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Abstract—Semantic Communication has recently emerged as
a novel communication strategy that prioritizes transmitting
meaning over conventional bit-based transmission. By signifi-
cantly reducing resource requirements in communication tasks
such as video conferencing, natural language, and audio trans-
mission, Semantic Communication promises better utilization
of challenging, near radio link failure (NRLF) channels. This
paper introduces a novel semantic communication framework
designed to further enhance the resilience of the transmission of
semantics over NRLF channels. Unlike classical, Shannon-based
communication that prioritizes the perfect reception of bits, our
approach focuses on ensuring the successful synthesis of the
message semantics. Our framework leverages the significance of
discrete semantics, and a cross-layer strategy to ensure message
integrity and comprehension, even under significant loss. Key
to our framework is the novel, code block based Proactive
Redundancy Transmission (PRT) mechanism prioritizing critical
semantics, coupled with a novel error concealment step enabling
meaningful reconstruction of non-critical semantics. We establish
the resulting importance-driven resilience optimization problem,
and introduce and validate preliminary heuristics as an initial
attempt to optimize it. We formalize, implement, and eval-
uate our framework, demonstrating significant improvements
in the resilience of semantic communication in NRLF envi-
ronments. Our evaluations, leveraging a First Order Motion
Model (FOMM) for video conferencing synthesis, underscore
the resilience of our semantic communication framework against
traditional H.265 compression under challenging Channel Block
Error Rates (CBLERs). Unlike H.265, which fails to decode
under significant CBLERs, our method exhibits remarkable
resilience, maintaining perceptual quality even with CBLERs
surpassing 75%.

I. INTRODUCTION

As mobile devices feature in increasing capacity in our daily
routine, user expectations for high-quality, widely available
services grow proportionally, irrespective of user environment.
Simultaneously, more real-time human and machine data is
generated than ever before at the network edge, imposing
new demands on available datarates and network coverage
[1]. The number of connected devices in the consumer,
industrial and healthcare sectors is unlikely to peak, with
their service availability constraints posing a challenge that
cannot be overcome by existing 5G technology [1]–[3]. To
combat increased resource congestion, the 5G NR standard
introduces the mmWave FR2 spectrum. However, new band-
width standardization is limited in both availability and service
capability, as new low frequency bands capable of wide
area service coverage and good building penetration face
significant spectrum scarcity. These constraints have lead to

the emergence of Semantic Communication (SC) as a novel
communication concept, promising advanced exploitation of
allocated spectrum, with the low data rate requirements of SC
well covered in existing work [4]–[6]. However, we propose
that SC not only promises a significantly reduced required
goodput compared to classical Shannon communication, but
also increases service coverage under congested channels or
near radio link failure (NRLF). This is achieved through
the unique approach of distilling information to its essential
semantics, with the ability to prioritize the inherently discrete
semantics by their significance. This independence ensures
that even in the absence of the complete semantic vector, the
conveyed semantics retain useful meaning [7], [8]. We propose
that this characteristic of SC not only facilitates a higher
resilience to symbol loss but also enhances the robustness
of communication in challenging conditions, as the partial
reception of semantic information still provides value and
actionable insights.

While SC has been recognized for its efficiency in good-
put, its potential for enhancing resilience under challenging
channel conditions—particularly through robust transmission
and reception of semantics despite significant loss—remains
largely untapped. This resilience marks a departure from tra-
ditional communication models that emphasize the error-free
delivery of data bits, pivoting instead to focus on the integrity
and understanding of the message’s semantics, offering a
strategic advantage in maintaining communication quality and
reliability. In this context, we introduce Proactive Redun-
dancy Transmission (PRT), a novel, semantic-based strategy
designed to supersede the classical Incremental Redundancy
Hybrid Automatic Repeat reQuest (IR-HARQ) mechanism.
PRT shifts focus from exact data recovery to prioritization
and preservation of essential semantics, thereby enhancing
communication resilience, potentially reducing latency and
feedback overhead, and marking a significant advancement
in efficient network resource utilization. Additionally, PRT
exploits the independent decodability of code blocks, al-
lowing for selective redundancy and further mitigating the
risk of semantic loss by capitalizing on the low goodput
requirements of SC. Our approach leverages SC’s unique
capacity to prioritize and transmit the most critical semantics,
ensuring their preservation even in adverse conditions through
a novel application-agnostic framework. This framework em-
beds application-specific semantic mechanisms within the
application layer and employs cross-layer feedback, thereby



