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Driven by our work on a large-scale distributed microscopic road traic simulator, we present ENHANCE, a novel re-

partitioning approach that allows incorporating ine-grained simulator-speciic cost models into the partitioning process to

account for the actual performance characteristics of the simulator.

The use of explicit cost models enables partitioning for heterogeneous resources, which are a common occurrence in

cloud deployments. Importantly, ENHANCE can be used in conjunction with other partitioning approaches by further

enhancing partitions according to provided cost models. We demonstrate the beneits of our approach in an experimental

evaluation showing performance improvements of up to 29% against METIS under heterogeneous conditions. Taking a
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diferent perspective, the partitioning produced by ENHANCE can provide similar performance as METIS, but using up to

20% fewer resources.

CCS Concepts: · Computing methodologies→ Distributed simulation; Agent / discrete models; Massively parallel

and high-performance simulations.

Additional Key Words and Phrases: Microscopic Traic Simulation, Partitioning algorithm, Road network partitioning,

Agent-Based Simulation

1 INTRODUCTION

Agent-based microscopic vehicle traic simulations make possible to study with high level of detail the dynamics

of the vehicle traic. This enables city planners to take decisions on infrastructure and policies [28, 29]. At large

scale, these simulations are compute intensive, and distributed computing is one way to scale up agent-based

microscopic vehicle traic simulations [15, 23, 26, 27] . The most common approach is to distribute the workload

into diferent Logical Processes (LPs) by spatial decomposition of the road network into sub-regions. Each

LP handles the agents within a sub-region while exchanging relevant information with the LPs working on

neighboring sub-regions [18]. This process is called inter-process communication.

The partitioning, i.e., the division of the road network into sub-regions, may have signiicant impact on the

simulation performance [16, 18, 23, 26]. In this work, we study the problem of partitioning the road network

for high performance with a distributed, step-synchronized, microscopic traic simulator. In this context, the

performance is dictated by the slowest LP and the communication overhead. Hence, to achieve high performance,

the partitions need to have a good load balancing while simultaneously minimizing communication cost. A

common approach is to cast the problem into a graph partitioning problem, encoding the computational cost in

the node weights and the communication cost in the edge weights of the road network graph [18]. This problem

is NP-hard, but multiple heuristics have been presented.

For agent-based microscopic traic simulations, computation and communication costs are commonly modeled

as numbers of agents (that need to be processed or moved from one node to another) to compute the graph

weights [5, 16, 23, 26]. Despite its prevalence, this approach bears two main limitations. First, this approach implies

a simplistic cost model in which cost is directly proportional to the number of agents, which may not relect

actual performance characteristics of a given simulator. Second, this approach typically assumes homogeneous

resources, which might not be the case in practice. For instance, cloud resources may exhibit heterogeneous

performance characteristics both in terms of computation and communication [1, 2, 25]. Both of these limitations

may lead to partitions hampering performance.

To make matters worse, microscopic traic simulations often exhibit variable load patterns (just like traic

itself) [5, 26], which requires to adjust the partitions during run-time to yield high performance. The straightfor-

ward approach for coping with variable load is to monitor load, and whenever it signiicantly changes, create a

new partitioning adapting to the new conditions. In general, however, this approach bears additional challenges

for the partitioning technique because partitioning algorithms may produce very diferent partitions even when

the input difers only marginally. In this case, the cost of re-distributing major parts of the simulation state

among nodes may dominate any potential beneits from adapting to load [12, 19]. Avoiding this efect requires

partitioning algorithms that can operate in an incremental fashion. That is, rather than producing partitions from

scratch, an incremental partitioning algorithm also takes as input an existing partitioning and aims to derive a

new one by modifying the provided partitioning [19].

In light of the aforementioned considerations, we believe that the state of the art approaches are not suitable

for the efective load balancing in the execution of large-scale traic simulation in heterogeneous performance

environments. In fact, we argue that to achieve maximum performance under these conditions, the partitioning

algorithm must account for the inherent heterogeneity of the run-time environment in which the simulation runs.

ACM Trans. Model. Comput. Simul.
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In this paper we propose a multilevel difusive partitioning algorithm (ENHANCE) which employs a cost model

directly derived from performance measurements. Given a partitioning, the cost model predicts the wall clock

time the simulation will take. Starting from an initial partitioning, we improve upon it to generate a partitioning

which minimizes the predicted total wall-clock time. To the best of our knowledge, this is the irst heterogeneous

performance-aware difusive partitioning algorithm in the context of agent based microscopic traic simulation.

The remainder of the paper is organized as follows. In Section 2, we provide a summary of the state of the

art in road network and heterogeneous-aware partitioning. In Section 3, we explain our motivation and our

contribution. In Section 4, we introduce our approach for creating cost models suitable for partitioning. In

Section 5, we describe a partitioning algorithm consulting these cost models. In Section 6, we explain how the

CityMoS cost models were created. In Section 7, we provide experimental evaluation results for distributed

CityMoS. Finally, in Section 8, we highlight directions for future work and conclusions.

2 RELATED WORK

2.1 Partitioning Algorithms for Road Networks

Road networks can naturally be represented as graphs, for which the partitioning problem has been studied for

decades in many diferent ields. In the context of parallel and distributed simulation, partitioning has been used to

optimize the performance of the simulations. The computational workload can naturally be expressed as vertices

and the data dependencies can be expressed as edges [4]. When the partitioning is done, the workload can be

evenly distributed to be processed by the diferent LPs in parallel, while minimizing the edge cut diminishes the

dependencies of the workload, and thus the overhead required to synchronize the LPs. This is a convenient and

simple representation of the simulations, and it has been used in many diferent simulation ields. For instance, it

is used in the Computational Fluid Dynamics (CFD) simulation for lows in unstructured meshes [3]. It is also

used to improve the performance of parallel optimistic simulations based on the Time Warp synchronization

protocol [21]. Additionally, it is employed on Spiking Neural Network (SNN) simulations [14], to mention a few.

One of the most widely used approaches to graph partitioning is the multilevel approach [16, 21, 22]. Such

algorithms operate in three phases: graph coarsening, initial partitioning, and graph uncoarsening [21]. In

the coarsening phase, the original graph is coarsened by collapsing vertices to produce a smaller graph with a

similar structure. This process is repeated multiple times, creating multiple levels of coarsening. Then, an initial

partitioning is computed for the coarsest level graph. The initial partitioning is then mapped to the next iner level

and further improved using various heuristics, many of which are inspired by the KernighanśLin (KL) heuristic

[9]. The resulting partitions are then projected onto the subsequent iner coarsening level, where the process

is reiterated until partitions for the original graph are achieved. This method operates across multiple levels

of coarsening, hence the term multilevel approach. One of the most commonly utilized multilevel partitioning

program in the literature is METIS [8]. METIS is a multilevel partitioning algorithm which takes an undirected

graph with weighted vertices and edges, and aims to produce balanced partitions while minimizing the edge cut

between partitions. It uses the �-way heuristic to greedily decide to move vertices across boundaries to improve

the edge-cut and balance until the local minimum is reached.

In the context of road network partitioning for agent-based vehicle traic simulations, computational cost is

often modeled as the number of agents on a given road, and communication cost is modeled as the number of

migrating (i.e., moving from one road to another one) agents [5, 15, 23, 26, 27]. For cases where the number of

agents is not known a priori, Wei et al. propose to use the origin-destination (OD) matrix of agents to predict

their routes, and thus the quantities to be used as vertex and edge weights [23]. The weighted graph is then

partitioned using METIS.

ACM Trans. Model. Comput. Simul.
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Potuzak presented methodologies for using genetic algorithms in a multilevel way and leveraging geographical

information in addition to graph weights for road network partitioning [15ś17]. Another notable approach

presented by Xu et al. relies on graph-growing [27].

While all of the previous work described above aims to compute static partitions, Xu et al. present an algorithm

for leveraging METIS also for dynamic re-partitioning in response to variable load [26]. To dynamically change

parts of the road network between partitions, it is necessary to exchange the relevant information, which

introduces a cost of repartitioning that depends on the amount of information to be exchanged. Their approach is

a scratch-remap method, meaning they use the current state of the simulation to create a new METIS partitioning.

The newly generated partitions are not guaranteed to be similar to the current partitioning, therefore they ind

the best match of the current partition to the new one in order to minimize the re-partition cost.

2.2 Heterogeneous Performance-Aware Partitioning Algorithms

The works above assume homogeneous resources. For the case of homogeneous computational resources, but

heterogeneous communication resources, Xu and Ammar presented a static partitioning algorithm considering

two diferent communication channels (e.g., shared memory and network) [24]. This setting is of particular

interest for nodes with multiple sockets, where communication between sockets and between nodes can have

very diferent performance characteristics. The approach considers communication cost models calibrated with

benchmark scenarios.

