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H I G H L I G H T S

A numerical study on additively manu-
factured particle dampers is presented.
The study focuses on free oscillations
of a cantilever beam with integrated
powder cavity.
A coupled discrete element-finite ele-
ment model allows to represent the cav-
ity deformation.
An optimal packing density between 58
and 61% results in the best damping
behavior.
Particle sliding friction induced by the
cavity deformation is the main source of
dissipation.
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A B S T R A C T

Particle dampers represent a simple yet effective means to reduce unwanted oscillations when attached
to structural components. Powder bed fusion additive manufacturing of metals allows to integrate particle
inclusions of arbitrary shape, size, and spatial distribution directly into bulk material, giving rise to novel
metamaterials with controllable dissipation without the need for additional external damping devices. At
present, however, it is not well understood how the degree of dissipation is influenced by the properties of the
enclosed powder packing. In the present work, a two-way coupled discrete element - finite element model is
proposed allowing for the first time to consistently describe the interaction between oscillating deformable
structures and enclosed powder packings, while existing works have only considered rigid enclosures so
far. As fundamental test case, the free oscillations of a hollow cantilever beam filled with various powder
packings differing in packing density, particle size, and surface properties are considered to systematically
study these factors of influence. Critically, it is found that the damping characteristics strongly depend on the
packing density of the enclosed powder and that an optimal packing density exists at which the dissipation is
maximized. Moreover, it is found that the influence of (absolute) particle size on dissipation is rather small.
First-order analytical models for different deformation modes of such powder cavities are derived to shed light
on this observation.
∗ Corresponding author.
E-mail addresses: patrick.praegla@tum.de (P.M. Praegla), thomas.mair@iwb.tum.de (T. Mair), andreas.wimmer@iwb.tum.de (A. Wimmer),
vailable online 1 March 2024
032-5910/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

ebastian.fuchs@tum.de (S.L. Fuchs), michael.zaeh@iwb.tum.de (M.F. Zaeh), wolfg

ttps://doi.org/10.1016/j.powtec.2024.119587
eceived 12 January 2024; Received in revised form 26 February 2024; Accepted 2
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ang.a.wall@tum.de (W.A. Wall), christoph.anton.meier@tum.de (C. Meier).

9 February 2024

https://www.journals.elsevier.com/powder-technology
https://www.journals.elsevier.com/powder-technology
mailto:patrick.praegla@tum.de
mailto:thomas.mair@iwb.tum.de
mailto:andreas.wimmer@iwb.tum.de
mailto:sebastian.fuchs@tum.de
mailto:michael.zaeh@iwb.tum.de
mailto:wolfgang.a.wall@tum.de
mailto:christoph.anton.meier@tum.de
https://doi.org/10.1016/j.powtec.2024.119587
https://doi.org/10.1016/j.powtec.2024.119587
http://crossmark.crossref.org/dialog/?doi=10.1016/j.powtec.2024.119587&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Powder Technology 437 (2024) 119587P.M. Praegla et al.

i
p
c
c
p
w
o
t
d
e
c
o
d
s
m

w

1. Introduction

Particle dampers represent a simple yet effective means to re-
duce unwanted oscillations when attached to structural components.
While conventional production technologies require to realize particle
dampers as additional external devices, Powder Bed Fusion of Metals
Using a Laser Beam (PBF-LB/M) allows to integrate particle inclusions
of arbitrary shape, size, and spatial distribution directly into bulk mate-
rial, giving rise to novel metamaterials with controllable dissipation [1–
4]. Importantly, PBF-LB/M naturally allows to use the powder particles
underlying the process as raw material also as means of dissipation. By
creating closed cavities, pockets of unfused powder remain inside the
part after the process. At present, however, it is not well understood
how the degree of dissipation is influenced by the properties of the
enclosed powder packing. In the present work, a two-way coupled
discrete element - finite element model is proposed allowing for the
first time to consistently describe the interaction between oscillating
structures and enclosed powder packings and to systematically study
the influence of powder packing characteristics on the resulting degree
of dissipation.

