
Expandable Urban Knowledge Graphs:
A Use Case in CityGML with OpenStreetMap Data

Scientific work for obtaining the academic degree

Bachelor of Science (B.Sc.)

at the Chair of Geoinformatics

of the TUM School of Engineering and Design

at the Technical University of Munich

Supervised by M.Sc. Son H. Nguyen
Univ.-Prof. Dr. rer.nat. Thomas H. Kolbe
Chair of Geoinformatics

Submitted by Julia Katharina Quarg
Bauerstraße 18
80796 München

Submitted on October 29, 2024





This is a slightly updated version to correct minor grammar and spelling mistakes.



Chair of Geoinformatics
TUM School of Engineering and Design
Technical University of Munich

Abstract

This thesis aims to develop and implement a method for integrating additional data into a semantic city model.
Specifically, the graph Database Management System (DBMS) Neo4j is used to expand a City Geography
Markup Language (CityGML) data set, thereby creating an expandable urban knowledge graph. CityGML, an
international standard for 3D city and landscape models, captures both geometric and semantic information,
making it highly useful for urban planning and analysis. However, integrating additional data into CityGML
presents challenges due to the complexity of the existing CityGML schema and differences in how data
sets represent semantic and spatial features. To address this, a novel approach is proposed using Neo4j, a
flexible graph database system, which supports a schemaless structure, allowing the integration of new data
and relationships more easily than traditional methods. Additionally, data modelled as a Knowledge Graph
(KG) lends itself to easy ad-hoc querying, making it possible to instantly analyse the expanded graph.

The thesis outlines a concept that allows users without deep technical knowledge of CityGML or its schema
to integrate data thematically relevant to them and query the enriched graph for their specific use cases.
These queries can include both the filtering of thematic attributes like building functions as well as spatial
ones, for example distance and area calculations. The concept was implemented by enriching a CityGML
data set of downtown Munich with information from OpenStreetMap (OSM) buildings and Points of Interest
(POIs). Through the use and development of spatial matching and KG integration algorithms, the CityGML
knowledge graph was expanded with additional data. A Graphical User Interface (GUI) was also developed,
helping users to thematically and spatially query the expanded graph database and instantly visualize the
results without requiring in-depth knowledge of databases or query languages.

The results showed that this approach is effective for data enrichment, enabling both spatial and semantic
querying of the extended knowledge graph, as well as intuitive visualisation of the query results. However,
limitations remain, such as the uncertainty of applicability in regard to highly specialized data or CityGML
data sets from different regions with varying standards. Possible additions and adjustments to address these
limitations are also discussed.
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1 Introduction and Motivation

1.1 Introduction

1.1.1 Motivation

Since 2008 CityGML is an international Open Geospatial Consortium (OGC) encoding standard and data
model for storing and exchanging 3D city and landscape models. Comprehensive digital representation is
achieved through the definition of the most relevant topographic objects, like buildings and roads, in varying
Levels of Detail (LODs) [1]. In contrast to pure graphical models, the CityGML data model is not only a
standardized way to represent and classify its objects by geometric data, but also focuses on semantics
associated with the data [2]. For example, a building in CityGML can have information about its function or its
relationships with other objects. Specifically, a building could be stored with attributes providing its address,
its function, or its owner to name a few, and with connections describing its relationship to other objects
like being located next to a specific road or consisting of multiple building parts. This ability of CityGML to
capture both geometric and semantic aspects of city models and to lend itself to high quality visualisation
using software like the 3D City Database’s (3DCityDB) Web Map Client leads to a wide range of possible
applications, from urban planning and environmental simulations to energy estimations and traffic navigation
[3].

As the availability of new spatial and semantic data from other sources continues to grow, integrating this
additional information into CityGML can significantly expand its applications. For instance, adding details
about the location of fire hydrants, which buildings offer public toilet access, or information about local
businesses, including their opening hours and contact details, would enhance the possibilities of use for
CityGML. An enriched data set could support numerous new use cases that rely on specific semantic
information.

Geography Markup Language (GML) is an OGC standard, which is formally specified by an Extensible
Markup Language (XML) Schema that predefines the included objects and their relationships. These XML
files can be stored in several databases, most prominently 3DCityDB. As a result, the possibilities of adding
new data directly to CityGML are limited and require a predefined schema. The two most popular expansion
methods are creating generic attributes and objects, and building an entire Application Domain Extension
(ADE) [4]. The first method, creating generic attributes and objects, reduces semantic interoperability
because there is no way to validate these elements against the CityGML schema [4]. The second method is
the development of an ADE by generating an additional XML schema, which requires a good understanding
of CityGML and ADEs, since there is, “besides the CityGML standard, no authoritative publication focused
on the ADE concept nor a ‘101 guide’” [4]. In short, these direct ways of adding information require deep
knowledge of CityGML, XML and prior knowledge of the additional data.

In comparison, a graph-based DBMS, which stores its content in graph-form, has a very flexible to no set
schema, which means it can constantly be adjusted and expanded, but keeping the database semantically
intact is left up to the user. CityGML data sets can be effectively stored and queried using a graph-based
database because their semantics are defined as a collection of Unified Modeling Language (UML) diagrams
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1 Introduction and Motivation

together with the definition of all concepts represented as entities in the UML diagrams and their meanings
in the standard document [5], allowing them to be viewed as KGs [6]. According to [7], a KG is "a graph
of data intended to accumulate and convey knowledge of the real world, whose nodes represent entities
of interest and whose edges represent potentially different relations between these entities." In the context
of CityGML, the nodes could represent instances of buildings, streets, or surfaces, while the edges could
represent their relationships, such as a surface belonging to a certain building. Since KGs offer numerous
advantages—such as flexibility due to the lack of a fixed schema [8], a concise and intuitive abstraction
capable of representing complex relationships [9], and scalable frameworks that allow focusing only on
relevant parts of the graph [10]—they have garnered significant attention lately [7]. Consequently, this thesis
will use the term KG. Additionally, the idea of using KGs to enrich CityGML data was already used in other
papers [6]. All these points make a graph database a good platform to expand the CityGML data set and to
consequently run an analysis on the enriched graph.

Given that there is a method for semantically and spatially lossless representation of CityGML data sets in
graph form using a graph database [11], namely Neo4j, this paper will build upon these already developed
(knowledge) graphs. And since [11] uses the CityGML building module as a working example and these
buildings are recognized as "the most detailed thematic concept of CityGML" [2], this thesis will also
concentrate on that module. However, the approach is transferable to other thematic modules such as
bridges, vegetation, and land use, and the underlying representation method is already being used in that
context [12].

This thesis aims to develop a concept, which will allow users without extensive knowledge of the CityGML
structure or ADEs to fully integrate their own thematic data into the CityGML graph and consequently query
the extended graph, through both thematic and spatial filtering, in the context of their specific use case. To
connect the new thematic data to the correct building, spatial matching and therefore spatial data may be
required. The concept will be implemented by integrating freely available OSM building and POI data into the
CityGML graph of Munich, Germany [13]. Additionally, a simple GUI will be built to enable visualised queries
on the expanded database for users without any knowledge about the database and its workings. The goal
of this thesis is to develop a standardized framework to expand the knowledge graph of a city for the purpose
of thematically and spatially analysing specific use case data.

1.1.2 Problem Statement

A graph database stores its information in graph form, thus splitting the information very intuitively into nodes
(for objects/entities), which are normally displayed as circles with a label to categorize the node as well as
attributes to store information about the node, and edges (the relationships between the nodes), displayed as
arrows. Furthermore, these edges can have a label and direction to describe the exact type of relationship.
Therefore, a typical problem in this thesis, namely adding new information to a building by creating new
nodes and edges, might be represented in Figure 1.1.

The newly retrieved building information, in this case from OSM, needs to be assigned to the building that it
is supposed to enrich with additional information. Two main steps need to be taken in the graph database to
achieve this:

1) Turning the new OSM data into nodes or subgraphs (a graph formed from a subset of nodes and edges of
the graph), the choice depending amongst others on the amount of added data per building and the intended
further usage of the extended graph, in the graph database. 2) Creating an edge to connect the new node or
subgraph to the corresponding building node. Depending on user preference, the edge can either be directed
from the OSM node/subgraph to the CityGML building node (useful for efficient queries that do not include
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1 Introduction and Motivation

Enriched by
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Attribute 
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2

Figure 1.1: Subgraph containing OSM data (orange) connected to a CityGML building (blue).

the new OSM data) or from the building node to the OSM node/subgraph (useful for accessing the new OSM
nodes from the direction of the building nodes).

The first point can be expected to be relatively straight forward, since the graph database Neo4j has its own
“intuitive query language” [14], providing a good solution for the construction of new nodes. The second part
on the other hand is expected to be the core problem for this thesis, since it is not immediately clear, to which
CityGML building the new OSM data belongs. To match the new OSM building node with the correct building
in the graph, one could try to match the building identifiers, but an “identifier is identical for all versions of
the same real-world object” [3] only in the context of CityGML or OSM, not extending to other sets of data.
Problematically, OSM and to some extent CityGML both have unstable IDs, which can change when the
referenced object is changed [15], making it completely unsuitable for ID matching. Other semantic matches
based on address, for example, are also not feasible, since this information is mostly incomplete in both
sets of data. The only data consistently available for all buildings is their spatial information in the form of
bounding boxes or building surfaces. This leads to a more refined version of the problem shown in Figure 1.2:

Enriched by

OSM 
Attribute 

1

OSM Data
CityGML 
Building

OSM 
Boundary

OSM 
Attribute 

2

Includes

CityGML 
Boundary

Spatial Match

Figure 1.2: Subgraph containing OSM data (orange) connected to a CityGML building (blue) through spatial matching.
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1 Introduction and Motivation

The newly retrieved building information will be turned into nodes in the graph database. The spatial data
referenced by these nodes as their bounding surface will be compared to the bounding boxes of the CityGML
buildings to find the most likely matches. The conclusiveness of matching spatial information will depend on
the degree of similarity between the geospatial data of the additional data and of CityGML. In the case of
OSM data a visual inspection of a sample area in ArcGIS revealed that while the positions of the CityGML
and the OSM geometries on the map match up well, the CityGML geometries are axis-aligned bounding
boxes and the OSM geometries are polygons following the outline of the building, making a complete or near
complete overlap of both geometries very unlikely. Concepts need to be developed to deal with inconclusive
matches, for example multiple OSM buildings matching with one CityGML building and vice versa. The validity
of the matches will subsequently be evaluated through various methods, including visualisation in ArcGIS
Pro. Finally, the conclusively matched nodes or subgraphs will be connected through an edge describing the
new relationship.

1.2 Methodology

1.2.1 Overview

The thesis consists of 3 overall parts.

• Part one contains an introduction to the topic, including motivation, a review of chosen
software and relevant literature, and the necessary basics of graph theory; in particular, this
section includes a closer look at the advantages and disadvantages of graph DBMS and the
resulting implications on what use cases they are suited for.

• Part two is the focus of the thesis and contains the conceptual development of the data
integration algorithm. This includes a section on how to retrieve data from a graph database,
an extensive section on how to match CityGML and OSM building data using their bounding
geometries, while minimizing the risk of false matches. And finally, one last section that
focuses on integrating new data into the graph database; additionally, the algorithm is tested
via implementation with Python.

• Part three consists of the development of a GUI; the goal here is to show some possibilities
of querying the newly integrated data by building a web-based Interface using Python and
Cypher.

1.2.2 Literature Review

Since the field of using graph-based approaches to enrich CityGML is well explored using Resource
Description Framework (RDF) triple stores [6], there are a few tools and concepts that will be used in this
paper, including but not necessarily limited to:

• CityGML, the OGC standard for representing 3D digital city models including building data [2],

• Neo4j, the graph database employed for this project [16],

• Cypher, the declarative graph query language used to query Neo4j, providing expressive and
efficient queries for property graphs [14],

• OSM, an open-source project to collect and provide free geodata [17].

Also, a few studies and papers in this field of research need to be considered for this thesis:
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1 Introduction and Motivation

• As a basis, this thesis builds on Son Nguyens papers on Spatio-semantic Comparison of
3D City Models [11], which provides the tools [13] to use CityGML data mapped in a graph
database. But while that paper and its successors [12] focused on detecting and interpreting
changes in the city model, this thesis will focus on enriching that city model by adding data
from external sources like OSM.

• Additionally, there are some papers discussing how to enrich CityGML with external data.
In their paper “A semantic graph database for the interoperability of 3D GIS data”, [18] the
authors use a graph database to fuse the CityGML model with the IndoorGML model for the
city of Bologna into one graph to make queries on a semantically connected model containing
both CityGML and IndoorGML structures possible. But, since CityGML and IndoorGML are
already connected by the Cellspace element in the IndoorGML model directly referencing the
ID element of the respective building in CityGML [19], they did not need to solve the problem
of fusing or integrating data with heterogeneous spatial information from different sources.
The paper does however conclude that for the purpose of enriching CityGML, a graph-based
approach is a good option, since it preserves semantic correctness and considerably improves
the performance of data management [18]. [20] also worked with IndoorGML, to build an
automated process to store IndoorGML in the graph database, thus enabling more diverse
scenario-based testing and, more relevant to this thesis, enriching the database by integrating
other data sources. Another paper worth considering is an approach to “Integrat[e] 3D City
Data through Knowledge Graphs” [6]. While this paper uses a series of different tools like
PostgreSQL database (DB) and Ontop to work with RDF Triple Stores instead of a graph
database to develop knowledge graphs and integrate 3D city data, it does provide a possible
approach on using knowledge graphs to integrate heterogeneous city models, such as OSM
and CityGML through comparison of their spatial data. This paper also provides a conceptual
approach on how to handle inconclusive matches between OSM and CityGML buildings, but
since it uses the CityGML ground surfaces instead of the bounding surfaces, an examination
of the extent of its potential applicability is necessary.

• Finally, there are some papers on how to more generally enrich semantic city models. [21]
together with [22] discuss how to enrich a 3D City Model with data from Wikipedia, Geonomes
and OSM. Location information of the data is isolated in the form of point coordinates, which
are then geometrically matched to building polygons in the City Model using fuzzy set theory
and so called membership functions [23]. While these papers do not use a graph based
approach, their methodology for geometry-matching is worth considering, especially if the
enriching data is purely point based. Furthermore, the paper provides an overview over the
different possible cases to consider concerning where a POI can be located in reference to a
building, and how each of these cases should be handled. [24] focuses on using Volunteered
Geographical Information (VGI) like OSM in order to more accurately estimate residential
data. With publicly available data like Amtliches Liegenschaftskatasterinformationssystem
(ALKIS) only giving a general classification of residential or non-residential for a building,
the authors argue that situations like residences above a shop in the same building get
overlooked in public data, leading to over- and underestimation of the actual residential space.
To reduce false estimations, the paper proposes an approach to integrate OSM data into a
3D building model to identify these cases of split building use. While the paper does not work
with CityGML, it gives a great overview over OSM, relevant preprocessing of OSM data and
possibilities of its geometric integration using ArcGIS. Complementary to papers discussing
data integration into city models, there are also papers geared towards improving/automating
that same process. For example [25], who aim to improve upon the process of data integration
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1 Introduction and Motivation

by providing a more automated way to collect, integrate and enrich urban open data sets.
While this paper uses the concept of RDF Triple Scores for data integration, the actual focus
lies on using regression models to predict missing values in the data and not on the integration
of new data into a city model. While the topic of filling the holes left by missing values plays an
important part in the enrichment of city models, it is a subject outside the scope of this thesis.
It should be mentioned however, that the paper calls for development of a more automated
mapping process when integrating new data into a city model. Lastly [26], propose an entirely
different approach to enriching 3D city models, where instead of integrating the additional
data, the user can link it to the correct feature of the city model. While highly practical for
certain use cases such as archaeology, where it enables the user to link entire multimedia
documents [26], the user has to link the data manually, which is not feasible for enriching city
models with thousands or millions of nodes at once. Additionally, since the data is not actually
integrated into the model, semantic queries on the model that include the new data are not
possible.

1.2.3 Concept Development

The overall concept of this thesis can be split into 4 parts:

1. Accessing the spatial information of the buildings that are supposed to be enriched
by OSM information through spatial matching: This part includes analysing the CityGML
graph in Neo4j to identify the relevant spatial information and its position in the graph, querying
the graph for the identified data and storing the queried data in a data format suitable for
geospatial analysis.

