10th International Conference on Engineering for Waste and Biomass Valorisation

August 20-23, 2024 Sendai, Japan

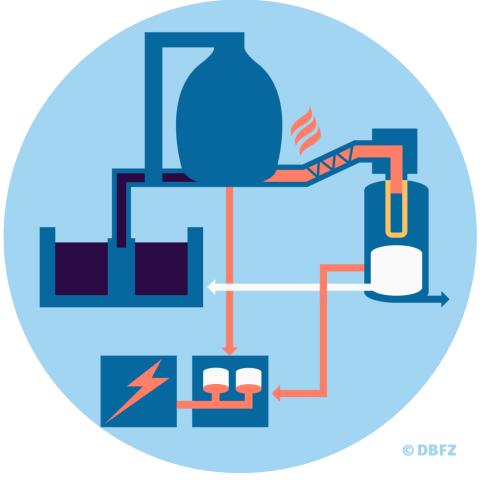
ENTRAINED FLOW GASIFICATION OF SEWAGE SLUDGE TO REDUCE HEAVY METALS IN THE REMAINING ASH

Ewald, Andreas Fendt, Sebastian Spliethoff, Hartmut

Supported by:

Federal Ministry for Economic Affairs and Climate Action

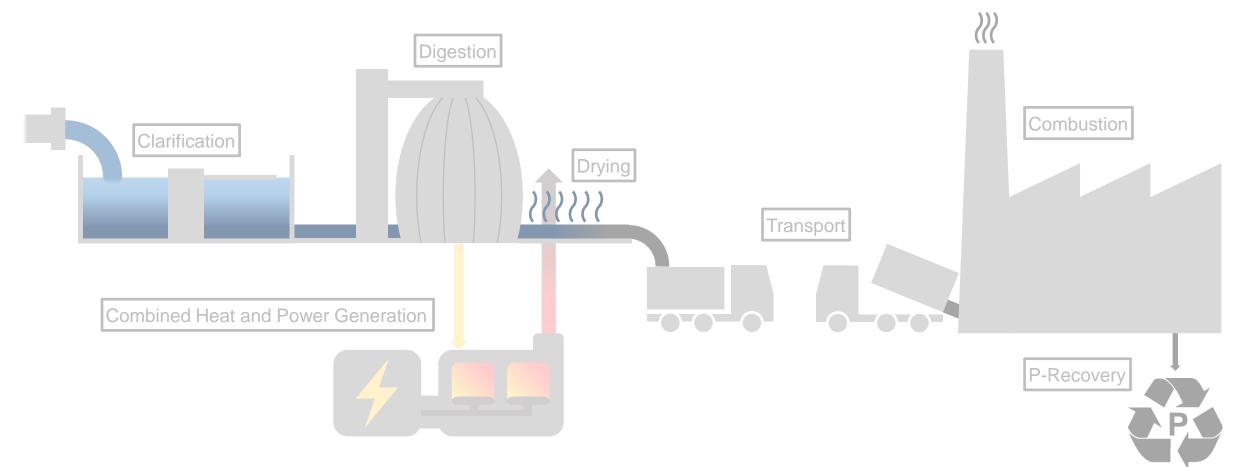
ÖLKL


on the basis of a decision by the German Bundestag

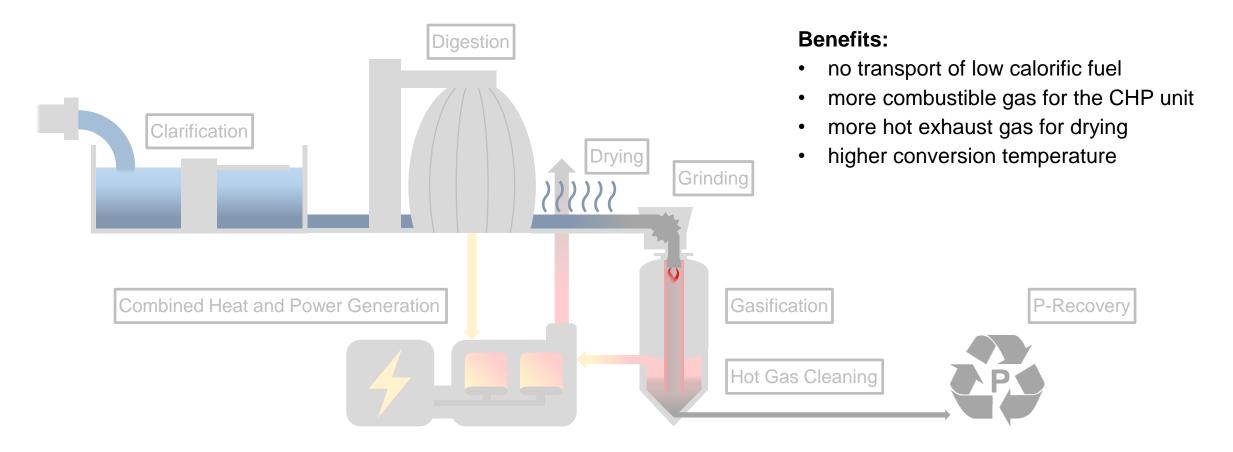
Agenda

Content of This Presentation for the 10th WasteEng²⁴

- Concept of Sewage Sludge Valorization
 - Centralized Stationary Fluidized Bed Combustion
 - Decentralized Entrained Flow Gasification
- Experimental Setup and Methodology
- Experimental Results
 - Air Ratio
 - Additives
 - Temperature
 - High Iron or High Aluminum Sewage Sludge
- Conclusions and Outlook



Concept of Sewage Sludge Valorization


Centralized Stationary Fluidized Bed Combustion

Concept of Sewage Sludge Valorization

Decentralized Entrained Flow Gasification

Experimental Setup

Baby High Temperature Entrained Flow Reactor (BabiTER)

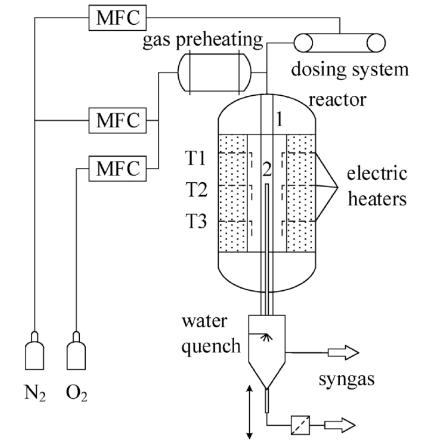
Conversion of the solid fuel to a combustible product gas; Cracking of organic impurities (pathogens, drug residues, plastics, ...); Release of problematic trace elements.

Technical data:

- Operation mode: electrically heated