Particle dampers have been studied to great extent in the literature
with applications in civil and mechanical engineering. Compared to
other damping mechanisms, they provide various advantages. Being a
passive damping mechanism, they do not require an additional energy
source. They are simple in design, easy to install at different locations,
work in multiple directions and over a wide frequency range, and are
insensitive to ambient temperature [5]. Though, in additive manufac-
turing high temperatures from post heat treatment should be avoided
as the unfused particles may sinter and thus significantly decrease the
damping capabilities [2,3,6]. In experimental studies particle dampers
are most often attached as external devices. In numerical and analytical
studies of such particle dampers, the cantilever beam is often simplified
to a single degree of freedom oscillator to reduce the model complex-
ity [5,7–10]. Particle dampers are typically characterized by a highly
non-linear behavior that depends on various parameters such as particle
size, mass, coefficient of friction, and coefficient of restitution [8].
Comprehensive overviews of conventional particle dampers can be
found in the review articles by Lu et al. [9] and Gagnon et al. [5]. Here
and in the following, the notion conventional particle dampers refers to
devices produced by conventional manufacturing technologies. These
systems commonly consist of an enclosure that is partially filled with
rather large particles in the millimeter range and that is externally
attached to the structure to be damped.

Additively manufactured particle dampers need to be studied sep-
arately as they differ from conventional particle dampers in various
aspects such that a transferability of results is questionable. In partic-
ular, the particle sizes typically differ, lying in the millimeter range
for conventional particle dampers (cf. Table 3 in [5]) and in the
micrometer range in PBF-LB/M, e.g., with a mean diameter of 27 μm
n [2] and 47 μm in [11]. Another key feature is the filling level, or
acking density, within a particle damper. When manufacturing closed
avities with PBF-LB/M, the amount of powder particles inside the
avity is defined by the process parameters of the PBF-LB/M and the
revious powder spreading process. These cavities are completely filled
ith powder typically characterized by packing densities in the range
f 40–60% [3,11,12]. For conventional particle dampers, it was found
hat a certain clearance between the particles and the walls of the
amper is necessary to increase the degree of damping, resulting in an
ffective packing density that is rather in the range of 10% [7]. This
onceptual difference is likely to change the fundamental mechanism
f dissipation. While dynamic particle impacts can be considered as
ominating means of dissipation in conventional particle dampers,
tick–slip effects between particles in permanent contact might be the
ain source of dissipation in additively manufactured particle dampers.

With these differences in mind, the literature specifically concerned
2

ith additively manufactured particle dampers is summarized in the
following. In experiments, Künneke and Zimmer [3] attached cuboid
cavities filled with powder to a spring element and measured the free
decay from an initial excitation to study the influence of different
cavity geometries. They found that a larger cavity provided better
damping. Further, a subdivision of the cavity or lattice structures
inside the cavity decreased the amount of damping. In a similar way,
Guo et al. [13] studied a multi-unit particle damper by attaching
the additively manufactured part to the end of a cantilever beam,
adopting the same experimental setup as for a conventional particle
damper [14,15]. For the studied low vibration frequency (<100Hz),
one large unit cell yielded better damping performance than multiple
smaller cells. Additionally, a DEM model was used to study the energy
dissipation. The computational effort was reduced by considering only
one unit cell of size 2 × 2 × 2 mm3 and using mono-sized particles
of 30 μm diameter while the real particle size ranges from 15–40 μm. The
damping mechanism was found to be mainly caused by impacts of the
particles with the walls. For their experiments, Ehlers et al. [11] man-
ufactured complete beams of AlSi10Mg with closed cavities containing
unfused powder. The beams were excited by an automatic impulse
hammer. The best damping was achieved for lower natural frequencies
while damping decreased with increasing natural frequency. This corre-
lation between damping ratio and natural frequency was approximated
with a hyperbola. Further, a 33 full factorial experimental design was
developed in [6] to identify the influence of excitation force, excitation
frequency, and cavity size for the aluminum alloy AlSi10Mg and the
tool steel 1.2709. The amplitude of the frequency response function
was reduced by up to 97% due to the particle damper. Similarly, Scott-
Emuakpor et al. [2,12,16–19] published several studies on additively
manufactured cantilever beams with multiple cavities excited by a
shaker. Up to ten times the damping of a fully-fused beam could
be reached with only 1–4% unfused powder volume [16]. Using the
experimental data from [2,12,16–19], Kiracofe et al. [20] created a
discrete element method (DEM) model to predict the damping ratio of
particle dampers. Since the entire cavity with 26 million particles at
an average diameter of 25 μm was not feasible to simulate, the domain
was subdivided into 5000 identical subdomains with 5000 particles
each such that only one subdomain needed to be simulated. This
subdomain was attached to a single degree of freedom spring–damper
system excited by an external force. The damping performance was
calculated from the response to sine dwell excitations near resonance.
The parameters of the model were chosen to match the experimental
data best. Using five validation points they predicted similar trends as
in the experiments. Harduf et al. [21] recently proposed a two-mass
model for the steady-state response of structures containing particle
dampers. The model consisted of a spring-dashpot system where the
loose powder particles were modeled as an additional lumped mass
which was coupled to the system via Coulomb friction.

