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Abstract

AutoPas[Gra+22] is a high-performance, auto-tuned particle simulation software library
for many-body particle systems, capable of dynamically switching between algorithms
and data structures to achieve optimal performance during the simulation. This thesis
explores a decision tree-based tuning strategy for AutoPas, allowing users to guide the
tuning process by specifying custom decision tree or random forest models, which can
be used to efficiently conclude the tuning phase and determine the best configuration
from the search space. Efficient tuning strategies are crucial, as they allow for discarding
poor configurations, thus enabling the simulation to perform most optimally.

We demonstrate that an approach where we train a decision tree or a random forest
model based on data collected from already existing Full Search tuning strategy can
significantly outperform existing tuning strategies on specific benchmarks by drastically
reducing the tuning time up to 30× and achieving a speedup in total computation time
up to 1.45× in certain runtime configurations.

The decision tree-based tuning strategy can drastically reduce the time spent during
the tuning phases while achieving comparable tuning results; therefore, it can be an
alternative candidate to the current tuning strategies.
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1. Introduction

With the continuous advancements in scientific computing, scientific simulations have
become increasingly important as they enable the researchers to conduct “virtual ex-
periments” to either complement or replace “real” experiments [YR10]. In scientific
simulations, efficiency and precision are of utmost importance, especially when compu-
tational methods are required to analyze complex systems. One such case of scientific
simulations is many-body particle simulations, with use cases ranging from modeling
of traffic to biological and medical applications to implementation of fluid flow simu-
lations [Bun+13]. For many-body particle simulations, the choice of algorithms and
data structures plays a crucial role in achieving optimal performance, especially as the
scale of such simulations grows. This choice heavily depends on the current state of the
simulation and, as a result, can change during the runtime of the simulation. To meet
the demands of this high-performance computing (HPC) task, we turned to developing
a tuning strategy for AutoPas[Gra+22], which, based on the current configurations of
the simulation, selects the most suitable algorithms and data structures by utilizing one
of the provided tuning strategies.

This thesis explores the development of a novel tuning strategy for AutoPas, based
on decision tree and random forest models, designed to streamline the tuning process.
The proposed approach utilizes a data-driven approach to first train a model using
the information collected from previously developed logging tools, then use these
trained models to identify optimal configurations with minimal tuning time, therefore
bypassing less efficient options in favor of selections better suited to the current
simulation configurations. By training decision tree or random forest models on data
collected from previously developed tuning strategies, this method allows the system
to learn from prior tuning runs, reducing the need for exhaustive search as before and
significantly shortening tuning time.

In this work, we demonstrate that decision tree-based tuning not only provides
performance on par with other tuning strategies but also reduces the total computation
time on specific benchmarks by optimizing the time spent during tuning phases. The
result is a tuning strategy that reduces complex simulations’ run times, thereby making
efficient use of computational resources. By the conclusion of this thesis, we aim to
show that decision tree and random forest-based tuning strategies offer a promising
alternative to current methods.
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2. Theoretical Background

Before discussing how the decision tree-based tuning strategy has been implemented
and integrated into AutoPas, it is important to understand the core properties and
purposes of Particle Dynamics simulations and what are the intrinsic problems that
make them so complex. This will help us appreciate the importance of auto-tuning and
developing tuning strategies that enable the simulations to be run with the optimal
configurations.

2.1. Particle Dynamics

The purpose of particle dynamics simulations is to understand the behavior of particles
over time in various environments. These particles could range from gas molecules
in the air with microscopic interactions between them to space debris around Earth’s
atmosphere and their interactions based on gravitational forces. From the given example
scenarios, it can be easily seen that particle dynamics simulations can be a very useful
tool for researchers conducting research in environments where practical experiments
are not feasible. Using these simulation tools, the researchers can gain previously
unavailable insights.

2.1.1. Lennard-Jones Potential

When implemented naively, particle simulations are n-body simulations that are compu-
tationally very expensive since their complexity is quadratic in the number of particles.
This can easily be seen since, in each time step, we need to calculate forces between
pairs of particles. Due to the complex quantum mechanical nature of these interactions
in the case of molecular dynamics, these interactions are modeled by potential func-
tions. Because these potential functions are approximations, there are multiple different
potential functions depending on different use cases. [Bre00]. One such potential that is
often used in molecular dynamics simulations and that we also use is the Lennard-Jones
potential [Len31], proposed by John Lennard-Jones and John Edwards in 1924. The
Lennard-Jones 12-6 potential is described as:
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2. Theoretical Background
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Figure 2.1.: Lennard-Jones Potential with respect to the intermolecular distance
Source:[Com07]

2.1.2. Cutoff Radius

To reduce the simulation complexity, a cutoff radius rc parameter is introduced. Since
the force between the particles decreases as the distance between the particles, as seen
from 2.1, long-distance interactions between particles can be omitted as their influence
on the result is minimal. The range until we calculate the potential is called the
cutoff radius. As such, only particles within a distance of smaller than this radius are
considered in the calculation of forces. This still requires the simulation to calculate the
distance between each particle pair. Still, we can avoid calculating the more expensive
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2. Theoretical Background

Lennard-Jones potential between particle pairs with a pairwise distance larger than the
cutoff radius.

The cutoff distance is a variable that can be configured by the user of the simulation
software, in our case AutoPas, so that the users can increase the cutoff radius and
achieve a more accurate simulation at the cost of increased computational time and
energy.

2.1.3. Newton’s Third Law

Another important fact that can be used to optimize the force calculations is Newton’s
third law of motion. This law states that for every force, a force with an equal magnitude
but an opposing direction will be exerted on the other particle. For clarity, this means
that for a force Fij, exerted by the particle j on particle i, the equal and opposite force
Fji = −Fij is exerted on particle j. Using this law, the number of force calculations
that need to be calculated for each time step can be halved. However, this introduces
complexities, especially in multi-threaded environments. From now on, this will be
referred to as Newton3.

2.2. Machine Learning

Since decision trees and random forests, which we will use for developing a new tuning
strategy, have originally been developed in machine learning, we need to digress into
machine learning concepts to understand them and apply them in our use cases.

Our task at hand is a classification [Kot07] task since we believe that a simulation’s
density and homogeneity parameters at a given time step are highly correlated to the
optimal algorithm configuration. We can utilize ML classification methods to capture
underlying correlations from a dataset of live information with the configuration values
at that time as ground truth values to train a model that can infer configurations based
on the live information gained from the information at that point in time.

In our special case, our task is a multi-label classification [TKV08] task since the
configuration space is, at the time of writing this thesis, six-dimensional.

The process of learning the function f : F 7→ Y, where F is the feature space and Y
is the set of possible labels or the target space, is often referred to as training a classifier.
After training, the label of a data point x ∈ F can be retrieved by evaluating f (x), a
process referred to as forward-pass, inference, or prediction from now on.
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2. Theoretical Background

2.2.1. Decision Trees

Decision trees can be described as hierarchically structured ensembles of binary deci-
sions [Bre+84]. Since they are intuitive, scalable for very large datasets, and quick to
train, they became very popular and are still widely used in numerous classification
tasks. They work by partitioning the input using splits parallel to the axes to make sure
the resulting subsets are as pure as possible. They try to minimize a given impurity
metric, often the Gini impurity coefficient [Mur13] IG = ∑n

i=1 pi(1 − pi) of the subsets.
As the decision trees directly partition the input space into distinct classes, they can be
visualized as dividing the input space into different regions if the dimensionality of
the input space allows it. One such example is in 2.2, with 2-dimensional input space
divided into four classes. This recursive process results in a tree-like structure where
each inner node represents a decision, and each leaf represents a class. Decision trees
are known for their interpretability [SR20] as they produce a tree-like structure that
allows users to understand the decision-making features easily. This feature makes
them especially useful in areas where explainability of the model is necessary, as
ML-based models generally are black-box models and, as such, not explainable by a
clear set of rules.

Figure 2.2.: A decision tree and the corresponding division of the space Source: [GSB16]

2.2.2. Random Forests

With the advent of ensemble learning [HTF09], constructing a collection of “weak”
decision trees, namely random forests, was proposed [Ho95; Ho98]. Instead of aiming
to optimize a single complex tree, we apply randomization during the learning process
to create a committee of decision trees with little correlation. To achieve this, random
forests use a technique called bagging or bootstrap aggregation to reduce the variance
of the prediction function f . By taking a weighted average of the prediction of this

5



2. Theoretical Background

ensemble of different decision trees, random forests achieve greater generalization and,
thereby, higher accuracy and robustness than single decision trees. Random forests have
proven to be more robust for classification tasks and they have been shown to achieve
higher accuracy and be resistant to over-fitting on various analyses on classification
tasks [HTF09].

Figure 2.3.: A diagram of a random forest. Source: [Gel+14]
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3. Technical Background

In the following section, we will discuss the properties of AutoPas, a library designed
to overcome the task introduced in the beginning, and design a tuning strategy to tune
the algorithms used based on the configuration parameters of simulation runs.