2. Identifying and preparing the OSM data: In this part the OSM data for the chosen region
needs to be downloaded, reduced by implementing a bounding box of the relevant area, since
the download of OSM data is only available for predefined larger regions, and also stored
in a format suitable for spatial analysis. Furthermore, it is necessary to identify the spatial
information necessary to match the buildings, and the relevant semantic information to enrich
the CityGML graph, because these are stored in separate layers in OSM [27]. Additionally, a
coordinate transformation from the initial Coordinate Reference System (CRS), EPSG:4326,
to the one of the CityGML data set used in this thesis, EPSG:25832, is necessary.

3. Matching the OSM buildings to the corresponding CityGML buildings: As already
described in the Subsection 1.1.2, the third part of the concept will aim to develop an algorithm
that optimally matches buildings by comparing the building outlines provided by each data set.
To that end, all overlapping outlines are identified first by using a spatial indexing algorithm like
R-tree, recognizing them as possible matches. Afterwards, an inspection of all the possible
matches will be carried out to categorise them into all possible matching scenarios. After
identifying each category scenario, a rule needs to be developed on what is considered as
an actual match for that category. The goal of this section is an efficient way to spatially
match OSM and CityGML data, while keeping the fraction of mismatches low, as well as a list
containing all actual matches found.

4. Integrating the new OSM data into the CityGML graph: By using Cypher quries, the
semantic data for every building taken from OSM will be created as new nodes or subgraphs
in the graph database and connected through edges to their matched CityGML building node.
This part will also include a concept on how to best store the OSM data in the database and if
OSM subgraphs should be developed.

6



1 Introduction and Motivation

For the implementation of the concept, the Neo4j querying language Cypher and the programming language
Python will be used, as well as the Neo4j Driver for Python to remotely access the Neo4j database via its
Bolt-protocol. The results will be tested by visualizing them in ArcGIS Pro and manually inspecting a few
of the enriched buildings. Additionally, some evaluation methods will be employed to gauge the quality of
the matches. The implementation and the concept are at this stage for CityGML 2.0 but are expected to
be transferable to CityGML 3.0. The necessary mapping of CityGML 3.0 data into Neo4j has already been
developed [12].

Expected Results The expected Results include:

• Enriched building graphs that can be queried for the new data.

• A guiding concept on how to enrich CityGML using a graph database.

• An evaluation of the quality of the matches in the enriched building graphs.

1.2.4 Visualisation using a GUI

The last part of the thesis will focus on querying the expanded database and building a web-based GUI
in Python that can be used to visualise queries on the enriched new graph. A typical use case of the GUI
should be to find all buildings sharing a sought-after trait in a certain area, like all buildings above a height of
20 meters or all those with a public toilet. This interface is planned with a drop-down menu to control the

•

Run Query

Attribute

Operation

Name

FeatureClass

Dropdown List

Dropdown List

Dropdown List

Restaurant

=

Additional Entry

Additional Entry

Additional Entry

Info

Figure 1.3: Potential realisation of the GUI, map excerpt taken from[17]

possible choices of queries. Additionally, the results of the queries are returned in text form and visualized on
a map of the considered area.

Expected Results The expected results include:

• A list of spatial and thematic queries demonstrating the added value of enriching CityGML
with information extracted from OSM.

7



1 Introduction and Motivation

• A successful run of complex queries of both original and enriched data on the enhanced
graph to show that semantic interoperability is given within the new graph.

• The developed GUI can be used as a tool for users to help them query enriched CityGML
graphs through spatial and semantic filters without any knowledge about the structure of the
database.

1.3 Outline

Chapter 1 includes the motivation for this thesis as well as an oversight over its aim and methodology and the
literature review. Chapter 2 gives an overview over related concepts, tools and algorithms. The development
of the expansion concept can be found in Chapter 3. Chapter 4 describes the setup, results and evaluation of
the concept implementation and showcases possible use cases in querying the new graph with and without
the GUI. As the final chapter, Chapter 5 consists of the conclusion to this thesis as well as an outlook on
possible further developments.
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2 Theoretical Background

2.1 Urban Knowledge Graphs

This section introduces the fundamentals of graph theory necessary for this thesis. It then gives a brief
overview of some graph applications with a focus on KGs.

2.1.1 Graph Theory

Graph theory, a field within discrete mathematics, focuses on the study of graphs. A graph is composed
of a set of vertices, or nodes, representing the objects within the graph, and a set of edges that denote
the relationships between these objects by connecting two nodes to each other. A node connected to an
edge is called incident to that edge and vice versa, while two edges connected through a node or two
nodes connected through an edge are called adjacent. Typically, graphs are visually represented with nodes
depicted as dots or circles and edges as connecting lines.

A B D

C

Figure 2.1: Simple undirected graph

The following paragraphs will introduce terms and concepts from the field of graph theory that are relevant for
this thesis [28][29]:

Directed Acyclic Graph (DAG) A directed graph, or digraph, is a graph in which each edge has a
direction, indicating a one-way relationship between two nodes. If no direction is given to the edges, it is
called an undirected graph, respectively. Within this type of graphs, a connected graph is one in which there
is a path between every pair of nodes, ensuring that all nodes are reachable from each other. If every node
is reachable from every other node through a directed path, the graph is known as a strongly connected
graph. An acyclic graph, on the other hand, contains no cycles, meaning there is no way to start at a node
and follow a sequence of edges that eventually loops back to the starting node. Combining these concepts, a
DAG is a graph that is both acyclic and directed. This means it has directed edges and no cycles, allowing
for a linear ordering of the nodes.
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A B D

C

(a) Acyclic graph

A B D

C

(b) Cyclic Graph

A B D

C

(c) Directed Graph

A B D

C

(d) Graph not connected to node A

A B D

C

(e) (Not strongly) connected Graph

A B D

C

(f) Strongly connected Graph

A B D

C

(g) DAG

Figure 2.2: Examples for directed, (a)cyclic, not connected, connected, strongly connected graphs and for DAG
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2 Theoretical Background

Weights and Labels Labels are identifiers or tags assigned to the nodes (vertices) or edges of a graph.
Labels can be used to provide additional information about the nodes or edges, making it easier to distinguish
between them or group them thematically. If these labels have numerical, or at least comparable values, they
are called weights. The corresponding graph is called a labelled/marked graph or a weighted graph, if the
labels are numerical.

Attributes Attributed graphs (or property graphs) are graphs where nodes and edges can have associated
attributes or properties. These consist of a property-value pair and provide additional information about the
node or edge often in combination with the aforementioned labels and weights [30].

Augsburg Berlin Dresden

Coburg

Pop: 300.000
State: Bavaria 

Pop: 3.780.000
State: Berlin 

Pop: 570.000
State: Saxony 

Pop: 40.000
State: Bavaria 

260 km

190 km

380 km

570 km

Figure 2.3: Graph displaying data about four German cities: The nodes are labelled with the name of the city and
attributed with the city’s respective population and state. The edges are weighed with the distances
between the connected cities and directed, displaying the possible direction of travel.

In- and Outdegree In a directed graph, indegree is the number of incoming edges to a node, indicating
how many edges point to that node. Correspondingly, outdegree is the number of outgoing edges from a
node, showing how many edges originate from that node. In an undirected graph the indegree always equals
the outdegree and as such is just called the degree of the node. For instance node B of the example graphs
has an indegree of 2 and an outdegree of 1 in Figure 2.2f, and a degree of 3 in Figure 2.2b.

Paths A path in a graph is a sequence of edges that connect a sequence of distinct nodes, where each
edge is incident to the next node in the sequence. In a directed graph, the path follows the direction of the
edges. When looking at Figure 2.2c, one can see that a path from A to D is exists, but no path from D to A.

Subgraphs A subgraph of a graph is formed by taking a subset of nodes and a subset of edges from the
original graph, such that the edges in the subgraph only connect nodes also contained within the subgraph.
For example, Figure 2.2c shows one possible subgraph for the graph displayed in Figure 2.2f.

Trees Trees are graphs that are undirected, connected and acyclic, meaning there is always exactly one
path from one node to another. A spanning tree for a graph is a subgraph of the original graph which contains
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all of the graphs vertices while meeting the requirements of a tree. Specifically a minimal spanning tree is the
spanning tree of a graph with the smallest possible set of edges. Figure 2.2a shows a minimal spanning tree
for all other graphs in Figure 2.2 except for Figure 2.2d.

2.1.2 Graph Applications and [Urban] Knowledge Graphs

A network can generally be regarded as a set of interrelated entities or objects. By understanding the entities
as nodes and the interrelations as edges, graphs are used as a mathematical framework to model different
types of networks [31]. This graph-based abstraction of knowledge provides multiple advantages, such as
intuitive abstractions of complex relationships [9], flexible evolution of data through addition and subtraction
of individual nodes and edges [30] and the possibility to use graph databases and graph query languages to
analyse aspects of the network, a topic discussed in Section 2.3. What the nodes and edges represent can
vary greatly, depending on the network, leading to numerous applications for graph-based data models. A
few examples include:

• Social Networks like Facebook or Twitter, in which people are represented as entities and
their relationships (Friend, Follower) as edges [32].

• Transit maps, with the nodes representing the stations and the edges representing the
connecting train lines [31].

• Logistics networks for communication and electricity, with edges as cables and power lines
and nodes representing points of intersection or change [31].

Another use case for graph-based data models that has gained popularity in recent years are KGs [7]. While
the term "Knowledge Graph" (or "Semantic Network")is not consistently defined in literature [33][34], the
general consensus describes a KG as a graph of real world data with its nodes representing entities of
interest and its edges potentially different relations between the entities [7]. The goal of a KG is the structuring
of often complex and heterogeneous data from different sources in a meaningful and useful way, often in the
context of search engines and machine learning [35]. Prominent examples are the Google KG, which coined
the modern term KG in the first place [36] or eBay’s Product KG and the aforementioned Facebook social KG
among others [37]. Specifically an Urban KG takes urban content such as POIs, buildings and regions as
entities (nodes), while semantic and spatial dependencies are modeled as relations (edges) [38].

2.2 CityGML and Semantic City Models

2.2.1 Semantic City Models

"Semantic 3D city models are virtual models of the urban environment, that is, data sets representing the
entities of the physical reality like buildings, streets, trees, bridges, and the terrain. In contrast to Virtual
Reality (VR) models, they are structured (e.g. subdivided and attributed) according to thematic and logical
criteria and not according to graphical or rendering considerations." [3] These models prioritize thematic
and logical structuring over graphical considerations, enhancing their utility for analysis and urban planning.
The advantages of semantic city models include their ability to integrate various types of data, facilitate
interoperability between different systems, and provide a detailed and accurate representation of urban
environments that supports informed decision-making, making them particularly useful for tasks such as
urban development, environmental simulation, disaster management, and pedestrian navigation [1]. However,
their complexity and the need for detailed, high-quality data can make them resource-intensive to create
and maintain, which limits their use in projects with constrained budgets or less emphasis on detailed data
12
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integration like Google Earth [3]. Despite these challenges, their structured nature makes them invaluable
for comprehensive urban analysis and planning, offering insights that are not possible with purely graphical
models.

2.2.2 CityGML

CityGML is an XML-based standard and data model designed for representing and exchanging 3D city
models. Originally developed by the Special Interest Group in 2002, CityGML was established by the OGC in
2008 as a standard providing guidelines for how urban data should be structured and encoded [2]. As a data
model, CityGML defines the schema for storing not only (3D) geometric and graphical, but also semantic and
topological properties of urban features, making it a crucial tool for interoperable data exchange of (semantic)
3D city models [1]. Moreover, CityGML data sets are organized into 5 different LODs (see Figure 2.4), which
range from LOD0 (basic 2D footprints) to LOD4 (highly detailed interior models). This hierarchical structuring
allows for varying degrees of detail to be used depending on the application and needs of the user.

Figure 2.4: Building Representation in 5 Levels of Detail LODs. Source: Copyright ©Delft University of Technology
[39]

CityGML data can be directly stored in various formats, including file-based storage (e.g. GML files) and
databases like 3DCityDB. It can be visualized using Geographic Information System (GIS) software, 3D
modeling tools, or specialized viewers designed for CityGML, most notably the 3DCityDB Web Client [40].
Since the focus of CityGML is on the semantic aspects of 3D city models [1], it is modular, meaning it
is divided into different thematic modules that correspond to different aspects of the urban environment.
These modules include the core module as well as the extension modules Appearance, Bridge, Building,
CityFurniture, CityObjectGroup, Generics, LandUse, Relief, Transportation, Tunnel, Vegetation, WaterBody
and TexturedSurface, which are all connected to the core module [2]. As already mentioned in Chapter 1,
this thesis will focus on the building module, but is in theory applicable to all other modules. The schema of
every module is defined using UML, providing a clear and structured way to represent the relationships and
properties of the different urban features. Due to its complex structure with multi-level deep associations (as
can be seen in Figure 2.5) and its richness in semantic real world information, CityGML data, and in this
case specifically data from the building module, can be regarded as having a KG structure and consequently
be mapped into graphs, as was done by [11][6].
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Figure 2.5: UML diagram for the CityGML building module. Source: Copyright ©2012 Open Geospatial Consortium,
Inc. [2]

2.3 Graph Databases

The beginning of this section introduces the concept of graph databases, comparing them to relational ones.
After that the graph database Neo4j, which is employed in this thesis, is introduced, including an overview
over accessing and handling transactions in a Neo4j database.

2.3.1 Relational and Graph Database

Relational Databases

Since its first introduction in 1969, the relational model for databases is the most widely used and popular
data model in the world [41]. A database employing the relational model is called a relational database and
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the maintaining system is called a Relational Database Management System (RDBMS). Most RDBMS use
Structured Query Language (SQL) to access their data. In the relational model, information is stored in
tables, or "relations". Each table represents a collection of related data entries, and each row (or "tuple")
within a table corresponds to a single record. Columns in a table represent the attributes of the data, and
each column holds data of a specific type. For a sustainable relational database the overall model structure
as well as the number and the attribute types of columns need to be defined in a preset schema.

Student ID Name

47 Mark Miller

Student ID Course ID

47 012

47 033

47 061

Course ID Name

012 Informatics

033 Chemistry

061 Statistics

CoursesStudents Attendance

Figure 2.6: Indirect Relationships in a relational database through a JOIN table [adapted from Neo4j Docs [42]]

Relationships between data entries in a relational database are established indirectly through the use of
primary keys and foreign keys, requiring them to be non-empty. A primary key is a unique identifier for each
record in a table, ensuring that each entry can be distinctly accessed. A foreign key is a column (or set of
columns) in one table that refers to the primary key in another table. In case of a many-to-many relationship
of the keys, an additional junction (JOIN) table with all referenced foreign keys is required. Consequently,
a STUDENT in Figure 2.6 has the primary key Student ID and a course is identified by its Course ID. But
since a student can enroll in multiple courses and a course can have multiple students, the foreign keys that
connect students and courses are stored in a separate JOIN table. However, creating these junction tables
costs memory and computing power and significantly increases query response time, with the delay growing
exponentially relative to the table size [11][43]. Furthermore, with a rising depth of relationships between
entities, queries with the JOIN operator become more extensive and unintuitive (see Listing 2.3).

Graph Databases

Graph databases, as part of the so-called Not only Structured Query Language (NoSQL) databases, which
also include - among others - the RDF triple stores mentioned in Subsection 1.2.2, have been gaining in
popularity, particularly in applications that require efficient access to complex relationships within large data
sets. They are widely used in areas where relationships are as important, or even more important, than
the individual data points, making them particularly popular in scenarios where accessing only a part of the
database and its immediate relationships is crucial. This capability makes graph databases highly efficient
for traversing and querying connected data without the overhead of complex JOIN operations typical in
relational databases [11]. In graph databases, information is stored as a graph using nodes and edges.
Each node and edge can have properties, which are key-value pairs that store information about them. As
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Student ID Name

47 Mark Miller

Student ID Course ID

47 012

47 033

47 061

Course ID Name

012 Informatics

033 Chemistry

061 Statistics

ClassesStudents Attendance

Figure 2.7: Data connected without the need for JOIN operations in a Graph DB setting [adapted from Neo4j Docs
[42]]

previously mentioned in Section 2.1, this structure allows for a more natural representation of complex data
relationships and makes querying these relationships more straightforward. One of the key features of graph
databases is that they place a strong emphasis on relationships, which are direct and explicit. While they do
store individual data points (nodes), the primary focus is on how these nodes are interconnected. Edges
directly connect nodes, representing relationships without the need for foreign keys or join tables. This direct
connection makes traversing the graph to find related nodes extremely fast and efficient, as the database
engine can follow edges directly without looking up additional information. Another important feature of
graph databases is that, unlike relational databases, they do not require a predetermined schema. This
schema-less nature allows for greater flexibility and adaptability, as new types of nodes and edges can be
added without altering the existing structure, proving particularly advantageous in dynamic environments
where the data model may evolve over time [44].