- Temperature: up to 1600 °C
- Pressure:
- Fuel input:

300 g/h gravimetric

atmospheric


• Gasification atmosphere: O₂, N₂

Research focus:

Dosing system:

- Residence time in entrained flow gasification
- Influence of the air ratio (0.0 1.0) on trace element release
- Influence of 18 additives on trace element release
- Influence of the temperature (800 °C 1200 °C) on trace element release

Simplified flow sheet of BabiTER

Chair of Energy Systems TUM School of Engineering and Design Technical University of Munich

Experimental Setup

Sampling and Methodology

Influence of the Air Ratio on Trace Element Release

Device	Fuel	Temp.	Air Ratio	Ash	Pb		(Cd	(Cr	(Cu		Ni	Hg	
		°C	-	%	mg/kg	-	mg/kg	-	mg/kg	-	mg/kg	-	mg/kg	-	mg/kg	-
-	SSS	-	-	41.0	37	100.0%	0.9	100.0%	84	100.0%	354	100.0%	51	100.0%	0.33	100.0%
мо	SSS	850	> 1	100.0	99	110.1%	2.4	106.3%	130	63.2%	920	106.6%	143	114.4%	0.07	8.7%
BT	SSS	850	0.0	85.3	65	84.7%	0.4	20.8%	114	64.9%	789	107.2%	100	93.8%	0.11	16.0%
BT	SSS	850	0.2	86.9	57	72.9%	0.3	15.3%	103	57.6%	763	101.7%	92	84.7%	0.09	12.9%
BT	SSS	850	0.4	87.0	53	67.8%	0.3	15.3%	101	56. 4%	799	106.4%	92	84.7%	0.09	12.8%
BT	SSS	850	0.6	88.1	54	68.1%	0.3	15.1%	104	57. 3%	818	107.6%	99	89.9%	0.10	14.1%
BT	SSS	850	0.8	91.4	55	66.9%	0.3	14.5%	114	60.6%	854	108.2%	103	90.1%	0.07	9.5%
BT	SSS	850	1.0	92.6	49	58. <mark>8%</mark>	0.3	14.4%	104	54.6%	871	109.0%	99	85.6%	0.09	12.1%