enhancing semantic task resilience and introducing an error
concealment mechanism that infers missing semantics. Our
paper delves into the optimization challenges and solutions for
PRT, evaluating its performance through extensive testing on
a video synthesis task. This analysis confirms the efficacy of
our framework, offering significant improvements in semantic
communication reliability.

The remainder of this paper is organized as follows: Section
II reviews the state of the art in semantic communication
frameworks and resilience mechanisms. Section III introduces
our proposed framework for enhancing the reliability of se-
mantic communication tasks. Section IV details the system
model and the optimization problem for our Proactive Redun-
dancy Transmission (PRT) approach. Section V assesses our
framework through a video synthesis task, showing how it
performs in practice. Finally, Section VI concludes the paper
and outlines future work.

II. STATE OF THE ART

For the purposes of this paper, a semantic symol si is de-
fined as a discrete unit of meaning. Within the network stack,
semantic symbols can be treated and handled independently.
As previously discussed (see [4]–[6]), semantic representa-
tions are highly compressed, and require much lower bitrates
when compared to conventional representations. While the
goodput advantages of SC have been thoroughly investigated,
we contend that the inherent advantage of semantic symbol
extraction towards the resilience of SC has not been fully
explored, despite some initial work on improving Quality of
Experience (QoE). In [4], notable improvements in perceptual
loss at high BERs (> 0.1) are achieved through task-specific
training for video communication, which poses challenges
in generalization and introduces substantial computational
and latency overheads. Similarly, their SVC-HARQ approach
adds complexity by requiring semantic-aware error correc-
tion and training for channel gain variations, limiting its
adaptability and increasing system demands. These aspects
underscore the challenges in applying SVC-HARQ broadly
across varying network conditions and applications. In Sec.
V, we demonstrate that similar improvements w.r.t. perceptual
loss are achieved by taking advantage of the symbolization of
semantics, even in a generalized framework. The proactive
scheduling of radio resources is not unique to SC. In [9]
and [10], resources are reserved for URLLC traffic in a joint
eMBB and URLLC scenario. [11] suggest pre-scheduling re-
transmission slots for URLLC traffic to reduce retransmission
latency.

Defining a measure of semantic importance is a critical
aspect of SC, and not a novel endeavor. In [3], the concept
of Data Importance Information (DII) is proposed, to enable
adaptive transmission, multi-access, and resource allocation at
lower layers. A base station resource block allocation policy
attentive to the importance distribution of semantics across
multiple users is developed in [7]. For speech applications,
[12] develop a semantic encoder prioritizing speech signals
with high amplitude over signals with low amplitude. A

key shortcoming of existing approaches is the lack of an
application-agnostic importance measure, which is necessary
for the generalization of SC. Depending on the application,
semantic symbols may be defined as triples [7], feature
vectors [13], or even as data chunks of undefined length [14],
[15]. Therefore, we contend that the task of generating these
specific importance values, and their subsequent mapping to
generalized importance values for the network stack, should
be subject to the application’s implementation. This strategy
enables the network stack to allocate semantic symbols to
available resources, agnostic to the application task.

III. FRAMEWORK

We propose a SC framework that is capable of extracting
semantic symbols from an information source, assigning im-
portance to the semantic symbols, and transmitting the sym-
bols over a wireless channel. At the receiver, the framework is
capable of synthesizing the received meaning, and preserving
the intended goal in the presence of channel errors. We design
our framework to be agnostic to the application and the
specific meaing being transmitted. We develop our framework
on top of the existing 5G NR network stack, interfacing the
semantic representation generated at the application layer with
the link layer. In Fig. 1, we illustrate the system model. The
framework is composed of the following components:

• Semantic Extractor: The semantic extractor E(·) is respon-
sible for extracting semantics from an information source.
The information source can be an image, video, audio, or
text. The semantic extractor can be implemented using a
variety of techniques, such as deep neural networks, or
manually crafted functions. We envision the extraction of
semantics from an information source as a set of discrete
units of meaning- symbols.