In conclusion, it becomes clear that neither the relational database nor the graph database can be regarded
as superior to the other, but instead that they are suited for different use cases. While relational databases
are ideal for huge, flat, homogeneous data structures with small relationship-depth, graph databases are
better suited for complex, heterogeneous data structures with numerous and complex relationships.

In the context of this thesis, where the goal is to expand a KG with new data, a graph database provides the
ideal setting, since

• Only access to the parts of the CityGML KG which are relevant for the expansion is required.

• The original structure of the KG should not be altered through the expansion of the KG.

• The amount of new data and what relationships will be formed is not clear in advance.

2.3.2 Neo4j

For the process of expanding the CityGML KG, the Neo4j graph database is used. Neo4j is a graph DBMS,
which was developed by Neo4j, Inc. and is considered the most popular graph DBMS worldwide [45].
It is a high performance, native graph database, meaning the connections (edges) between nodes are
stored as part of the database and don’t need to first be computed when queried. This enables high query
16
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speeds because data not relevant to the query can be ignored. Neo4j is also a fully Atomicity, Consistency,
Isolation, Durability (ACID) transactional database. Neo4j comes in two on premise versions, Community
and Enterprise, and three in-cloud versions, namely AuraDB Free, Professional and Enterprise [16]. For this
thesis, the free Community version is employed. The use of Neo4j is additionally advantageous for this thesis
in particular, because the CityGML KG was also mapped using Neo4j [13]. Working with Neo4j guarantees
that there are no questions of compatibility or integration that could arise by using another graph DBMS, as
those may store graphs differently.

Transaction Optimization

ACID-compliant transactions All operations in a (graph) database can be divided into two distinct groups:

• Read operations, where information is retrieved from the graph database, without any changes
to the queried graph.

• Write operations, where modifications to the graph in the form of addition, deletion or alter-
ations are implemented.

The fact that Neo4j is a transactional database means that all write operations within the graph database
must be performed in a transaction. A transaction can be understood as a thread confined unit of work
that is either committed entirely or completely rolled back. All transactions in Neo4j are ACID transactions,
guaranteeing [46]:

• Atomicity - If any part of the transaction fails, the database state is left unchanged

• Consistency - A transaction will always leave the database in a consistent state

• Isolation - During a transaction, the data being modified can’t be accessed by other operations

• Durability - the results of a committed transaction can always be recovered by the DBMS

But how does Neo4j guarantee ACID-compliance in its transactions? After the start of a transaction, all
affected objects are locked and held in a lock in main memory until the transaction is either marked as
successful or failed. In case of success, changes are committed to the database and in case of failure, the
entire transaction is rolled back and the database remains unchanged (see Figure 2.8). If another transaction
tries to access locked data, it stays pending for resources and if a risk of so called "deadlocks" is detected,
an exception is thrown and the new transaction is rolled back. In the case of read operations, Neo4j initiates
a read transaction, which allows for consistent reads without locking [46].

Optimizing transactions through batching It is normally best practice to start a new transaction for every
node or relationship that is modified, enabling the computer to run as many concurrent transactions as there
are virtual Central Processing Units (vCPU), also called threads. This practice avoids long-lasting locks on
data and thus on main memory, gives more precise control over error handling and debugging and a clear
overview over the application logic. However, every single transition comes with an overhead responsible
for the frame of the transaction, including the initializing and committing (or rolling back) of the transaction.
These overheads significantly slow down operations on sets with millions of nodes and relationships [47].
In the case of large sets of nodes, there is the option of transaction batching. As the name implies, batch
transactions refer to the practice of grouping multiple operations of the same kind into batches, where all
operations in a batch are initialized and subsequently committed together. This practice significantly reduces
overhead and improves computation time, in some cases by over 90% [47]. However, there are a few things
to consider; If one operation in the batch transaction creates a rollback, the entire batch gets rolled back and
since all nodes affected by the transaction are locked and held in the computer’s Random Access Memory
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Figure 2.8: Managing transactions in Neo4j by only committing successful transactions to main memory. [Source:
[11]]

(RAM), batch transactions are only feasible with enough main memory available [48]. And lastly, the risk of a
possible deadlock rises with the longer lock duration. In conclusion, batch transactions can offer significant
performance advantages, especially for bulk data operations, but need large amounts of RAM and careful
preparations to minimize the risk of deadlocks and subsequent rollbacks [46].

Cypher and the Bolt Protocol

Cypher The Neo4j database provides its own query language, a NoSQL called Cypher [14]. It is a
declarative graph query language and allows for efficient and expressive queries. Cypher is visual in its
representation, making it intuitive to use.

Listing 2.1: Example Cypher code

1 // Nodes are in circular brackets , relationships in square
brackets , arrows denote directions of edges

2 MATCH (c:Customer) -[p:PLACES]->(o:Order) // MATCH -clause as a
visual JOIN -Operator

3 WHERE o.priority = "high"
4 RETURN c.name // Instead of SELECT

Listing 2.2: Comparison of the MERGE and the CREATE clause

1 CREATE (c:Customer {name: 'Tom ', age: 30})
2 RETURN c;
3 // CREATE always creates a new customer named Tom.
4
5 MERGE (c:Customer {name: 'Tom ', age: 30})
6 RETURN c;
7 // MERGE looks to see if a Tom with the given attributes already

exists , returns the node if he does and creates a new
customer named Tom in case he does not.

It is similar to SQL in many ways, for example using the WHERE statement in the same way, but there are
some key differences. Since graphs do not have a schema, Cypher, in contrast to SQL, also does not require
18
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a fixed schema to add new relationships or attributes to objects in the graph. Additionally, Cypher queries are
more concise than SQL queries, since they do not use the JOIN operator.

Listing 2.3: Comparison Cypher and SQL

1 // SQL query with 3 JOIN tables
2 SELECT c.customer_name , p.product_name , p.product_price , oi.

quantity
3 FROM customers c
4 JOIN orders o ON c.customer_id = o.customer_id
5 JOIN order_items oi ON o.order_id = oi.order_id
6 JOIN products p ON oi.product_id = p.product_id
7 ORDER BY c.customer_name , o.order_date;
8
9 // Cypher query with one MATCH clause

10 MATCH (c:Customer) -[:PLACED]->(o:Order) -[:CONTAINS]->(oi:
OrderItem) -[:IS]->(p:Product)

11 RETURN c.customer_name , p.product_name , p.product_price , oi.
quantity

12 ORDER BY c.customer_name , o.order_date

All Cypher queries trigger either a read or a write transaction in the database. While a typical read query can
be seen in Listing 2.3, Listing 2.2 shows the two ways to construct a write query in Cypher by using either the
MERGE or the CREATE clause [49].

Cypher queries can be executed directly from Neo4j’s browser-based client or from one of the official Neo4j
drivers, including the Neo4j Python Driver, through the use of the Bolt protocol. The Bolt protocol accepts
Cypher queries, executes them and returns the results to the driver for further usage in the associated
programming language. How the query in Listing 2.1 in Neo4j Python Driver could be executed, can be seen
in the example code below.

Listing 2.4: Accessing the Neo4j database through the Neo4j Python Driver

1 // Code will return a list of names of all high priority
customers.

2 // Names are returned as records bundled into a result object.
3 uri = "bolt :// localhost :7687"
4 (username , password) = "neo4j", "password"
5
6 driver = GraphDatabase.driver(uri , auth=(username , password))
7
8 with driver.session () as session:
9 query = """

10 MATCH (c:Customer) -[:PLACES]->(o:Order)
11 WHERE o.priority = "high"
12 RETURN c.name
13 """
14 result = session.run(query)
15 for record in result:
16 print(record["c.name"])
17 driver.close()
18
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2.4 OpenStreetMap

OSM is a free and open geographic database maintained by a large, active volunteer community. It is
constantly growing, and all its data is provided under a free license. The data quality is described as
"quite developed and mature as compared to geodata from commercial vendors" [50] and organisations like
Wikipedia and Foursquare use their data commercially.

OSM data is stored as nodes, which are points defined by longitude and latitude coordinates in the EPSG:4326
coordinate reference system, more commonly known as WGS84. Individual nodes represent point features
such as POIs, while the more complex line and polygon features are represented as lists of nodes. All
features are stored in one coherent database and then sorted into layers upon extraction according to
their type. These layers include the building layer, POI layer, Points of Worship (POFW) layer, roads layer,
waterways layer, and more. It is important to note that every object in OSM has an ID generated at creation.
However, these IDs are not stable and can change if the feature is modified. Additionally, an ID is only unique
within the layer to which the object belongs [27].

Direct downloads from OSM are possible, but limited to 50,000 nodes. For larger data sets, OSM provides
several endorsed sources, including the Overpass API, Planet OSM, and GEOFABRIK. GEOFABRIK, a
consulting and software development firm based in Karlsruhe, offers daily updates and excerpts under the
free OSM license. Data for selected regions is available in OSM’s own PBF format and as shapefiles [51].
For this thesis, data for Oberbayern, including Munich, will be downloaded from GEOFABRIK as a shapefile.

2.5 R-Tree Algorithms

2.5.1 Standard R-tree

As a dynamic index structure, R-Trees, or Rectangle-trees, are trees designed to support efficient spatial
querying and updating, thus making them ideal for applications involving large data sets with spatial attributes,
such as points and polygons. Since their introduction in 1948 [52], they have found extensive use in multiple
of fields including geographic information systems, computer-aided design and data mining and warehousing
[53]. The basic concept of an R-tree [52] is to group spatial objects located near one another together into a
larger object internal to the R-tree which contains all their outlines within its aggregated Minimum Bounding
Rectangle (MBR). This effectively means that a geometry not intersecting with that MBR will also not intersect
with any objects contained within it. Real world objects are represented as leaf nodes in a tree (represented
in red in Figure 2.9), with the larger internal object being located one level higher in the tree. All objects on
the higher tree level are then aggregated into even bigger objects on the next tree level and so on, until the
tree is recursively constructed (see Figure 2.9). The highest level only contains one node, the so called root
node. This effectively means that during any queries conduced with the R-tree, such as an intersection query,
most irrelevant objects can be avoided, thus making the R-tree very efficient in the context of some spatial
queries, such as intersection and nearest neighbor search. Moreover, the average time complexity of search
operations in an R-tree is

O(logM n) (2.1)

with M representing the maximum number of objects contained within an internal object and n representing
the total number of nodes [11]. In Figure 2.9, this would mean that M and n equal 2 and 11, respectively.
Additionally, standard R-trees can be modified during use through insertion or deletion of geometries by
recursively splitting parts of the R-tree [52], a property of R-trees not further discussed in this thesis.

20



2 Theoretical Background

Figure 2.9: R-Tree indexing example: 2D visualization (a), hierarchical dependencies (b). [Source: [54]]

2.5.2 STR-tree Packing Algorithm

Since the R-tree is widely used, there have been many attempts to optimize it for various use cases. One
big point of optimization is how to decide, which neighboring objects get grouped together into one MBR,
a process referred to as the packing algorithm of the R-tree. The original packing algorithms for inserting
objects into the R-tree, that were suggested by Guttman [52], have several disadvantages, such as "high
load time, sub-optimal space utilisation and poor R-tree structure requiring the retrieval of an unduly number
of nodes to satisfy a query" [55]. This has led to the introduction of multiple packing algorithms for R-trees,
such as R*-tree and STR-tree, which is the packing algorithm employed in this thesis. Through recursively
pre-sorting the R-tree into slices, as can be seen in Listing 2.5, the STR-tree minimizes the disadvantages
named above. The difference in space utilisation can clearly be observed by looking at Figure 2.10. However,
it must be noted that as a static R-tree [53] the STR-tree is unable to split nodes "in balance" [56], meaning
that modification during use is not possible.

Listing 2.5: Algorithm for constructing a STR-tree

1 Input: R as a set of rectangular two -dimensional data elements
2 N as Number of Elements in R
3 M as Maximum number of child nodes/rectangles per node
4 Output: R-tree structure
5
6 While R > 1:
7 # Step 1:
8 Calculate minimum number of leaf nodes P = ceil(N/M)
9 # Step 2:

10 Sort all N rectangles by X coordinate of their center point
11 # Step 3:
12 Divide sorted dataset into S = ceil(sqrt(P)) vertical slices ,

each with S leaf nodes and S * M rectangles
13 Exception: The last slice may contain fewer than S * M

rectangles
14 For each slice:
15 # Step 4:
16 Sort Rectangles by Y coordinate of their center point
17 # Step 5:
18 Group every M rectangles into one (leaf) node in sequence
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19 Exception: The last node may contain fewer than M
rectangles

20 # Step 6:
21 Group the minimum bounding rectangle (MBR) of each (leaf)

node as a new set of rectangles R
22
23 Return: Root node of the constructed R-tree

(a) R-tree with standard Guttman Split (b) R-tree with STR packing algorithm

Figure 2.10: Standard R-tree on the left versus STR-tree on the right, slices visible [Source: [57][58]]
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3.1 Procedural Overview

Before getting into the details of the concept developed in this thesis, this section gives a brief overview over
the rough logical steps the concept can be divided into. As is visible in Figure 3.1, the concept can be divided
into six sequential thematic blocks. In the following, a short summary of each of these steps will be given.

OSM data
-Buildings
-POIs

CityGML graphs

CRS transformation
Clipping

Usable Format

Building match: POI match:

Initial R-tree matching

Case classification

Finalised mapping

Unmatched objects

Subgraph development 

Mapping to preexisting data Expanded CityGML graphs

1. Input data

6. Output data

2. Preprocessing 3/4. Spatial Matching

5. Data integration

Figure 3.1: General overview over the concept for the integration of OSM data into the CityGML KG

In a first step, the input data from both data sets has to be extracted from the respective sources. This
includes identification of relevant input data, both in the context of the CityGML graph and the enriching OSM
information, where that input data can be found and how it can be extracted.

Preprocessing is conducted as a second step to ensure the data is converted into a format suitable for further
analysis and integration. Here the main priority is to ensure that both sets of information are compatible with
one another and the necessary analysis tools. This section includes, but is not limited to, setting both data
sets to the same CRS, the same area and the same data format.

Next, the third step in the process is the matching of polygonal geometries, specifically OSM and CityGML
buildings through their respective footprints. Due to the fact that there are no universal identifiers for these
buildings, a topic discussed in Subsection 1.1.2, spatial matching is necessary. The goal of this section is to
match as many OSM footprints to CityGML footprints, while still maintaining a conservative approach. This
means minimizing the risk of false matches is prioritized over maximizing the amount of matched buildings.
The section is also split into multiple parts and together with part four represents the main focus of this
concept. Additionally, it is important to mention, that since the OSM building Polygons do not carry much
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semantic information, and some don’t carry any (see Table 3.1), their matching can mostly be considered as
a preparative step for the matching of OSM POIs and CityGML buildings.

The fourth step focuses on spatially matching point geometries to polygonal ones, in particular OSM POIs to
CityGML buildings. These matches are done with the help of an intermediate matching step. First the POI
coordinates are matched to OSM building footprints and then, using the already existing matches from step
three, the OSM POIs are matched to the CityGML buildings. This additional matching is necessary, due to
the different natures of OSM and CityGML footprints (see Subsection 3.3.2). Otherwise, the processes in
step four are fairly similar to those in step three.

After the spatial matching is completed, in a fifth step the new data needs to be integrated into the GraphDB.
Two main aspects need to be considered during this process: For one, in what form the new data should be
added, namely as nodes or subgraphs and how these nodes or subgraphs should be structured. Additionally,
correct mapping of the new data nodes to their respectively matched CityGML building node also needs to
be ensured.

Finally, in the sixth step, the output data is an enriched CityGML KG with new information expanding the
contained buildings. This expanded KG can then be queried for the new data provided by OSM.

This chapter will now consequently deal with all of these steps in order.