Kiefer et al. explore the possibility of incorporating a more realistic cost model into the partitioning process by

modifying the METIS algorithm in order to use a non-linear cost model [10]. This is based on the fact that the

computational load may not scale linearly due to various factors, such as the contention of shared resources.

Therefore, the standard assumption that the computation load is the sum of the weights of the vertices does

not represent the actual computation cost when the simulations are run on the hardware. As a result, the load

balancing is no longer done over the linear sum of vertex weights, but over a modiied cost model based on the

sum of weights plus a penalty factor.

Streaming partitioning algorithms have also been extended to account for resource heterogeneity. Streaming

partitioning approaches (e.g., [20]) greedily iterate over all graph vertices in a given order (e.g., random, breadth

irst, depth irst) and use heuristics to decide the partition for each vertex. Once the vertex is assigned to a

partition it will not be moved any further. The work by Xu et al. extended this approach in order to generate

heterogeneous performance-a ware partitioning algorithm, which requires, in addition to the graph to be

partitioned, a physical graph that models the run-time environment including the nodes, their computational

capacity, and the communication channels between them along with their performance characteristics [25].

The physical graph is then used by the heuristics to decide the partition for each vertex in a streaming fashion.

Notably, the rather ine-grained modeling of resource heterogeneity assumed by this approach allows the direct

use of job completion time as an optimization objective (assuming a bulk-synchronous parallel processing model).

Another interesting work was done by Zheng et al. where they developed an architecture-aware partitioning

algorithm (ARGO) to exploit the bandwidth of modern high-speed networks [30]. They found that one limiting

factor in communication performance was the contention due to the sharing of L2 caches between multi-cores

nodes. This, along with the use of Remote Direct Memory Access (RDMA) technology, created a context in which

inter-node communication under the network was prioritized over the communication within the same machine.

Using the same streaming partitioning model as in [20], they found a heuristic able to oload the contention

among the cores in the same node, and obtain a speedup of up to 12x. Fernandez Musoles et al. extended the

approach to work with hyper-graphs and focus on communication, considering calibrated communication cost

models for each pair of nodes during the streaming partitioning process [13]. Additionally, they used multiple

iterations of streams until a stopping criterion is met.

ACM Trans. Model. Comput. Simul.
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3 BACKGROUND AND MOTIVATION

3.1 Formal Definitions

We irst establish the graph formalism for this work. Let� (� , �) denote an undirected graph with vertices � and

edges �. Each vertex � ∈ � corresponds to exactly one road in the road network, and an edge � = {�1, �2} ∈ �

exists if and only if the roads represented by �1 and �2 are connected. We deine the vertex partitioning of � as

subsets of vertices � = {�1, . . . ,�P} with � = ∪1≤�≤P�� and � ≠ � ⇔ �� ∩�� = ∅, where P denotes the number

of partitions.

We call an edge � = {�1, �2} a cut edge if the endpoints are in diferent partitions (i.e., �1 ∈ �� ∧ �2 ∈ �� ∧ � ≠ � ).

We denote the endpoints of a cut edge as neighbor vertices. For convenience, we let �� (�) denote the set of cut

edges for a given partitioning � :

�� (�) =
{

� = {�1, �2} ∈ � |�1 ∈ �� ∧ �2 ∈ �� ∧ � ≠ �
}

. (1)

For a partitioning � , we let the partitioning � �→� , 1 ≤ � ≤ P, to denote the partitioning with vertex �

re-assigned to partition �� (and � being removed from its original partition):

∀�, �, �, � such that � ∈ �� , 1 ≤ � ≤ P, � ≠ � : � �→�
=

{

�� \ �,�� ∪ {�}
}

∪
⋃

ℎ,ℎ≠�,ℎ≠�

{�ℎ} (2)

3.2 Distributed CityMoS

This research was sparked by our work with distributed CityMoS, a parallel agent-based microscopic traic

simulator used formobility studies[29]. CityMoS employs shared-memory thread-based parallelism usingOpenMP.

Distributed CityMoS additionally scales out by distributing the workload among multiple LPs, each in charge of

exactly one sub-region of the road network.

Communication and coordination among LPs are performed via MPI and the simulation is step-synchronized

such that at any time all LPs are in the same logical simulation time. Explicit communication is required in

two cases: agent migration and remote-sensing. Migration is the process of transferring an agent from one LP

to another one as it crosses the boundary between the respective sub-regions. Remote-sensing is the process

of exchanging information required to compute the local agent state that is depending on agents managed by

another LP (i.e., letting agents see other nearby agents in a diferent sub-region). Distributed CityMoS employs

latency hiding techniques to reduce the impact of communication on overall simulation performance.

3.3 Shortcomings of Established Partitioning Approaches

3.3.1 Fine-Grained Cost Models. State of the art partitioning algorithms rely on vertex and edge weights of a

graph to directly encode the cost of processing a vertex or edge. Nevertheless, the implicit direct correspondence

between cost and weight often does not allow to accurately encode an application’s run-time behavior.

As an example, consider CityMoS where the computational cost for conducting a simulation śunsurprisinglyś

directly depends on the number of agents in a simulation. However, the computational cost also depends on

the number of lanes occupied by the agents (i.e., how the agents are distributed across the road network). This

dependency is depicted in Figure 1, which plots the computational cost when simulating the same number of

agents while varying the number of average active lanes (with two diferent CPUs). While the reasons for this

efect are implementation speciic, this example illustrates the limitations of state of the art implicit cost models:

the actual cost depends on the number of agents and number of average active lanes, but these components do

not have to be balanced. In fact, it is well possible that the best overall balance (i.e., total computational cost)

among nodes is achieved with a very uneven distribution of agents and active lanes among nodes. The direct

correspondence between weights and cost, however, does not allow considering such behavior when partitioning.

ACM Trans. Model. Comput. Simul.
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3.3.2 Resource Heterogeneity. Another common assumption in the state of the art is the homogeneous processing

capacity among the nodes processing the partitions. In reality, however, nodes may exhibit heterogeneous

performance proiles for several reasons. Particularly in cloud deployments, customers commonly have limited

means to control the concrete hardware, location and co-location with other workloads. In fact, prior studies

have found signiicant performance heterogeneity in cloud deployments [1, 2, 25].

As an example, consider again Figure 1 showing a signiicant diference in computational cost with two diferent

CPU models that may well be used within the same instance type (depending on the cloud provider). Neglecting

such heterogeneity as part of the partitioning process may leave performance potentials unexploited.
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Fig. 1. Computational cost (wall-clock) when simulating the same number of agents while varying the average number of

active lanes, measured with two diferent CPU models (fast : Intel(R) Xeon(R) CPU E5-2697 v4 with 36 threads, slow : Intel(R)

Xeon(R) CPU E5-2680 v3 with 24 threads.)

3.4 Contributions

We identiied three inherent limitations of prior partitioning approaches: lack of support for heterogeneous

resources, lack of support for iner-grained application-speciic cost models, and lack of suitability for dynamic

re-partitioning. The key contribution of this work is the development of a partitioning approach that seeks

to address aforementioned limitations to obtain higher performance in face of heterogeneous resources and

simulators exhibiting performance behavior not captured by the (implicit) cost model assumed by prior state of

the art. As for re-partitioning, this paper focuses only on the algorithm; the policy to trigger a re-partitioning

and the required data for the algorithm is a challenge by itself, and thus is out of scope for the presented work.

The aforementioned approach for partitioning road networks was implemented for use with distributed

CityMoS. Our prototype

(1) Supports ine-grained cost models by changing the vertex and edge weights for features and incorporating

simulator speciic cost models further explained in Section 4.1.

(2) Supports heterogeneous resources by allowing the use of per-partition cost models, explained in Section

4.2.

(3) Allows for re-partitioning by iteratively changing an existing partitioning further explained in Section 5.6.

We demonstrate the performance beneits of our approach over METIS in an experimental evaluation.

ACM Trans. Model. Comput. Simul.
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4 MODELING COST FOR PARTITIONING

4.1 Decoupling Cost and Weights

As elaborated in Section 3.3.1, the tight coupling between (vertex and edge) weights in the state of the art may

impede capturing performance characteristics relevant for partitioning. We break this coupling by replacing

graph weights with features that, in contrast to weights, do not directly correspond to the cost, but form the input

to a cost model estimating the actual cost from the provided features.

As an example, consider the feature vector � = (132, 1) for a given road, where the irst element denotes the

number of agents on that road and the second one denotes the number of lanes used on that road. While the

number of agents has an obvious relation to the processing cost, the number of used lanes may also contribute to

cost independently of the number of agents for implementation speciic reasons (e.g., for updating usage statistics

for each used lane).