MO:	Muffle Oven
BT:	BabiTer
SSS:	Standard Sewage Sludge
Italic:	Value below the detection limit

Influence of 18 Additives on Trace Element Release

	nd																
Device	Fuel	Additive	Temp.	Air Ratio	Ash	I	Pb		Cd		Cr		Cu		Ni	Hg	
			°C	-	%	mg/kg	-	mg/kg	-	mg/kg	mg/kg - r		mg/kg -		mg/kg -		•
-	StSS	-	-	-	41.0	37	100.0%	0.9	100.0%	84	100.0%	354	100.0%	51	100.0%	0.33	100.0%
BT	StSS	-	850	0.4	89.5	44	54.7%	0.3	14.8%	126	68.4%	798	103.3%	112	100.1%	0.07	9.7%
BT	StSS	10 % MgO	850	0.4	88.4	42	50.8%	0.2	9.6%	109	57.6%	719	90.7%	110	95.8%	0.07	9.5%
BT	StSS	10 % Na ₂ CO ₃	850	0.4	83.3	37	47.5%	0.3	15.4%	111	62.3%	762	102.0%	101	93.4%	0.07	10.0%
BT	StSS	10 % NH₄CI	850	0.4	85.4	37	46.4%	0.2	10.0%	115	63.0%	733	95.7%	96	86.6%	0.07	9.8%
BT	StSS	10 % MgSO ₄	850	0.4	89.6	38	45.4%	0.2	9.5%	105	54.8%	750	93.4%	95	81.7%	0.07	9.3%
BT	StSS	10 % CaCO ₃	850	0.4	91.3	36	42.2%	0.2	9.3%	97	49.7%	743	90.7%	104	87.7%	0.07	9.2%
BT	StSS	10 % FeCl ₃	850	0.4	86.5	33	40.8%	0.2	9.9%	113	61.1%	745	96.0%	106	94.3%	0.07	9.7%
		5															
BT	StSS	10 % NaHCO ₃	850	0.4	90.2	34	40.3%	0.2	9.5%	105	54.4%	789	97.5%	111	94.8%	0.07	9.3%
BT	StSS	10 % KF	850	0.4	89.8	32	3 <mark>8.1%</mark>	0.2	9.5%	124	64. <mark>6%</mark>	764	94.9%	109	93.5%	0.07	9.3%
BT	StSS	10 % AICI ₃	850	0.4	85.3	30	37.6%	0.2	10.0%	99	54.3%	704	92.0%	96	86.7%	0.07	9.8%
BT	StSS	10 % CaCl ₂	850	0.4	87.5	31	37.4%	0.3	14.4%	119	62. <mark>8%</mark>	791	99.6%	104	90.4%	0.07	9.4%
BT	StSS	10 % Na ₂ SO ₄	850	0.4	89.3	31	3 7.1%	0.2	9.5%	90	47.1%	738	92.1%	102	87.9%	0.07	9.4%
BT	StSS	10 % HCI	850	0.4	86.1	28	34.8%	0.2	9.9%	96	52.1%	762	98.6%	91	<mark>81.4</mark> %	0.07	9.7%
BT	StSS	10 % MgCl ₂	850	0.4	86.4	29	34.4%	0.2	9.5%	112	58.1%	781	96.6%	96	82.1%	0.07	9.3%
BT	StSS	10 % FeCl ₂	850	0.4	88.2	26	30.9%	0.3	14.2%	95	49.3%	723	89.5%	92	78.7%	0.07	9.3%
BT	StSS	10 % KCI	850	0.4	88.2	22	26.7%	0.2	9.7%	107	56.7%	707	89.3%	95	82.9%	0.07	9.5%
BT	StSS	10 % NaCl	850	0.4	86.7	21	25.9%	0.2	9.8%	122	65.8%	731	94.0%	98	87.0%	0.07	9.6%
BT	StSS	10 % KBr	850	0.4	84.8	19	24.0%	0.3	15.1%	110	60.7%	646	85.0%	109	99.0%	0.07	9.9%
BT	StSS	10 % KI	850	0.4	86.4	12	14.9%	0.3	14.8%	112	60.6%	567	73.2%	110	98.1%	0.07	9.7%