3.2 Data Collection and Preprocessing

3.2.1 CityGML Data

Extraction

The goal of this initial step is to identify all CityGML data necessary for spatial matching and subsequent
integration, and consequently extract that same data through a Cypher query. For this purpose it is important
to examine the structure of the graph database. As previously mentioned, the database comprises nodes
and edges that represent various buildings and building attributes and their interrelationships. For instance, a

Figure 3.2: Excerpt of a graph from the CityGML Graph DB: The building node is blue and the red nodes containing
the Bounding Box (Bbox) coordinates are on the far left of the graph excerpt. All other nodes connected to
the buildings central node represent different building attributes, such as height (green), roof type (purple)
or building function (yellow).

node may contain the value 3.146, while the edge connecting this node to the corresponding building node
might denote that this is its measured height, as illustrated in Figure 3.2. Each building and its attributes
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can be understood as a distinct subgraph encapsulating all information specific to that building. All these
subgraphs are interconnected through what are referred to as city model nodes1.

The next step is to identify the data required for the process of expanding the CityGML building graphs. This
includes:

• Building footprint: A building footprint or boundary to spatially match to the OSM data.

• Unique Identifier: A unique building identifier is a combination of numbers and/or letters that
allows the user to link back to the original building subgraph in order to accurately map the
matched OSM data later on. This identifier can be any attribute of the building, as long as it is
unique to that building in the context of the entire data set.

Bounding Box

Building Outline
Lower Corner 
Coordinates

Upper Corner 
Coordinates

Figure 3.3: Make-up of the Bbox for a CityGML building: The Bbox is the smallest possible axis-aligned rectangle that
completely encloses the given building outline, ensuring that all points of the outline are within or on the
boundary of the rectangle. It is also known as an MBR. The details of the Bbox can then be stored in just
two coordinate pairs, traditionally the lower left and upper right corner of the rectangle. This technique
has the significant advantage of requiring minimal storage space, as it only needs two coordinate pairs to
represent the spatial extent of the building. Depending on the outline and orientation of the building, the
size of the Bbox can reach from the size of the building it encloses to multiple times its size. Generally, it
can be stated that buildings with less compact footprints have a bigger size gap between a building and its
Bbox.

To represent the footprint, the Bboxes of the buildings are used, stored as four individual coordinate
values—two for the lower corner and two for the upper corner (see Figure 3.3)—in two separate nodes (see
Figure 3.2). As a consequence of this storage format, the coordinates are extracted as four separate record
entries in the return result of the query and not as one cohesive geometry.

Listing 3.1: Cypher code for the extraction of the Bbox data

1 MATCH (b.Building) -[: boundedBy ]-() -[:envelope ]-()- [: lowerCorner
]-(

2 ) -[:value]-() -[: elementData ]-(d.__ARRAY__)
3 RETURN d.` ARRAY_MEMBER [0]`, d.` ARRAY_MEMBER [1]`, b.UUID
4 UNION

1For additional details on the makeup of the Graph DB, refer to [11] and [13].
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5 MATCH (b.Building) -[: boundedBy ]-() -[:envelope ]-()- [: upperCorner
]-(

6 ) -[:value]-() -[: elementData ]-( __ARRAY__)
7 RETURN d.` ARRAY_MEMBER [0]`,d.` ARRAY_MEMBER [1]`, b.UUID
8 // Array_member [0] refers to the x-coordinate or easting of a

coordinate pair.
9 // Array_member [1] refers to the y-coordinate or northing of a

coordinate pair.

For identification purposes, there are two options: utilizing the Universally Unique Identifier (UUID) stored in
each building node or relying on the building’s geometric data. Consequently, the buildings unique Bbox can
provide adequate identification and since they are already being extracted for each building, no additional data
extraction would be necessary. However, as previously mentioned, the coordinates are currently represented
as four separate values instead of a complete Bbox, and the extraction of an intermediate unique identifier
was chosen as an aid for constructing the final Bbox (see Subsubsection 3.2.1). For this purpose, the UUIDs
for all buildings are extracted as well. There are more complex methods like a longer MATCH chain that
could bypass the auxiliary UUID extraction, but for this thesis, the simplest solution was chosen. A possible
Cypher code for extracting all Bbox coordinates and UUIDs can be found in Listing 3.1.

Preprocessing

Before the extracted CityGML data can be used for spatial matching, two preparative steps have to be taken.

As already mentioned in Subsubsection 3.2.1, the Cypher query (see Listing 3.1) does not return a Bbox, but
instead four separate values. More specifically, if we consider that the database contains n building nodes,
the query result would comprise 2n records, with each record including an UUID, an ARRAY_MEMBER[0]
and an ARRAY_MEMBER[1] value. But in order to be able to match building footprints, a rectangle needs
to be constructed. A possible method can be seen in Listing 3.2. Since Cypher works strictly sequentially,
executing the query line by line, all the records containing coordinates from the lower corner are in the
upper, and all records containing coordinates from the lower corner are in the lower half of the results list.
Consequentially, through a split after n records and subsequent union of both list on the UUID, the four
coordinates are now ordered and can be used to create a list of n rectangles. Lastly, these rectangles need to
be stored. In this thesis, DataFrames from Python’s pandas and geopandas libraries will be used. Since they
are broadly used data structures [59] that offer flexible and intuitive storing and handling of data in tabular
form, including spatial analysis, they were chosen for this thesis.

Listing 3.2: Algorithm for constructing rectangles out of the extracted coordinate values

1 Input data: results list
2
3 results1 = first half(results)
4 results2 = second half(results)
5 combined_results = merge (results1 , results2) on 'uuid '
6
7 rectangles = []
8 for rows in combined_results
9 xmin , ymin , xmax , ymax = row[1], row[2], row[3], row[4]

10 rectangle = Polygon ([(xmin , ymin), (xmin , ymax), (xmax , ymax)
, (xmax , ymin)])

11 add rectangle to rectangles
12
13 store rectangles as a dataframe
14 Output data: rectangles dataframe
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The second step is adding information about the CRS the extracted coordinates are in, in this case
EPSG:25832, better known as ETRS89/UTM zone 32N. This information can either be added manually, or
also extracted from the DB through a Cypher query.

3.2.2 OSM Data

Extraction

As previously mentioned in Section 2.4, the OSM data used in this thesis is downloaded using GEOFABRIK.
They offer OSM data for set regions like Oberbayern in the form of shape files sorted into

• point feature layers, which include the POI layer, but also the places, places of worship,
natural features, traffic related and transport infrastructure layers,

• line feature layers, which include the roads and paths, the railways and the waterways layer,

• polygon feature layers, which include the building layer, as well as the land use and bodies
of water layers.

In this thesis, only the building layer and the POI layer are used, as they offer the most information about
buildings. The building layer contains detailed footprints in the form of Polygons but often lacks additional
details, as shown in Table 3.1. To enhance the data set, the POI layer is added, with every POI at least
including feature class information and most also providing a name (see Table 3.2).

Table 3.1: Data included in the OSM building file

ID geometrycode fclass name type

120853828 (692... 1500 building - house
81645904 (691... 1500 building Angerhof -
79619583 (690... 1500 building - office
93979508 (691... 1500 building - retail
265939140 (689... 1500 building - -

Table 3.2: Data included in the OSM POI file

ID geometry code fclass name

60013073 (691... 2004 post_box -
83102025 (692... 2101 pharmacy Rumford Apotheke
251874282 (692... 2301 restaurant Shoya
340005581 (689... 2602 atm Postbank
409497642 (690... 2305 bar Kauz

Preprocessing

After accessing the relevant OSM data, three preparative measures have to be taken to ensure compatibility
with the extracted CityGML data:

• The OSM data has to be in the same data format. To be able to run operations on both
data sets together, they need to be compatible with each other and the programs used for
their analysis. Accordingly, the data is stored as a pandas DataFrame.

• The spatial data has to be in the same CRS. For any kind of spatial operation between
two sets of data, they need to be in the same CRS. To integrate the data into the CityGML
GraphDB at the end, it needs to be in the same CRS as the coordinates stored in the DB
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(ETRS89/UTM zone 32N). To this end, it is more logical to transform the OSM coordinates
from WGS84 to ETRS89/UTM zone 32N, than the other way around.

• The spatial data has to cover the same area. Since data from GEOFABRIK can only be
downloaded for preset areas, these sets can include large amounts of data outside the scope
of the area covered by the CityGML data. To avoid working with oversized data sets, which
would significantly slow down later operations, the OSM data gets clipped to only features
with coordinates inside the MBR that contains all CityGML coordinates. This Bbox information
can either be retrieved from the GraphDB, or can be constructed by finding the outmost
coordinate in every cardinal direction in the CityGML data set.

3.3 Spatial Matching

The goal of this section is to have a list of spatially matched OSM buildings and POIs, that can subsequently
be integrated into the CityGML GraphDB. More specifically, the building DataFrame (Table 3.1) and the POI
DataFrame (Table 3.2) should be expanded by an additional column, indicating what CityGML building(s)
they are matched to, thus giving a clear overview over all the matches. A possible result for the expanded
DataFrames can be seen in the tables below (Table 3.3, Table 3.4).

Table 3.3: OSM building DataFrame expanded by a column for the corresponding Bbox

ID geometry code fclass name type Bbox

120853828 (692... 1500 building - house (692...
81645904 (691... 1500 building Angerhof - (691...
79619583 (690... 1500 building - office (690...
93979508 (691... 1500 building - retail (690...
265939140 (689... 1500 building - - (689...

Table 3.4: OSM POI DataFrame expanded by a column for the corresponding Bbox

ID geometry code fclass name Bbox

60013073 (691... 2004 post_box - (691...
83102025 (692... 2101 pharmacy Rumford Apotheke (692...
251874282 (692... 2301 restaurant Shoya (692...
340005581 (689... 2602 atm Postbank (689...
409497642 (690... 2305 bar Kauz (689...

In the following, this section will initially discuss Bbox2 to Polygon matching, then focus on POI matching, and
finally give a quick overview over any objects that went unmatched.

3.3.1 Building Matches

Matching Step 1: Preliminary Matches

In this thesis, the focus of the spatial matching of buildings is on the matching between Polygons and Bboxes.
Thus, some of the rules and approaches will vary from those employed in Polygon to Polygon match situations
that are well documented in [6][60], but most of the same core principles are used. Spatial matching between
2D geometries is typically performed by assessing the degree of overlap between their areas [6]. To be able

2For the purpose of clarity and brevity, from here on, CityGML building Bboxes will be referred to as Bboxes, OSM building
Polygons as Polygons and OSM POI coordinates as Points.
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to analyze these overlaps, the first step is to identify all Polygons and Bboxes that intersect. Instead of using
a direct method, which would be highly inefficient as it would mean comparing every single Bbox to every
Polygon, an STR-tree (see Subsection 2.5.2) is used to streamline the process of querying for intersections
and improve performance. The STR-tree is built from one set of geometries and then used to run search
queries for intersections with the other set. This poses the question of which geometry set, Polygons or
Bboxes, should be used to construct the STR-tree. Since Bboxes are rectangles, the simplest of all Polygon
structures, they are computationally less expensive than more complex Polygon structures. Hence, if the
STR-tree is constructed using the more complex Polygons, each query against the STR-tree (which uses
Bboxes), will filter out non-intersecting Polygons quickly. This, in turn, reduces the number of computationally
more expensive Polygon-Bbox intersection checks in favour of inexpensive Bbox-Bbox intersection checks.
On the other hand, if the STR-tree is constructed using Bboxes, every single check will be conducted on
a Bbox-Polygon pairing, which makes this version computationally a lot more expensive. Accordingly, the
STR-tree should always be constructed from the more complex geometry, in this case the set of Polygons.

In addition to finding all overlapping geometry pairs, a look at the possible ways of overlap is helpful. There
are three distinct possibilities, as shown in Figure 3.4:

• Bbox covers Polygon

• Bbox intersects with Polygon

• Bbox is covered by Polygon

Since the CityGML Bboxes represent axis-aligned MBRs for buildings, they are usually significantly larger
than a Polygon representing the same building (see Figure 3.3). Therefore, the first two cases of overlap are
expected for a spatial match between the two. Assuming both sets of data are of a relatively high quality,
the third case only occurs, when a structure is represented as one building in the data set using polygonal
geometries, but as multiple buildings in the data set using Bbox geometries. Since CityGML tends to be
more detailed than OSM [6], this third case cannot be overlooked, even though building Polygons tend to be
smaller than the corresponding Bboxes.

Bbox covers Polygon Bbox and Polygon intersect Bbox is covered by Polygon

Bbox

Polygon

Figure 3.4: Categories of overlap between a rectangular, axis aligned Bbox and a Polygon
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Matching Step 2: Accepted Matches

The last section provided a list of all overlapping geometries, as well as their type of overlap. However, the
fact that a Polygon and a Bbox overlap, is not enough to accept them as a spatial match representing the
same building. These intersections can stem from representing the same building, but also from scenarios
like overlap due to shared walls or the geometries representing parts of the same complex, in which case
a match should not be accepted (see Figure 3.5). Additionally, due to the often large nature of Bboxes
in comparison to the buildings they envelope, they tend to overlap heavily, even when the actual building
structures are separate, as can be seen in Figure 3.7. This leads to a significant number of intersections that
should not be considered as matches.

Polygon Polygon

Bbox 1

Bbox 2

Bbox 1

Bbox 2

Intersection Bbox 1 - Polygon Intersection Bbox 2 - Polygon

Bbox

Polygon

Figure 3.5: Two possible scenarios for an intersection between a Bbox and a Polygon: On the left, Bbox 1 and Polygon
clearly represent the same buiding and should be accepted as a match. On the right, even though Bbox 2
and Polygon are intersecting, they do not represent the same building and should not be accepted as a
match.

Following the approach of [60] and [6], the use of the subsequent equation allows to sort the degree of
overlap in reference to the area of any overlapping Polygons and Bboxes:

|Area(Bbox)∩ Area(Pol y gon)|
|min(Area(Bbox), Area(Pol y gon))|

≥ t (3.1)

By dividing the area of intersection through the area of the smaller of the two geometries, the possible
results range from 0, if they do not overlap at all, to 1, if one of the geometries is completely covered by
the other. The result is then compared to an empirical threshold t, which can be adjusted based on how
consistently similar both data sets are. Previous studies on this topic have found a minimum threshold of 30
% [60] to 50 % [6] to be necessary. They were, however, working with Polygon-Polygon relations, whereas
here Polygon-Bbox relations are regarded. Since the Bbox geometries tend to be larger than a Polygon
representing the same building, and thus often cover large parts of or even the entire Polygon, the threshold
for this thesis can be set at 50 % or possibly even higher during the implementation. Additionally, for every
match that was marked under the overlap categories "covers" or "covered by", the result does not need to be
calculated, as it is automatically 1 = t.
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Bbox

Polygon

1:1 Relation m:1 Relation

m:n Relation1:n Relation

0:1 Relation

1:0 Relation

Figure 3.6: The six possible spatial matching relations by ratio: 0:1 Match, a Bbox without any matches (upper left);
1:1 Match, one Polygon matches with one Bbox (upper middle); m:1 Match, multiple Polygons match with
one Bbox (upper right); 1:0 Match, a Polygon without any matches (lower left); 1:n Match, one Polygon
matches with multiple Bboxes (lower middle); m:1 Match, multiple Polygons match with multiple Bboxes
(lower right).

According to [60][6], there are now six cases based on the matching ratio between the two geometry sets,
that need to be considered and treated separately, of which four are the possible matching scenarios and
two are the possible scenarios for unmatched buildings.

0:1 Relation A Bbox without any matching Polygons, a case further discussed in Subsection 3.3.3.
This includes all Bboxes that do not clear the threshold with any intersecting Polygons. Additionally, this
encompasses all Bboxes that never overlapped with any Polygons. These unmatched objects can be found
by comparing the original list of Bboxes extracted from the GraphDB to the list of matched Bboxes.

1:0 Relation A Polygon without any matching Bboxes, likewise discussed in Subsection 3.3.3. Like the 0:1
scenario, this includes all Polygons that do not clear the threshold as well as all Polygons with no overlap.
These Polygons can also be found by comparing the initial and matched lists.