Formally, we attach a feature vector � to each vertex and each edge in the graph to be partitioned:

∀� ∈ � : �� =
(

��,1, . . . , ��,��
)

∈ F� (3)

∀� ∈ � : �� =
(

��,1, . . . , ��,��
)

∈ F� (4)

Here, �� and �� denote the number of dimensions of the feature vectors for edges and vertices, respectively, and

F� and F� denote the feature spaces for edges and vertices, respectively. Note that the features are deined for

vertices and edges, but not for partitions (including potentially multiple vertices and edges). Before reasoning

about the cost of partitions, we irst deine aggregation functions for feature vectors. For a set of feature vectors

� , we deine an aggregation function Agg(� ) : F ∗ ↦→ F that produces a single feature vector containing the

features required to estimate the total cost when processing the respective elements (edges or vertices). The

resulted feature vector belongs to the original feature vector space, and thus it maintains the dimensions of the

input feature vectors.

As an example, consider again the feature vector � = (132, 1) and additionally the vector � ′ = (217, 3). Both

features can be naturally aggregated by addition (the number of agents and number of lanes used results from

the element-wise sum of these to vectors) to obtain the aggregated feature vector � ′′ = (349, 4). The obtained

vector � ′′ contains the information to estimate the computation cost to process two vertices with the feature

vectors above. However, note that the aggregation function may use other operations for aggregation depending

on the semantics of the features. For instance, consider the type of road being contained in the feature vector and

the cost depending on the number of unique road types in a partition. In this case, the aggregation function may

compute the unique elements in the set of road types for that partition.

Since vertices and edges typically represent distinct aspects in the graph to be partitioned (e.g., roads and

connections between them), we require two aggregation functions for feature vectors, for vertices and edges,

respectively:

Agg� (��) : F ∗� ↦→ F� (5)

Agg� (�� ) : F ∗� ↦→ F� (6)

Since aggregation functions can be used to compute a single feature vector from a set of feature vectors, we

can deine cost models operating on aggregated single feature vectors. We distinguish between computation and

communication costs:

CompCost(��) : F� ↦→ R≥0 (7)

CommCost(�� ) : F� ↦→ R≥0 (8)

CompCost(��) estimates the cost (in terms of time) of processing a computation load characterized by the vertex

feature vector �� (resulting from aggregating the features of the vertices in a graph partition �� ). CommCost(�� )

ACM Trans. Model. Comput. Simul.
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estimates the total communication cost for a communication load characterized by the feature vector obtained by

aggregating all cut edges in a partitioning � .

Concrete implementations of CompCost(�� ) may aggregate the feature vectors of the vertices within �� using

Agg� (��) and then estimate the cost from the resulting feature vector. In contrast, concrete implementations of

CommCost(�) may only consider the set of cut edges �� (�) resulting from partitioning � (as other edges do not

result in inter-process communication), aggregate them using Agg� (�� ) and estimate the total communication

cost from the resulting feature vector. Note that, however, concrete implementations have to be tailored to the

performance characteristics of a given simulator.

In the deinition above, the cost model implicitly assumed homogeneous resources, since the node type is not

considered. Next, we describe how to incorporate heterogeneity into the cost models.

4.2 Accounting for Resource Heterogeneity

The cost models as deined above, CompCost(�� ) and CommCost(�), estimate costs regardless of node types,

implicitly assuming a single type (i.e., homogeneous resources). In practice, however, diferent nodes may exhibit

diferent performance characteristics for a variety of reasons, many of which are beyond the control of customers

in cloud deployments. Since we decoupled graph weights from cost, however, incorporating heterogeneous

resources is straightforward: models estimating the cost from a feature vector can be established for each node

rather than globally.

Formally, without loss of generality, we assume a node as a processing unit responsible for one partition; the

approach can be generalized to cores, sockets, or other granularities. Let � = {�1, . . . , �� } be the set of nodes,

potentially each exhibiting diferent performance characteristics. For the sake of simplicity, but without loss of

generality, we assume � = P and that each node �� is responsible for partition�� . Rather than using a single cost

model for computational cost, CompCost(�� ), we use one cost model per node, CompCost� (�� ), �� ∈ � , relecting

the performance characteristics of the respective node �� . For example, consider again Figure 1, which illustrates

that two diferent nodes (with diferent CPUs) may have diferent processing costs for the same aggregate features

(i.e., number of average active lanes and number of agents). Per-node cost models can be created by simulation

speciic proiling and model regression techniques. Analogously, resource heterogeneity can be incorporated for

the communication cost model.

Next, we describe how to use the cost models to formulate an objective function driving the partitioning

process

4.3 Objective Function for Partitioning

In general, the objective function is composed by two elements: the computation and the communication. To

obtain the computation of the partition � , the feature vectors of a partition need to be aggregated via � �� =

Agg� ({�� |� ∈ �� }) which will be transformed to cost by the computational cost model of that partition. We can

formulate one component of the objective function, namely, the computation cost per node:

CompCost�
(

� ��
)

. (9)

The second component we consider in the objective function is the communication cost. Since only cut-edges con-

tribute to inter-process communication, with the aggregated features of the edges � �
����

= Agg� ({�� |� ∈ �� (�)})

we can estimate the total communication cost for a given partitioning � as:

CommCost
(

� �����

)

. (10)
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With both computation and communication costs, we can formulate the total predicted cost (TPC) of a partitioning

� :

TPC(�) = max
1≤�≤P

CompCost�
(

� ��
)

+ CommCost
(

� �����

)

. (11)

We use TPC(�) as an objective function to minimize as part of the partitioning process. The formulation of

TPC(�) above implies a model where computation and communication are never overlapped and where all

communication is handled by a central instance. Note that this does not directly apply to distributed CityMoS.

However, for the sake of simplicity and since the development of cost models exactly relecting all implementation

aspects of distributed CityMoS is beyond the scope of this work, we use the formulation of TPC(�) above as

objective function to be minimized as part of partitioning. All results reported in this paper were obtained with

this objective function.

For convenience, we also deine TPC(�, � ) a variant of TPC(�) that only considers partitions with indices � in

the evaluation of the computational cost:

TPC(�, � ) =max
�∈�

CompCost�
(

� ��
)

+ CommCost
(

� �����

)

. (12)

Next, we detail how we employ this objective function in an efective partitioning algorithm.

5 MULTILEVEL STREAM HETEROGENEOUS PERFORMANCE-AWARE PARTITIONING

ALGORITHM

5.1 Overview

On a very high level, our partitioning approach, ENHANCE, works by taking an initial partitioning as an input,

and modifying the partitioning until a termination criterion is satisied. This approach bears multiple challenges:

obtaining the initial partitioning, deining the modiication actions to perform, deciding the actions to take,

reducing the risk of getting stuck in local optima, eiciently coping with potentially large graphs, and coping

with the high number of evaluations of the cost model when making decisions. In the following, we describe how

we address each of these challenges.

First, we describe how to obtain an initial partitioning for our approach.

5.2 Obtaining an Initial Partitioning

As we point out above, ENHANCE takes an initial partitioning as input rather than computing a partitioning from

scratch. This naturally leads to the question of how to obtain that, and in our case the answer is straightforward:

we suggest the use of partitioning algorithms presented in prior work (see Section 2) that produce the best results

for the given application. As such, ENHANCE does not directly compete with other partitioning algorithms,

but rather enhances them by utilizing them and further improving their results. If ENHANCE was to guarantee

optimality, the choice of an initial partitioning would be arbitrary, since convergence to an optimal partitioning

would be guaranteed regardless of the choice. However, since ENHANCE does not guarantee optimality (which

is inherent to approaches avoiding the inherent complexity of the underlying partitioning problem), the choice of

the initial partitioning may have signiicant impact in two dimensions: irst, starting from a good partitioning

may require fewer iterations by ENHANCE to converge to a better partitioning (compared with a less performing

initial partitioning). Second, ENHANCE may ind better partitioning when starting from good initial partitioning

that would not be found when using another initial partitioning. The choice to assume an initial partitioning to

be used by ENHANCE was deliberate: it enables us to stand on the shoulders of giants by leveraging the plethora

of prior work on partitioning by incorporating it, and further improving the result.

Next, we describe how we modify the partitions, starting from the initially provided one as well as during

run-time.
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5.3 Incremental Modifications of Partitions

ENHANCE incrementally modiies the partition through a sequence of actions, where each action re-assigns a

vertex from one partition to another one. More formally, we let adj(�) denote the set of vertices a given vertex

� (i.e. adj(�) = {� ′ ∈ � |∃� = {�, � ′} ∈ �} ,) and we let P(�) denote the index of the partition containing � in

partitioning � (i.e. P(�) = � : 1 ≤ � ≤ P ∧ � ∈ �� )

As mentioned above, given a neighbor vertex � (i.e. a vertex connected to a cut edge, see Section 3.1), we

consider the actions of moving the vertex to each of its neighboring partitions (or not moving it). For each one of

such actions we evaluate a provided cost model to determine the respective local cost, deined as the cost only

considering the neighbor partitions while ignoring the others.