In summary, only a few works considered the modeling and nu-
merical simulation of additively manufactured particle dampers. Guo
et al. [13] used only mono-sized particles which can lower the damping
performance [20]. Further, the initial face-centered cubic particle con-
figuration yielded a rather high packing density of 72% while a typical
packing density of spread powder is in the range of 40–60% [22]. Kira-
cofe et al. [20] only simulated a subdomain of the entire powder cavity.
Both publications reduced the oscillating structure to a single degree of
freedom oscillator with an attached rigid box, however, deformation
of the powder cavity was not considered. Such models considering
rigid particle boxes allow to study dissipation due to powder particle
impacts, i.e. energy from the enclosure is transferred to the powder only
via impacts. However, to accurately model frictional dissipation due
to tangential relative motion of powder particles, which is assumed to
be the main source of dissipation for densely packed powder cavities,
consideration of a deformable enclosure is imperative.

To close this gap left by existing approaches, the present work
proposes a two-way coupled discrete element - finite element model

to consistently describe the interaction between oscillating deformable



Powder Technology 437 (2024) 119587P.M. Praegla et al.

s
c
f
f
c
b
w

𝐟

𝑘

m

w

i

c

t
n
𝐟
D

𝐹

w

𝑔

structures and powder packings enclosed in cavities within these struc-
tures. Importantly, this approach allows for the first time to consider
the relative slip motion induced on the powder particles through the
deformation of the cavity walls, which is believed to be a major
source of dissipation when considering completely filled and densely
packed powder cavities embedded in deformable structures, as typically
resulting from PBF-LB/M processes. The powder domain (represented
by the DEM) and the structural domain (discretized by the finite ele-
ment method (FEM)) are coupled via a Dirichlet–Neumann partitioned
approach. As fundamental test case, the free oscillations of a hol-
low cantilever beam filled with powder packings differing in packing
density as well as particle size, density and surface properties are con-
sidered to study these factors of influence systematically. Critically, it is
found that the damping characteristics strongly depend on the packing
density of the enclosed powder and that an optimal packing density
exists at which the dissipation is maximized. Moreover, it is found that
the influence of (absolute) particle size on dissipation is rather small.
First-order analytical models for different deformation modes of such
powder cavities are derived to shed light on this observation.

The remainder of this article is organized as follows. First, the DEM
powder model, the FEM discretization of the solid domain as well
as the DEM-FEM coupling approach are summarized, followed by a
description of the simulation setup. Next, the computational model is
used to study the influence of different parameters of the model on the
dissipation behavior of particle dampers by means of cantilever beams.
An analytical model is derived to study the influence of the particle
size. Finally, an experimental realization of the simulation setup is
presented.