• Semantic Importance Assignment Function: The seman-
tic importance assignment function P (·) is responsible for
assigning an importance value to each semantic symbol. The
importance value is used to prioritize high-value semantics.
The importance value is determined by the application, and
approximates the effect of the loss of a given symbol to a
loss in receiver Quality of Experience (QoE).

• Semantic-aware Channel Encoder: The semantic-aware
encoder C(·) is responsible for encoding the semantic infor-
mation using the assigned importance values. The encoder
is capable of filtering, duplicating, and allocating resources
according to symbol importance, and is composed of the
allocation step Calloc and the encoding step Cenc. For
the purpose of this paper, we simplify the semantic-aware
encoder to a single step, C(·).

• Semantic-aware Channel Decoder: The semantic-aware
decoder C−1(·) is responsible for decoding the received
semantic information. The decoder is capable of preserving
correctly decoded code blocks, even when the transport
block is corrupted, and especially under conditions with
low guarantee of successful retransmission. The decoder
is composed of the decoding step Cdec and the recovery
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Fig. 1: System Model of the End-to-End prioritized Semantic-Aware Communication Network

step Crec. For the purpose of this paper, we simplify the
semantic-aware decoder to a single step, C−1(·).

• Semantic Error Concealer: The semantic error concealer
R(·) is responsible for concealing errors in the received
semantic information. The error concealer is capable of
utilizing inter-symbol or temporal correlation between sym-
bols, and the inherent understanding of their semantics, to
enable highly successful error concealment techniques.

• Semantic Synthesizer: The semantic synthesizer Syn(·) is
responsible for synthesizing an appropriate representation
of the received semantics, where the synthesis accomplishes
the intended goal of the application.
Semantic symbols S = {s1, s2, . . . , si} are crucial for

understanding and further processing semantics derived from
an information source I (e.g. images, text, or audio samples)
via E(·). In literature, Deep Neural Networks (DNNs) are
commonly used to implement E(·) [6], [16]. However, the
implementation of E(·), whether it is a DNN or a manually
crafted function, depends on the specific requirements of the
application. For example, in a video streaming application,
E(·) may be a DNN capable of extracting the key objects and
relationships in a video frame [13], [14]. In a speech recog-
nition application, E(·) may be a DNN capable of extracting
the phonemes and words from an audio sample. In a text
summarization application, E(·) may be a manually crafted
function capable of extracting the key sentences and phrases
from a text document. Following extraction, the semantic
importance of each symbol is quantified by their weights
W = {(ρ1, s1), (ρ2, s2), . . . , (ρi, si)}, assigned by P (·). This
assignment approximates the impact of each symbol on the
Quality of Experience (QoE). The subsequent encoding pro-
cess is sensitive to the state of the channel Pc, which includes
considerations such as grant size, code block configuration,
and modulation order, ensuring that the encoding of semantic
information, Ŵ = C(W,Pc), is both efficient and effective.
Upon reaching the receiver, a decoding process reconstitutes
the semantic symbols. Undecoded symbols are addressed by a
semantic error concealer that leverages symbol history H , the
decoded symbols W̄ , and the indices of undecoded symbols
K, to generate a synthesized final semantic representation,
Ī = Syn(W̃ ∪ W̄ ).

IV. SYSTEM MODEL

We model an end-to-end connection established over the
Uplink and Downlink channels of a 5G NR network, where
the Uplink Base Station (BSUL) is notified of the UETX

semantic application, its resource demands, and accordingly
allocates resource block grants to the UETX. Further, the BSUL
determines an appropriate number of code blocks, associated
code block size given the scheduled grant, the needs of the
UETX, and the current channel state. The UETX can then
allocate one or more symbols per code block, and transmit
the code blocks over the Uplink channel, where the BSUL can
independently decode each block and forward the correctly
decoded blocks. This process incurs overhead penalties due to
the additional control information required to coordinate the
allocation of resources, as well as overhead due to additional
appended CRCs. However, as shown in Sec. V, this leads to
significant gains in performance even at high error rates, and
enables resilience to highly fluctuating channels.