The use of the local cost rather than the global cost allows considering actions providing local beneit even

though they may not necessarily improve upon the global cost (yet). The process somewhat resembles natural

difusive processes. As an example, consider gas difusion: gas difuses locally as long there is a local diference

in concentration regardless of higher or lower concentrations further away. Importantly, this difusive process

ultimately strives to even out the concentrations globally. Similarly, considering local cost enables taking actions

providing only local beneits, which eventually accumulate to global cost beneits.

The pseudocode is depicted in Algorithm 1. It takes as input the graph � , the current partitioning � , the

current neighbor vertex � to operate on, and the cost model � . Diferent cost models � can be employed to take

the decision, and we will clarify the cost model selection in detail in Section 5.5. The ChooseAction algorithm

returns the index of the partition where � has to be assigned to in order to yield in minimal local cost. Note that

this function may return the index of the partition � is already assigned to, in which case the action is actually to

not re-assign � to a diferent partition. Next, we detail how this logic is employed by ENHANCE in a streaming

fashion for re-partitioning.

Algorithm 1 Choosing an action for vertex �

1: ChooseAction(�, �, �, � ):

2: ����ℎ���ℎ�������������� ← {P(� ′) |� = � ′ ∨ � ′ ∈ adj(�)}

3: ������� ←∞

4: for each � in neighborhoodPartitionsI in random order do

5: ���� ← � (� �→� , ����ℎ���ℎ�������������� )

6: if ���� < ������� then

7: ������� ← ����

8: ����� ← �

9: end if

10: end for

11: Output: ����� of partition to assign � to

5.4 Streaming Re-Partitioning

ENHANCE takes a greedy streaming approach to determine the sequence of actions to apply for re-partitioning.

The key idea of streaming is to traverse the vertices of the graph in a given order (e.g., random), choose an

action for each vertex, apply it, and repeat until a termination criterion� is met [20, 25]. Our prototype processes

neighbor vertices (since other vertices do not have a neighborhood partition to assign them to) in random order,

a common choice also taken, for example, in [25]. We leave the analysis of other ordering schemes with their

impact on both convergence time and quality of partitioning found to future work. The pseudocode of this
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approach is depicted in Algorithm 2. The termination criterion � (�, �, � ) is a binary predicate indicating if the

current partitions should be reined in another pass over the neighbor vertices.

Algorithm 2 Streaming Re-Partitioning Algorithm

1: Repartition(�, �, �,� ):

2: while not T(�, �, � ) do

3: for each vertex � in � in random order do

4: if � is neighbor vertex then

5: � ← ChooseAction(�, �, �, � )

6: � ← � �→�

7: end if

8: end for

9: end while

10: Output: �

Each neighbor vertex is considered to be re-assigned to a diferent partition at most once in each iteration,

similar to approaches taken in [20, 25]. Potentially multiple iterations are performed (until termination criterion

is met) as in [13].

In Algorithms 1 and 2 we did not specify the cost model � used. In fact, ENHANCE currently employs two

cost models, and we next describe the concrete cost models and how they are used.

5.5 Multiple Cost Models

ENHANCE greedily modiies partitions by sequentially performing locally beneicial actions and, as such, is

potentially prone to reach locally optimal partitions that cannot be further modiied (without tracing back or

taking other actions) to reach the global optimum. This efect is inherent to approaches that do not guarantee

optimality and cannot be completely ruled out without facing the hardness of the underlying partitioning problem.

However, ENHANCE employs two techniques to reduce the risk of converging to dead ends. First, we use two

diferent cost models, each encapsulating slightly diferent aspects of the performance characteristics. Second, we

use graph coarsening which we detail in Section 5.6.

For CityMoS, we employ two cost models: the irst is the objective function TPC(�, � ) of equation 12 (described

in Section 4.3) that accounts for both computation and communication cost. The second cost model, PCC(�, � )

(predicted computation cost), is a reduced one that only accounts for the computation cost:

PCC(�, � ) =max
�∈�

CompCost�
(

� ��
)

. (13)

We use PCC in addition to TPC because always accounting for communication cost (included in TPC) may lead to

avoidable local optima: as an example, consider a group of highly connected vertices on partition�1 and a weakly

utilized partition �2. Re-assigning any single vertex from the group from �1 to �2 may not be beneicial because

the computational cost on �1 is only marginally reduced, and the additional communication cost incurred by

splitting the group may result in higher overall cost (and hence, lower performance). Moving the whole group of

vertices from �1 to �2 at once, however, may have resulted in lower overall cost, but it would not be done since

vertices are processed individually. In this situation, using PCC instead of TPC may have allowed moving all or

some of the vertices of the group from �1 to �2, avoiding this local optimum.

For each cost model, we use a diminishing returns termination criterion, that is, the iterative process stops as

soon as one iteration did not yield cost improvements. Both cost models are used in diferent stages of algorithm,

which we describe next.
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5.6 Multilevel Re-Partitioning

The multilevel optimization is a widely used approach for partitioning and minimization [22]. The approach

consists of reducing the complexity of a graph by coarsening the network into multiple levels. The re-partitioning

process performed by ENHANCE, as described above, operates on the level of individual vertices that are re-

assigned between partitions. In case the initial partitioning is far away (i.e., difers a lot) from a better-performing

partitioning, this may require a potentially large number of individual modiication actions. Intuitively, this could

be reduced by taking fewer bigger steps, rather than many smaller ones. Following this intuition, we employ

graph coarsening as a way to both increase the rate of convergence to good partitionings, as well as to reduce the

risk of converging to local optima.

Formally, let coarsen(�� ) denote a coarsening function that, given a graph �� with a coarsening level � ,

produces another graph ��+1 that it is smaller or equal size of �� (in terms of vertices) and maintains a similar

structure. For the coarsening level � , we assume that higher levels result in coarser (i.e., smaller) graphs, that is

� > � ⇔ |�� | ≤ |� � |. We further assume a functionmapPartitioning(�, �,�� ) that produces a partitioning � ′ for

a coarsened graph�� given a partitioning � for the original graph� . For convenience, without loss of generality,

we assume �1
= � . The used mapPartitioning in our case is simply the statistical mode of the vertices that are

collapsed from level � to �� . Notice that the vertex ��� of level �� is the result of collapsing one or more vertices

from � . Therefore � (��� ) = ���� ({� (� � ) |� � ∈ �����������������}).

Algorithm 3 Multi-Level Partitioning using Graph Coarsening

1: MultilevelRepartition(�, �, �):

2: (�1, . . . ,�� ) =
(

�, coarsen(�), . . . , coarsen(��−1)
)

3: � ′ ← mapPartitioning(�, �,�� )

4: � ′ ← Repartition(�� , � ′, PCC,� )

5: for each coarsening level � from � down to 1 do

6: � ′ ← Repartition(�� , � ′,TPC,� )

7: end for

8: Output: � ′

The coarsening of the graph is performed using the Heavy Edge Matching (HEM) [7] with the number of

migrations as weight for the edges. The HEM is an eicient method to match the heaviest edges together in a

greedy fashion. This ensures that the edge cut on the coarsened graph is diminished by a signiicant quantity [8].

To maintain the original properties of the graph on the coarser representations of it, we are simply aggregating the

vertex features of the collapsed vertices. The edge features are kept unchanged, unless more than one collapsed

vertex has an edge to another vertex, then the edges features are also aggregated.

Algorithm 3 depicts the pseudocode for incremental multilevel re-partitioning. In line 2, we irst compute the

coarsened graphs for each level. Then the initial partitioning is mapped to the coarsest graph (line 3) obtained in

the previous step. We then reine the coarsest graph using the cost model (PCC) considering only computation

cost (line 4), and then reine the partitioning using the complete cost model (TPC) for each coarsening level,

starting with the coarsest one (line 6). Note that in the inal iteration (� = 1) the re-partitioning is performed on

the original graph (�1
= �) and the resulting partitioning � ′ is returned.

Note that the above the approach as described so far may require many (for each coarsening level and for each

iteration � ( |� |)) Ðpotentially expensiveÐ evaluations of the cost model. Next, we describe how we can evaluate

the cost model incrementally.
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5.7 Incremental Cost Model Evaluation

In ENHANCE, the cost models used are evaluated each time potential partitioning modiication actions are

assessed (see Algorithm 1). Although the cost models used throughout this work are not very complex, the

cost for one evaluation of the cost model (including the aggregation function) can still be critical for overall

performance of ENHANCE due to the high number of evaluations. To reduce the evaluation cost, we next describe

how to perform the calculations in the cost models we used in an incremental fashion. The underlying intuition

of computing the cost incrementally is that individual partitioning modiication actions (i.e., re-assigning one

vertex) often do not invalidate already computed cost components for the partitioning before that modiication.