2. Methods

To enable numerical studies of particle dampers, the discrete el-
ement method (DEM) is employed to model the powder particles
within the damper. Additionally, the DEM is coupled with the finite
element method (FEM) which is used to discretize the (deformable)
structural enclosure of the particle damper. The domain 𝛺 of the
particle–structure interaction problem consists of a non-overlapping
domain 𝛺𝑝 filled with particles and a structural domain 𝛺𝑠 that share
a common interface 𝛤 𝑝𝑠.

2.1. DEM powder model

To model the powder phase, a cohesive powder model recently
proposed by the authors in the context of powder spreading in powder
bed fusion processes [22–25], will be employed. In the following, only
the most important equations are summarized. Using the DEM, the
following equations of motion are solved for each particle 𝑖 in each
time step:

(𝑚�̈�𝐺)𝑖 = 𝑚𝑖𝐠 +
∑

𝑗
(𝐟 𝑖𝑗𝐶𝑁 + 𝐟 𝑖𝑗𝐶𝑇 + 𝐟 𝑖𝑗𝐴𝑁 ) in 𝛺𝑝,

(𝐼𝐺�̇�)𝑖 =
∑

𝑗
(𝐫𝑖𝑗𝐶𝐺 × 𝐟 𝑖𝑗𝐶𝑇 ) in 𝛺𝑝,

(1)

with the mass 𝑚 = 4
3𝜋𝜌𝑟

3 and moment of inertia 𝐼𝐺 = 0.4𝑚𝑟2 for
pherical particles with radius 𝑟 and density 𝜌. The interaction forces
onsist of normal contact 𝐟 𝑖𝑗𝐶𝑁 , frictional contact 𝐟 𝑖𝑗𝐶𝑇 , and adhesive 𝐟 𝑖𝑗𝐴𝑁
orces. In the balance of angular momentum, moment contributions
rom the frictional forces with lever arm 𝐫𝑖𝑗𝐶𝐺 = 𝐫𝑖𝑗𝐶 −𝐫𝑖𝐺 from the particle
enter to the point of contact are considered. Each contribution is
riefly explained in the following. Normal contact forces are evaluated
ith a spring-dashpot model

𝑖𝑗
𝐶𝑁 =

{

min(0, 𝑘𝑁𝑔𝑁 + 𝑑𝑁 �̇�𝑁 )𝐧, 𝑔𝑁 ≤ 0,
𝟎, 𝑔𝑁 > 0,

(2)

where 𝑔𝑁 is the normal gap (penetration) and 𝐧 the normal vector
3

between two particles according to
𝑔𝑁 ∶= ‖𝐫𝑗𝐺 − 𝐫𝑖𝐺‖ − (𝑟𝑖 + 𝑟𝑗 ), 𝐧 =
𝐫𝑗𝐺 − 𝐫𝑖𝐺

‖𝐫𝑗𝐺 − 𝐫𝑖𝐺‖
. (3)

The stiffness constant 𝑘𝑁 and the damping constant 𝑑𝑁 are given by

𝑁 ≥ max

(

8𝜋𝜌𝑉 2
𝑚𝑎𝑥𝑟𝑚𝑎𝑥
𝑐2𝑔

,
4𝜋𝛾
𝑐𝑔

)

, 𝑑𝑁 = 2| ln(𝑒)|

√

𝑘𝑁𝑚𝑒𝑓𝑓

ln(𝑒)2 + 𝜋2
, (4)

where the contact stiffness 𝑘𝑁 is chosen such that dynamic collisions
of particles with the maximum radius 𝑟𝑚𝑎𝑥 and maximum velocity 𝑉𝑚𝑎𝑥
or the maximum static adhesive forces, characterized by the surface
energy 𝛾, lead to penetrations limited by the maximum penetration 𝑐𝑔 .
It has been checked for all simulation results presented in the following
that the penetrations are, at most, in the range of the maximum
penetration to also account for potentially higher static contact forces.
The damping constant is characterized by the coefficient of restitution 𝑒
and the effective mass 𝑚𝑒𝑓𝑓 = 𝑚𝑖𝑚𝑗

