dataset enabled a rigorous evaluation of the APT-GCN model across various real-world sce-
narios. The diversity of the dataset ensures that the model is robust and generalizable to
different urban settings and event types.

Lastly, a novel method for analyzing crowdedness shifts was introduced, leveraging the at-
tention weights from the APT-GCN model. This approach provides a potential framework
for analyzing passenger flow patterns within urban transit networks, revealing how attention
mechanisms can be used to detect shifts in crowdedness over time and space.

7.2. Limitations

Despite its contributions, this thesis has several limitations that should be addressed in future
work:

• Limited Temporal Scope: The data collection period spans from March to June, which
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restricts the analysis of seasonal variations in passenger flow. A more extended period of
data collection would enable a deeper understanding of how crowdedness patterns evolve
over different seasons or weather conditions.

• Hyperparameter Tuning in APT-GCN: The hyperparameters of the APT-GCN model were
not extensively tuned. While the model shows promising results, future work should in-
volve more detailed experiments with different hyperparameter configurations to optimize
performance.

• Crowdedness Shift Analysis: The analysis of crowdedness shifts did not separately model
regular and special event scenarios. Future work could build distinct models for these sce-
narios to better understand how special events specifically impact crowdedness patterns.

• Simplified Weighting in Crowdedness Shift Matrix: In calculating the crowdedness shift
matrix, equal weights were assigned to all previous intervals, simplifying the analysis.
Future research should explore weighting schemes that account for the significance of
different intervals, potentially providing a more nuanced analysis of shift patterns.

7.3. Future Research

Several areas of future research have emerged from this thesis:

• Refinement of Limitations: Future work should address the limitations identified in this
thesis, particularly by collecting data over a more extended period to capture seasonal
variations. Additionally, more detailed hyperparameter tuning of the APT-GCN model could
yield improved performance.

• Exploring the Relationship Between Network Structure and Crowdedness Patterns: Fur-
ther research could investigate whether the structure of a public transport network, station
locations, and the surrounding urban environment influence crowdedness patterns. This
would contribute to understanding whether certain urban configurations produce unique
passenger flow characteristics (Villiers et al., 2019).

• Link Between Crowdedness Patterns and Forecasting Performance: Future studies could
explore whether certain crowdedness patterns are more difficult to forecast than others,
potentially identifying characteristics that challenge forecasting models. Such research
would be crucial in improving model robustness.

• Transfer Learning Across Networks: The potential for applying transfer learning between
different transit networks should be explored. This would allow models trained on one
network to be adapted to another, leveraging shared characteristics across different urban
transit systems.

• Analysis of Euro 2024 Dataset: We plan to analyze the dataset collected during the 2024
UEFA European Football Championship (Euro 2024) in Germany, focusing on special
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events in host cities. The Euro 2024 dataset provides a rich source of information on
special event scenarios, and analyzing it would offer new insights into how major events
influence crowdedness patterns in public transportation systems.
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