For instance, consider a vertex � being re-assigned from partition 1 to 2. This action certainly afects the total

computation cost on partitions 1 and 2, but does not afect the computation cost on other partitions, so they can

be re-used.

Formally, we next describe how to eiciently update the result of the cost models PCC and TPC for a given

partitioning � in response to a partitioning modiication action (i.e., re-assigning a vertex) to obtain the result

for the modiied partitioning. Note that the following technique for incrementally evaluating the cost models

assumes that the aggregation functions used, Agg� (��) and Agg� (�� ), aggregate by element-wise addition of

the feature vectors. Other aggregation functions may require diferent approaches or cannot be evaluated in an

incremental fashion at all.

From the previous example, recall that re-assigning a single vertex only afects the computation cost in the

origin and destination partitions, while others are not afected. More precisely, for a partitioning � and vertex �

with feature vector �� being re-assigned from partition �� to �� , the aggregate feature vectors �
�
� and � �� can be

updated rather than recomputed with � �� ← � �� − �� and � �� ← � �� + �� . The feature vector �� of the vertex being

re-assigned is subtracted from the aggregate feature vector for the origin partition �� and added to the aggregate

feature vector for the destination partition �� , while leaving other aggregate feature vectors unchanged. In both

PCC and TPC, the computation cost for partitions other than � and � can be directly cached and re-used. For

partitions � and � , the respective aggregate feature vectors can be eiciently updated as described above, and

then the cost model has to be re-evaluated for the updated aggregate feature vectors.

The TPC cost model additionally accounts for the communication cost which depends on the partitioning

cut edges. Similar to computation cost, the aggregate feature vector � �
����

used for the communication cost can

be incrementally updated in response to re-assigning a vertex � with feature vector �� from partition �� to ��

(i.e., (� → �)). This action can afect an edge � in two ways: � can become a cut edge when it was not a cut edge

before, or � was a cut edge and can become a non-cutting edge, otherwise � is not afected by the action. We

formally deine the sets of new cutting edges as NCE(�, �, �) = �� (�
�→� ) \ �� (�), and new non-cutting edges as

NNCE(�, �, �) = �� (�) \ �� (�
�→� ).

Note that both NCE(�, �, �) and NNCE(�, �, �) can be directly incrementally computed in a straightforward

way: both sets can only contain edges adjacent to the vertex being re-assigned � , and each edge � adjacent to �

can be easily checked to determine if � should be added to NCE(�, �, �) or NNCE(�, �, �) (or none of them).

Given NCE(�, �, �) and NNCE(�, �, �), the aggregate feature vector for the cut edges � �
����

can be incrementally

updated as follows:

� ����� ← � ����� + Agg� (�� |� ∈ NCE) − Agg� (�� |� ∈ NNCE). (14)

With � �
����

being updated, the actual communication cost has to be re-computed via CommCost(� �
����
).

The incremental update of the respective aggregate feature vectors may improve the performance of ENHANCE

signiicantly. However, the concrete beneits depend on the structure of the underlying graph and the cost models

used. Next, we present the results of an experimental evaluation of ENHANCE.
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6 CITYMOS COST MODEL CREATION

In order to use ENHANCE to improve the CityMoS performance, we irst needed to create ad-hoc cost models to

predict the �������� and �������� for the simulations. The experiments of section 7 were performed in two

diferent run time environments, which have diferent performance characteristics, therefore a previous step to

create the partitionings was to create the cost model for the given platforms. In this section, we describe how the

cost model were obtained.

The irst environment which we will refer to as the Homogeneous Machine (HM) consists of 16 Intel(R) Xeon(R)

CPUs E7-8890 v4. Each CPU is in its own NUMA domain and has 24 cores (48 threads). The nodes are deployed into

individual CPUs, and to emulate heterogeneity under this machine, we control the number of usable CPU cores

on each CPU. We used two diferent deployment conigurations under the HM, the irst one is the homogeneous

deployment. In this deployment all the CPUs have 8 usable cores, and as such exhibit homogeneous performance

characteristics. In contrast, on the heterogeneous deployment, half of the CPUs has 16 usable cores and the

other half has 8 usable cores. The CPUs with 16 usable cores will be denoted as fast nodes, and the ones with 8

usable cores as slow nodes.

The second run time environment is a Natural Heterogeneous Cluster (NHC) combining two kinds of machines.

There are four fast machines which have two Intel(R) Xeon(R) CPU E5-2697 v4 with 18 cores (36 thread), each

having their own NUMA domain. Similarly, there are ive slow machines with two Intel(R) Xeon(R) CPU E5-2680

v3 @ 2.50GHz with 12 cores (24 threads), also having their own NUMA domain. All the machines are connected

by a 10 Gbps network. In the NHC, there are four deployment conigurations:

• Homogeneous Fast: which deploys the simulation on the fast machines, mapping one node per CPU, and

using 16 threads per CPU.

• Homogeneous Slow: which deploys the simulation on the slow machines, mapping one node per slow

CPU and using 16 threads per CPU.

• Natural Heterogeneous: which deploys the nodes on the same amount of fast and slow CPUs and using

16 threads per CPU.

• Degree Four Heterogeneous: In this coniguration, we emulated a four degree heterogeneity by deploying

the nodes in a round robin fashion to a slow CPU with 16 threads, fast CPU with 16 threads, slow CPU

with 8 threads and fast CPU with 8 threads.

To obtain the concrete computational costs model for distributed CityMoS, we generated multiple controlled

calibration scenarios designed to capture the general performance behavior depending on the features we use. As

mentioned in the Section 3.3.1, we empirically found that the two most signiicant features in order to characterize

CityMoS’s performance correspond to the vehicle count and the average amount of active lanes. For the case of the

communication cost, the feature corresponds to the number of vehicle migrations between partitions. Therefore,

our approach was to run scenarios which exhibit diferent traic patterns (e.g., only traic coherently lowing

into a single direction, or fully random) and diferent distributions (e.g., spatially uniform or skewed) to ensure

that trained cost model parameters generalize and do not depend on speciic scenarios. We used low-overhead

code instrumentation which consisted of timers to measure the wall-clock time used in the computation segments

of the code, as well as the total cost. The wall clock time information is saved in a database together with the

performance features to later be process in the cost model creation. The calibration scenarios were run under the

diferent kind of nodes to later perform an oline analysis on the data. In our experience the predictions were

consistent across the diferent kind of nodes i.e. same CPU and same amount of threads, therefore the calibration

scenarios could be run once per node type. The amount of time needed to generate the itting data was signiicant

around 40 hours for the CPUs with 8 threads and 20 hours for the 16 threads, and the itting of the models using

data took around 20 seconds. The models were saved and could be instantly used in the partitioning process, so

the actual calibration had to be performed only once. Nevertheless, we did not aim to minimize this time. The
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Fig. 2. Computational cost data used for model calibration and resulting models for both run time environments. Each color

indicates a specific type of node

problem to generate an accurate cost model by minimal sampling to reduce the total initial itting phase is a

challenge by itself and it is out of scope of this work.

For the case of the computation cost model two kind of model were used, linear and polynomial. We took the

data from the calibration scenarios and perform polynomial regression with the given features. In the case of

computation cost on the HM, we use polynomial model of second order as model for the fast and slow nodes

resulting in determination coeicients of �2
= 0.98 and �2

= 0.99, respectively. Figure 2a shows the data used

for calibration and the model for both kind of nodes. For the NHC, we use a linear model resulting correlation

coeicients of �2 ≈ 0.99 for all the diferent kinds of nodes. Figure 2b shows the data used for calibration and the

model for the four kind of nodes.

For modeling the communication cost, we followed a similar approach. With the cost data obtained from the

calibration scenarios we estimate the communication cost by TC−��� (CompCost� ), which is a simpliication of

the actual communication model (which is not centralized, but pair-wise among nodes). However, the development

of cost models more precisely resembling the performance characteristics of CityMoS is beyond the scope of this

work. We used a linear model to capture the relation between number of migrations and communication cost,

which yielded a determination coeicient of �2
= 0.94.