𝑚𝑖+𝑚𝑗
. As typical in DEM-based powder

odeling, the contact stiffness 𝑘𝑁 is chosen by orders of magnitude
smaller than the elastic material parameters (e.g., Young’s modulus) of
the powder particles to allow for significantly larger time step sizes [26,
27]. This approach is well justified as long as the focus lies on studying
the flow and packing behavior of powders and not, e.g., on resolving
the temporal contact force evolution for highly dynamic particle impact
scenarios. In the scenarios where such reduced contact stiffness values
are admissible, there is no significant benefit of applying elaborate
contact force laws such as the Hertzian contact model. This justifies the
usage of simpler, and more efficient, spring-dashpot models as used in
this work [22,23].

Similar to the normal forces, the frictional forces follow a spring-
dashpot model coupled to the normal force via Coulomb’s law

𝐟 𝑖𝑗𝐶𝑇 =

{

min(𝜇‖𝐟 𝑖𝑗𝐶𝑁‖, ‖𝑘𝑇 𝐠𝑇 + 𝑑𝑇 �̇�𝑇 ‖)𝐭𝑇 , 𝑔𝑁 ≤ 0,
𝟎, 𝑔𝑁 > 0,

(5)

ith the coefficient of friction 𝜇, the constants 𝑘𝑇 = 1−𝜈
1−0.5𝜈 𝑘𝑁 and

𝑑𝑇 = 𝑑𝑁 , where 𝜈 is Poisson’s ratio. The rate of the tangential gap vector
s calculated as �̇�𝑇 = (𝐈−𝐧⊗𝐧𝑇 )(𝐯𝑖𝐺−𝐯𝑗𝐺)+𝝎𝑖×𝐫𝑖𝑗𝐶𝐺−𝝎𝑗 ×𝐫𝑗𝑖𝐶𝐺, where 𝐠𝑇

has to be calculated from time integration of �̇�𝑇 , and the tangential unit
vector is given as 𝐭𝑇 ∶= −(𝑘𝑇 𝐠𝑇 + 𝑑𝑇 �̇�𝑇 )∕‖𝑘𝑇 𝐠𝑇 + 𝑑𝑇 �̇�𝑇 ‖. The stick/slip
ondition is realized by a standard return mapping algorithm [23].

The adhesive forces result from van-der-Waals forces between par-
icles [28] and are characterized by the pull-off force, i.e., the force
ecessary to separate two contacting particles. The adhesive forces
𝑖𝑗
𝐴𝑁 = 𝐹𝑆 (𝑔𝑁 )𝐧 are calculated from the effective surface energy via the
erjaguin–Muller–Toporov (DMT) model [29] as detailed in [23]:

𝑆 (𝑔𝑁 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹𝑆0 = −4𝜋𝛾𝑟𝑒𝑓𝑓 , 𝑔𝑁 ≤ 𝑔0
𝐴𝑟𝑒𝑓𝑓
6𝑔2𝑁

, 𝑔0 < 𝑔𝑁 < 𝑔∗

0, 𝑔𝑁 ≥ 𝑔∗
(6)

ith

0 ∶=

√

𝐴𝑟𝑒𝑓𝑓
6𝐹𝑆0

, 𝑔∗ ∶=

√

1
𝑐𝐹𝑆0

𝐴𝑟𝑒𝑓𝑓
6𝐹𝑆0

=
𝑔0

√

𝑐𝐹𝑆0
, (7)

where 𝛾 is the surface energy, and 𝐴 the Hamaker constant. Here,
𝑔0 is the distance where the van der Waals forces reach their maxi-
mal magnitude, which is given by the pull-off force 𝐹𝑆0. For particle
distances larger than the cut-off distance 𝑔∗, at which the van der
Waals forces exhibit a relative decline of 𝑐𝐹𝑆0 with respect to the
pull-off force, the adhesive forces are small enough to be neglected.
The surface energy, used to characterize the magnitude of adhesive
forces, is greatly affected by the particle properties (e.g., the roughness
and surface contaminations) and is therefore usually calibrated with
experiments. As later shown, adhesive forces only play a minor role
for the dissipation in the considered particle damper system. For time
integration a velocity-verlet scheme is used. More details on the overall
powder model can be found in [23].
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2.2. FEM discretization of solid domain