1:1 Relation In the most straightforward case, one Polygon uniquely matches with a single Bbox. This is
typical for free standing buildings, and if the threshold t is surpassed, can be accepted as a definite match.

m:1 Relation Multiple Polygons matched to a single Bbox often occur when a structure is represented by
several building Polygons but only one building Bbox. If the threshold is met, all Polygons can be accepted
as definite matches, as they are all linked to the building represented by the Bbox and can provide it with
relevant data. For example, if the OSM set contains entries for several stores within a shopping center and
they all match the CityGML shopping center, the shopping center building will be enriched with information
about all the stores it contains. Additionally, since the goal of the building match is mostly to provide a good
basis for POI matching, more matched Polygons will provide more Points contained within their bounds.
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1:n Relation A single Polygon matched to multiple Bboxes typically occurs when the Polygon set provides a
less fragmented representation of a building complex, while the Bboxes offer a more detailed breakdown. This
is common in the data sets used, as CityGML often captures finer distinctions between structures compared
to OSM [6]. However, this situation is not trivial. Should the OSM data be applied to all matching CityGML
buildings? Doing so could cause misidentification, such as when OSM represents a house and its garage as
one structure, while CityGML separates them into two separate structures. If the OSM data is applied to
both, the garage might be incorrectly labeled as a house, leading to inaccurate results. This could also skew
any analysis conducted on the expanded data set, making it appear as though there are two houses instead
of one. Therefore, it is problematic to assign the OSM data to multiple CityGML buildings. However, choosing
only one single match could result in a mismatch or a severe misrepresentation, especially if the Polygon
represents a big building complex split up in multiple Bbox. It is also important to remember that the building
match is mostly a preliminary step for the POI matching, so the best course of action should be to match the
buildings in a way most suited for that purpose. It is consequently necessary to further differentiate between
the 1:n relation matches, before accepting or dismissing them.

Bbox

Polygon

Figure 3.7: Scenario of two Bboxes overlapping. Even though two buildings can have a significant distance between
them, their axis-aligned Bboxes can still overlap, creating m:n match situations.

m:n Relation Multiple Polygons matching with multiple Bboxes typically happens for the reasons mentioned
above, which stem from the difference in detail between the OSM and CityGML data sets. But they could
also occur because the Bboxes are expected to have a lot of overlap with other Bboxes and their respective
Polygons due to their nature as often comparatively large, axis-aligned bounding rectangles, as can be seen
in Figure 3.7. Like the 1:n relation matches, these matches are not trivial to solve either. However, since
m:1 relations have been labelled as unproblematic in the context of this thesis, where one CityGML building
having multiple OSM building matched to it is accepted, it is possible to simplify the m:n relation problem.
Instead of handling a single m:n situation, it can be divided into m individual 1:n situations, which can be
addressed separately. An example of such a split is given in Figure 3.8. This simplification of m:n match
situations means that the amount of unclear situations is reduced to just regarding the case of 1:n ratios.

To decide how to treat the still unclear case of 1:n ratio, it is vital to look at the possible reasons behind this
matching situation. As mentioned above, the most obvious reason is a differently detailed representation,
where one OSM structure is represented as several CityGML structures. In this case, it would be the best
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Bbox

Polygon

Polygon 2

Polygon 1

Polygon 3

Polygon 1

Bbox 3

Bbox 1Bbox 1

Bbox 2Bbox 2
Bbox 3

Polygon 3

Bbox 1

Bbox 2
Bbox 3Polygon 2

Bbox 1

Bbox 2
Bbox 3

Figure 3.8: The 3:3 Match on the upper left is split into three individual 1:3 Matches, each of which can be handled
independently from the other two.

course of action to match the Polygon to all Bboxes that clear the threshold t. Mainly because it guarantees
that any POIs attached to the Polygon can later be matched to the correct CityGML "sub"structure in the
larger OSM building structure.

The other possible reason stems again mostly from the nature of the CityGML Bboxes and can be viewed in
Figure 3.8: Bbox 1 and Polygon 2 overlap severely, as do Bbox 2 and Polygon 2, despite the fact that only
one of these combinations, namely Polygon 2 and Bbox 2 constitutes a correct match. The reason for this
being that the more complex a building, the more its Bbox tends to differ in size and cover areas nowhere
near its building. In this case, there is usually one single Bbox to Polygon match for each Polygon, that can
be considered the correct one, thus a single match is the preferred solution in this situation.

Since both situations that lead to 1:n ratio situations require different outcomes, the question poses itself,
if there is an easy way to differentiate between both cases. The solution here lies in the size difference
between Polygons and Bboxes. If a Polygon and a Bbox represent the same building, the Bbox is expected
to be about the same size or bigger than the Polygon (see Figure 3.3). Conversely, it can be assumed that if
the Polygon is significantly larger than the corresponding Bbox, it also represents a larger building structure
than the Bbox. This observation makes it possible to formulate the following rule:

Listing 3.3: Algorithm for 1:n matches

1 Input: Ap = Area(Polygon), Ab = Area(Bbox)
2 Output: accepted or dismissed match
3 f = buffer parameter < 1
4
5 If Ap/Ab < f
6 smallerArea = Ap
7 Else if Ap/Ab > 1/f
8 smallerArea = Ab
9 Else

10 smallerArea = - # Both are approximately the same size
11
12 If largerArea = Ap
13 Accept the match
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14 Else
15 Calculate Jaccard -Index J(Ab, Ap)
16 If J(Ab, Ap) = max(J(-, Ap))
17 Accept the match
18 Else
19 Dismiss the match

This rule accepts all matches, where the Polygon is determined to have a distinctly larger area, regulated
through the empirical parameter f. Additionally, if the Polygon is not the larger area, the Jaccard-Index for the
match is calculated and compared to all other Jaccard-Indices for that Polygon. Then, only the combination
with the biggest Index is chosen as a match for that Polygon, assuring it is only matched to one single bigger
or same-sized Bbox and all other matches for that Polygon are dismissed. By calculating the intersection of
two areas over their union, the Jaccard-Index filters out the match with the most similar geometries in the
context of size and location:

J(Bbox , Pol y gon) =
|Area(Bbox)∩ Area(Pol y gon)|
|Area(Bbox)∪ Area(Pol y gon)|

(3.2)

After this last step, the Polygon-Bbox matching is concluded, with every potential match from Subsubsec-
tion 3.3.1 either having been dismissed or accepted. A full overview over all the steps can be found in
Figure 3.12. It should be briefly mentioned why the Jaccard Index was not used in place of Equation 3.1.
Since the Jaccard Index filters by similarity, it decreases as the size difference between the two areas
increases. However, as previously mentioned, Bboxes can be many times larger than the corresponding
Polygon (see Figure 3.3), which would make it impossible to define a meaningful threshold for the results
returned by the Index.

3.3.2 Point Matches

Matching Step 1: Preliminary Matches

While POIs can be located anywhere and provide information about a wide range of objects, this thesis
focuses solely on those that offer direct information about buildings or objects situated inside or on buildings.
For this reason, only POIs within or on buildings will be considered for matching purposes. Although
incorporating points from outside buildings, as demonstrated by [22], could be useful for tasks such as
identifying the nearest object (e.g., determining which house is closest to a bench or trashcan), the aim here
is to enrich the building itself with relevant data, focusing only on information that directly pertains to that
specific building.

Instead of directly matching points to Bboxes, the following approach first matches points to Polygons, and
then later utilizes the information from Subsection 3.3.1 about which Bboxes these Polygons correspond to.
There are several reasons for this approach:

• Polygons are much closer representations of the actual building structure compared to Bboxes.
Bboxes, as previously mentioned, are often significantly larger than the building footprint
and can extend arbitrarily far from the building itself. For example, as shown in Figure 3.9
c), directly matching points to the Bbox would in this instance result in the left point being
matched but not the right, even though both points are equidistant from the building.

• In the case regarded in this thesis, Polygons and points come from the same source, leading
to greater consistency and homogeneity between the locations of the points and Polygons
compared to the points and Bboxes. Thus making it more likely, that a point located in a
Polygon is actually referencing the same building as the polygon.
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• Polygons typically have less overlap than Bboxes, which means they provide a more precise
spatial reference for matching the points, avoiding unnecessary overlaps and mismatches
caused by Bbox overextension.

Rather than checking each point against every Polygon, which would be computationally expensive, an
STR-tree is once more used to efficiently query whether a point is within or touching a Polygon. The STR-tree
is constructed from the Polygon geometries, for the same reasons as in Subsubsection 3.3.1, because they
are the more computationally complex structure compared to points. Additionally, similar to the Polygon to
Bbox match, points can be presorted into categories: outside, within, and touching Polygons (Figure 3.9 a) to
c)), of which only the points outside of all Polygons will be dismissed as matches during the STR-tree query.

• Points located outside of any Polygons carry information unrelated to buildings, such as
locations of park benches, trash bins or tourist information signs in the case of OSM POIs.

• Points located within Polygons can generally be assumed to provide information relevant
to the building, especially when both points and Polygons come from the same data source.
These POIs can represent a range of objects found inside a building, from small entities like
shops or restaurants to amenities like public restrooms or ATMs or even provide information
on the building as a whole.

• Touching points, on the other hand, are typically positioned on or near the edges of buildings
and could provide information about objects attached to or directly on the wall, like POIs
representing vending machines or security cameras.

There is also the possibility that a point could match multiple Polygons if those Polygons overlap or touch
(seeFigure 3.9 d) and e)). The frequency of occurrence for such points depends on the degree of overlap in
the Polygon data.

a) Points located inside of a Polygon b) Points located on the edge of a 
Polygon

c) Points located outside of a Polygon

Bbox

Polygon
d) Points located on the edge of two 

touching Polygons
e) Points located on the edge or 

inside of two overlapping Polygons

Figure 3.9: All possible cases of Point locations in regard to building Polygons: Points can be uniquely located inside
a) or on the edge of a Polygon b), they can be located on the edge or inside of multiple touching d) or
overlapping Polygons e) and lastly, they can be located outside of any Polygon c).
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Matching Step 2: Accepted Matches

After completing the previous section, a list of all point-to-Polygon matches is now available for each Polygon
that corresponds to at least one Bbox. Ideally, every point on this list should be accepted and its information
integrated, as all these points are either inside or on the edge of already matched Polygons. However, how
the points should be matched to the Bboxes still needs to be addressed. In cases where the Polygon
is only matched to a single Bbox, the points can be automatically assigned to that Bbox. The situation
becomes more complex when the Polygon matches multiple Bboxes. In such cases, it is necessary to
determine which of the matched Bboxes contains the point. The following scenarios illustrate the possibilities
(Figure 3.10):

• Single Bbox match: If the point is inside or touching just one Bbox (Figure 3.10 b)), the point
can be assigned to that Bbox without issue.

• Multiple Bbox match: If the point is inside or touching two or more bbox (Figure 3.10 c)), the
point should be assigned to all relevant bboxes. Ignoring the point would lead to significant
information loss, especially given the overlapping nature of Bboxes. Assigning it to only one
would carry a high risk of incorrect matching, as the arbitrary nature of Bbox sizes offers no
clear indicator of proximity, unlike with Polygons.

• No Bbox match: If the point lies within or on the edge of a Polygon but does not match any
Bbox (Figure 3.10 c)), there are two options: discard the point or assign it to the closest Bbox
that matched the Polygon. The distance can be measured from either the center or the edge
of the Bbox. Both approaches are valid, and it’s difficult to determine which would yield better
results since the outcome depends on the specific scenario. Alternatively, the distance can
be measured from both the center and the edge, and the point can be assigned only if both
measurements indicate the same Bbox.

All these steps can be summarised through the following algorithm:

Listing 3.4: Algorithm for point to bbox matching

1 Input: points , polygons , bboxes
2 Output: points matched to appropriate bboxes
3
4 for each polygon in polygons:
5 get the list of points associated with the polygon
6 get the list of bboxes associated with the polygon
7
8 if polygon is only matched to one bbox:
9 for each point in the list of points:

10 assign the point to the single bbox
11
12 else if polygon is matched to multiple bboxes:
13 for each point in the list of points:
14 find the bboxes that the point is inside or touching
15
16 if point is inside or touches only one bbox:
17 assign the point to that specific bbox
18
19 else if point is inside or touches multiple bboxes:
20 assign the point to all overlapping bboxes
21
22 else if point does not match any bbox:
23 calculate the distance from the point to each

matched bbox
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24 if distance from center and distance from edge
match:

25 assign the point to the closest bbox
26 else:
27 handle conflicting distance measurements

according to criteria (e.g., prefer center or edge or dismiss
the match)

28
29 return matched points and their corresponding bboxes

Bbox

Polygon

Polygon matched to one BBox Polygon matched to multiple Bboxes

a) No sorting into
Bboxes necessary

b) Point can be sorted
into a specific Bbox

c) Point can not be
sorted into a specific

Bbox

d) Point can be sorted
into the nearest Bbox

Figure 3.10: All possible cases of location for Points matched to Polygons in regard to building Bboxes: A uniquely
matched Polygon, where all Points can be matched directly to the corresponding Bbox a), a Polygon that
was not uniquely matched, where the Points can either be located in one b), multiple c), or none d) of the
corresponding Bboxes.

3.3.3 Unmatched Buildings

When comparing the initial lists of OSM and CityGML buildings with the lists of all matched buildings, it
becomes clear that some remain unmatched, the so called 1:0 and 0:1 matches. This list of unmatched
buildings can mostly be broken down into two major categories (see Figure 3.11):

• Difference in age: When comparing two sets of data, often one can be more up to date than
the other. In the case of this thesis, the used OSM data set is always less than 24 hours old at
the time of download [51], while the CityGML data is from 2015 (later data was not available
at [61]). This leads to the existence of new buildings in the newer (OSM) set of data, which
were not built yet when the older set (CityGML) was created. Additionally, some buildings can
only be found in the older data set, because they have been demolished since then. If this
were the only reason for unmatched buildings, this unmatched buildings list could be used as
an indicator for buildings in the CityGML data that don’t exist anymore, as well as indicate,
how many new buildings are missing from the CityGML data set.

• Difference in definition: Since there is no universal definition on what exactly should be
considered a building structure or built structure, when working with two sets of data from
different sources, they can have varying definitions. This concerns especially small, semi-
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permanent or special structures including, but not exclusive to, bus stop shelters, statues and
memorials, sheds for bicycles and garbage as well as news and concession stands. Often,
these structures are considered buildings by one of the data sets, but not the other, leading
to a list of structures in both building data sets that could possibly be seen as buildings,
depending on one’s definition. This makes it very hard to tell if a building present in the older
data set does not exist anymore or is simply not defined as such by the newer data set and
vice versa.

It should be noted that the disputed building structures all tend to be on the smaller side, where the lines of
what can be considered a building become unclear. Consequently, it can be assumed to a certain degree
that the bigger an unmatched building is, the more likely it is to fall under the category of age difference, but
there are no definite ways to differentiate between the two categories.

CityGML

OSM

New Building

Demolished 
Buildings

Bus Stop Shelter

Concession Stands

Figure 3.11: Two examples of unmatched buildings from Munich: On the left is the construction project ’Schwanthaler-
straße’ showcasing the problem of time difference, with demolished buildings still existing in the CityGML
data set, and newly constructed buildings only showing up in the OSM data set. On the right is a section
of the ’Viktualienmarkt’, highlighting the problem of a lacking universal definition. In the CityGML data
set, a bus stop shelter is considered a building structure but the concession stands are not, and the OSM
data set handles the same structures the exact opposite way.
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Figure 3.12: Flowchart showing the complete process spatial matching. The flowchart is split in two, the first part
displays the matching of buildings through Bboxes and Polygons, the second part shows the matching of
Points to Bboxes by way of using the Polygons.
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3.4 Expansion of the Knowledge Graph

3.4.1 Integrating Matched Data

In this section the successfully matched data is integrated into the CityGML KG. For this purpose it is
important to first identify all the information that should be integrated. As can be seen in Table 3.1 and
Table 3.2, both OSM buildings and POIs provide information about their ID and geometry as well as code,
feature class and sometimes name and type for buildings and code, feature class and often name for POIs,
respectively. Of these, codes, feature classes, names and types provide new semantic information for the
graph and consequently should be integrated into the graph. The ID can also be useful to integrate as it
facilitates clear and easy identification of an OSM building or POI when comparing with outside sources. This
could for example be relevant if a user wanted to update the expanded KG with more recent information, or
make corrections to, or remove specific objects. Therefore, it is a good idea to always ensure that objects
added to the KG can still be matched back to their source data. This leaves only the question if the geometry
data for the OSM buildings and POIs should be integrated into the KG. Would integrating the geometry data
have more advantages or disadvantages? Since the geometry aspect is very different for OSM buildings
represented through Polygons and OSM POIs represented through points, both will be regarded seperately.

a) OSM building polygon represented through > 50 
individual coordinate pairs

b) Over 100 POIs located within one large building

Bbox

Polygon

Figure 3.13: Advantages and disadvantages of storing geometries in the database: Storing building geometries,
especially detailed footprints requires a significant amount of storage space. While a point coordinate
can be stored in just two attribute values and a Bbox can be stored in just four, building Polygons require
significantly more storage space, as can be seen in a), where a building Polygon has over 50 coordinate
points and would consequently need to be stored in over 100 attribute values. On the other hand, storing
POI geometries is much cheaper, since they are represented through points, and very useful, especially
in large buildings and building complexes as can be seen in b). Since these points often reference
objects and places inside the building and not the building as such, a loss of location information could
significantly reduce the usefulness of a POI.