MO:

BT:

SSS:

Italic:

Muffle Oven

Standard Sewage Sludge

Value below the detection limit

BabiTer

Influence of the Gasification Temperature on Trace Element Release

Device	Device Fuel Temp. Air F		Air Ratio	Ratio Ash		Pb		Cd	(Cr	(Cu		Ni	Hg	
		°C	-	%	mg/kg	-										
-	SSS		-	41.0	37	100.0%	0.9	100.0%	84	100.0%	354	100.0%	51	100.0%	0.33	100.0%
MO	SSS	550	> 1	100.0	98	109.0%	2.4	106.3%	139	67.5%	910	105.4%	130	104.0%	0.07	8.7%
вт	SSS	800	0.3	84.1	58	76.1%	0.4	21.1%	125	72.4%	732	100.9%	95	90.5%	0.10	14.8%
BT	SSS	900	0.3	89.3	44	55.3%	0.2	9.9%	132	71.8%	796	103.3%	95	85.3%	0.12	16.7%
BT	SSS	1000	0.3	92.3	20	23.5%	0.2	9.6%	178	93.7%	833	104.5%	110	95.4%	0.12	16.1%
BT	SSS	1100	0.3	94.4	11	13.1%	0.2	9.4%	173	88.9%	939	115.2%	102	86.3%	0.07	9.2%
BT	SSS	1200	0.3	96.2	9	10.4%	0.2	9.2%	108	54.5%	900	108.4%	120	99.8%	0.07	9.0%

MO:	Muffle Oven
BT:	BabiTer
SSS:	Standard Sewage Sludge
Italic:	Value below the detection limit

Influence of the Gasification Temperature and Additives on Iron Heavy Sewage Sludge on Trace Element Release

Device	Fuel	Additive	Temp. °C	Air Ratio -	Ash %	l mg/kg	Pb -	mg/kg	Cd I -	mg/kg	Cr	Cu Ni mg/kg - mg/kg - r				l mg/kg	Hg mg/kg -			
-	FeSS	-	-	-	37.07	47.5	100.0%	1.15	100.0%	5 9.5	100.0%	320	100.0%	37.5	100.0%	0.39	100.0%			
MO	FeSS	-	850	> 1	100.00	113	88.2%	3.2	103.2%	68	42.4%	840	97.3%	94	92.9%	0.07	6.7%			
BT BT	FeSS FeSS	-	850 1100	0.4 0.4	92.29 96.59	57 28	48.2% 22.6%	0.9 0.5	31.4% 16.7%	121 77	81.7% 49.7%	807 837	101.3% 100.4%		111.4% 93.1%		7.2% 6.9%			
ВТ ВТ		10 % NaCl 10 % KCl	850 850	0.4 0.4	87.96 92.01	42 38	35.9% 31.0%	0.8 1	28.2% 33.7%	104 89	70.9% 58.0%	738 689	93.5% 83.5%	88 84	95.2% 86.8%		7.3% 7.0%			
		Additive		Air Ratio			As	mg/kg	ТІ		Zn					0.07				
-	FeSS		-	-	37.07	4.2	100.0%	0.2	100.0%	940	100.0%									
МО	FeSS	-	850	> 1	100.00	10	88.3%	0.2	37.1%	2490	98.2%									
BT BT	FeSS FeSS	-	850 1100	0.4 0.4	92.29 96.59	6.3 5.5	60.3% 50.3%	0.2 0.2	40.2% 38.4%	1760 591	75.2% 24.1%			MC BT		Muffl Babi⁻	e Oven Ter			
ВТ ВТ		10 % NaCl 10 % KCl	850 850	0.4 0.4	87.96 92.01	6 5.9	57.9% 54.5%	0.2 0.2	40.5% 38.8%	1420 1450	61.3% 59.8%				SS: lic:	•	Iron Sewage Sludge e below the detection limit			