Considering the regime of finite deformations, the structural field is
governed by the nonlinear balance of linear momentum in the following
local material form:

𝜌𝑠0
d2𝐝𝑠
d𝑡2

= ∇0 ⋅ (𝐅𝐒) + 𝜌𝑠0𝐛
𝑠
0 in 𝛺𝑠, (8)

with the reference density 𝜌𝑠0 and body force 𝐛𝑠0, and the structural
displacement 𝐝𝑠 as primary unknowns. The deformation of the struc-
ture is described by the deformation gradient 𝐅 = ∇0𝐝𝑠 defining the
Green–Lagrange strains 𝐄 = 1

2

(

𝐅𝑇𝐅 − 𝐈
)

. For simplicity, the second
iola–Kirchhoff stresses 𝐒 are chosen to follow from a constitutive
elation of the form 𝐒 = 𝜕𝛹∕𝜕𝐄 based on a hyperelastic strain energy
unction 𝛹 = 𝛹 (𝐄). Within this work, a Saint Vernant Kirchoff consti-
utive law is chosen. The partial differential equation (8) is subject to
nitial conditions for the structural displacement and velocity field:

𝑠 = 𝐝𝑠0 and d𝐝𝑠
d𝑡

=
d𝐝𝑠0
d𝑡

in 𝛺𝑠 at 𝑡 = 0 . (9)

On the structural boundary 𝛤 𝑠 = 𝜕𝛺𝑠 ⧵ 𝛤 𝑝𝑠, where 𝜕𝛺𝑠 is the to-
al boundary of the structural domain and 𝛤 𝑝𝑠 the powder structure
nterface, Dirichlet and Neumann boundary conditions are prescribed
𝑠 = �̂�𝑠 on 𝛤 𝑠

𝐷 and (𝐅𝐒) ⋅ 𝐍 = �̂�𝑠0 on 𝛤 𝑠
𝑁 , (10)

with prescribed boundary displacement �̂�𝑠, (first Piola–Kirchoff) bound-
ary traction �̂�𝑠0, and outward pointing unit normal vector 𝐍 on 𝛤 𝑠 in
material description, where 𝛤 𝑠 = 𝛤 𝑠

𝐷 ∪ 𝛤 𝑠
𝑁 and 𝛤 𝑠

𝐷 ∩ 𝛤 𝑠
𝑁 = ∅.

The balance of linear momentum (8) is discretized by the finite
element method. For more details on this standard procedure, the
interested reader is referred to the literature [30,31]. The general form
of the resulting semi-discrete equations of motion is given by

𝐌�̈� + 𝐅𝑖𝑛𝑡(𝐝) − 𝐅𝑒𝑥𝑡 = 0, (11)

with the mass matrix 𝐌, the vector of nonlinear internal forces 𝐅𝑖𝑛𝑡,
the vector of external forces 𝐅𝑒𝑥𝑡 and the time-dependent displacement
vector 𝐝. The semi-discrete problem (11) is discretized in time with the
generalized-𝛼 method [32] choosing a spectral radius of 𝜌∞ = 0.8.

Remark 1. Damping for the structural part (𝐂�̇�) is not considered.
Though, it could be easily incorporated, e.g., with Rayleigh damp-
ing. Neglecting the structural damping allows to isolate the effect
of the particle damper and attribute the dissipation to the particle
interactions.

2.3. DEM-FEM coupling approach

The powder and structural domains are coupled via a Dirichlet–
Neumann partitioned approach, similar to the authors’ previous work
[33], where a fluid and structural problem were discretized by
smoothed particle hydrodynamics (SPH) and the FEM, respectively.
The DEM particles are the Dirichlet partition with prescribed interface
displacements 𝐝𝑝𝑠 at the particle–structure interface 𝛤 𝑝𝑠. The structural
field is the Neumann partition subject to the forces 𝐟𝑝𝑠 transferred by
the particles.