• Building geometries: As described in Figure 3.13 a), storing detailed Polygon geometries
requires significant storage space. The storing of these geometries is also not uniform, as
the amount of coordinate points used to represent a building varies from four (in a rectangle)
to 50 and even higher. What would possible advantages of storing the geometry be? For
one, as demonstrated in this thesis, spatial data can be used to uniquely identify a building.
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However, since the building is already matched to a CityGML building and storing the ID for
outside identification is cheaper, this advantage becomes redundant.

• POI geometries: Contrary to storing building Polygons, storing POI point geometries is sig-
nificantly cheaper and completely uniform (see Figure 3.13), as they always provides exactly
one coordinate pair. Also contrary to the building Polygons, the POI location information
can be extremely relevant to a user. As can be seen in Figure 3.13 b), POIs often provide
localised information about a specific part of or an object inside a building, helping the user to
orient themselves inside a building. To name a practical example, if the POI only provided
the information that platform 16 does exist at the train station, but not where that platform is
located, the information loses much of its value.

In conclusion, it was decided that in the scope of this thesis, only the POI geometries will be integrated into
the KG. It is, however, of course, possible to integrate the building geometries as coordinate values or, less
costly, as a string, and this should be done if it provides additional value for the user.

After deciding on what data to integrate, the next step is to decide what the expanded graph should look like,
before finally developing a method on how to integrate the new data. In order to provide consistency inside
the expanded KG, it was decided that the new, added substructures should be as similarly built as possible
to the preexisting graph or at least similar enough not to cause confusion. These similarities pertain to the
labelling of nodes, the thematic grouping of attributes into nodes, the labelling and direction of relationships
as well as the overall structuring of the new data.

Figure 3.14: Structure of the original CityGML KG around a building node (blue): Edges are labelled uniquely for
different types of node relationships (measuredHeight for the building height, roofType for the roof type...)
but identically for nodes relationships of the same type (ARRAY_MEMBER for all nodes referencing
bounding surfaces). Additionally, they are typically directed away from the building node if the data that is
referenced belongs to it and are only directed towards the building if the building is referenced as a part
of something itself, like as an object in the city model. Nodes are sorted thematically (function, bounding
surfaces, roof type, external reference...) and if there is a group of nodes belonging to the same type,
they are not directly connected to the central building node, but instead through a path that includes at
least one other node, thus improving clearness and query performance.

With the help of the observations made in Figure 3.14, the following rules are established:
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• Every OSM building and POI has its own subgraph, including all its semantic (and spatial)
data.

• Data that can thematically be grouped together, like building code and building feature class,
is stored in the same node.

• All new nodes have OSM in their label, so that they can be easily identified and filtered. This
makes it more practical to find all nodes added through the expansion and is especially useful
if the user later wants to remove the expansion.

• An additional reference node is created, connecting OSM building and POI subgraphs to the
CityGML building node. Since there can be multiple nodes of the same type connected to
one CityGML building, a middle node referencing the OSM_data is added. This is especially
necessary in cases like Figure 3.13 b).

• All edges are directed away from the CityGML building node, since all the information in the
nodes is an enrichment of that building node.

• All edges get a short name describing the relationship between their two nodes and all
relationships of the same type are labelled the same.

• For better visualisation and to reduce storage, any subgraphs of OSM POIs and buildings
that are matched to multiple CityGML buildings are only created once and then connected to
every corresponding CityGML building through its respective OSM_data node.

A visual representation of the new subgraphs is given in Figure 3.15.

Enriched by

IncludesOSM_POI:
- osm id

OSM Data

CityGML 
Building

OSM_ 
Building:

- Osm id

OSM_POI:
- osm id

Includes

Includes

OSM_ 
Type:

- osm id

OSM_ 
Name:
- osm id OSM_GEO:

X_coord
Y_coord

CityGML 
Building

OSM Data

Enriched by

Includes

Specific_Type

Named_as

Located_at

Figure 3.15: Structure of the graph expansion: The new subgraphs are introduced in keeping with the established
rules to ensure consistency.

After deciding on what the expanded graph should look like, it needs to be constructed. This is done
sequentially for every match by first creating the OSM_data node for the CityGML building, then creating
the building or POI node and connecting it to the data node, and subsequently creating all nodes carrying
information about this building or POI and connecting them. There are two important aspects to note during
this construction process. First, to ensure that all OSM data is matched to the correct CityGML building,
the UUID of each matched building is identified through its unique geometry and then extracted. This is
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necessary to identify which building all new OSM data should be connected to. As a side note, this could
also be done by avoiding the UUID and just using the geometries, but would result in far longer and more
complex queries and consequentially, longer query response times. Second, it is important to differentiate,
when to use the CREATE and when to use the MERGE statement. MERGE is used for nodes that should
only be created once, like a specific POI node containing its unique ID. This node is only created the first
time it appears on the list of matches and during any further appearances, only additional relationships are
created. CREATE is used for nodes that should be created multiple times in the exact same way, for example
every OSM building node is connected to its own individual type node, even if multiple buildings are of the
same type and have identical type nodes. A possible algorithm for creating the new building subgraphs can
be seen below3:

Listing 3.5: Algorithm for subgraph construction

1 FUNCTION integrate_match_data(match_pois):
2
3 INITIALIZE osm_id_tracker AS empty dictionary
4
5 START Neo4j transaction
6
7 FOR each building in Neo4j:
8 GET building UUID and bounding box (building_bbox)
9

10 FOR each row in match_pois:
11 GET gml_geometry , osm_id , code , fclass , name , x_coord ,

y_coord
12
13 IF building_bbox equals gml_geometry:
14 IF osm_id NOT in osm_id_tracker:
15 ADD osm_id to osm_id_tracker
16 ADD UUID to osm_id in osm_id_tracker
17
18 # Create osm_data and osm_building nodes
19 CREATE osm_data and ENRICHES relationship to building
20 CREATE osm_building node with osm_id and INCLUDE it in

osm_data
21 CREATE osm_classification , osm_type and osm_name (if

applicable)
22 RELATE them to osm_building
23
24 ELSE:
25 ADD UUID to osm_id in osm_id_tracker
26
27 FOR each osm_id in osm_id_tracker # create missing relationships
28 FOR each UUID for that osm_id
29 RELATE osm_building node to osm_data on UUID
30
31 END Neo4j transaction

3.4.2 Integrating Unmatched Data

This last section will give a quick overview on how to handle unmatched data. As mentioned in Subsec-
tion 3.3.3, it is in the context of the data used in this thesis not possible to definitively decide, whether an
unmatched building or point from either data set is unmatched because of age or definition problems, where

3The construction of the POI subgraphs uses the same algorithm with the addition of a geometry node

43



3 Concept Development

a match partner does not exist, or because of being badly located in correspondence to its counterpart from
the other data set, where a match partner is not recognised due to a mismatch.

Consequently, all unmatched OSM POIs and Buildings are not matched to any specific building, but to the
city model core node, as to not lose the information provided by these objects all together. Since they do
provide the same data as their matched counterparts, their subgraphs are constructed in exactly the same
way, including the OSM_data node connecting the OSM data nodes with the core model. These POIs and
buildings can then be reached by using the following Cypher query:

Listing 3.6: Extraction of unmatched OSM data

1 MATCH (cityModel.core) -[: ENRICHED_BY]->(osm_data) -[:INCLUDES]->(b
:osm_building)

2 MATCH (cityModel.core) -[: ENRICHED_BY]->(osm_data) -[:INCLUDES]->(p
:osm_poi)

3 RETURN p, b

Additionally, all unmatched CityGML buildings are marked with a doubly labelled OSM_data:no_data_found
node, which makes it possible to faster identify how many and which specific buildings went unmatched.
These unmatched buildings can then be identified by the following query:

Listing 3.7: Extraction of unmatched OSM data

1 MATCH (n:building) -[: ENRICHED_BY]->(no_data_found)
2 RETURN n
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tion

4.1 Implementation

In this chapter the theoretical methods developed in Chapter 3 are finally implemented. For that purpose,
a two kilometer by two kilometer tile around Karlsplatz (Stachus) in Munich, Germany is chosen as a test
area. The CityGML data set for that area is retrieved from BayernAtlas [61], since the data is freely available,
however it should be noted that it is from 2015, since later data was not available there. This test area
includes 5603 CityGML buildings and was chosen for its high building density, as well as for its variety: The
area offers bounding box sizes from 2m2 to 35878m2, free standing buildings as well as complex overlap
situations and is overall very heterogeneous in terms of building types and sizes. This is advantageous as it
provides an assortment of many different real world scenarios. There are 3904 OSM buildings and 4620
POIs in the chosen test area. The area covered by these data sets does not correspond exactly to the one
covered by CityGML, as the OSM data was extracted with a buffer parameter of 20 meters, as can be seen
in Figure 4.1 below, to ensure that CityGML buildings on the edge of the tile are not missing in OSM. The
lower number of OSM buildings compared to CityGML can be explained through the aforementioned fact
that CityGML tends to be more detailed [6]. Additionally, the number of POIs still includes all those located
outside of buildings, only 2809 POIs, meaning about 61 %, are actually located in and on the edge of OSM
buildings and could potentially be matched.

Bbox

Polygon

Karlsplatz 
(Stachus)

Buffer Zone

1 km

Figure 4.1: Test area for the implementation: ArcGIS visualisation showing all CityGML Bboxes and OSM building
Polygons inside the test area.
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The entire program, from data extraction and preparation to matching and integration takes an hour to
run, with about half of that time spent on the integration of the new data, and the other half distributed
relatively evenly between the other sections. The implementation is executed on a computer with 32 GB
RAM and 8 CPU (16 logical processors). The code for the implementation as well as for the GUI introduced
in Subsection 4.2.2 can be found under https://github.com/tum-gis/citygml-osm-graph.

4.1.1 Implementation Tools

The implementation for this project were carried out in Python, one of the two languages directly supported
by Neo4j. The other supported language is Java. The choice of Python was driven by its robust ecosystem,
flexibility, and strong support for geospatial analysis.

The following provides an overview of the key Python libraries used:

• Neo4j Python Library: The Neo4j Python driver was selected due to its official support by
Neo4j, making it highly reliable and well-documented. This library enables smooth interaction
with Neo4j databases via the Bolt protocol, allowing Cypher queries to be executed directly in
Python. In the implementation, it was used to access the Neo4j database for running read
queries that extract spatial data at the beginning of the program, and for both read and write
queries to integrate new data into the graph at the end [48].

• Pandas Library: Pandas is a widely-used, open-source library for data analysis and manip-
ulation, known for its speed and extensive support. Neo4j’s ability to convert query results
directly into Pandas DataFrames through use of the Neo4j Python library made it an excellent
choice for handling query results. Pandas also offers efficient filtering and analysis capabilities,
such as identifying entries with the same OSM_id or CityGML geometry. The Pandas data
types are compatible with integration into the Neo4j graph database, making it a valuable tool
for the expansion of the CityGML Graph DB [62].

• GeoPandas Library: GeoPandas extends the Pandas library with support for geospatial
data, providing tools to handle geometry objects for spatial analysis. It integrates with the
Shapely library, allowing the storage and manipulation of spatial data, such as shapefiles.
GeoPandas was used to reconstruct (Bboxes) from coordinates, store them and the OSM
building and POI shapefiles from GEOFABRIK as GeoDataFrames with polygon and point
geometries, and thus enabled spatial analysis through Shapely [63].

• Shapely Library: Shapely is a key Python package for geometric operations on planar
objects, and its inclusion in GeoPandas made it central to this project. All geometric and
spatial operations, such as coordinate transformations1, intersection checks between OSM
polygons and CityGML Bboxes, point location analysis, and area overlap calculations, were
performed using Shapely. The library also supports the creation of STR-trees, which were
used for efficient spatial indexing and querying. Shapely’s STR-tree additionally provides
spatial operations like ’intersects’, ’within’, ’contains’, ’overlaps’, and more, and offers a default
setting of 10 child nodes per tree node, which worked well for this implementation [64].

A comprehensive list of all Python libraries used during the implementation can be found under Appendix A.
Additionally to Python, ArcGIS was used to visualise and review intermediate results of the implemented
program.

1The accuracy of the coordinate transformation was tested by comparing the original and the transformed geometries in ArcGIS.
No significant deviation between the two geometries was found.
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4.1.2 Implementation Specific Challenges

This section includes some of the more prominent problems that arose during the implementation, mostly
because real world data is not perfect, as it is subject to human and computer error. The following gives a
brief overview over how each problem was handled.

• Data uncertainty: Data uncertainty arises when matching POIs to buildings, as the goal is
to ensure that all POIs containing information about buildings are accurately matched. This
requires accounting for potential human or computer errors in the placement of POIs in relation
to OSM building polygons. A common issue is that many POIs are positioned close to or on
the edge of buildings, often to mark entrances or objects located on or near walls. To address
this, a buffer zone was implemented, allowing any POIs located within a certain distance, d,
from the building to still be counted as part of it. After testing various distances, a buffer of just
20 cm was chosen. This distance captures POIs that have accidentally been placed slightly
outside the building, without including many of those POIs actually representing objects just
outside, such as benches or trash cans, which are often positioned close to building polygons.
During testing, this 20 cm buffer included an additional 22 POIs, 19 of which were manually
verified as representing objects inside the building. In contrast, a buffer of 30 cm resulted in
over 100 additional POIs, but only one additional point could be confirmed as referencing
something within the building. This significant difference in accuracy led to the decision to
use the smaller 20 cm buffer, balancing the inclusion of relevant POIs without introducing too
much noise.

• 3D location mapping: Unlike CityGML data, the OSM data set is purely 2D and lacks any
information about building heights or storeys. For OSM buildings, this isn’t problematic, as
they refer to the entire building, and their height can be inferred from the corresponding
CityGML buildings. If height data were available, it could be used to assess the quality of
matches between data sets, as matched buildings should have similar heights. However, this
lack of 3D information becomes an issue for OSM POIs. These POIs reference objects and
locations within buildings, but without height data, it’s unclear which storey of a multi-storey
building the POI is associated with. This limitation remains unresolved in this thesis, as
no height or storey data is available. Nevertheless, it would be beneficial to store height
information if it existed, as it could improve the accuracy of matching and provide clearer
distinctions for POI locations within buildings.

• Tile edges: The CityGML geometries at the edges and corners do not align precisely with
the boundaries of the 2 km x 2 km square tile. Instead, all buildings that intersect with the tile
are included in the data set. To ensure that the corresponding OSM buildings and POIs are
also included in the matching process, a buffer zone of 20 meters was implemented around
the tile. Consequently, the OSM data was clipped to create a 2040 m x 2040 m tile. This
20-meter buffer was chosen empirically as it was the smallest distance that still encompassed
all CityGML buildings at the tile’s edges.

• Empirical parameters: In addition to the previously mentioned buffer distances for addressing
data uncertainty and tile edges, several other empirical parameters were set during the
concept development. One key parameter is the threshold t, which started at a minimum
value of 0.5 as recommended by [6]. During testing, increasing the threshold to 0.6 eliminated
only a few matches, and a visual inspection confirmed that those eliminated were indeed from
corresponding buildings. Lowering the threshold, on the other hand, added mostly results that
during visual inspection could for the most part not be considered as matches. As a result,
the threshold t was set to 0.5 for the implementation, and all subsequent results are based
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on this value. The second parameter is f, which defines when two geometries should be
considered approximately the same size. For the purpose of this thesis, after a few different
values were tested, f was set to 0.8, meaning that an OSM building is considered roughly
equivalent in size to a bounding box when its size is between 0.8 to 1.25 times the size of the
bounding box and vice versa.

4.1.3 Implementation Results and Evaluation

After discussing the general details, tools and challenges of the implementation, This section will give an
overview over the results of running the program on the test data set and evaluate these results2. Out of the
5603 CityGML buildings in the database, 78.4% were found to have matched to at least one OSM building
and 1436 or 25,6% had additionally matched to at least one POI.