A. Transmission

We consider the transmission of S over a wireless channel,
and the allocation of symbols to available resources. Specif-
ically, the semantic-aware encoder C(·) is responsible for
allocating S to the available resources in a way that maximizes
the QoE at the receiver. The semantic extractor E(·) generates
a stream of semantic frames, with a variable N symbols per
frame, and ni bits per symbol. Additionally, each symbol is
assigned an importance weight ρi, by the semantic importance
assignment function P (·). Under a constrained channel, C(·)
must allocate symbols from each frame, such that the potential
QoE at the receiver is maximized. In the face of a lossy chan-
nel, practical guarantees for the arrival of single symbols are
not possible. In this regard, the goal of a transmission should
be to maximize the number of high-importance symbols to
arrive at the receiver. Therefore, C(·) must allocate symbols
under both constrained and lossy channel conditions. With
constrained resources, C(·) must prioritize symbols according
to their importance, while under lossy channel conditions,
C(·) must allocate symbols in order to maximize the prob-
ability of high-importance symbols arriving at the receiver.
We formalize the optimization problem for the allocation
of symbols under constrained and lossy channel conditions
with the following parameters. As quantification of QoE is
dependent on the implementation of the application, while
symbol weights can be treated agnostic to the application, we
define the optimization problem in terms of symbol weight.

B. Optimization Problem Formulation

In the context of SC, where each message is composed
of semantic symbols with varying degrees of importance,
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we aim to optimize symbol allocation across multiple code
blocks within a transmission frame. Consider a semantic frame
consisting of N symbols to be transmitted over K code
blocks, each with a capacity of Cj bits. Each symbol i,
characterized by a length of ni bits and an importance weight
ρi, must be allocated to one or more code blocks to maximize
the overall quality of the transmitted message. To formalize
this, we introduce a binary decision variable dij , indicating
whether symbol i is allocated to code block j (dij = 1)
or not (dij = 0). The reception probability pi for each
symbol i is a function of the Code Block Error Rate (CBLER)
and the number of symbol duplications Di, represented as
pi = 1− (CBLER)Di . This formulation captures the trade-off
between symbol duplication for reliability and efficient use of
code block capacity.

Objective Function: Our objective is to maximize the sum
of the weighted importance of symbols successfully received,
accounting for the probability of each symbol’s reception:

maxWρ =

N∑
i=1

ρi · pi (1)

Constraints: The optimization problem is subject to the
constraints:

N∑
i=1

ni · dij ≤ Cj , ∀j = 1, 2, . . . ,K (2)

K∑
j=1

dij ≥ 1, ∀i = 1, 2, . . . , N (3)

dij ≤ 1, ∀i ∈ N, j ∈ K (4)

Where constraint Eq. 2 ensures that no code block is over-
loaded, Eq. 3 mandates each symbol’s allocation to ensure its
potential reception, and Eq. 4 prevents multiple allocations of
a single symbol to the same code block (which would bring
no gain in Eq. 1)

C. Symbol Allocation Heuristics
Three distinct symbol allocation heuristics are considered:

the First-Fit Heuristic (FFH), the Strict Importance-Driven

Heuristic (SIDH), and the Cyclic Importance-Driven Heuristic
(CIDH). FFH is straightforward, focusing solely on semantic
symbolization without considering symbol importance. SIDH
prioritizes symbols based on their importance to maximize the
likelihood of high-importance symbols being received. CIDH,
on the other hand, balances importance with the attempt to
guarantee that each symbol is sent at least once.
• First-Fit Heuristic (FFH): Allocates symbols based on

their appearance sequence, disregarding importance. It en-
sures a steady allocation rate but doesn’t prioritize symbols
by importance, adhering to constraints Eq. 2 and Eq. 3.