Introducing the field operators  and  for the particle and struc-
tural problem, both mapping the interface displacements 𝐝𝑝𝑠 to inter-
face forces

𝐟𝑝𝑠 = (𝐝𝑝𝑠) and 𝐟𝑝𝑠 = (𝐝𝑝𝑠) , (12)

equilibrium at the interface 𝛤 𝑝𝑠 is satisfied in case the condition

(𝐝𝑝𝑠) = (𝐝𝑝𝑠) (13)

holds. The inverse particle and structural field operators mapping
interface forces 𝐟𝑝𝑠 to interface displacements are consequently defined
as

𝐝𝑝𝑠 = −1(𝐟𝑝𝑠) and 𝐝𝑝𝑠 = −1(𝐟𝑝𝑠) . (14)
4

 
Contact points of particles with surface elements are determined
via closest point projection. The resulting interface forces acting at the
respective closest points 𝝃 are distributed to the nodes 𝑗 of interface
element 𝑒 using its shape functions 𝑁𝑒

𝑗 evaluated at the closest point.
The nodal interface force 𝐟𝑝𝑠𝑗 at node 𝑗 results from the summation of all
force contributions 𝐟𝑒𝑖 of particles 𝑖 acting on various interface elements
𝑒 adjacent to node 𝑗:

𝐟𝑝𝑠𝑗 =
∑

𝑒

∑

𝑖
𝑁𝑒

𝑗 (𝝃𝑖)𝐟
𝑒
𝑖 . (15)

The particle and structural problem are solved repeatedly using an
terative fixed-point solver [34] until the convergence criterion
|

|

|

𝛥𝐝𝑝𝑠𝑛+1,𝑘+1
|

|

|

𝛥𝑡
√

𝑛𝑝𝑠𝑑𝑜𝑓
< 𝜖 (16)

is satisfied, with the L2-norm of the increment of interface displace-
ments |

|

|

𝛥𝐝𝑝𝑠𝑛+1,𝑘+1
|

|

|

= |

|

|

𝐝𝑝𝑠𝑛+1 − 𝐝𝑝𝑠𝑛
|

|

|

at time step 𝑛 and iteration 𝑘, the time
step size 𝛥𝑡, the number of degrees of freedom at the interface 𝑛𝑝𝑠𝑑𝑜𝑓 , and
the tolerance 𝜖 (set to 𝜖 = 1 ⋅ 10−3 in the present work). The coupling
algorithm is explained in detail in Algorithm 1.

Algorithm 1 Time loop until final time 𝑇 of a Dirichlet–Neumann
partitioned fixed-point particle–structure interaction algorithm
while 𝑡 < 𝑇 do

𝑡 ← 𝑡 + 𝛥𝑡 ⊳ increment time
𝑘 ← 1 ⊳ reset iteration counter
𝐝𝑝𝑠𝑛+1,𝑘 ⊳ predict interface displacements
while 𝑡𝑟𝑢𝑒 do

𝐟𝑝𝑠𝑛+1,𝑘+1 = 
(

𝐝𝑝𝑠𝑛+1,𝑘
)

⊳ solve particle field

𝐝𝑝𝑠𝑛+1,𝑘+1 = −1
(

𝐟𝑝𝑠𝑛+1,𝑘+1
)

⊳ solve structural field
𝛥𝐝𝑝𝑠𝑛+1,𝑘+1 = 𝐝𝑝𝑠𝑛+1,𝑘+1 − 𝐝𝑝𝑠𝑛+1,𝑘 ⊳ compute increment of interface

displacements

if ||
|

𝛥𝐝𝑝𝑠𝑛+1,𝑘+1
|

|

|

/

(

𝛥𝑡
√

𝑛𝑝𝑠𝑑𝑜𝑓
)