In a first step, the OSM data downloaded for the area of Oberbayern from GEOFABRIK was reduced down
from 163,875 POIs and 1,570,917 buildings, to the tile and its buffer, resulting in 4619 remaining POIs and
3904 remaining buildings to be matched to the CityGML graph. The concentration of nearly 3% of all POIs
in Oberbayern within this 2x2 km tile can be attributed to the high density of POIs in city centers. Out of
the POIs, 2809 were within OSM buildings, and thus potential matches during the implementation. Out of
these, 92% of POIs and 84% of OSM buildings were matched and integrated into the graph. This left 8%
of POIs, 16% OSM buildings and 22% of CityGML buildings unmatched. In total 4618 building to building

Table 4.1: Amount of buildings and POIs by match ratio types (Matched total refers to the amount of buildings or POIs
matched, not the total amount of matches, which would be 4618 and 2836, respectively.) The missing 139
OSM buildings and 57 OSM POIs were unmatched and in the buffer zone, and subsequently not added to
the database.

CityGML to Building OSM buildings CityGML to POI OSM POIs

Total in tile 5603 (100%) 3904 (100%) 5603 (100%) 2809 (100%)
Matched total 4391 (78%) 3270 (84%) 1436(26%) 2571 (92%)
Matched 1:1 2236 (40%) 2236 (57%) 681 (12%) 687 (25%)
Matched 1:n 1984 (35%) 637 (16%) 153 (3%) 37 (1%)
Matched m:1 120 (2%) 343 (9%) 458 (8%) 1644 (59%)
Matched m:n 51 (1%) 54 (2%) 144 (3%) 203 (7%)
Unmatched 1212 (22%) 495 (16%) 4167 (74%) 181 (8%)

matches were created, as well as 2851 building to POI matches. The distribution over the different match
ratio scenarios were found to be very similar to the ones in [6], where the same test area was used, but
with CityGML ground surfaces instead of Bboxes. It was found that 48% of matches were 1:1 matches, 43%
were 1:n matches, 8% were m:1 matches and just 1% m:n matches3. On the other hand, the distribution
between match ratio scenarios for OSM POI to CityGML buildings looks very different from the building to
building matches. Here, only about 24% of matches were 1:1 matches, 5% were 1:n matches, over half, at
58% were m:1 matches and 13% were m:n matches. This stark difference can be explained when looking at
Figure 4.2.4 and Figure 4.2.6. These two figures show that OSM POIs tend to be often grouped together, as
only a quarter of all POIs located inside or on the edge of OSM buildings are the only POI corresponding to
that OSM building. In return, this means that three out of four OSM POIs share a building with at least one
other POI. The explanation for this observation is that POIs relating to buildings tend to reference objects or
locations inside buildings with multiple functions, one POI for each function. Additionally, the average area

2It should be noted, that due to the constant improvements and changes to the OSM data taken from GEOFABRIK, the exact
number of data points and matches can vary slightly from day to day. The reference date for the following numbers was the 9th of
October 2024.

3The match ratios are denoted like in the concept development. 1:n refers to one OSM building matched to multiple CityGML
buildings, and m:1 to one CityGML and multiple OSM objects.
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4.2.1 OSM buildings matched to CityGML buildings

4.2.2 OSM CityGML buildings matched to OSM buildings

4.2.3 OSM POIs matched to CityGML buildings

4.2.4 CityGML buildings matched to OSM POIs

4.2.6 OSM buildings matched to OSM POIs

4.2.5 OSM POIs matched to OSM buildings

Figure 4.2: Six bar diagrams showing the match ratio distribution in each match situation. OSM building and CityGML
building match (red), OSM POI and CityGML building match (orange) and OSM building and POI match
(blue). The fact that all POIs are singularly matched to only one OSM building can be explained when
looking at the overlap of OSM polygons: Only 0.5% of all OSM polygons overlap, making it very unlikely
that a POI is located in such an overlap area. The y-axis is logarithmic for better visualisation.
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of OSM buildings containing POIs was found to be about 1.5 times larger than the average OSM building
area, suggesting that POIs can be mostly found in larger, more complex building structures. To give a better
overview, Table 4.1 shows the distribution of CityGML buildings, OSM buildings and OSM POIs over the
different possible match ratio cases, and Figure 4.2 displays the amount of match partners in every one of
the three data pairings. It can be observed through all data sets, that the number of matched buildings and
POIs decreases with a mostly exponential correlation to the amount of match partners, with the exception of
a few distinct objects. Additionally, it can be observed, that, as suspected, OSM buildings have on average
more match partners than CityGML buildings, as they are less detailed [60] and more often merge multiple
buildings into one bigger building structure. Another observation is the fact that a POI is at maximum matched
to four CityGML buildings, explained by the fact that all CityGML buildings sharing the same POI need to
overlap with the POI coordinate. The 10 % of POIs connected to more than one CityGML building can also
be seen as an indicator that the overlap between the Bboxes is very high compared to the OSM building
polygons, where no POI was matched to more than one polygon. A few extreme cases can also be observed,
most notably the OSM and the CityGML building matched to 170 POIs. This is the main building of Munich
central station, the with 35878 m2 by far biggest structure in the regarded tile.

Additionally to the number of matches in each ratio category, it is also interesting to regard respective area
sizes in each category. As is visible in Figure 4.3, the matched total has significantly bigger areas than
the tile total, both for CityGML and OSM buildings. This fits with the observation, that structures with a
disputed building definition and subsequently not matchable buildings are generally on the smaller side
(see Subsection 3.3.3). On top of that, there is a clear size difference between the larger Bboxes and the
smaller Polygons. Furthermore, multiple match and especially m:n match situations involve larger geometries
than 1:1 matches. This seems logical, given that multiple match situations usually involve bigger and more
complex building structures. Lastly, the jump up in area size for CityGML in the last two match situations,
which is significantly larger than any jumps in the OSM data, can be explained with the nature of Bboxes.
For a big and complex building, the Bbox of that building can be multiple times larger than the building and
encompass entire building block, thus almost certainly generating multiple match scenarios.

After spatial matching was completed, the matched data was integrated into the DB. The new subgraph for
every unique POI and building was created first and then connected through edges to all matched CityGML
building nodes. During this process, 28446 new nodes and 30059 new edges were created in the graph DB.
Table 4.2 gives a brief overview over all newly created nodes and edges. As expected, the only nodes withan
indegree larger than one are the OSM_building and OSM_POI nodes, as they are reachable from all their
corresponding CityGML building nodes. An excerpt of the expanded KG is provided in Figure 4.4.

Table 4.2: Overview over all newly created points and edges: Every row includes a node type, the type of incoming
relationship for that node and through which nodes this node type can be reached.

Node label Amount of
nodes

Incoming edge Amount of
edges

Reached through node

osm_data 4391 ENRICHED_BY 4391 cityGML.building
osm_data 1 ENRICHED_BY 1 cityGML.model

osm_building 3765 INCLUDES 5113 osm_data
osm_classification 3765 CLASSIFIED_AS 3765 osm_building
osm_name 2570 NAMED_AS 2570 osm_building
osm_type 2217 SPECIFIC_TYPE 2217 osm_building

osm_poi 2752 INCLUDES 3017 osm_data
osm_classification 2752 CLASSIFIED_AS 2752 osm_poi
osm_name 2269 NAMED_AS 2269 osm_poi
osm_geometry 2752 LOCATED_AT 2752 osm_poi

osm_data/no_data_found 1212 ENRICHED_BY 1212 cityGML.building
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Figure 4.3: Distribution of area sizes. The upper figure shows the area distribution for all CityGML buildings that are in
the tile (blue), matched to OSM buildings (orange), matched 1:1 (green), matched 1:n (red), matched m:1
(purple) or matched m:n (brown). The lower figure shows the same area distributions for OSM buildings.
Additionally, all area averages are displayed through a dotted red line with their respective value on the
right. The y-axis is logarithmic for better visualisation.
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Figure 4.4: Excerpt of the expanded graph: The figure shows one of the subgraphs added during the implementation.
The CityGML building nodes (yellow) from the original graph are connected to the OSM_data nodes
(red), which connect the newly created subgraphs and the preexisting graph. OSM_poi nodes (blue) and
OSM_building nodes (green) then make up the subgraphs together with their corresponding semantic and
spatial data nodes (grey), that include for example name and function information.

This leaves the question of how good the quality of the spatial matches is. Since it is too costly to manually
check all building matches, other quantitative and qualitative methods have to be employed. As a first step,
evaluation methods in other papers that examine spatial matching were researched. It was found that most of
these papers relied on manual checkups, either by checking randomly selected buildings [6], or employing an
expert to spatially match independently from the program [22]. Additionally, there were some other methods,
like the comparison of information on a specific topic present in both data sets [24]. Furthermore, approaches
like intersection metrics and positional accuracy are a possibility. In the context of this thesis, it was decided to
employ three different strategies for evaluating the matching process between OSM and CityGML buildings.

1. Overall threshold: As a first indicator, a closer look at the threshold t is taken. The threshold
was chosen at 0.5, meaning that the smaller of the two intersecting geometries was at least
50% covered by the intersection. The formula for this threshold can be used to indicate the
quality of matches. If the average match is only closely over the threshold, this would reflect a
very weak spatial correspondence between matches in the data sets. But on the other hand,
if spatial correspondence is high, the average match would have a result significantly above
the threshold. The result average is calculated with the following equation:

sum|Area(Bbox)∩ Area(Pol y gon)|
sum|min(Area(Bbox), Area(Pol y gon))|

≥ t (4.1)

The resulting average overlap for the smaller geometry is 0.86, indicating high spatial corre-
spondence between matches. Additionally, it can be seen in the box plot in Figure 4.5, that
the first and third quartiles are also very close together, with an Interquartile Range (IQR) of
just 0.33 and a median at 0.95, suggesting constant high overlap.
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Figure 4.5: Boxplot representing the overlap/smaller area ratios of all building matches. The whiskers are set to 1.5
IQR.

2. Random samples and confidence intervals: As was done in most of the researched papers
about spatial matching, a set of randomly selected matches, in this case 50, was reviewed
for correctness. This was done by retrieving 50 matched node pairs with a Cypher query,
using the RAND command. It was found that all of the 50 pairs were rightly matched, and
no mismatch was identified. Furthermore, a Wilson score interval, a confidence interval that
can be safely used even in the case of small sample sizes and skewed results [65], was
set up to determine how high the proportion of correct matches probably is depending on
those 50 samples. By choosing a 95 % (99 %) confidence interval, the Wilson score interval
suggests that with a probability of 95 % (99 %), between 92.9 % (88.3 %) and 100 % (100 %)
of building matches are correct.

3. Function test: Comparing building functions across data sets reveals notable differences
and overlaps. Of the 5,603 CityGML buildings, 2,516 (45%) include function information in
the form of ALKIS codes, while 2,301 out of 3,904 (59%) OSM buildings provide function
information in text form. A query in the expanded database found 979 matched buildings that
had functional data from both data sets. CityGML buildings were categorized into four major
ALKIS function groups: residential, commercial and industrial, public, and roofing. When
compared to the OSM data, which contains a much wider variety of functions (over 30 in
this comparison alone), the analysis divided buildings into three categories: clear function
matches, probable matches that could neither be confirmed nor dismissed, and definite
mismatches. Clear matches included categories like apartments and residential, commercial
and hotel, and government or hospital and public buildings. Probable matches, such as
buildings labeled "elevator" or "construction" in OSM, could not be easily categorized as they
may represent parts of the building or entirely different uses. The following will illustrate the
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Figure 4.6: Matches classified by corresponding function: The red sections indicate complete accordance between
CityGML and OSM function, blue sections indicate accordance is unclear but probable, and green sections
indicate no accordance between the matched buildings.

problems encountered during the function matching. A particularly notable result is seen in
the commercial building category, where many OSM buildings classified as "apartments" are
marked as "commercial" in CityGML. This ambiguity often reflects buildings with mixed uses,
such as a commercial ground floor with residential apartments above. Since in a data set, a
building is described by a singular use, multi-function buildings are never perfectly represented
and are often classified depending on which function is the most prevalent for the creator
[24]. This ambiguous representation accounts for the large portion of unclear matches in the
comparison, as seen in the commercial buildings section of Figure 4.6. Additionally, as seen in
Table 4.1, over 21 % of matched OSM buildings and about 4 % of matched CityGML buildings
are in multiple matches, making it even more difficult do deal with multi purpose building
complexes. For example, a building complex represented by one OSM, but two CityGML
buildings, was labelled as an office building in OSM, but as a preschool and a commercial
building in CityGML, since the complex holds mainly offices, but also one Kindergarten.
Another problem present in the function check was the lack of height data in OSM, resulting in
multiple underground car parks being matched to an above ground CityGML building. Lastly,
it should be noted, that OSM, as opposed to CityGML, defines bridges as buildings, which led
to about 15 matches with bridges. In conclusion, the function test indicates that at least 73 %
percent of buildings are correctly matched, providing a very conservative estimate, but cannot
give a solid indication about the maximum of correct matches.

The matching between OSM POIs and CityGML buildings will not be evaluated separately. If it is assumed,
that the OSM POIs are located in the correct OSM building, and the POI to CityGML matching process will
be of the same quality, since it is handled through the building to building process. Testing the accuracy of
correspondence between OSM POIs and OSM buildings is outside the scope of this thesis.
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4.2 Querying the Database

In this section, the expanded database is accessed to showcase possible application scenarios. Several
Cypher commands will be used to query the database, alongside a demonstration through a GUI that was
developed to visualize the results from the expanded graph database.

4.2.1 Cypher Queries

The following provides a list of Cypher queries that could be interesting for different application scenarios, e.g.
urban planning and management or tourism. They can mainly be sorted into two categories of query types,
namely semantic and spatial. The first set of queries is filtering by semantic attributes, thus aiming to query
the data thematically. This includes identifying all buildings with one or more certain characteristics, like a
specific height, feature or location, and subsequently returning the for the user relevant data about them.

Table 4.3: Features used in queries 1-5

CityGML OSM Filter

Q1 Height Building Type Height
Q2 UUID Unmatched Unmatched
Q3 Bbox Fclass Building Bbox
Q4 Bbox - Bbox area
Q5 Building Bbox Point Name, Fclass Bbox distance, Fclass

Q1: Find all residential buildings over 15 meters and return their height in ascending order.
Q2: Find all unmatched CityGML buildings and return their UUID data.
Q3: Find all buildings with a public toilet and return their location data.

Listing 4.1: Cypher code for Q1

1 MATCH (h:'org.citygml4j.model.gml.measures.Length ') -[:
measuredHeight ]-(b:'org.citygml4j.model.citygml.building.
Building ') -[:function ]-() -[: elementData ]-() -[: ARRAY_MEMBER ]-(
c:'org.citygml4j.model.gml.basicTypes.Code ')

2 WHERE c.value = '31001 _1000 ' AND toFloat(h.value) > 15
3 RETURN h.value AS Building_height ORDER BY Building_height

Listing 4.2: Cypher code for Q2

1 MATCH (b:'org.citygml4j.model.citygml.building.Building ') -[:
ENRICHED_BY]->( no_data_found)

2 RETURN n.'__UUID__ ' AS uuid

Listing 4.3: Cypher code for Q3

1 MATCH (n:`org.citygml4j.model.citygml.building.Building `) -[:
boundedBy ]-() -[:envelope ]-() -[: lowerCorner ]-() -[:value ]-() -[:
elementData ]-(d1:__ARRAY__)

2 MATCH (n) -[:boundedBy ]-() -[:envelope ]-() -[: upperCorner ]-() -[:
value]-() -[: elementData ]-(d2:__ARRAY__)

3 MATCH (n) -[: ENRICHED_BY]->(o:osm_data) -[:INCLUDES]->(p:osm_poi)
-[: CLASSIFIED_AS]->(c:osm_classification)

4 WHERE c.code = 2901 // OSM code for public toilet
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5 RETURN d1.` ARRAY_MEMBER [0] ` AS lower0 , d1.` ARRAY_MEMBER [1] ` AS
lower1 , d2.` ARRAY_MEMBER [0] ` AS upper0 , d2.` ARRAY_MEMBER [1] `
AS upper1

6 // Location data is returned as (lower0 , lower1 , upper0 , upper1)

Additionally to querying the data thematically, spatial filtering of the data is also possible:
Q4: Find all buildings with a Bbox area of over 20m2 and under 30m2 and return their area size in ascending
order as well as their corresponding UUID.