3.1. AutoPas

AutoPas is an open-source software library to achieve optimal performance for short-
range particle simulations. It is designed to behave as a black box, meaning it aims
to abstract the implementation details from researchers interested in using its particle
simulation capabilities to run their simulations. AutoPas differs from other such li-
braries like LAAMPS[Tho+22] and GROMACS[Abr+24] by providing various different
algorithmic implementations for the N-body problem. Since each of these different im-
plementations has various trade-offs, one configuration that performs well for a certain
particle composition would not perform similarly for other particle compositions. Au-
toPas can switch during the runtime of the simulation between these implementations
to guarantee optimal performance during the runtime of the simulation.

Although AutoPas only provides an infrastructure to perform these simulations and
does not contain the simulation logic, it comes with example applications. Throughout
this work, we have primarily focused on developing a tuning strategy for md_flexible
application, a molecular dynamics framework built to work with AutoPas. However,
transferring these concepts and training new models to work with different applications
will be trivial as the data used to train is not dependent on the application itself.

Now, we can discuss the auto-tuning feature and the tunable parameters featured in
AutoPas.

3.1.1. Auto-tuning in AutoPas

During its runtime, AutoPas alternates between the tuning phase, where the software
tries to find the best possible configuration to minimize a chosen energy metric, such
as time or energy, and the simulation phase, where it uses the configuration selected in
the tuning phase to run the simulation until the next tuning phase.

7



3. Technical Background

However, as mentioned before, as the simulation progresses through iterations
and time steps, the characteristics of the system will change. As such, the chosen
configuration may no longer be the optimal configuration [Gra+22]. To solve this
issue, AutoPas alternates between these phases to ensure that the system runs in a
configuration that is as close to the optimal for the full simulation.

Since it includes the implementations of various different approaches, this enables
the developers to have tunable parameters that can mostly be combined freely and, as a
result, a vast search space corresponding to these parameters. This gives the developers
the opportunity to develop various different tuning strategies to trim this enormous
search space.

Below, we will discuss the tunable parameters currently existing in the AutoPas
library as well as the presently existing tuning strategies. For brevity’s sake, descriptions
here will be made to get a general understanding of these parameters. For more detailed
descriptions of these parameters, refer to [Gra+22], [Sec+21], and [New+23].

3.1.2. Tunable Parameters

The current version of AutoPas provides six tunable parameters. We will refer to a
combination of parameters as Configuration. Each configuration contains the following
parameters:

Container Options

For every particle dynamics simulation, identifying the neighboring particles is crucial
to efficiently compute the short-range force potentials. The goal here is to find all
particles within the cutoff radius and, therefore, should be considered for the force
calculation for all particles. Below, the four prototype algorithms included in AutoPas
are briefly introduced:

1. Direct Sum: This is the ‘naive’ approach, and it does not use any additional data
structures to store the particles. Therefore, it relies on brute-force calculations of
force potentials between all particle pairs and requires O(N2) distance checks
in each iteration. Naturally, this container option performs very poorly as the
number of particles grows and is, in turn, impractical beyond tiny systems
[VBC08].

2. Linked Cells: This container consists of vectors of uniform cells. Each cell holds
a vector with the particles it contains. Because of this data structure, particles
close in space also end up close in memory. This allows for efficient iteration
of sub-regions and for efficient vectorization of particles. However, since this

8



3. Technical Background

approach actually models the space and not the particle relations itself, if there is
a region without particles in the domain, any traversal for this container still has
to check the empty cells in that region. So, there is a possibility for improvement
as the constant overhead of 3 × 3 × 3 cell grid is going to be unnecessarily high
as there are likely going to be many particles further away than the cutoff radius
in the cell grid around the current cell [Gra+22]. Despite these issues, it is still
generally good for large homogeneous systems of particles.

3. Verlet Lists: A completely different approach to the linked cells would be not to
rely on spatial information but to keep track of a particle’s interaction partners. So,
for each particle, we keep a Verlet [Ver67] or neighbor list that contains references
to all particles within the cutoff range. However, since generating these lists every
iteration would be infeasibly expensive, we also include particles slightly outside
the cutoff radius to use the lists as long as possible. This extension is called
the Verlet skin, and a visualization of this can be seen in 3.1. This can result in
a complexity of O(N) distance checks for each iteration. However, a trade-off
exists, as having a large skin factor would cause us to include more unnecessary
distance checks while requiring us to rebuild the lists less frequently. Due to these
properties, it is generally good for systems with a high density of particles

4. Verlet Cluster Lists: To mitigate some of the aforementioned drawbacks, Ver-
let Cluster Lists were developed [PH13]. This container type is based on the
observation that neighboring particles will have almost identical Verlet Lists.
Therefore, grouping these neighboring particles into clusters, we can construct
a single neighbor list for each cluster. This will reduce memory usage as each
cluster will need only one neighbor list. Similar to Verlet Lists, it is generally
good for systems with a high density of particles while benefiting from reduced
memory usage compared to regular Verlet Lists.

Figure 3.1.: Visualization of container options. Source: [Gra+22]
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3. Technical Background

Load Estimators

The load estimator options relate to different heuristics used to estimate the load for a
specific cuboid region within the domain. As we primarily focus on tuning single-node
performance, we will not go into detail about these options. See [Fis20] for more details.

Traversal Options

This parameter specifies in which order the particles are visited while calculating the
force potentials. In parallelized contexts, these options can significantly impact the
performance. Considering the large amount of traversals included in AutoPas for
varying container types, we will, for brevity’s sake, only discuss the corresponding
main options. For a more detailed explanation of traversal types, refer to [Gra+22].

1. Sliced Traversals: These traversal types, as the name suggests, divide the domain
into different slices. Each slice is then processed by a different thread of the
application. Every thread starts with the first layer of cells in its slice and locks
this section. After all cells in this plane are processed, the lock is released. Since
the slices must be synchronized using a single lock, this traversal type results in
only a minor synchronization overhead.

2. Colored Traversals: These traversal types assign a color to each cell in the
container so that no same-colored cells have the same neighbor cell. During the
traversal, all threads will then work on cells of the same color, which allows for
high parallelism without synchronization and locks. See 3.2 for a visualization
of different color-based traversal options. The following coloring options are
available:

a) C01: Since this traversal uses only a single color, every thread will work
on all cells simultaneously, making the simulation embarrassingly parallel
[HS12]. However, this comes at the cost of being forced to turn Newton3 off
as there is no way of preventing the data races.

b) C18: This traversal variant divides the domain into 18 colors and only
computes the interactions with the forward neighbors, meaning neighboring
cells with a greater cell index. This enables the simulation to use Newton3 as
coloring prevents simultaneous access to neighboring cells.

c) C08: Taking the idea of c18 base step further, this traversal variant replaces
the computation for the forward diagonal interaction with the forward
computation of the next cell. This allows for a higher degree of parallelism
and cache reuse.

10



3. Technical Background

Figure 3.2.: Visualization of color-based traversal options. Source: [Gra+22]

Data Layouts

This parameter determines how the particles are stored in memory. Two possible
layouts for the data are:

1. SoA (Structure of Arrays): This data layout stores the properties of a particular
particle in separate arrays. For example, for all particles, x-, y-, and z- positions
are stored in separate arrays. When this layout is chosen, it is beneficial for
vectorization as the properties of particles will be stored contiguously in memory
to be loaded into vector registers with a single CPU instruction. However, this
storage can also lead to inefficient cache utilization as the properties of a particular
particle won’t be stored close to each other in memory.

2. AoS (Array of Structures): This layout stores all particle properties in different
structures. This, in turn, allows for efficient cache utilization as all properties are
close to each other in memory. However, in contrast to SoA, loading particles into
vector registers will be more complicated and can lead to inefficient vectorization
for force calculations.

Newton3 Options

This option controls the aforementioned optimization technique to reduce the number
of force calculations by half. Newton’s third law states that for every action, there is an
equal and opposite reaction. This means the magnitudes of the forces acting upon the
same particle pair will be the same, with the direction being the complete opposite.

1. Newton3 Off: If Newton 3 is turned off, the forces are calculated redundantly for
all particle pairs, resulting in a doubling of the number of force calculations.

2. Newton3 On: If Newton 3 is turned on, the forces between all particle pairs
are calculated once. However, this means that both variables that store the

11



3. Technical Background

accumulated force for the respective particle have to be updated directly when
computing Fij, which has implications on parallelization patterns.

Cell Size Factor

The Cell Size Factor is a parameter used to determine the size of the cells in the
LinkedCells container. If the cell size factor is high, we perform many invalid distance
checks, as many particles further away than the cutoff radius are considered for the
calculations. As such, it is sensible to reduce the cell size factor. However, this will
increase the overhead to a point that negates the performance gain. Because of this,
there exists a theoretical trade-off between reducing and increasing this parameter.

3.1.3. Existing Tuning Strategies

Full Search

The full search strategy serves as the default tuning method in AutoPas, where all
possible configurations are exhaustively tested. Evaluating every potential combination
ensures the identification of the optimal configuration for the current simulation state.
However, this approach is typically resource-intensive and time-consuming, as it spends
significant effort testing suboptimal parameter combinations. This issue becomes more
pronounced as the number of parameters increases, leading to an exponential rise in
possible configurations, many of which may yield poor performance. Consequently,
the full search approach becomes impractical, especially as additional tunable options
are introduced in AutoPas.

Random Search

The random search strategy is a straightforward tuning approach that selects a specified
number of configurations randomly from the search space. This method is quicker than
the full search strategy since it avoids testing every possible parameter combination.
However, it does not ensure the optimal parameters for the current simulation state are
found.