7 EXPERIMENTAL EVALUATION

To assess the efectiveness of each component of ENHANCE, we conduct three distinct experiments, each

designed with an increasing complexity. The irst experiment is designed to assess ENHANCE’s functionality

without reliance on the accuracy of the proposed cost model. This is achieved by artiicially assigning costs to

the test graphs, essentially conducting the experiment in an in vitro manner, as detailed in the section 7.1. The

second experiment is designed to test if ENHANCE is able to improve the TPC with features obtained from a

real simulation and the cost model obtain from the runtime environment, as detailed in section 7.2. Finally, we

evaluated the new partitionings in-vivo by running CityMoS with the obtained partitions to see if the performance

was improved in section 7.3. In summary, the experimental evaluation of ENHANCE aims to answer three key

questions:

• Q1: Is ENHANCE able to improve the partitioning according to the used cost model?

• Q2: Is ENHANCE able to improve end-to-end performance for CityMoS?

• Q3: Is ENHANCE able to improve end-to-end performance under heterogeneous resource environment?
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Note that Q1 does not depend on the cost models to accurately relect the performance characteristics of a

simulation, but rather concerns the ability of ENHANCE’s approach to improve partitioning according to the

cost models. This is required, together with suiciently accurate cost models, for ENHANCE to provide beneits

in practice Q2. Also, we tested if our approach was lexible enough to incorporate diferent cost models coming

from heterogeneous hardware, and use this information efectively in order to extract more performance Q3.

7.1 In vitro experimental evaluation

Prior to employing ENHANCE in actual simulations, we initially engage with an evaluation with synthetic

scenarios. In essence, we allocate straightforward numerical workloads to the nodes and edges of graphs and

apply METIS along with ENHANCE to generate and reine partitionings. This study allows us to evaluate if

our re-partitioning result in lower TPC than the original partitioning under control conditions. Furthermore, it

provides the lexibility to simulate heterogeneity without being constrained by available resources, allowing for

the hypothetical performance of any number of hardware conigurations. We evaluate ENHANCE from diferent

domains and featuring diferent characteristics:

• Shenzhen: Road network of the Shenzhen metropolitan area, simpliied with the tool [11]. Each vertex

corresponds to a road, and each edge corresponds to a connection between the roads. The graph has 85, 204

vertices and 117, 788 edges in total. Partitioning this particular graph was a challenge stemming from our

given research on a large-scale distributed traic simulation, and ENHANCE’s primarily aim is to eiciently

partition this and similarly structured graphs.

• RoadNet-PA: Road network of Pennsylvania. Each vertex corresponds to an intersection or endpoint, and

each edge corresponds to a road connecting them. The graph has 1, 088, 092 vertices and 1, 541, 898 edges

[6]. Apart from encoding of roads and intersections in a diferent way, this graph is also approximately one

order of magnitude larger than the Shenzhen graph.

• Email-Enron: Graph representing e-mail interaction. Vertices correspond to e-mail addresses, and edges

correspond to communication between them. The graph has 36, 692 vertices and 183, 831 edges [6], as well

as a higher ratio of edges to vertices than the previous two graphs. We include this graph in our evaluation

to exercise ENHANCE’s ability to eiciently partition graphs from other domains and featuring structure

diferent from road networks.

We use a simple workload for each of these graphs by assuming one unit of processing load per vertex, and

one unit of communication load per edge: ∀� ∈ � : �� = 1 and ∀� ∈ � : �� = 1|� ∈ �. We use a simple additive

feature aggregation, that is: � �� = |�� | and � �
����

= |�� |. The computational cost is simply computed from the

computational load normalized by a constant�� denoting the relative performance of node �:��������� = � �� /�� .

Higher values for �� indicate a more eicient (or faster) machine capable of handling the same workload at

a lower cost, whereas a lower �� indicates a less eicient (or slower) machine, which incurs a higher cost for

processing the same amount of work. For achieving optimal workload distribution (i.e., without any imbalance),

the workloads should be adjusted to align with the computational capacities of the nodes, based on the weighted

average of their performance coeicients, i.e. � �� = |� | ×��/
∑

�� . This ensures that each node incurs an equal

computational cost, eliminating bottlenecks where some nodes might otherwise have to wait for others. The

optimal computational cost, serving as a lower bound for the TPC in the absence of communication overhead, is

then ��������������� = |� |/
∑

�� .

The communication cost is computed in a similar way, by scaling the communication load by a constant factor:

�������� (�� ) = ������� � � × �� . The reason for scaling is to put both cost terms in a proportion that allows

for eicient partitioning up to the maximum number of partitions for each graph (1024 for RoadNet-PA and

512 for the others). Without scaling, the communication cost together with the graph structure may otherwise

render the underlying workload structurally unscalable (up to the maximum number of partitions considered):
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the communication cost may far exceed the beneits of more computational resources available, and using more

resources may result in lower performance. Note that this efect is unrelated to our work, but an inherent property

of the workload. For the Shenzhen, RoadNet-PA, and Email-Enron graphs considered in this evaluation, we used

the values of 0.005, 0.01, and 0.01 for ������� � � , respectively.

We study the behavior of ENHANCE with diferent heterogeneity degrees (�), which correspond to the number

of unique values of �� . The set of unique values of �� are assigned to the nodes in a round robin fashion. The

baseline case has � = 1 which degenerates to the homogeneous case having a unique value of � = 1. For � > 1

the coeicients are chosen to be the linear space between [1, 2], for example the coeicients for a simulation

with 4 nodes and � = 2 would correspond to �1 = �3 = 1 and �2 = �4 = 2, and the same nodes with � = 4 would

have coeicients �1 = 1, �2 = 1.3̄, �3 = 1.6̄, �4 = 2. In this way, the heterogeneous environment may resemble

scenarios where, for example, a cluster consisting of slow nodes is extended with additional faster nodes.

In each experiment, we used a partitioning obtained fromMETIS as input to ENHANCE. For each coniguration,

we apply ENHANCE ive times with a unique random seed in each invocation. Note that in each invocation of

ENHANCE, the same partitioning obtained from METIS is used as a start. The average TPC along with standard

deviation are plotted in Figure 3. Each row of images corresponds to a graph, the irst for the Shenzhen, the

second for the RoadNet-PA and the inal for the Email-Enron. The columns are the diferent heterogeneity degrees

� starting from left with the homogeneous case (� = 1), in the middle � = 4 and inally � = 16.

The result shown in Figure 3 illustrate that ENHANCE is indeed able to enhance the METIS-generated partitions

and further reduce the TPC across a broad range of conigurations. This efect is particularly pronounced for

the Shenzhen graph, but there are also cases in which the enhanced partitions yield a TPC higher than the

initial METIS-generated partitions. In practice, however, as a fallback mechanism, it is easily possibly to use the

METIS-generated partitioning in case the partitioning produced by ENHANCE does not improve performance (in

terms of TPC reduction). A partitioning of the Shenzhen graph using ENHANCE is depicted in Figure 5, where

roads are color-coded by partition. Interestingly, we can observe that the relatively smooth boundaries between

the partitions obtained by METIS are blurred when processed by ENHANCE in the sense that partitions may be

locally invaded by other partitions. This efect is visible, for instance, on the boundary between the pink and blue

partitions. Naturally, this behavior may increase the edge cut, resulting in higher communication cost (but still

mostly lower total cost), as pointed out earlier. In extreme cases, this may result in disconnected components

within the same partition.

In the case of homogeneous resources (� = 1), we expected METIS to perform well, since homogeneous

resources are an (implicit) assumption made in the approach taken by METIS. In fact, for instance in igure 3a, the

TPC with METIS is almost overlapping with the ��������������� up to 25 partitions. After this point, the TPC

with METIS exceeds the optimal ��������������� . ENHANCE takes partitionings produced by METIS and

enhances them according to the provided cost models. Recall from algorithm 4 (line 4) that ENHANCE does so by

irst aiming to balance the load, ignoring the communication cost. This results in a more balanced partitionings

at the expense of an increase of communication cost in the irst step. The later reinements in the line 6 move

the vertices reducing the TPC, now considering the communication as well, which basically allows to reine the

borders between the balanced partitions, and inding the local minimum of the TPC. In some cases, moving a

vertex can result in fewer communication, and more imbalance or the other way around, but the criteria is which

decision will minimize the TPC as a full. Note that we only allow the partition to be ine-tuned in a way that

vertices in the edge cut can be moved to neighbor partitions, until the lowest TPC is reached. Hence, the size of

the edge cut (or, more precisely, the number of vertices adjacent to edges in the edge cut) corresponds to the

number of possible modiication actions considered. Interestingly, we ind that the partitionings generated with

ENHANCE tent to result in higher communication cost than METIS.