Listing 4.4: Cypher code for Q4

1 MATCH (n:`org.citygml4j.model.citygml.building.Building `)
2 -[:boundedBy ]-() -[:envelope ]-() -[: lowerCorner ]-() -[:value]-()

-[: elementData ]-(d1:__ARRAY__)
3 MATCH (n) -[:boundedBy ]-() -[:envelope ]-() -[: upperCorner ]-() -[:

value]-() -[: elementData ]-(d2:__ARRAY__)
4 WITH toFloat(d1.` ARRAY_MEMBER [0] `) AS lower0 ,
5 toFloat(d1.` ARRAY_MEMBER [1] `) AS lower1 ,
6 toFloat(d2.` ARRAY_MEMBER [0] `) AS upper0 ,
7 toFloat(d2.` ARRAY_MEMBER [1] `) AS upper1 ,
8 n
9 WHERE (upper0 - lower0) * (upper1 - lower1) > 20 AND (upper0 -

lower0) * (upper1 - lower1) < 30
10 RETURN (upper0 - lower0) * (upper1 - lower1) AS area , n.`__UUID__

` AS UUID
11 ORDER BY area

On top of querying the data both semantically and spatially, it is also possible to combine the two and create
significantly more complex queries. An example is given through Q5 below.
Q5: Find all cafes, pubs and restaurants less than a kilometer away from Karlstor and return their names as
well as their respective distances to the Karlstor.

Listing 4.5: Cypher code for Q5

1 MATCH (b_ref:`org.citygml4j.model.citygml.building.Building `) -[:
ENRICHED_BY ]-() -[:INCLUDES]-(ob_ref:osm_building {osm_id: '
52103816 '}) // osm id of the Karlstor

2 MATCH (b_ref) -[:boundedBy ]-() -[:envelope ]-() -[: lowerCorner ]-() -[:
value]-() -[: elementData ]-(c1_ref:`__ARRAY__ `)

3 MATCH (b_ref) -[:boundedBy ]-() -[:envelope ]-() -[: upperCorner ]-() -[:
value]-() -[: elementData ]-(c2_ref:`__ARRAY__ `)

4
5 MATCH (b:`org.citygml4j.model.citygml.building.Building `)
6 MATCH (b) -[:boundedBy ]-() -[:envelope ]-() -[: lowerCorner ]-() -[:

value]-() -[: elementData ]-(c1:`__ARRAY__ `)
7 MATCH (b) -[:boundedBy ]-() -[:envelope ]-() -[: upperCorner ]-() -[:

value]-() -[: elementData ]-(c2:`__ARRAY__ `)
8
9 OPTIONAL MATCH (b) -[: ENRICHED_BY ]-() -[:INCLUDES]-(ob:osm_building

)
10 OPTIONAL MATCH (b) -[: ENRICHED_BY ]-() -[:INCLUDES]-(op:osm_poi) -[:

CLASSIFIED_AS ]-(c:osm_classification)
11 OPTIONAL MATCH (op:osm_poi) -[:NAMED_AS]-(n:osm_name)
12
13 WITH b, c, n,
14 (toFloat(c1_ref.` ARRAY_MEMBER [1] `) + toFloat(c2_ref.`

ARRAY_MEMBER [1] `)) / 2 AS ref_northing ,
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15 (toFloat(c1_ref.` ARRAY_MEMBER [0] `) + toFloat(c2_ref.`
ARRAY_MEMBER [0] `)) / 2 AS ref_easting ,

16 (toFloat(c1.` ARRAY_MEMBER [1] `) + toFloat(c2.` ARRAY_MEMBER
[1] `)) / 2 AS b_northing ,

17 (toFloat(c1.` ARRAY_MEMBER [0] `) + toFloat(c2.` ARRAY_MEMBER
[0] `)) / 2 AS b_easting

18 // Use of the Pythagorean theorem for spatial filtering
19 WITH b,
20 sqrt(( ref_easting - b_easting) * (ref_easting - b_easting) +

(ref_northing - b_northing) * (ref_northing - b_northing))
AS distance ,

21 c.fclass AS fclass ,
22 n.name AS name
23 WHERE distance < 1000 AND (c.fclass IN ['pub ', 'cafe ', '

restaurant '])
24
25 RETURN b.`__UUID__ ` AS uuid , distance , name ORDER BY distance

It is worth mentioning that since all regarded spatial data is stored through a CRS that uses northing and
easting, specifically ETRS89/UTM zone 32N, it is possible to directly add and subtract coordinates or use the
Pythagorean theorem. If the spatial data was encoded through longitude and latitude, as it is in WGS84,
other calculation methods like the Haversine formula would have to be employed.

Lastly, it is also possible to just pull information on a single building, relevant for someone researching this
specific location. These results can also be filtered, depending on the user’s interest. An example is given in
Q6 below.
Q6: Find any possible OSM information on the main building of Munich Central Station (UUID =622524ea-
c21f-4bf6-a336-2d52a18d9e3f).

Listing 4.6: Cypher code for Q6

1 MATCH (b:`org.citygml4j.model.citygml.building.Building ` {
__UUID__: '622524ea-c21f -4bf6 -a336 -2 d52a18d9e3f '}) -[:
ENRICHED_BY]->(osm_data) -[*]->( related)

2 RETURN properties(related);

The results of all queries can be found under Appendix B.

4.2.2 GUI Visualisation

The results from a direct Cypher query are all presented in table form. Additionally, this direct method is
only accessible for users with extensive knowledge on the expanded database and the language Cypher. To
consequently better visualize the results, a Graphical User Interface with a selection of possible queries and
filters was built. This also allows users without any knowledge of the structure of the graph or even Neo4j,
Cypher or Graph DBs in general, to query the expanded KG.

The following pages give an overview over the GUI layout, its functions and its querying capabilities. It should
be noted that this Interface only represents a small excerpt of all possible queries on the expanded KG to
demonstrate the possibilities of running and visualising spatial, semantic and mixed queries, both simple and
complex. The GUI is split into two main parts, the console to run applications and the map to display any
results. The console itself is again split into three sections, each of which handle a specific application or set
of applications.
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Figure 4.7: Overview over the GUI: The layout consists of a console (left) to run the queries and a map (right) to
display the results. The yellow geometries are all Bboxes that are not selected by a filter.

• Section 1: Loading Geometries The first section of the console is demonstrated in Figure 4.7.
By clicking the "Load Geometries" button, all Bbox geometries are retrieved from the KG and
displayed on top of an OSM map. The total amount of geometries displayed on the map is
also shown.

• Section 2: Filtering The second section of the console concerns the filtering of all the
visualised buildings through various criteria. All available filter queries are structured the same
way, namely ATTRIBUTE - COMPARISON OPERATOR - VALUE. The value is a free entry
field, while the choice of attributes and comparison operators is provided via a dropdown
menu (see Figure 4.8). The attributes are both spatial (e.g. area sizes) and thematic (e.g.
feature class) in nature. After executing a filter query, all buildings fitting that filter are then
represented through red Bboxes on the map. Additionally, all buildings where no data about
the filtered attribute is available are returned in grey, all other buildings remain yellow. Both
the amount of buildings matching the filter, as well as the amount of buildings not available for
this filter are returned to the console.
On top of running a single filter, it is also possible to combine two filters through an AND logic,
thus combining either two thematic, two spatial or a thematic and a spatial query. An example
of such a mixed filter is shown in Figure 4.8.
Finally, it should also be possible to apply filters not just for all buildings stored in the DB,
but also only for buildings in a specific area. Thus a search radius option is available, as
demonstrated in Figure 4.9, where only structures within the selected radius from a specific
building are filtered. The central building is hereby chosen through the user clicking on it.

• Section 3: Specific building information Clicking on a specific geometry will reveal a Pop
Up with data about that building (see Figure 4.10). Included is data from the original graph,
such as a buildings measured height, as well as data from the graph expansion, such as all
feature classes and types associated with the building. This allows the user to find further
information on buildings in a filter or on any specific building they might be interested in.
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Figure 4.8: Filter query with the GUI: The query shown in this figure filters for all buildings with an associated OSM
feature class with a code number > 2200 (all feature classes outside of the public and health sector [27])
AND a measured building height (CityGML) of over 30 meters. The 56 buildings matching this filter are
returned in red on the map, the 4167 buildings that lack sufficient information on any of the filter criteria
are returned in grey, all other buildings remain yellow.

Building at the
center of the
Search Radius

Slider for Search
Radius

Figure 4.9: Filter query with a search radius: The filter query in this figure is only executed for buildings whose center
is less than 300 meters away from the "Landgericht München" (opaque building). All buildings within the
300 meter radius are returned red, if they have more than 5 storeys above ground and an area size of
over 30 m2 and returned grey if they lack any of the filtered attributes.
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Figure 4.10: Building Pop Up: When clicking on a specific building, a Pop Up with relevant building data is shown. In
this case, the Pop up displays all known feature classes and types as well as all names associated with
the "Landgericht München" (OSM data), as well as the building’s height and ALKIS function (CityGML
data).
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5 Discussion and Outlook

5.1 Conclusion

The goal of this thesis was to develop a concept allowing users without deep knowledge of CityGML to
integrate thematic data into a CityGML knowledge graph and query it to meet their specific needs. A
clear, ordered approach was devised and successfully implemented using OSM data, which enriched the
knowledge graph. Both the concept and program are user-friendly and intuitive to query, allowing for thematic,
spatial and even mixed filtering, with the GUI even enabling users without database knowledge to interpret
results.

However, there are limitations. Over 20% of CityGML buildings and 15% of OSM buildings remained
unmatched, suggesting that some valid matches may have been missed. These numbers could have been
reduced by lowering thresholds, but that would have in turn carried the consequence of more mismatches.
The approach was designed for OSM data, and it is uncertain if it would work with significantly different
data sets or CityGML data from other regions [6]. Geometry matches different from bounding boxes to
polygons could also pose challenges, as different spatial representations might need parameter adjustments.
Reintegration of the expanded graph into CityGML is currently limited, with potential information loss. In
summary, while the framework works well for expanding the knowledge graph of a data set for the purpose of
analysing specific use case data - both thematically and spatially - when using OSM and the given CityGML
data, further research is needed for broader applications.

5.2 Outlook

While the concept and its implementation deliver effective results, there are several areas for improvement
and potential additions:

First, run time optimization is needed, particularly in the areas of data integration and point-to-polygon
matching. Data integration is the most time-consuming process, so enhancing efficiency here would
significantly speed up the program. Point-to-Polygon matching also takes considerably longer than Bbox-to-
Polygon matching, suggesting that alternative techniques for more efficient spatial analysis might be worth
exploring.

Additionally, the GUI could benefit from more advanced querying capabilities, enabling a broader range of
queries, including more complex ones. For example, it could allow filtering for all residential buildings on a
specific street, thus combining more complex semantic and spatial filters. Additionally, depending on the use
case and the data added, the GUI could offer tailored filters, displays, and visualizations. For instance, if
height data is included, visual indicators for building heights could be incorporated. All these additions could
make the GUI more suitable for tasks like city management.

Exploring other data-matching techniques is another possible avenue for improvement. More sophisticated
spatial approaches, such as fuzzy mapping, as suggested by [22], or non-spatial approaches [25], could
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prove valuable depending on the type of data being integrated. Partly spatial approaches, like the one
proposed by [24], could also enhance the matching process.

Lastly, as mentioned in the conclusion, while the current implementation focuses on integrating OSM data,
the same approach could be applied to incorporate other data sources, such as heating or insulation data
relevant to the energy sector. This would expand the utility of the framework across different domains and
use cases.
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https://geopandas.org/en/stable/docs.html
https://geopandas.org/en/stable/docs.html
https://shapely.readthedocs.io/en/stable/index.html
https://shapely.readthedocs.io/en/stable/index.html
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A Python Libraries

Table A.1: Table of Python libraries used in the implementation

Library Version

neo4j 5.24.0
pandas 2.2.3

geopandas 1.0.1
shapely 2.0.6
requests 2.32.3

Table A.2: Table of Python and Java Script (js) libraries used for the Graphical User Interface

Library Version

flask 3.0.3
neo4j 5.24.0
pyproj 3.6.1

leaflet.js 1.7.1
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B Cypher Query Results

Figure B.1: Results for Q1: The query returns 651 indexed building heights.
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Figure B.2: Results for Q2: The query returns 1212 indexed UUIDs.

lower0 lower1 upper0 upper1
1 "691580.88" "5335079.39" "691646.6" "5335140.12"
2 "691948.232" "5334773.1" "691976.34" "5334799.819"
3 "690157.07" "5334993.94" "690387.5" "5335149.64"
4 "690237.35" "5335144.22" "690313.93" "5335207.67"
5 "691505.3" "5334653.5" "691524.37" "5334677.99"
6 "691036.86" "5334367.92" "691055.98" "5334382.02"
7 "690649.27" "5335770.52" "690724.02" "5335852.51"
8 "690315.514" "5335242.188" "690331.117" "5335259.533"
9 "691853.419" "5335252.788" "691923.104" "5335299.633"

10 "691573.4" "5334779.84" "691661.69" "5334880.01"
11 "691678.983" "5334556.759" "691691.49" "5334569.236"
12 "691556.849" "5334609.759" "691594.939" "5334647.884"
13 "691130.28" "5334588.57" "691141.6" "5334615.75"
14 "690884.27" "5335833.3" "690986.28" "5335900.64"

Figure B.3: Results for Q3: The query returns the location data (Bbox coordinates) of 14 buildings.
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area UUID
1 20,00 "c1fe84e7-82b0-4ed0-abcb-ac09c711303b"
2 20,05 "5dad83ae-72e1-432e-a9fc-421d3da0e4a4"
3 20,13 "69bce095-c8f2-42d6-8892-afa157ff7f66"
4 20,24 "2afdd4ea-2e33-4566-929f-476bb822c358"
5 20,29 "74355e6b-e54d-4f84-b493-7b7935849a50"
6 20,33 "ef506220-37c9-4b2c-bfed-b3ba328029ab"
7 20,35 "c0d4dcd2-2970-4a1f-bdc1-dba828e9394d"
8 20,37 "0e13ff17-bd06-4874-b290-11df71fb285e"
9 20,38 "c4c73a78-a469-4f80-9fe3-e1adde77bfc0"

10 20,43 "d052d4a9-881c-4cbb-99b8-6edede75fa8a"
152 28,96 "b0ce5136-1ef9-44cc-8d95-d75c431c3119"
153 28,98 "799e9c06-aaf2-4f19-977b-6474a28289e2"
154 29,03 "5adc1bd5-a272-4935-8839-dea1afaf92ba"
155 29,06 "814ffd51-cd16-490d-afc0-2163c7837dd9"
156 29,08 "977e6583-fed2-4ce9-ad49-5fb9cdbedc45"
157 29,15 "a4a4b04c-2978-4665-8d3f-48b4b7315c8d"
158 29,11 "415d8fe7-c8ca-4b96-a77a-28b36d58047c"
159 29,22 "5a470209-df7c-4c2c-9a73-2bbdb75a228d"
160 29,39 "b192c02d-4482-4e27-b85a-9c8923e96c09"
161 29,44 "617a67dd-c902-4e4a-a01b-7020e632ae16"
162 29,48 "b8668212-2ca8-496e-a6f2-2c265d1c83f8"
163 29,48 "60299ec1-9238-4359-b2cb-cc89af9b6630"
164 29,56 "613a727b-3f97-4917-b729-cd46efe8f19b"
165 29,64 "acc018c9-df37-4020-bf42-d0aeda867fc1"
166 29,7 "c920330b-28fb-4962-8315-8d3d6ccc4a63"
167 29,75 "bcf20017-110b-48fa-942b-f8392491fb85"
168 29,75 "3c99a067-bf34-4a00-80ba-1992ddd41ce0"
169 29,79 "47c37d27-410c-4c2f-9c23-56fc2cbce4be"
170 29,84 "e06c61b5-4c55-44bb-8845-aaedbcce41af"
171 29,98 "64692895-a05b-4f6d-857c-c62146920d8c"

Figure B.4: Results for Q4: The query returns the area size of 171 buildings in ascending order as well as the
corresponding UUIDs.
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Figure B.5: Results for Q5: The query returns 501 indexed UUIDs, distances and names in an ascending order of
distance.

Figure B.6: Results for Q6: The query returns all attributes of new OSM nodes from the graph expansion that can be
reached from the specified building node.
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