Predictive Tuning

The predictive tuning strategy uses prior measurements to estimate how a configuration
might perform in the current simulation state. By narrowing down the search space, it
retains only those configurations expected to yield good performance. These predictions
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3. Technical Background

are generated using techniques like linear regression or by fitting polynomial functions
to past measurement data.

Bayesian Search

AutoPas includes two implementations of Bayesian tuning, both utilizing Bayesian
optimization techniques to forecast optimal configurations based on performance data
from prior measurements.

Rule Based Tuning

The rule-based tuning strategy uses a set of predefined rules to automatically filter
out configurations that are expected to perform poorly. The rules are passed to the
simulation using a domain-specific language and are expected to be defined by expert
knowledge. This method can be very effective if the rules are well-designed.

Fuzzy Logic Tuning

The fuzzy logic-based tuning strategy utilizes a data-driven dynamic rule extraction
approach and fuzzy logic [NPM99] to train a fuzzy decision tree on collected data to
extract fuzzy rules instead of using rules determined by expert knowledge, as is the
case in rule-based tuning. The working principle of this tuning strategy is similar to
the decision tree-based tuning strategy explored in this thesis in that it utilizes decision
trees as part of its tuning.
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4.1. Works on Other HPC Software

Over the years, machine-learning-based methods have proven to be a useful approach
for achieving speedups and performing optimization tasks on simulation software
such as model selection, optimization of the code, and task schedulers [Che+18]. For
example, in [SW23], authors use a lightweight auto-tuner driven by ML to select
an optimal sparse matrix storage format from a pool of available formats to match
the characteristics of the sparsity pattern, target hardware, and operation to execute.
Adopting this auto-tuner results in a speedup of 1.1x on CPUs and 1.5x to 8x on
NVIDIA and AMD GPUs, with maximum speedups reaching up to 7x and 1000x,
respectively.

In another work, [Kur21], the author presents “ReinforcedSel,” a reinforcement
learning-based approach for improving load balancing in parallel computing by au-
tomating the selection of scheduling algorithms within OpenMP. Through Q-Learning
and SARSA, this method dynamically adapts to real-time performance data, achiev-
ing up to a 15.6% performance boost over traditional static scheduling. Tested on a
Mandelbrot application, ReinforcedSel demonstrates adaptability comparable to expert-
driven scheduling methods, highlighting reinforcement learning’s potential in dynamic,
heterogeneous systems. Future improvements, such as refining reward structures and
expanding applications, could further enhance its effectiveness in high-performance
computing.

4.2. AutoPas

Additionally, numerous studies have been developed on optimizing the tuning process
of AutoPas and adding upon the existing tuning strategies, including data science-based
approaches such as reinforcement learning, neural networks, and interpolation, as well
as other tuning strategies using non-ML methods such as rules-based tuning or fuzzy
logic.
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4.2.1. “Data Science-Based” Approaches for Auto-Tuning in AutoPas

In the past, various approaches utilizing data science-based methods such as reinforce-
ment learning, Bayesian optimization, and interpolation to auto-tune the simulation
during its runtime have been developed. Below, we will discuss a series of these
approaches:

Neural Networks

In [Can19], the author investigates the application of neural networks to create an auto-
tuner that recommends optimal simulation configurations, aiming to reduce search
time significantly while maintaining high accuracy in configuration choice. By training
ML models on previous simulation data, the auto-tuner predicts configurations that
balance computational efficiency and accuracy, achieving optimal choices with over
99% likelihood. The study compares different ML models, finding that classification
methods generally outperform regression methods for this task.

Results from this ML-based auto-tuning approach show substantial efficiency gains,
with “MachineSearch” being around 11 times faster than the exhaustive “FullSearch”
approach during the tuning phases. The thesis also discusses the challenges in model
integration with AutoPas. It suggests potential future improvements, including more
advanced machine learning models and online learning systems that adapt to new
simulation data, thus enhancing the flexibility and effectiveness of the auto-tuner in
real-world applications.

However, during the development of this thesis, AutoPas didn’t support advanced
logging for density and homogeneity parameters of the simulation. Therefore, the
author used basic features such as particle count, box length as well as cut-off and
Verlet skin radii. In addition, the author didn’t fully integrate the Python scripts into
AutoPas and used the frugally-deep [Her] instead to integrate the model generated
by TensorFlow[Aba+15] to get the prediction. However, as we will show, using Python
developmental headers to communicate between scripts will enable greater flexibility
for future development since knowing the model’s input and output dimensions will
no longer be necessary.

Reinforcement Learning

In [Lau22], the author explores the application of reinforcement learning (RL) to
optimize performance. The study introduces a modified SARSA (State-Action-Reward-
State-Action) algorithm to predict the optimal simulation configuration for minimizing
calculation time. This approach seeks to outperform traditional tuning methods
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like Full Search and Predictive Tuning, which struggle with complex, nonlinear data
relationships.

The RL-based method aims to improve upon existing strategies by using prior data to
predict and choose better configurations faster. The study further optimizes the SARSA
algorithm with hyperparameters like learning rate, discount factor, and exploration
rate, using grid search to fine-tune these parameters for better performance.

Results show that the RL-based tuning method generally performs better than Full
Search and Predictive Tuning, especially in parallelized environments (using OpenMP),
where it reduces the overall tuning and simulation time. Although reinforcement learn-
ing introduces some initial overhead, it ultimately demonstrates more efficient tuning
over time, particularly in simulations with complex or dynamic particle distributions.
The work suggests that integrating RL with more advanced algorithms or combining it
with unsupervised learning techniques could improve AutoPas’s performance in future
work.

While other newer tuning strategies have ultimately superseded the tuning strategy
developed in this thesis, this strategy shows the feasibility of an ML-based tuning
strategy, namely reinforcement learning, in the task of auto-tuning the AutoPas sim-
ulation. However, decision trees serve different purposes and are primarily used for
classification and regression tasks.

Bayesian Tuning

In [Ngu20], the author explores the challenge of optimizing algorithmic parameters in
mixed discrete-continuous spaces using Bayesian optimization, specifically for auto-
tuning tasks where configurations include both discrete and continuous parameters.
Traditional Bayesian optimization, well-suited for continuous spaces, struggles with
mixed-parameter spaces as discrete variables cannot be treated like continuous values.
To overcome this, the author introduces a cluster-based model that organizes discrete
configurations into “clusters” and optimizes continuous parameters within each cluster
independently.

Each cluster is associated with its own Gaussian process model, and neighboring
clusters influence each other based on similarity metrics, such as the Wasserstein
distance and evidence fitting. These methods help weigh the influence of each cluster’s
neighbors, allowing the optimization process to incorporate useful information from
similar configurations without exhaustive evaluations. Acquisition functions guide the
selection of configurations, focusing on maximizing expected improvements in runtime
with minimal trials, thus maintaining efficiency.

The thesis evaluates this Bayesian Cluster Search (BCS) method against other auto-
tuning algorithms, including full search, traditional Bayesian search, and random
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search. The BCS approach consistently performs best, achieving configurations nearly
as effective as exhaustive search but with considerably reduced computation time. This
cluster model offers a flexible, generalizable framework for tuning in other complex
domains with mixed parameters, highlighting its potential to significantly reduce
computational costs in optimization tasks.

Similar to reinforcement learning-based tuning, this tuning strategy has also been
superseded by other tuning strategies. However, its results could be treated as a
baseline for the performance of the decision tree-based tuning strategy.

Predictive Tuning

In [Pel20], the author introduces a predictive tuning approach using extrapolation
methods —linear regression, Lagrange polynomial, and Newton polynomial— to
predict the performance of different configurations. By focusing only on the most
promising configurations, the predictive tuning strategy minimizes the need to test
inefficient configurations, thereby reducing the overall runtime of simulations.

The predictive strategy involves an initial phase where all configurations are tested
to gather baseline data, followed by extrapolation-based predictions for subsequent
tuning phases. Evidence collected in early phases informs these predictions, which
are then used to identify optimal configurations for testing. The effectiveness of each
extrapolation method is analyzed, with linear regression emerging as the most efficient
in balancing accuracy and runtime. Additionally, a “blacklist” feature eliminates
consistently underperforming configurations, further streamlining the tuning process.

Evaluations using the Spinodal Decomposition simulation show that predictive
tuning can reduce runtime by up to 74% compared to Full Search. The thesis concludes
by suggesting potential improvements, such as dynamic adjustment of prediction
ranges and incorporating error analysis into the extrapolation methods to enhance
predictive accuracy.

This work shows that good tuning results can be obtained even with extrapola-
tion techniques, which will only be able to use insights from the current simulation
time. This further motivates an ML-based tuning strategy using decision trees for
classification to detect underlying patterns and find the optimal configuration more
efficiently.

4.2.2. Other Approaches for Auto-Tuning in AutoPas

Additionally, approaches based on other concepts, such as developing a rules-based
tuning strategy to determine which configuration performs optimally on the current
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simulation state and a fuzzy-tuning approach using fuzzy sets and their nuanced
configurations compared to binary rules, have been developed.

