



# CFD Modelling of an 850 kW Injection Furnace to Investigate NOx Emissions

Johannes Haimerl

Technical University Munich

Chair of Energy Systems

Aprll 4<sup>th</sup>, 2024





Federal Ministry of Food and Agriculture





Uhrenturm der TVM



#### Agenda





Chair of Energy Systems | 14th INFUB 2024 | Johannes Haimerl





**OptiNOX** (Optimization of biomass furnaces with the aim of reducing <u>NOx</u> emissions)







Pilot plants:

- Combustion of fuel in different pilot-scale plants
- > Measurement of  $NO_x$  precursor species (NH<sub>3</sub>, HCN)
- > Investigation of primary and secondary measures to reduce emissions











Power Plants:

- > Measurements of  $NO_x$  precursor species at different power plants
  - Skærbæk Power Plant (vibrating grate, 154 MW)
  - Avedøre Unit 2 (Straw Boiler) (vibrating grate, 105 MW)
  - Altenstadt HKW (fluidized bed, 49 MW)
  - Staedtler Residue Pencil Wood (injection furnace, 850 kW)





Chair of Energy Systems | 14th INFUB 2024 | Johannes Haimerl





NO<sub>x</sub> [mg/m<sup>3</sup>]

2125

1913

1700

1488

1275

1063

850.2

637.6

425.1

212.5



#### OptiNOx

CFD-Simulations:

- $\succ$  Development of NO<sub>x</sub> and burnout models
- > Simulation of pilot plants  $\rightarrow$  Validation with the gained experimental data



## Scale-Up and Optimization of the power plants





Results

### Staedtler – 850 kW Injection Furnace

**Motivation** 

- Combustion of wood residues from pencil production
- > Air-Staging and Flue gas recirculation for control of emissions
- Two-point measurement has been conducted



Model



ПП

#### CFD-Model – NOx formation



### Model – NO<sub>x</sub> Simulation

INFUB

#### **Combustion Simulation:**

Energy equation  $\geq$ 

14th EUROPEAN CONFERENCE

**ON INDUSTRIAL FURNACES AND BOILERS** 2 - 5 April 2024 - Algarve, Portugal

Turbulence Model (*realizable k-ε Model; Standard Wall Functions*)

**Motivation** 

OptiNOx

- Radiation Model (*Discrete Ordinates*)  $\succ$
- Particle Tracking (Discrete Phase Model; Discrete Random Walk Model)
- Reaction Model (Eddy Dissipation Concept; ISAT)

**Global Reaction Mechanism:** 10 species and 4 reactions

Skeletal NO<sub>x</sub> Mechanism: 38 species and 168 reactions

Mesh independence study (850.000 cells)



Model

Results

#### **Pollutant Simulation:**

Outlook

- Fixed temperature and velocity field
- Reaction Model (Eddy Dissipation Concept; ISAT)  $\geq$







### Influence of Fuel-Air Ratio

Fixed ratio of primary to secondary air (50:50)







### Influence of Air Staging

Fixed Fuel-Air Ratio with  $\lambda_{tot}$  = 1.7







ПП

#### Scale-Up – Staedtler – 850 kW Injection Furnace

OptiNOx

Model

Results

Outlook

Fuel: Wood shavings from pencil production (N-Fraction: 0.94 wt.%)

|                |                                        | Measurement | Simulation |
|----------------|----------------------------------------|-------------|------------|
| Outle          | et                                     |             |            |
| $CO_2$         | [%]                                    | 12.36       | 11.59      |
| O <sub>2</sub> | [%]                                    | 5.01        | 5.74       |
| CO             | [ppm]                                  | 648.98      | 489.58     |
| NO             | [mg/m <sup>3</sup> @6%O <sub>2</sub> ] | 127.01      | 278.94     |
| Tem            | perature                               |             |            |
| FT1            | [°C]                                   | 1060.01     | 954.14     |
| FT2            | [°C]                                   | 892.75      | 831.26     |
|                |                                        | -           |            |





Ausblick

Modell



### Scale-Up – Staedtler – 850 kW Injection Furnace

Fuel: Wood shavings from pencil production (N-Fraction: 0.94 wt.%)

|                       | Measurement | Simulation |
|-----------------------|-------------|------------|
| MP1 (60cm)            |             |            |
| NO [ppm]              | 102.26      | 259.71     |
| NH <sub>3</sub> [ppm] | 70.88       | 159.73     |
| HCN [ppm]             | 6.78        | 73.19      |
| MP3 (30cm)            |             |            |
| NO [ppm]              | 92.43       | 265.87     |
| NH <sub>3</sub> [ppm] | 72.16       | 221.18     |
| HCN [ppm]             | 5.26        | 97.86      |
|                       |             |            |







#### Outlook

#### Comparison

- Model can be scaled up and used for modelling of injection furnaces
- Influence of Fuel-Air Ratio as well as Air-Staging was analyzed
  - → Optimal Air-Staging Ratio could be identified

#### **Next Steps:**

- > Compare with trends from new measurements at the power plant
- $\succ$  Include release of char-N and NO<sub>x</sub> formation due to secondary tar cracking reactions
- Implement variable releasing temperatures for the species





### Thank you for your attention!

Johannes Haimerl Technical University Munich Chair of Energy Systems