WasteEng²⁴ | Ewald | August 20-23, 2024 | Sendai, Japan

Influence of the Gasification Temp. and Additives on Aluminum Heavy Sewage Sludge on Trace Element Release

Devid	e Fuel	Additive	Temp. °C	Air Ratio -		mg/kg	Pb J -	(mg/kg	Cd -	mg/kg	Cr J -	mg/kg	Cu J -	mg/kg	Ni J -	mg/kg	Hg J -		
-	AISS	-	-	-	39.39	27	100.0%	1.1	100.0%	82	100.0%	342	100.0%	51	100.0%	0.15	100.0%		
МО	AISS	-	850	> 1	100.00	160	233.4%	2.9	103.8%	56	26.9%	909	104.7%	112	86.5%	0.07	18.4%		
BT BT	AISS AISS		850 1100	0.4 0.4	83.72 92.31	53 12	92.4% 19.0%		25.7% 7.8%	90 85	51.6% 44.2%	870 940	119.7% 117.3%		77.5% 77.8%		22.0% 19.9%		
BT BT		10 % NaCl 10 % KCl	850 850	0.4 0.4	83.79 85.39	23 18	38.5% 29.6%		12.3% 8.1%	72 69	39.7% 37.4%	776 718	102.6% 93.2%	88 93	78.1% 80.9%		21.1% 20.7%		
Devic	e Fuel	Additive	Temp. °C	Air Ratio -	Ash	mg/kg	As		ті		Zn								
-	AISS	-	-	-	39.39	5.0	100.0%	0.2	100.0%	1060	100.0%								
МО	AISS	-	850	> 1	100.00	10.0	78.8%	0.2	39.4%	2930	108.9%								
BT BT	AISS AISS		850 1100	0.4 0.4	83.72 92.31	7.7 8.1	72.5% 69.1%	0.4 0.2	94.1% 42.7%	2170 514					MO: BT: AISS: <i>Italic:</i>		Muffle Oven BabiTer High Aluminum Sewage Sludge <i>Value below the detection limit</i>		
BT BT		10 % NaCl 10 % KCl	850 850	0.4 0.4	83.79 85.39	6.5 7.1	58.8% 63.0%	0.2 0.2	45.2% 44.4%	1620 1420									

WasteEng²⁴ | Ewald | August 20-23, 2024 | Sendai, Japan

Conclusions

Summary of Results and Outlook

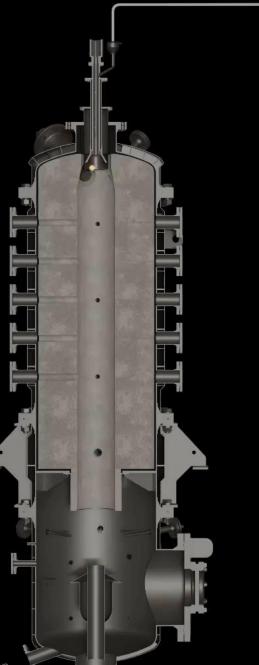
Release in muffle oven:

Clear reduction of Hg and TI. Moderate reduction of As and Cr. No reduction of Pb, Cd, Cu, Ni and Zn.

Release in gasification:

Clear reduction of **Cd**, Hg and Tl. Moderate reduction of **Pb**, **Zn**, As and Cr. No reduction of Cu and Ni. The influence of the air ratio is neglectable.

The influence of additives can be useful, but side effects (costs, corrosion) must be taken into account. The influence of temperature is dominant, but the gasification system must allow a stable operation.