Rule-Based Tuning

The report [Hum23] explores a new rule-based tuning strategy to improve the tuning
phase by pre-filtering configurations based on rules derived from domain knowledge
obtained from theoretical modeling, profiling, and benchmarking, thus reducing tuning
overhead and improving efficiency. Extensive benchmarks with 241 simulation scenarios
collected performance data to refine these rules, yielding insights such as identifying a
subset of 10 optimal algorithms that perform well across scenarios.

Essentially, we aim to automate the generation of these rules in the form of decision
nodes on the decision trees in this work with the decision tree tuning strategy. It is
likely that the rules developed by experts can also be acquired by training a classifier on
the live information collected. As the rule-based tuning strategy achieves near-optimal
simulation phase runtime with a sizable tuning runtime overhead, we would try to
minimize this overhead by dynamically extracting the rules from previously collected
data.

Fuzzy Logic-Based Tuning

In [Ler24], the author introduces a fuzzy logic-based tuning technique, allowing the
specification of custom fuzzy systems to guide tuning and prune poor configurations
without exhaustive testing.

This fuzzy approach allows a more efficient exploration of the parameter space by
partially activating rules based on fuzzy set logic, offering a nuanced configuration
choice compared to binary rules. Through benchmarks, this technique showed speedups
of up to 1.96x on scenarios present in the training data and up to 1.35x on unseen
scenarios compared to Full Search. The study suggests that fuzzy tuning effectively
reduces the tuning workload while maintaining comparable accuracy in simulation
performance predictions, making it a promising alternative to existing strategies.

Additionally, the work explores two methods within fuzzy tuning: Component Tun-
ing and Suitability Tuning. Component Tuning individually optimizes each parameter,
simplifying the tuning process, while Suitability Tuning selects the best configura-
tion based on the suitability score across multiple components, improving overall
adaptability.

As is already suggested in the future work section of this work, the fuzzy systems
could be simplified into decision trees to make the tuning process “more transparent”
and “easier to understand”.
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This section goes over the implementation details for the decision tree-based tuning
strategy. We will first discuss how the interfacing between the simulation running in
C++ and the Python scripts was achieved, then we will explain the data collection
process for training of the models. Finally, we will go over how the prediciton of
the model is used to alter the algorithm configuration of the simulation. Refer to
the GitHub Repository for the latest version of the implementation, as there can be
modifications to the code.

5.1. Python/C++ Interface

The interface between Python and C++ is a crucial component in the implementation of
our decision tree-based tuning strategy. We opted to use Python as the programming
language to develop the ML-related parts of the tuning strategy. This decision was
motivated by Python’s rich ecosystem of ML libraries, such as scikit-learn, which
facilitate the efficient training and implementation of decision trees and random forests.
Furthermore, Python’s adaptability makes it a strong candidate for expanding the
tuning framework to include other ML-based methods in the future.

Since our simulation runs in C++, but our decision tree and random forest models
are trained and run in Python, we need a seamless way to call Python scripts from
within the C++ environment. To achieve this, we utilize the Python C API, specifically
including the <Python.h> header, which provides various functions and definitions
needed for embedding Python into C++ applications. The Python C API offers precise
control over the Python interpreter and allows direct management of Python objects,
making it ideal for performance-critical scenarios like ours. Its flexibility lets us fine-
tune the interaction between the two languages without introducing unnecessary
overhead.

While tools like Pybind11 simplify Python-C++ integration by automating type
conversions, they come at the cost of some efficiency and control. Pybind11 is good
for quickly exposing C++ functions to Python, but its higher-level abstractions can
obscure critical details and add overhead. For our needs, where performance and tight
integration are priorities, the Python C API was chosen as the more suitable choice.
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5.1.1. Python Developmental Headers

The <Python.h> header allows direct access to the Python interpreter from C++. By
including it, we gain the ability to execute Python code, call Python functions, and
manage Python objects within a C++ environment. However, to make this work, the
Python development headers must be present on the system, and the path to these
headers must be correctly set up in the CMake configuration file.

In our CMake configuration file, we need to link the Python development libraries
to ensure the compiler knows where to find the headers and libraries. We use the
find_package command in CMake as follows:

find_package(Python3 COMPONENTS Interpreter Development REQUIRED)
include_directories(${Python3_INCLUDE_DIRS})
add_library(autopas_python INTERFACE)
target_link_libraries(autopas_python INTERFACE Python3::Python)
target_link_libraries(autopas PRIVATE Python3::Python)

Listing 5.1: CMake commands to include Python headers

Below is an explanation of each line in the CMake configuration file:

• find_package(Python3 COMPONENTS Interpreter Development REQUIRED): Th-
is line searches for the Python3 package on the system and specifically looks for
both the interpreter and development components. The Interpreter component
allows the program to invoke Python scripts, while the Development component
provides the necessary headers and libraries to embed Python code within a
C++ application. By adding REQUIRED, CMake will produce an error and stop
configuration if Python3 isn’t found. This line requires installing the package
python3-dev to function correctly.

• include_directories(${Python3_INCLUDE_DIRS): This line tells CMake to add
the directory containing Python3 headers to the project’s include path. This is
necessary for including <Python.h> in the C++ code, allowing the C++ compiler
to locate the Python headers and use Python’s C API functions.

• add_library(autopas_python INTERFACE): This line creates an interface library
called autopas_python. An interface library in CMake doesn’t produce compiled
output but allows us to define dependencies (such as linking libraries or include
directories) that other targets can use. Here, autopas_python acts as a linkable
target to manage Python dependencies in the project.

• target_link_libraries(autopas_python INTERFACE Python3::Python): This l-
ine specifies that the autopas_python interface library should link to the main
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Python library. By linking this library, autopas_python gains access to the neces-
sary functions for embedding and interfacing with Python.

• target_link_libraries(autopas PRIVATE Python3::Python): This line links
the main autopas target (our C++ application or library) with the main Python
library, allowing it to call Python functions and run Python code. This makes
all Python-related functions available to autopas, effectively integrating Python
capabilities into the C++ project.

Now that Python developmental headers are successfully integrated into the building
process of AutoPas, we can create a new tuning strategy utilizing Python scripts
following the contribution guidelines for AutoPas.

5.1.2. loadScript Function

After following the contribution guidelines to implement a DecisionTreeTuning class
that implements the TuningStrategyInterface, we initialize the Python interpreter
by calling the Py_Initialize() function followed by the loadScript() function to
load the script named predict.py which makes a configuration prediction using the
pre-trained model based on the current state of the simulation. A listing of this function
can be found in A.5.

5.1.3. train.py Script

A simple training script was implemented to streamline the training process using the
data generated from liveInfoLogger and tuningResults loggers. By putting these
logs in the directories data/live_info and data/tuning_results respectively and
running this script, we obtain a trained random forest model to use for the prediction
script. We ultimately decided to use a random forest model here, as the bagging
approach the random forests use enables them to achieve greater generalization and,
thereby, robustness. During the forward pass phase, no noticeable effect on the runtime
was observed due to the prediction being made by a complex model because of using
random forests instead of decision trees. A detailed overview of this script can be
found in A.2.1.

5.1.4. Testing

For the testing of the implemented tuning strategy, the interface between Python
and C++ was tested using a mock prediction script that always returns the same
configuration as testing an ML-based method beyond splitting the dataset with train
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and test sets due to their inherent randomness and limited interpretability [Wan+24].
The system was tested to verify it can handle invalid model inputs, errors during the
Python script, and invalid responses by the Python script. An overview of the test cases
can be found at here.

5.1.5. Memory Leak Issues

In integrating Python into our C++ application, we detected some memory leaks when
enabling the address sanitizer while building even when only calling Py_Initialize
() and Py_Finalize() in the constructor and the destructor of our tuning strategy,
respectively. Several underlying issues in Python’s interpreter can lead to residual
memory retention [Fou20]. Here are some specific causes and explanations based on
Python’s own documentation and our observations:

• Internal Allocations by the Python Interpreter: When Py_Initialize() is called,
Python allocates various global data structures and caches. These allocations
support core interpreter functionality, modules, and certain optimizations. How-
ever, Py_Finalize() doesn’t always fully deallocate these resources, especially
for some standard library modules or caches created during initialization. This re-
sults in small amounts of memory remaining allocated even after Py_Finalize()
completes.

• Dynamically Loaded Extensions Not Unloaded: During initialization, Python
may load certain dynamic libraries or shared modules that are part of its environ-
ment. Unfortunately, Py_Finalize() doesn’t automatically unload these modules
or release all memory tied to them.

• Circular References within Python’s Core: Although Python’s garbage collector
is designed to handle most circular references, it doesn’t fully collect all such
references, particularly those involving objects with destructors (__del__() meth-
ods). Circular references between core Python objects or internal data structures
can thus remain after Py_Finalize(), resulting in memory that is not reclaimed.

• Memory Fragmentation from Python’s Internal Allocators: Python uses its own
memory management system, pymalloc, optimized for handling Python objects.
However, this can cause memory fragmentation, especially after initializing and
finalizing the interpreter. When Python requests memory from the operating
system, certain memory blocks may remain fragmented and unreleased, leading
to apparent memory leaks.
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• Unfreed Small Allocations by C Libraries: In addition to Python’s internal
memory handling, the C standard library used by Python may retain small
amounts of memory after Py_Finalize().