• Strict Importance-Driven Heuristic (SIDH): Symbols are
allocated to resources according to their importance. High-
importance symbols are allocated at a higher rate, and are
allocated before low-importance symbols. Further, when
the code block size is insufficient to allocate all symbols,
low-importance symbols remain unallocated. SIDH meets
constraints Eq. 3, but does not meet constraint Eq. 2. We
implement SIDH to demonstrate the importance of Eq. 2.

• Cyclic Importance-Driven Heuristic (CIDH): A compro-
mise between FFH and SIDH, CIDH allocates symbols
according to their importance, but also ensures that all
symbols are sent at least once, if possible. High-importance
symbols are allocated at a higher rate, and are allocated be-
fore low-importance symbols. CIDH satisfies all constraints.

The effectiveness of these heuristics is assessed in Sec. V.

V. IMPLEMENTATION AND EVALUATION

The proposed framework is implemented and evaluated on a
First Order Motion Model (FOMM) [13] based video synthe-
sis task. The FOM model is trained on the VoxCeleb2 dataset
[17] and is used to synthesize a head and shoulders video
conference. The keypoint detector EFOMM(·) extracts facial
landmarks from a source image and a driving video, yielding
a feature vector of fixed size, containing the positions and
jacobians of the landmarks. The feature vector is symbolized
into ten equal semantic symbols. The feature vector can then
be used to synthesize a video from the contained landmark
data and a target image. As a baseline for comparison of



performance, we compare the FOMM model against H.265
compressed video.

TABLE I: FOMM PRT Heuristic Objective Scores

Test K Sym/Cj FFH (Wρ, µN ) SIDH (Wρ, µN ) CIDH (Wρ, µN )

1 1 2 / 10 0.10, 2.0 0.16, 2.0 0.16, 2.0
2 3 2 / 10 0.26, 4.9 0.23, 2.0 0.30, 6.0
3 5 2 / 10 0.38, 6.7 0.26, 2.0 0.5, 10.0
4 1 4 / 10 0.20, 4.0 0.27, 4.0 0.27, 4.0
5 3 4 / 10 0.45, 7.8 0.40, 4.0 0.53, 10.0
6 5 4 / 10 0.59, 9.2 0.44, 4.0 0.65, 10.0
7 1 9 / 10 0.45, 9.0 0.47, 9.0 0.47, 9.0
8 3 9 / 10 0.70, 9.9 0.68, 9.0 0.70, 10.0
9 5 9 / 10 0.78, 10.0 0.75, 9.0 0.78, 10.0

A. Synthesis Evaluation Metrics

The FOMM task is evaluated using the Average Landmark
Distance (ALD), Learned Perceptual Image Patch Similarity
(LPIPS) [18], and Structural Similarity Index Metric (SSIM)
[19] metrics. The ALD metric measures the average distance
between the ground truth landmarks and landmarks detected
in the synthesized frame. The LPIPS metric measures the
perceptual similarity between patches in the ground truth and
synthesized frames. The SSIM metric measures the structural
similarity between patches of the ground truth and synthesized
frames. We use ALD to measure the accuracy in reproduction
of facial landmarks in the synthesized frames. A low ALD
score combined with a high code block error rate (CBLER)
indicates that the R(·) is able to accurately estimate the miss-
ing landmarks. LPIPS is used to approximate the perceptual
similarity between the ground truth and synthesized frames.
Finally, SSIM approximates the ability of the synthesized
frames to reproduce the ground truth frames.

B. Results

For the FOMM application task, we implement our frame-
work as follows. A 512x512 resolution video of head and
shoulders video conferencing is used as the information source
I , with E(·) implemented using the FOMM motion estimation
module [13], generating landmarks. The P (·) is implemented
as a weighted average of landmark motion and landmark
contribution to emotion detection, where the contribution is
taken as the gradient of the cross-entropy loss w.r.t. to each
landmark between detected emotion in the original frame, and
the frame generated by those landmarks. PRT parameterization
for the UETX to BSUL is given in Table I, with nine tests.
R(·) estimates the position of missing landmarks and is
implemented as a simple fully connected network with two
hidden layers of 80 neurons each, ReLU activation, and min-
max normalized input and output. We train R(·) on a dataset
of 1.6 million frames, with a uniform distribution of drop rates
between 0 and 1. The Syn(·) is implemented with the FOMM
generation module [13].