In the case of heterogeneous resources (� ∈ {4, 16}), METIS does not consider the actual per-node processing

performance, and hence, tends to overload slower nodes and under-utilize faster ones. As an example, for instance,
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consider the results for the Shenzhen graph with a � = 16 shown in Figure 3c. In this environment, the METIS

�������� line is surpassing the ��������������� because it is equally distributing the load among the node,

without the consideration of the heterogeneity. Therefore, the performance is limited by the slowest nodes, and

the faster nodes are not taken advantage to their full potential. This is relected in the imbalance ratios: for

instance, for sizes 25, 26 and 27, the imbalance ratios are 1.49, 1.67 and 1.52. In contrast, the �������� with

the enhanced partitionings are almost overlapping with the ��������������� and exhibit lower imbalance

(e.g., maximum imbalance ratio of 1.01 for the 29 nodes). Yet, the resulting partitionings tend to have a higher

�������� than the originals as in the homogeneous case. As a result, the partitioning for 29 nodes does actually

not improve upon METIS overall (according to TPC).

As pointed out earlier, the Email-Enron graph has a much higher ratio of edges to vertices than the other graphs

representing road networks. This property renders the workload more bound by communication, which is also

relected in the characteristics of the resulting partitionings. The results for the Email-Enron graph are depicted

in Figures 3g, 3h and 3i. The strong impact of the communication cost for this graph, compared to the other two

graphs considered, can be observed, for instance, in Figure 4b, the total cost is broken down into communication

and computation cost. Here, the�������� has roughly the same order of magnitude as the�������� at 24, and

for larger sizes, �������� becomes the dominant component of the TPC. In contrast, the other two graphs have

a smaller ratio of edges to vertices, and the communication cost only becomes the dominant factor for larger

number of partitions. As an example, consider the cost breakdown for the Shenzhen graph, depicted in Figure 4a.

Compared to the Email-Enron graph, the communication cost in the Shenzhen graph exceeds the computation

cost only for higher numbers of partitions.

In this section, we evaluated ENHANCE’s capacity of improving METIS-generated partitions, and our results

indeed indicate that, over a range of diferent conigurations, ENHANCE is capable of producing partitions that

improve upon METIS according to a cost model only, without actually running our target application, CityMoS.

In that sense, this evaluation was an in vitro evaluation that deliberately excludes any potential impact of model

inaccuracy. Next, we investigate if the partitionings produced by ENHANCE also beneit actually measured

runtime performance.

7.2 Partitioning for CityMoS

In this section, we evaluate the performance of CityMoS without actually running CityMoS by only studying the

predicted cost according to the cost model (Q1). This is a similar evaluation than the one performed in section

7.1, but this time the cost models correspond to the CityMoS models obtained in Section 6 and features were

obtained from a simulation. Therefore, we are evaluating if ENHANCE can minimize the objective function (i.e.,

the TPC) in a more complex and realistic case.

As a performance benchmark, we use a grid-like road network with 90 by 90 intersections and bidirectional

roads with 3 lanes per road. We represent the road network as a graph with vertices representing roads and edges

representing connections between roads. The resulting graph � consists of 159, 120 vertices and 254, 160 edges.

The traic in this scenario is composed of a single traic wave with 350, 000 concurrent agents at peak, where

each agent has a randomly selected origin and destination. Before running partitioning experiments, we ran the

simulation once to generate the vertex and edge feature vectors (e.g., average number of agents per road, average

number of migrations) which we also used to derive the weights for METIS.

Similar to the experiments described in the previous section, we used METIS to generate an initial partitioning

and then applied ENHANCE to improve them. The results are summarized in Table 1 for all the runtime

environments and all deployment conigurations. Note that the number of fast machines for the NHC was limited

to 4, therefore we consider are up to 8 (total) nodes in this setting. For each number of partitions, the results were

obtained from 5 samples, all starting from the same METIS partitioning, but using diferent random seeds.
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Fig. 3. Predicted performance of METIS and ENHANCE partitionings for the diferent graphs under diferent heterogeneity

degrees.

First, the gap between the minimum and maximum TPC is remarkable and more pronounced than in the

in-vitro experiments from the previous section. The only aspect where the random seeds have any impact is the

order in which vertices are processed in Algorithm 2. The features coming from the simulation which has higher

and lower traic regions in the road network increased the skewness of the features, making the processing

ordering of the vertices to have higher impact in the inal result of the partitioning process. This observation

further motivates studying alternative ordering schemes exploiting characteristics of the underlying graph. Also,

a Monte Carlo approach might be employed by invoking ENHANCE in parallel with diferent random seeds, and

then using the best result obtained by any instance.

In most of the cases, ENHANCE was able to improve the average predicted cost over the partitioning obtained

by METIS. The beneit of ENHANCE is particularly remarkable in the heterogeneous environment (see Table 1),

which is not entirely unexpected since METIS does not consider any resource heterogeneity. Changing the

perspective, the results may also be interpreted as the performance potential lost when ignoring resource

heterogeneity.
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(b) Email-Enron � = 1

Fig. 4. Breakdown of the computation and communication cost for partitionings produced by METIS and ENHANCE

(a) METIS partition (b) ENHANCE partition with heterogeneous nodes � = 4

Fig. 5. Initial METIS partitioning and ENHANCE partitioning for the Shenzhen road network. The corresponding values for

the �� are 1, 1.3̄, 1.6̄ and 2 for the colors green, pink, blue and red.

Also, by taking a look on the minimum obtained TPC, we can see that in ive runs of the algorithm, it is was

able to ind at least a better partitioning than the original for all cases expect for two: for the 10 partition in the

HM Heterogeneous case, and for the NHC Fast Homogeneous with 4 partitions. The fact that ENHANCE may

yield partitionings performing worse than METIS calls for further analysis. As a safeguard, ENHANCE can be

adjusted to always fall back to the initial partitioning in case it has better cost than the "enhanced" one, which

would guarantee to never perform worse than the initial partitioning.

7.3 CityMoS Performance Evaluation

In the previous section we have shown performance beneits of ENHANCE over METIS without considering the

accuracy of the cost model since only the predicted cost of the partitionings was evaluated. In the following we

present evaluation results for end-to-end performance in terms of wall-clock time corresponding to the total

cost (TC). Note that, in this case, the cost model used has to be reasonably accurate to enable ENHANCE to

identify and apply beneicial modiications to the partitionings (Q2). For our evaluation, we used the partitionings

produced by METIS and ENHANCE considered in the previous section, and we use the one with minimal TPC

for CityMoS (as possible in practice by picking the best of multiple partitionings produced in parallel).

For the homogeneous deployments, we show end-to-end performance results in Figures 6a, 6b and 6c, corre-

sponding to the Tables 2a, 2b and 2c. The results show that the partitionings produced by ENHANCE indeed
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Table 1. TPC for the METIS and enhanced partitionings, along with speed up over METIS and the Average Moved Vertices

(AMV) while enhancing METIS partitionings.

� METIS TPC Min TPC Avg TPC Max TPC Avg Speedup AMV

2 1,998.82 1,921.40 1,926.09 1,941.32 1.04 2,166.20
4 1,052.63 1,015.14 1,030.29 1,058.27 1.02 5,190.20
6 866.64 804.95 835.87 857.81 1.04 7,107.00
8 835.79 767.90 809.05 840.39 1.03 10,560.20
10 885.14 854.86 894.19 925.90 0.99 12,755.80

(a) HM Homogeneous

� METIS TPC Min TPC Avg TPC Max TPC Avg Speedup AMV

2 1,998.82 1,440.15 1,467.82 1,511.19 1.36 24,261.80
4 1,022.52 859.34 939.51 1,022.42 1.09 22,526.20
6 817.01 729.40 765.84 791.48 1.07 18,436.80
8 821.06 692.66 742.33 831.47 1.11 21,606.40
10 879.99 910.28 961.37 1,065.77 0.92 34,711.80

(b) HM Heterogeneous

N METIS TPC Min TPC Avg TPC Max TPC Avg Speedup AMV

2 1010.91 971.62 988.30 1002.47 1.02 1542.00
4 627.62 616.14 641.30 660.44 0.98 4139.80
6 601.65 558.84 571.56 590.77 1.05 6275.40
8 654.24 594.53 603.21 610.61 1.08 9507.00
10 748.93 729.61 766.16 815.45 0.98 12431.40

(c) NHC Slow Homogeneous

N METIS TPC Min TPC Avg TPC Max TPC Avg Speedup AMV

2 984.38 932.30 948.99 965.02 1.04 3515.60
4 627.62 585.88 623.14 648.50 1.01 4854.60
6 601.65 515.46 542.51 582.99 1.11 8822.40
8 654.24 551.17 588.67 613.14 1.11 13164.00
10 748.93 621.05 699.32 783.70 1.07 15553.80

(d) NHC Natural Heterogeneous

N METIS TPC Min TPC Avg TPC Max TPC Avg Speedup AMV

2 886.02 848.60 863.97 876.94 1.03 1486.80
4 562.27 572.06 587.40 608.91 0.96 3797.00
6 556.03 506.90 525.83 557.61 1.06 6082.60
8 620.24 540.75 558.65 583.46 1.11 9617.80

(e) NHC Fast Homogeneous

N METIS TPC Min TPC Avg TPC Max TPC Avg Speedup AMV

2 984.38 932.30 948.99 965.02 1.04 3515.60
4 813.10 711.92 880.20 1047.69 0.92 35010.80
6 754.22 594.49 694.43 788.18 1.09 21337.00
8 774.07 701.34 746.05 805.95 1.04 34948.20
10 825.94 796.01 909.15 1029.76 0.91 28192.20

(f) NHC Degree Four Heterogeneous
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Fig. 6. Cost breakdownwithMETIS and enhanced partitionings in homogeneous (up) and heterogeneous (down) deployments.