These issues collectively contribute to minor memory leaks or unreleased memory
when embedding Python, even if only Py_Initialize() and Py_Finalize() are called.

Mitigation Strategies

To address or reduce these memory leak issues, we implemented the following ap-
proaches:

• Using a Single Initialization/Finalization Cycle: To minimize fragmentation
and the risk of leaks associated with multiple initializations, we initialize Python
only once at the start of the application and finalize it only at the end, using the
constructor and the destructor respectively. This strategy prevents some issues
related to the reinitialization of certain modules or extensions.

• Testing with Different Python Versions: Testing across versions revealed varia-
tions in memory management behavior, which suggests the memory leak issue is
not caused by an error on our end.

• Analysis of the Code for Correct Dereferencing: For the functions within the
DecisionTreeTuning class, we carefully investigate each variable and their ref-
erence counts to make sure they reach zero by the end of the function to be
deallocated by Python’s garbage collector.

• Suppressing the Memory Leaks: After determining that the memory issues are
caused by errors from the Python interpreter, we opted to suppress the memory
leaks originating from libpython to pass the GitHub CI workflows designed to
verify that the newly added parts to the software meet certain standards criteria.

5.2. Training Process

This section examines the training process for the decision tree and random forest
models that are used in our tuning strategy. Here, we first describe the data collection
process, followed by details on how this data is used to train and optimize the models.
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5.2.1. Data Collection

To gather a comprehensive dataset for training, we incorporated a range of simulation
scenarios, utilizing both standard examples from the md_flexible framework as well
as custom configurations designed to evaluate performance under various conditions.
These scenarios include:

• Example Scenarios: We used some example scenarios, such as fallingDrop.yaml,
explodingLiquid.yaml, and spinodalDecomposition.yaml, as primary sources
of data. These examples are standard test cases for evaluating fluid simulations
and particle interactions and provide insight into the behavior of the algorithm
under common conditions.

• Custom Cube Configurations: In addition to the standard examples, we gener-
ated custom cube simulations with varying configurations to observe performance.
Specifically, we included CubeGauss objects with varying levels of homogeneity
and CubeUniform objects with different densities. This allows us to observe how
the model responds to controlled variations in particle distributions and densities,
better training the model to recognize how algorithm selection varies based on
these parameters.

For a detailed explanation of these .yaml files and the varied parameters during the
data collection phase, see A.3.

All simulations were executed on the serial partition of the CoolMUC-21 cluster,
and each configuration was repeated once to account for fluctuations in performance.
Additionally, simulations were run with 1, 2, 4, 12, 24, and 28 threads to gather data on
how parallelization affects the optimal tuning configuration.

To ensure consistency, we used the .yaml option pause-simulation-during-tuning
to pause the simulation state during the tuning phases. This prevents any changes in
the simulation state from influencing the measurements and guarantees that all config-
urations are evaluated under identical conditions. This approach is suitable during the
data collection phase, where we must ensure all configurations are evaluated under
identical conditions. Still, for benchmarking, we turn this option off to provide a more
realistic evaluation of a tuning strategy’s performance. For the data collection, we used
the FullSearch tuning strategy, which exhaustively tests all possible configurations to
obtain comprehensive data and achieves the optimal configuration at the cost of tuning
overhead.

1CoolMUC-2 is an HPC cluster located at the Leibniz Supercomputing Centre (LRZ) in Garching,
Germany. It contains 812 nodes, each equipped with 14 cores, and supports up to 28 threads per node
through hyperthreading. Additional information is available at https://doku.lrz.de/coolmuc-2-1
1484376.html.
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5.2.2. Training Methodology

Once the data was collected, we used it to train the random forest model. Given the
nature of the problem and the variability in simulation conditions, random forests were
chosen for their robustness and ability to generalize well across different conditions.
With their ensemble learning approach, random forests average the predictions from
multiple decision trees, which helps reduce variance and improve predictive stability.

The training process was streamlined with a custom script, train.py, that reads
the data files from the data/live_info and data/tuning_results directories. After
training, the resulting model is saved and can be loaded efficiently during the simulation
runtime. During evaluation, no significant impact on runtime was observed from using
the random forest model, as the prediction overhead remained minimal.

This approach allows us to benefit from the strengths of random forests without
compromising performance, ensuring that the tuning strategy can adapt better to
changing conditions within the simulation.

5.2.3. Limitations and Considerations

Despite collecting a broad range of data, the performance of machine learning models
can degrade when faced with scenarios that diverge significantly from the training
data. As such, it’s essential to be aware of the limitations inherent in our dataset. Since
we used only a limited number of predefined scenarios, the trained model may lack
the ability to generalize confidently to new, unseen conditions. For a fair evaluation in
Chapter 6, we will limit our assessment to variations of the included scenarios, which
represent realistic use cases based on our training data.

In the future, incorporating additional scenarios would be beneficial to further
enhance the model’s robustness and extend its applicability. For example, using
scenarios with varying particle types, boundary conditions, and interaction models
could provide a richer training dataset and lead to a more flexible and generalizable
tuning strategy.

5.2.4. Collected Information

Data collection in the simulations relied on AutoPas’s existing LiveInfoLogger and
TuningResults logger to capture essential metrics that describe both the configuration
and state of each simulation. These tools allowed us to record a variety of metrics:

• Configuration Metrics: Information on the specific configuration used in each
simulation run, including algorithmic parameters such as the chosen container
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option, traversal option, data layout, and whether the newton3 optimization is
enabled.

• State Metrics: Data related to the current state of the simulation, such as the
average number of particles per cell, maximum particles per cell, homogeneity of
particle distribution, maximum density, standard deviation of particles per cell,
and thread count.

The complete shape of the collected data can be found in Appendix A.4. We focused
on a subset of relative metrics (such as avgParticlesPerCell, maxParticlesPerCell,
homogeneity, maxDensity, particlesPerCellStdDev, and threadCount), which scale
proportionally with the simulation. This focus minimizes overfitting risk by emphasiz-
ing relative values, enhancing the model’s generalizability.

LiveInfoLogger

The LiveInfoLogger class is used to gather dynamic data during the simulation. By
logging live information about the state of the simulation and the corresponding
density and homogeneity-related metrics, this logger provides a detailed view of how
simulation conditions evolve over time. This data was then used to train a model that
accounts for the variability in real-time simulation states.

TuningResults

The TuningResults logger, on the other hand, records outcomes related to the per-
formance of different configurations. This data includes timing information for each
configuration tested, allowing us to assess the impact of various algorithmic choices
on the efficiency of the simulation. Together with LiveInfoLogger, TuningResults
provides a comprehensive dataset that drives the model’s ability to predict optimal
configurations under diverse conditions.

5.3. Getting and Applying the Predicted Configuration

After managing to train a random forest model that takes a selection of LiveInfo pa-
rameters as input and outputs the optimal algorithmic configuration, the remaining task
is to create a Python script that the C++ part of the program interacts with by sending a
JSON object and receiving the corresponding configuration for the provided LiveInfo
as a JSON object. In this section, we will first go over the Python part, predict.py
script, followed by the getPredictionFromPython method of the DecisionTreeTuning
class.
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5.3.1. predict.py Script

The predict.py script is the Python component responsible for making configuration
predictions based on live simulation data passed from the C++ program. This script
loads the trained random forest model and performs predictions using live information
provided in JSON format. When executed by being called from the C++ class, it takes
the LiveInfo data, pre-processes it to match the input format expected by the model,
and then uses the model to output a predicted configuration in JSON format. Detailed
implementation steps and the script’s listing can be found in Appendix A.2.1.

5.3.2. getPredictionFromPython Function

The getPredictionFromPython function in the DecisionTreeTuning class is the C++
method that interacts with the predict.py script. This function converts live simulation
data into JSON format and sends it to the Python main function in predict.py for pre-
diction. After receiving the response, the function extracts the predicted configuration
and formats it for use within the C++ environment. A full explanation and listing for
getPredictionFromPython can be found in Appendix A.6.
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In this section, we compare the performance of the developed decision tree-based
tuning strategy with existing tuning approaches in AutoPas in order to evaluate its
performance and feasibility. All of the benchmarks were conducted on the version
with the commit id of 48db034558092a3b68348b58e5059fdf3797d77b in the AutoPas
repository1.

To measure the performance of the developed tuning strategy, we use the scenarios
present in md-flexible and compare the performance of existing tuning strategies
within AutoPas. The benchmarking is conducted on CoolMUC-22[Wil+17] cluster,
the same cluster architecture the data collection was conducted in. The benchmarks
were repeated in 1, 2, 4, 12, 24, and 28 threads. Since no performance difference
significant enough to affect the comparison of different tuning strategies was observed
in the benchmarks, we will use the single-threaded performance to generate plots and
figures for brevity. We use the performance reports and logs generated at the end of a
simulation run to evaluate the performance of the strategies, as they are good indicators
of the performance of the simulation.

6.1. Falling Drop Benchmark (In the Training Dataset)

The falling drop benchmark simulates a falling liquid drop on a liquid surface as the
simulation progresses3. As the data of this scenario in different configurations was
already included in the training data, we expect our developed tuning strategy to
perform well and predict the optimal configuration reliably.