We evaluate the performance of FFH, SIDH, and CIDH
on the FOMM task, against the objective function defined in
Eq. 1 (Wρ), and the average transmitted symbols per frame
(µN ), ie. how well, given the parameterization of K and Cj ,
the heuristics fulfill constrain Eq. 3. The results, averaged
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Fig. 3: FOMM ALD, LPIPS, and SSIM scores for the pro-
posed CIDH strategy at varying Eb/N0 values and parameters
(see Table I), compared to 256x256 H.264 compressed video
at 30kbps.

for CBLERs between 0 and 100%, are presented in Fig. I.
CIDH consistently outperforms FFH and SIDH in Wρ and
µN , with CIDH achieving the highest Wρ and the lowest
µN across all tests. SIDH is only able to outperform FFH
in Wρ for single block allocation, and not at all in µN . By
prioritizing high-importance symbols, SIDH is able to achieve
a higher Wρ than FFH. Further, because CIDH attends to
symbol order, a high µN is achieved. Further finetuning of
the CIDH threshold to roll over to unallocated symbols has
the potential to improve the performance of CIDH, and is left
for future work. In Fig. 2, the ALD, LPIPS, and SSIM scores
for the FOMM model (for tests 1, 2, and 3 in Tab. I) are
plotted. As shown, the plotted image metrics further validate
the objective function as an approximation of QoE, with CIDH
outperforming FFH and SIDH across all metrics for non-single
block allocation. The superior performance of FFH in LPIPS
and SSIM for single block allocation stems from the diversity
in transmitted symbols over time, which benefits the error
concealer. The initial worsening of LPIPS and SSIM betwen
CBLERs of 100% and 90% is due to the error concealer
defaulting to a base state under insufficient fresh semantics,
reflected by the simultaenous improvement in ALD. In Fig.
3, the ALD, LPIPS, and SSIM for the tests parameterized in
Tab. I are displayed for CIDH, juxtaposed with a baseline
of 512x512 H.265 compressed video at 15kbps. Under the
presence of block errors, H.265 compressed video is unable to
decode, while PRT with CIDH is able to maintain perceptual
quality. Compressed H.265 video is unable to outperform
PRT on the ALD metric. This is due to the FOMM video
synthesis operating on a source frame, yielding a clearer
(even if incorrect) image, benefitting the landmark detection.
Finally, we compare the bitrates of PRT with CIDH to H.265
compressed video at equivalent and higher bit rates in Fig. 4.
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While PRT is not able to outperform H.265 at every bitrate,
significant gains in resilience to block errors are realized, as
evidenced by the comparable performance of PRT at less than
50% CBLER with H.265.

VI. CONCLUSION AND OUTLOOK

We summarize the key contributions of this paper into three
points. First, we propose a novel semantic-aware, importance-
driven framework for semantic communication in NRLF envi-
ronments. Second, we implement and evaluate our framework
on a semantic video synthesis task, demonstrating significant
improvements in robustness. Third, we show that our frame-
work can revolutionize future wireless networks by ensuring
high-quality service delivery in challenging transmission con-
ditions at rates comparable to classical methods.

In this paper, we evaluated our framework with a video con-
ferencing scenario, using the FOMM video synthesis model.
While we demonstrate the ability of our framework to improve
the robustness of semantic communication for the FOMM, we
acknowledge that more rigourous, multi-modal evaluation is
necessary to fully understand the potential of our framework.
In future work, we plan to evaluate our framework on a
wider range of video, speech, and natural language processing
tasks, to demonstrate the flexibility and robustness of our
framework in a variety of applications. Further, we believe that
semantic importance-driven mechanisms are applicable to a
wide range of wireless communication problems, such as QoS
adjustments, routing decisions, or traffic management. Such
mechanisms can easily be integrated into our framework.
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