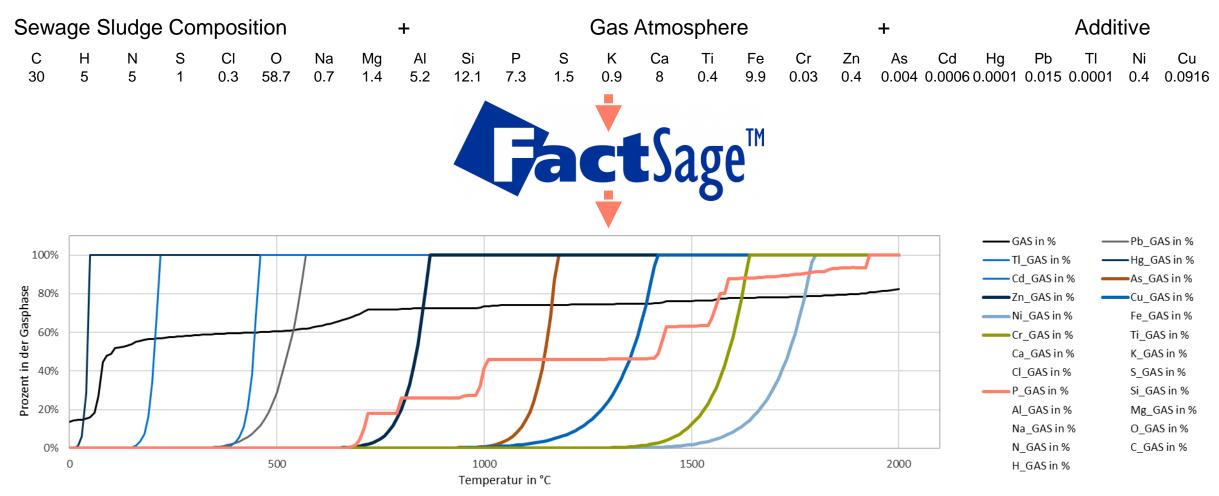

Outlook:

We tested sewage sludge in a 100 kW (30 kg/h) entrained flow gasifier with water quench:

- We see the expected reduction of trace elements in the main ash stream.
- The filter dust contains very high concentrations of trace elements.
- We tested KCI as an additive. The trace element concentration in the main ash stream was higher than before.

\rightarrow Hot gas cleaning to benefit from the release of trace elements for phosphorus recovery.

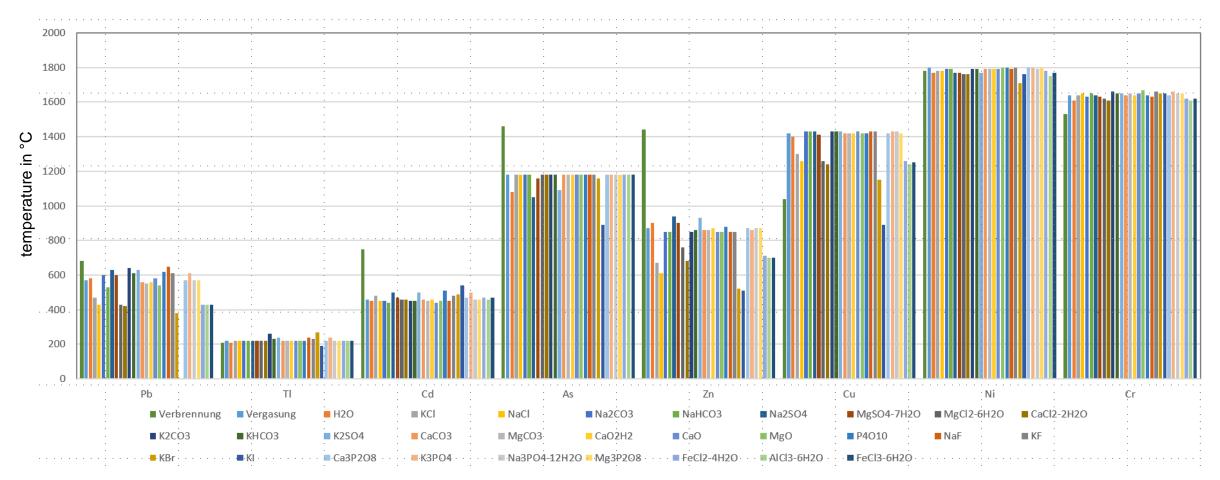
Thank you for your attention.



Don't hesitate to ask questions!

Backup

Equilibrium consideration in FactSage



WasteEng²⁴ | Ewald | August 20-23, 2024 | Sendai, Japan

Backup

Equilibrium consideration in FactSage to examine air ratio and additives