1https://github.com/AutoPas/AutoPas/pull/953/commits/48db034558092a3b68348b58e5059fdf37
97d77b

2CoolMUC-2 is an HPC cluster located at the Leibniz Supercomputing Centre (LRZ) in Garching,
Germany. It contains 812 nodes, each equipped with 14 cores, and supports up to 28 threads per node
through hyperthreading. Additional information is available at https://doku.lrz.de/coolmuc-2-1
1484376.html.

3The .yaml file used can be accessed from https://github.com/AutoPas/AutoPas/blob/09bebc93ae
679e9c2517eb836e58964457f336d5/examples/md-flexible/input/fallingDrop.yaml
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6.1.1. Scenario Configuration Details

As mentioned, we have used the default falling liquid scenario with some configurations
for our benchmark. Here are the key metrics for the simulation:

• Particle Count: 15094

• Objects:

– A CubeClosestPacked object was used to simulate the bottom liquid.

– A Sphere object was used to simulate the liquid drop.

• Cutoff: Lennard-Jones force cutoff was set to 3.

• Boundary Conditions: Reflective boundary conditions were used.

• Gravity: A global force of [0, 0,−12] was applied to the particles to simulate
gravity.

The plot in Figure 6.1 compares the total time spent running the simulation metric
generated at the end of each simulation run in terms of seconds with the falling drop
scenario. To account for fluctuations and fairly examine each tuning strategy, each run
was conducted 2 times due to time constraints. As can be seen from the figure, our
decision tree-based tuning strategy manages to achieve comparable run-times with the
fuzzy logic-based tuning strategy and over-performs other tuning strategies, as both
tuning strategies are capable of immensely lowering the tuning times while managing
to find the optimal configuration for the shortest runtime of force calculations. For
other tuning strategies, since they test significantly worse configurations during the
tuning phases, they have a higher tuning time and, as a result, higher total execution
time.
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Figure 6.1.: Plot of the total time spent in different tuning strategies
(Numerical Values in Table A.1)

In Figure 6.2, it can be seen that almost the entirety of the simulation time is spent on
the calculation of force potentials instead of tuning the simulation, and this enables the
users to run potentially more complex simulations with the same computing resources
as up to 15% of the simulation time is used on tuning when FullSearch tuning strategy
is used.
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Figure 6.2.: Plot of the percentage of runtime spent on different phases
(Numerical Values in Table A.2)

As a result, the decision tree-based tuning strategy achieves a speedup of tFullSearch
tDecisionTree

=
40.88
1.61 ≈ 25 in terms of time spent tuning and a speedup of tFullSearch

tDecisionTree
= 271.42

230.67 ≈ 1.18 in
terms of total simulation time compared to FullSearch tuning strategy.

As can be understood from the figures, the lowering of the tuning overhead is the
most significant factor in the performance of the decision tree-based tuning strategy.
This is because, in contrast to the other tuning strategies, it does not evaluate various
configurations to decide on the optimal configuration, as the main factor in the tuning
overhead is the evaluation of many potentially bad configurations causing a slowdown.
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6. Results

6.2. Exploding Liquid Benchmark (Not in the Training Dataset)

The exploding liquid scenario 4 simulates a high-density liquid expanding outwards
as the simulation progresses. To test out the robustness of the decision tree-based
model, we are going to omit the data collected from this scenario, train the random
forest again, and observe how it performs compared to the other scenarios. Since
our training dataset now contains runs from fallingDrop, spinodalDecomposition, as
well as CubeGrid and CubeGauss scenarios with different homogeneities and densities
respectively (discussed in A.3), although it is possible the tuning strategy might not
find the most optimal configuration, we expect it to perform well enough to have a
speedup on the total run-time compared to FullSearch tuning strategy. We will also
include a run where this scenario is included in the training set to see how the runtime
is affected.

6.2.1. Scenario Configuration Details

As mentioned, we have used the default exploding liquid scenario with some configu-
rations for our benchmark. Here are the key metrics for the simulation:

• Particle Count: 1764

• Objects:

– A CubeClosestPacked object was used to simulate the exploding liquid.

• Cutoff: Lennard-Jones force cutoff was set to 2.

• Boundary Conditions: Periodic boundary conditions were used.

• Miscellaneous: Tuning interval and number of iterations were set to 2500 and
15000, respectively, to match the falling drop scenario for a fairer comparison.

As it can be seen in Figure 6.3, even though the exploding liquid scenario is not in the
training dataset, since similar simulation configurations have been achieved in terms
of trained parameters in CubeGauss and CubeUniform examples, the model has been
able to learn which algorithm configuration suits best for this runtime configurations
reliably. Additionally, in this scenario, the tuning overhead is larger than the falling drop
scenario, presumably because the simulation state changes more drastically compared
to the latter scenario due to the nature of the scenarios.

4The .yaml file used can be accessed from https://github.com/AutoPas/AutoPas/blob/09bebc93ae
679e9c2517eb836e58964457f336d5/examples/md-flexible/input/explodingLiquid.yaml
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Figure 6.3.: Plot of the total time spent in different tuning strategies
(Numerical Values in Table A.3)

Presumably, as we do not have the exact scenario in the dataset, the model did not
select the optimal algorithm configuration for every tuning phase, resulting in slightly
longer simulation times than when the scenario is in the dataset. However, because of
the “data-driven” approach, we managed to lower the tuning overhead exceedingly,
resulting in shorter run-times compared to predictive and full search tuning strategies.

In Figure 6.4, it can be seen that the benefit of almost eliminating tuning the overhead
is much more significant in this scenario as the tuning overhead with FullSearch
tuning can reach up to 40%. As a result, usage of the decision tree-based tuning
strategy, similar to other “knowledge-based” tuning strategies, is going to be most
beneficial in scenarios where the simulation state changes more than average.
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Figure 6.4.: Plot of the percentage of runtime spent on different phases
(Numerical Values in Table A.4)

With this scenario the decision tree-based tuning strategy achieves a speedup of
tFullSearch

tDecisionTree
= 88.2

60.6 ≈ 1.45 speedup when the scenario is not in the dataset and a speedup
of tFullSearch

tDecisionTree
= 88.2

52.4 ≈ 1.68 when the scenario is included in the dataset.

6.3. Decision Trees and Random Forests Performance
Comparison

During the earlier phases of development, decision trees were used instead of random
forests as the model to predict the algorithm configuration. Decision trees tend to
over-fit the training data, capturing noise instead of the underlying pattern, especially
as the tree depth increases. This behavior was also observed in our development
process, notably when the model was tested against ‘unfamiliar’ scenarios not included
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6. Results

in the training data. While the decision tree approach managed to achieve comparable
results to random forests on the traditional data analytics metrics such as accuracy,
F1-scores, and confusion matrices, they performed consistently worse in the scenarios
where similar scenarios were not included in the training dataset. One such example
benchmark can be seen in 6.5. This is due to the fact that the exploding liquid scenario
was not included in the training dataset. Random forests were able to recognize similar
live simulation state configurations that existed in the dataset due to their ensemble na-
ture preventing over-fitting, managing to output optimal to near-optimal configurations
from unfamiliar scenarios with the help of the CubeGauss and CubeUniform runs with
differing homogeneities and densities, respectively, in the dataset, and producing better
run-times than decision trees. However, this comparison and the decision to move on to
random forests as the classification model was made earlier in the development phase
when the training dataset was smaller than the other benchmarks were conducted. It is
to be expected that the performance of decision trees and random forests ultimately
depends on the quality of the dataset in covering the target space and the selected
feature parameters.
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Figure 6.5.: Random Forest vs Decision Tree Comparison
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7. Future Work

In this section, we discuss a set of possible improvements that could be made to the
currently developed tuning strategy to improve its performance and usability.

7.1. “Live Training”

The model predicts and modifies the configuration queue by selecting an algorithm
configuration based on its learned patterns. While this approach enables dynamic
decision-making, it may result in selecting poorly performing configurations, partic-
ularly in cases where the model encounters an unfamiliar simulation state. Since the
model does not currently assess the confidence of its predictions, it lacks a mechanism
to handle such scenarios proactively.

As future work, introducing a confidence-based mechanism could address this lim-
itation. If the model identifies a prediction with low confidence, it could switch to
alternative tuning strategies defined in the runtime configuration file. This would
provide a fallback mechanism to mitigate the impact of incorrect predictions. Addition-
ally, implementing live training functionality could allow the model to update itself
dynamically upon encountering unfamiliar states. By retraining or fine-tuning during
runtime, the system could adapt to evolving simulation characteristics and improve
its predictions in subsequent tuning phases. Combining these enhancements would
reduce reliance on predefined strategies, minimize the risk of poor performance, and
make the system more robust and autonomous.

7.2. Exploration of Different Features

The features we’ve selected to train the ML model were chosen mainly based on the
intuition that density and the homogeneity of the particles during the simulation
have an effect on which algorithm configuration performs best. However, as AutoPas
continues to evolve, additional live simulation data may become available, offering
more robust correlations for configuration selection. Exploring these new features could
improve the accuracy and generalizability of the ML model. For example, incorporating
features that reflect temporal changes in the simulation or higher-order spatial statistics
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7. Future Work

could provide richer information for the model. Future work could also investigate an
automated selection of these features using advanced feature engineering techniques or
exploratory data analysis tools.