ACM Trans. Model. Comput. Simul.



22 • A. Siguenza-Torres, et al.

yield better performance than the initial ones produced by METIS by a small margin. In particular for the HM

homogeneous case the improvements were the most signiicant. To understand the reason of these improvements,

consider the experiments in Table 3a summarizing the measured computation cost per partition together with the

values of the feature vectors for the HM homogeneous deployment. We can see that in the METIS homogeneous

case partition 1 is the slowest one which has both the maximum amount of agents and the maximum amount of

active lanes. ENHANCE was able to identify this imbalance using the cost model and to improve upon it. We can

see that the resulting partitions reduced the number of agents in partition 1 and increased it, for example, in

partition 3. Partition 3 ended up with the highest number of average agents, but it does not have the highest

number of active lanes. The slowest partition, curiously enough, is still partition 1 because even though it has the

smallest number of agents it has the highest number of active lanes.

The decision to improve this balance was only possible because of the higher granularity of the cost model

used. As we can recall from Section 6, for the HM we used polynomial model of order 2 cost model considering

both features �������������� and �������������� which resulted in a �2
= 0.99, and for the NHC fast and

slow nodes we used linear regression with same features resulting on �2
= 0.99 for both cases. By only focusing

on balancing the amount of agents as in previous works, it is basically assumed a linear �������� depending on

the �������������� feature. On the HM homogeneous node, this cost model results in a �2
= 0.94 making in

less precise to explain the variability of the data. In contrast, for the NHC fast and slow nodes, doing a linear

itting for only the �������������� results in �2 of 0.97 and 0.98 respectively. As consequence, most of the

variability in the data is determined by the feature �������������� , which is the main assumption of the state

of the art, and therefore the starting point is closer to a better partitioning. This is one of the factors why the

improvements on the HM homogeneous were more impactful compared to the NHC Slow and Fast homogeneous

deployments.

For the heterogeneous case, the results depicted in Figures 6d, 6e and 6f and Tables 2d, 2e and 2f show a more

pronounced improvement of ENHANCE. Taking a closer look at the HM heterogeneous 6d and Table 2d, in the

case of � = 2, the speedup was 29%, followed by around 10% for higher numbers of partitions, except for the

� = 10 where both partitionings had almost the same performance. Remarkably, the partitioning generated with

ENHANCE at � = 8 is basically performing equally well as the METIS partitioning for the � = 10 case, meaning

that the same performance can be achieved with 20% fewer resources and better partitioning. Taking also a closer

look to the computational cost per partition in Table 3, we can see the reason of the performance improvement.

Here it is very clear that machines 1 and 3 are the fast machines, so even though in the METIS partition the

number of agents is very similar having diference of 4.07% between the highest and lowest average amount

of agents, the imbalance in term of computation cost is of 47.04%. For the reined partitioning we can see that

the resulted computation cost has imbalance of only 6.16% and it reduced the maximum computational cost by

22.62%. Therefore, accounting for the heterogeneity allowed ENHANCE to improve the initial partitioning (Q3).

8 CONCLUSION AND FUTURE WORK

In this paper, we addressed the challenge of deriving partitionings suitable for distributed CityMoS by incor-

porating a cost model. ENHANCE’s approach is incremental by nature, and therefore, it can be used both in

conjunction with other partitioning algorithms, such as METIS, as we did in this work, and as well for dynamic

re-partitioning during run-time.

One key ingredient in ENHANCE’s approach is to break the coupling between graph weights and the (implicit)

cost models used for the partitioning process. This enables using cost models that more accurately relect

simulator performance characteristics than (edge or vertex) weights. Explicit cost models also account for

resource heterogeneity, a common occurrence in cloud deployments. We presented experimental evaluation
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Table 2. TC for the METIS and enhanced partitionings, along with the performance speedup over METIS.

N METIS TC ENHANCE TC Speedup

2 2016.31 1994.66 1.01
4 1104.54 1076.17 1.03
6 827.83 804.50 1.03
8 684.76 654.20 1.05
10 613.80 606.34 1.01

(a) HM Homogeneous

N METIS TC ENHANCE TC Speedup

2 1184.42 1175.61 1.01
4 698.60 696.70 1.00
6 539.22 539.53 1.00
8 476.56 458.80 1.04
10 447.17 448.52 1.00

(b) NHC Slow Homogeneous

N METIS TC ENHANCE TC Speedup

2 1049.58 1039.24 1.01
4 629.01 630.36 1.00
6 482.97 483.19 1.00
8 433.92 398.93 1.09

(c) NHC Fast Homogeneous

N METIS TC ENHANCE TC Speedup

2 2005.54 1551.47 1.29
4 1055.54 940.95 1.12
6 761.41 705.85 1.08
8 656.75 580.56 1.13
10 581.00 580.60 1.00

(d) HM Heterogeneous

N METIS TC ENHANCE TC Speedup

2 1135.05 1111.64 1.02
4 684.73 659.60 1.04
6 530.26 511.39 1.04
8 457.99 443.01 1.03
10 428.32 408.89 1.05

(e) NHC Natural Heterogeneous

N METIS TC ENHANCE TC Speedup

2 1134.31 1107.21 1.02
4 868.58 793.06 1.10
6 656.46 552.59 1.19
8 553.48 517.13 1.07
10 486.41 488.39 1.00

(f) NHC Degree Four Heterogeneous

Table 3. Features (average number of agents and active lanes) and computational cost per partition (�) for � = 4 nodes on

the HM environment.

Experiment � �������� �������������� ��������������

METIS 1 927.41 76,081.01 20,011.63
2 872.70 75,815.19 17,059.32
3 821.45 72,979.82 13,858.69
4 858.59 75,749.65 14,889.10

ENHANCE 1 884.96 72,648.66 19,296.33
2 858.09 74,623.15 16,962.01
3 869.76 76,890.69 14,574.25
4 864.22 76,454.71 14,988.52

(a) Homogeneous deployment

Experiment � �������� �������������� ��������������

METIS 1 525.85 76,075.53 20,011.38
2 873.18 75,822.46 17,058.36
3 469.80 72,977.33 13,858.58
4 870.16 75,751.48 14,889.44

ENHANCE 1 653.99 90,658.27 22,782.30
2 643.91 56,784.20 13,324.99
3 634.03 94,934.14 17,907.80
4 675.65 58,236.23 11,807.16

(b) Heterogeneous deployment

results for CityMoS demonstrating the beneits of a prototype of ENHANCE. Next, we highlight potential

directions to further improving ENHANCE as part of future work.

Even though the simpliied cost models we used for CityMoS were suicient to produce partitionings yielding

substantially higher performance compared with METIS, there is potential for improving the accuracy of these

cost models and possibly obtain further performance beneits. For instance, the cost models can be made more

accurate by capturing the performance of diferent communication channels (e.g., shared memory and network),

and accounting for peer-to-peer (rather than centralized) communication as well as the impact of latency hiding.

In Section 5.3 we pointed out that in our current prototype of ENHANCE, vertices are processed in random

order when modifying partitions. The impact of ordering schemes, however, is currently not clear and may be

analyzed in future work. Alternative ordering schemes, possibly based on vertex characteristics, may contribute

to a faster convergence or partitionings yielding higher performance.

The randomization in the ordering of vertices may also be taken as an advantage to explore larger parts in the

solution space: instead of applying ENHANCE only once, it can be applied multiple times (e.g., once for each

available CPU core) in parallel, each time with diferent random seeds. This approach may reduce the risk of all

invocations converging to local optima far away from global optima.

Finally, we aim to explore the use of ENHANCE for dynamic re-partitioning. We designed ENHANCE to

work incrementally already, but we did not test it in this use case yet. In this context, one promising property

of ENHANCE is that the cost models, which are already an integral part of ENHANCE, can be leveraged to

estimate the potential beneit of a re-partitioning, and this estimate can be used in the logic to decide whether to

re-partition.
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