7.3. Exploration of Different Classification Methods

The performance of other ML classifiers, such as support vector machines (SVMs),
K-nearest neighbors, or artificial neural networks, could be explored. SVMs, for
example, might offer better performance in cases with non-linear or complex decision
boundaries, while ANNs could excel in capturing non-linear patterns in the data.
Since the current implementation uses a decision tree-based classifier, which provides
simplicity and interpretability, the existing infrastructure already interfaces with Python
libraries like scikit-learn, making it suitable for testing other classifiers. Future work
could evaluate these methods to determine if they offer improved accuracy, speed, or
scalability for tuning in more complex or diverse simulation scenarios.
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8. Conclusion

This thesis used a decision tree-based strategy to introduce a new tuning approach for
AutoPas. In addition to a tuning strategy for the AutoPas framework, it also integrated
smooth interaction functionality with Python scripts through Python development
headers, offering a flexible foundation for future research projects.

The main achievement here was creating a tuning method that allows AutoPas, largely
written in C++, to take advantage of machine learning libraries in Python. This setup
paves the way for adding more ML-based tuning options, like different classification
techniques, through a communication bridge between C++ and Python. The results
showed that this decision tree-based tuning strategy significantly outperformed current
methods in certain benchmarks, cutting overall simulation time by drastically reducing
the tuning time while still finding optimal or near-optimal configurations.

However, while this approach with decision trees has clear potential, it requires
substantial initial effort to gather data for building the model, which may be a hurdle
for typical AutoPas users. Future research should aim to make the data collection and
model training process more streamlined to make this decision tree tuning method
more accessible to a broader audience of researchers.

In conclusion, the decision tree tuning strategy and data-driven model training
represent a meaningful step forward in tuning AutoPas simulations and provide a
strong basis for future work. Though challenges remain in making it more broadly
accessible, the potential for major performance speedup makes this a promising area
for continued development and refinement.
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A. Appendix

This section serves as a collection of figures and listings to clarify the implementation
details explained in Chapter 5.

A.1. UML Diagram for DecisionTreeTuning

«interface»
TuningStrategyInterface

DecisionTreeTuning

- _currentLiveInfo: map<string, double>

- _configurations: set<Configuration>

- _modelFileName: string

- _pFunc: PyObject*

- loadScript(): void

- getPredictionFromPython(): string

- updateConfigQueue (vector<Configuration>
ConfigQueue, string Prediction): void

Figure A.1.: UML Diagram for DecisionTreeTuning

In A.1, we can see the UML diagram for DecisionTreeTuning. For brevity, we
have only included the variables and methods not included in the implemented
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TuningStrategyInterface interface. Below is the explanation for the class variables,
and the explanation of the class methods can be found in A.2.2.

• _currentLiveInfo: A map that stores live information about the current simu-
lation state, with each entry representing a key-value pair where the key is the
metric name and the value is its current value. This data is updated in real-time
and passed to the Python script for predictions.

• _configurations: A set containing possible configurations that the tuning strat-
egy may consider. Each configuration defines a specific setup of algorithmic
parameters, such as the container, traversal, and data layout options, which are
evaluated based on the predicted performance.

• _modelFileName: A string that stores the file name containing the trained decision
tree model. This model file is loaded by the Python script predict.py to predict
the best configuration based on live simulation data. This can be changed in the
.yaml files to pass to the program.

• _pFunc: A pointer to the main function in the predict.py Python script. This
function uses the loaded model to make predictions based on the live information
provided by _currentLiveInfo. The pointer ensures that the function is accessible
across different methods in the DecisionTreeTuning class.

A.2. Code Listings

This section is a collection of code listings of crucial functions used for the implementa-
tion of the decision tree-based tuning strategy.

A.2.1. Python Script Functions for Training and Prediction

Here are functions developed in Python for the training and prediction scripts will be
listed.

Training Script

Here we will display listings of functions used in the training script. Only the crucial
functions, namely for preprocessing and training, will be included for brevity.

def preprocess_data(merged_df: pd.DataFrame) -> tuple:
# Select the features for training
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features = [’avgParticlesPerCell’, ’maxParticlesPerCell’, ’homogeneity
’, ’maxDensity’, ’particlesPerCellStdDev’, ’threadCount’]

# Select the target
targets = [’Container’, ’Traversal’, ’Data␣Layout’, ’Newton␣3’]

# Encode using LabelEncoder
label_encoders = {target: LabelEncoder() for target in targets}

for target in targets:
merged_df[target] = label_encoders[target].fit_transform(merged_df

[target])

X = merged_df[features]
y = merged_df[targets]

return X, y, label_encoders

Listing A.1: preprocess_data Function

As we can see in A.1, the function uses a set of features described in Chapter 5 to create
a merged DataFrame [pan24] of features and targets, and this DataFrame is later used
to train a random forest model.

def train_model(X: pd.DataFrame, y: pd.DataFrame) -> dict:
# Split data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size

=0.2, random_state=42)

# Train a RandomForestClassifier for each target
models = {}
for i, column in enumerate(y.columns):

model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train.iloc[:, i])
models[column] = model

# Test accuracy on test set for this model
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test.iloc[:, i], y_pred)
print(f’Accuracy␣for␣{column}:␣{accuracy:.2f}’)
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return models

Listing A.2: train_model Function

The train_model function trains a separate RandomForestClassifier for each target
column in the provided labels, y. It first splits the data into training and test sets,
reserving 20% of the data for testing. For each target column, a random forest model
with 100 estimators is created, trained on the training set (X_train, y_train), and
stored in the models dictionary under the column name as the key. After training each
model, it predicts the values on the test set, and the function calculates and prints
the accuracy score for each target, providing insight into the model’s performance on
unseen data. The function finally returns the dictionary containing all trained models.

Prediction Script

Here we will display listings of functions used in the prediction script. Similar with the
training script, only the crucial functions, namely for prediction and the main entry
point from C++, will be included for brevity.

def predict(live_info: dict, models: dict, label_encoders: dict) -> dict:
live_info_df = preprocess_live_info(live_info)

predictions = {}

# Perform prediction for each target
for target, model in models.items():

prediction_encoded = model.predict(live_info_df)
prediction = label_encoders[target].inverse_transform(

prediction_encoded)
predictions[target] = prediction[0]

return predictions

Listing A.3: predict Function

The predict function takes live information from the main function, which is passed
as a dictionary live_info, along with a dictionary of trained models models, and
a dictionary of label encoders label_encoders. It first preprocesses live_info by
converting it into a DataFrame through the preprocess_live_info function. Then, for
each target, the function retrieves the corresponding model from models and performs
a prediction on the processed live_info_df. The encoded prediction is transformed
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back to the original label using the relevant label encoder, and the result is stored
in the predictions dictionary under the target name. Finally, the function returns
predictions, a dictionary containing predictions for each target variable.

def main(model_file: str, live_info_json: str) -> str:
# Load models and encoders
models, label_encoders = load_models_and_encoders(model_file)

# Parse the live info
live_info = json.loads(live_info_json)

# Make predictions
predictions = predict(live_info, models, label_encoders)

return json.dumps(predictions)

Listing A.4: main Function

The main function manages the overall prediction workflow. It begins by loading the
pre-trained models and label encoders from a specified file, model_file, for which the
model filename is passed from C++. Then, it parses the live_info_json string, which
contains the current simulation state from the C++ DecisionTreeTuning class, into a
Python dictionary. Using the predict function, it generates predictions based on this
live information and the loaded models. Finally, the function converts the predictions
dictionary to JSON format and returns it as a string, ready to be passed back to the
C++ environment.

A.2.2. C++ Functions for Interfacing with Python

Here we include listings of a collection of functions for interfacing with Python and
the random forest model. For brevity, we again include the most important functions,
namely loadScript and getPredictionFromPython. For a more detailed look at the
implementation, see the GitHub repository.

void DecisionTreeTuning::loadScript() {
PyObject *sysPath = PySys_GetObject((char *)"path");
PyObject *cwd = PyUnicode_FromString(".");
PyList_Append(sysPath, cwd);
Py_DECREF(cwd);

PyObject *pName = PyUnicode_DecodeFSDefault("predict");
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if (!pName) {
utils::ExceptionHandler::exception("Failed␣to␣convert␣script␣name␣to␣

Python␣string.");
}

PyObject *pModule = PyImport_Import(pName);
Py_DECREF(pName);

if (!pModule) {
PyErr_Print();
utils::ExceptionHandler::exception("Failed␣to␣load␣Python␣module:␣

predict.py");
}

PyObject *pDict = PyModule_GetDict(pModule);
Py_DECREF(pModule);

if (!pDict) {
PyErr_Print();
utils::ExceptionHandler::exception("Failed␣to␣get␣dictionary␣from␣

Python␣module:␣predict.py");
}

PyObject *pFunc = PyDict_GetItemString(pDict, "main");
if (!pFunc || !PyCallable_Check(pFunc)) {
PyErr_Print();
utils::ExceptionHandler::exception("Failed␣to␣get␣Python␣function:␣

main");
}

_pFunc = pFunc;
Py_INCREF(_pFunc);

}

Listing A.5: loadScript Function

The loadScript function loads the predict.py Python script into the C++ environ-
ment. First, it adds the current directory to Python’s search path, allowing Python
to locate the script. Then, the function attempts to load predict.py by importing it
as a module. If loading fails, it triggers an exception to indicate the issue. Once the
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module is loaded successfully, the function retrieves the module’s dictionary, pDict,
which contains all defined variables, functions, and classes. Using this dictionary, it
accesses the main function within the predict.py script. If main is found and is callable,
it increments the function’s reference count to prevent garbage collection, as _pFunc is
stored as a class member for later use.

std::string DecisionTreeTuning::getPredictionFromPython() {
std::string liveInfoJson = "{";
for (const auto &[key, value] : _currentLiveInfo) {
liveInfoJson += "\"" + key + "\":" + std::to_string(value) + ",";

}
liveInfoJson.back() = ’}’;

PyObject *firstArg = PyUnicode_FromString(_modelFileName.c_str());
PyObject *secondArg = PyUnicode_FromString(liveInfoJson.c_str());
PyObject *pArgs = PyTuple_Pack(2, firstArg, secondArg);

PyObject *pResult = PyObject_CallObject(_pFunc, pArgs);

Py_DECREF(firstArg);
Py_DECREF(secondArg);
Py_DECREF(pArgs);

if (!pResult) {
PyErr_Print();
utils::ExceptionHandler::exception("Error␣occurred␣during␣Python␣

function␣call");
}

const char *prediction = PyUnicode_AsUTF8(pResult);
std::string configPrediction(prediction);
Py_DECREF(pResult);

return configPrediction;
}

Listing A.6: getPredictionFromPython Function

The getPredictionFromPython function constructs a JSON string representation of the
current live information, _currentLiveInfo, to send it as an argument to the Python
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function. It iterates over the _currentLiveInfo map and formats each key-value pair as
a JSON entry. The function then prepares two arguments for the Python main function
in predict.py: the model file name and the JSON string of live information. It creates
a Python tuple pArgs containing these arguments and calls _pFunc with them. If the
function call succeeds, it extracts the result, which is a JSON string of predictions,
converts it to a C++ string, and returns it. Any errors during the function call are
printed, and an exception is raised if necessary.

A.3. .yaml Config Files

In this section, we will go over the .yaml files used during the data collection process,
and which of the parameters in these files were varied to cover the target space as much
as possible to train a generalizable model. For the example scenarios included within md
-flexible, fallingDrop.yaml and explodingLiquid.yaml, we will only discuss which
parameters were varied to create a dataset covering the target space.

A.3.1. Varied Parameters

Here, we will discuss the parameters adjusted in order to build the dataset and train
the model. md-flexible, the simulation included in AutoPas, can be adjusted to run
different scenarios using .yaml files. These configuration files have a set of parameters
to adjust simulation parameters and define particles to run the simulation. Below is a
list of these parameters adjusted to create different scenarios that auto-tune to different
configurations to cover the target space:

• cutoff: Lennard-Jones force cutoff.

• particle-spacing: Space between two particles for the grid generator. The
particle-spacing parameter is changed in the range of [1/5 ∗ cutoff, cutoff].

• deltaT: Length of a timestep. Set to zero to deactivate time integration. This
value is kept bigger than zero to enable time integration during the data collection
phase.

A.3.2. cubeGauss.yaml

In this configuration, we additionally use different mean and standard deviation
parameters of the cubeGauss object to run simulations with different homogeneity to
build our dataset.
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container : # See AllOptions.yaml
verlet-rebuild-frequency : 10
verlet-skin-radius-per-timestep : 0.05
verlet-cluster-size : 4
data-layout : [AoS, SoA]
traversal : # See AllOptions.yaml
tuning-strategies : []
tuning-interval : 2500
tuning-samples : 3
tuning-max-evidence : 10
functor : Lennard-Jones AVX
newton3 : [disabled, enabled]
cutoff : 3
box-min : [0, 0, 0]
box-max : [7.25, 7.25, 7.25]
cell-size : [1]
deltaT : 0.000001
pause-simulation-during-tuning : true
iterations : 15000
boundary-type : [none, none, none]
globalForce : [0, 0, 0]
Objects:

CubeGauss:
0:

distribution-mean : [ 17, 17, 17 ]
distribution-stddeviation : [ 2, 2, 2 ]
numberOfParticles : 100
box-length : [ 8, 8, 8 ]
bottomLeftCorner : [ 15, 15, 15 ]
velocity : [ 0, 0, 0 ]
particle-type-id : 0

Listing A.7: A minimized version of the cubeGauss.yaml file

A.3.3. cubeUniform.yaml

In cubeUniform.yaml, a similar procedure as in cubeGauss is used to vary the param-
eters to cover the target space, but we change the numberOfParticles parameter to
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change the density of the simulation instead:

Objects:
CubeUniform:

0:
numberOfParticles : 100
box-length : [ 8, 8, 8 ]
bottomLeftCorner : [ 15, 15, 15 ]
velocity : [ 0, 0, 0 ]
particle-type-id : 0

Listing A.8: cubeUniform Object

A.4. Logging

A.4.1. liveInfoLogger Fields

The LiveInfoData file currently includes fields that provide summary statistics about
the simulation state at each iteration. This file, generated by the LiveInfoLogger
class in the AutoPas library, logs key data for the decision tree-based tuning strategy,
serving as its main source of information to make predictions to adjust the algorithm
configuration throughout the simulation. Refer to AutoPas Documentation for more
details. It contains the following fields:

• Date: The timestamp of the time the data was collected.

• Iteration: The current iteration number of the simulation.

• avgParticlesPerCell: The average number of particles per cell in the simulation.

• cutoff: The cutoff radius for force potential calculation.

• domainSizeX: The domain size in the X dimension.

• domainSizeY: The domain size in the Y dimension.

• domainSizeZ: The domain size in the Z dimension.

• estimatedNumNeighborInteractions: Rough estimation of the number of neigh-
bor interactions assuming that neighboring cells contain roughly the same number
of particles.

• homogeneity: A measure of the homogeneity of particles across the cells.
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• maxDensity: The maximum density of particles in any cell.

• maxParticlesPerCell: The maximum number of particles in a cell.

• minParticlesPerCell: The minimum number of particles in a cell.

• numCells: The total number of cells in the simulation domain.

• numEmptyCells: The number of cells with no particles.

• numHaloParticles: The number of particles outside of the simulation domain.

• numParticles: The total number of particles in the container.

• particleSize: The number of bytes a single particle in memory occupies in AoS
layout.

• particleSizeNeededByFunctor: The number of bytes the information needed by
the functor from each particle occupies. Important for the SoA data layout.

• particlesPerBlurredCellStdDev: The standard deviation of the number of parti-
cles in each blurred cell (1/27th of the domain)

• particlesPerCellStdDev: The standard deviation of the number of particles in
each cell.

• rebuildFrequency: The current verlet-rebuild-frequency of the simulation.

• skin: The configured skin radius that is added to the cutoff radius to create a
buffer for neighbor lists.

• threadCount: The number of threads used for parallel processing.

A.4.2. tuningResults Fields

This logging option includes fields that provide information about the tuning results
produced throughout the simulation runtime. The columns in this CSV file are mainly
used as the target for the model’s training. It contains the following fields:

• Date: The timestamp of the time the data was collected.

• Iteration: The current iteration number of the simulation.

• Container: The container used to store the particles during the simulation (e.g.,
LinkedCells, VerletLists)
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• CellSizeFactor: Factor to determine the size of the cells relative to the cutoff
radius.

• Traversal: Traversal method used to calculate interactions (e.g., C01, C18, C08)
between particles

• Load Estimator: Strategy used to balance the load across different parts (e.g.
squaredParticlesPerCell, neighborListLength

• Data Layout: Indicates how the particles are arranged in memory (e.g. AoS, SoA)

• Newton 3: Whether the optimization using Newton’s 3rd Law is used or not for
force calculation.

A.5. Numerical Values for the Plots in 6

A.5.1. Numerical Values for the Falling Drop Benchmark

Total Time Plot

Decision Tree Fuzzy Tuning Predictive Full Search
Tuning Phase (s) 1.61 2.25 22.37 40.88

Simulation Phase (s) 230.11 230.16 241.85 230.54

Table A.1.: Execution times for 6.1

Percentage Time Plot

Decision Tree Fuzzy Tuning Predictive Full Search
Tuning Phase (s) 0.07 0.09 8.46 15.06

Simulation Phase (s) 99.3 99.1 91.54 84.94

Table A.2.: Percentage of execution times for 6.2
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A.5.2. Numerical Values for the Exploding Liquid Benchmark

Total Time Plot

Decision Tree
(in dataset)

Fuzzy
Tuning

Decision Tree
(not in dataset)

Predictive
Full

Search
Tuning

Phase (s)
1.26 2.25 1.39 15.38 35.89

Simulation
Phase (s)

51.69 53.42 59.84 56.88 52.59

Table A.3.: Execution times for 6.3

Percentage Time Plot

Decision Tree
(in dataset)

Fuzzy
Tuning

Decision Tree
(not in dataset)

Predictive
Full

Search
Tuning

Phase (s)
2.38 4.05 2.27 21.28 40.56

Simulation
Phase (s)

97.62 95.95 97.73 78.72 59.44

Table A.4.: Percentage of execution times for 6.4
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