< 𝜖 then ⊳ check convergence

criterion, cf. equation (16)
break

end if
𝑘 ← 𝑘 + 1 ⊳ increment iteration counter

end while
𝑛 ← 𝑛 + 1 ⊳ increment step counter

end while

2.4. Simulation setup

The computational model described above is implemented in the
parallel, multi-physics research code BACI [35]. Using this model,
cantilever beams with a particle-filled cavity are created to study the
effect of enclosed powder particles on the damping of free bending
oscillations. The beam has a length of 132mm with a rectangular
cross-section with dimensions 20 × 20mm2 (motivated by experiments
studied in [11]). The cavity inside the beam has the dimensions 18 ×
18 × 110mm3, resulting in a wall thickness of 1mm. The simulation
consists of two steps. In the first step, a random particle configuration is
created. In the second step, this particle configuration is used as initial
configuration for the parameter study. In order to create a realistic
initial configuration for the particles inside the cavity, particles are
initially placed on a Cartesian grid and then settle down due to gravity,
creating a random powder configuration similar to a configuration
resulting from powder spreading. A Dirichlet controlled plate is used to
compress the powder, which allows to study the influence of different
(pre-defined) packing densities (see Fig. 1(a)). For a desired packing
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Fig. 1. Overview of the simulation setup with powder preparation by powder compression and excitation of a beam with an unfused powder cavity. Outer dimensions
20 × 20 × 132mm3 and inner dimensions 18 × 18 × 110mm3. The cavity starts 2mm above the clamp (Dirichlet fixed bottom surface). The particles are colored according to
particle size from smallest (blue) to largest (red), i.e., 𝐷𝑚𝑖𝑛 = 0.71mm to 𝐷𝑚𝑎𝑥 = 1.41mm for D50 = 1.0 mm and 𝐷𝑚𝑖𝑛 = 0.18mm to 𝐷𝑚𝑎𝑥 = 0.35mm for D50 = 0.25 mm.
density, the particles are extracted and inserted into the beam cavity for
the second simulation step. Fig. 1(c) shows the initial configuration of
the beam with the particle-filled cavity. The clamped end of the beam
is realized by a Dirichlet surface condition on the bottom surface of
the beam such that the beam is in a vertical position and gravity acts
in the downward direction. Initially, the beam is bent by applying a
constant area force 𝑞 = 0.1Nmm−2 (resultant force 𝑅 = 264N) on one
side of the beam (see Fig. 1(b)). The force is linearly increased over 5ms
and then held constant for 1ms resulting in a maximal transverse tip
displacement of approximately 0.1mm (see Fig. 1(d)). At 𝑇 = 6ms the
force is removed and the beam begins to oscillate freely.

The particle size follows a log-normal size distribution that was
used in our previous work [25] with the same type of material (see
Table A.2). In the present work a value of 𝑘𝑁 = 5642Nm−1 has been
chosen for the penalty parameter, which limited the maximal particle
penetrations to values below 5% of the particle diameter. In Section 3.3,
the sensitivity of the presented results w.r.t. this choice will be critically
analyzed. All parameters of the computational model are summarized
in Tables A.2 and A.3. The cavity volume of 18 × 18 × 110mm3 filled
with particles of original size D50 ≈ 25 μm would result in a total of
2.3 ⋅ 109 particles. To reduce the computational complexity, the prob-
lem size needs to be scaled to make it computationally manageable.
Kiracofe et al. [20] scaled down the computational domain to only
simulate a subset of the particles, but with the original particle size. In
this work the original geometry is used and the particle size is upscaled
until a manageable amount of particles is reached. Critically, using the
original geometry allows a direct comparison with experiments using
the same beam geometry. Following this approach, the influence of
particle size will be critically studied. For the default setup, a particle
size of 𝐷50 = 1.0mm is used, which roughly requires 32 000 particles
to fill the cavity and corresponds to a scaling by a factor of 𝑓 = 37
relative to the original particle size. This scaling also leads to a scaling
of the contact parameters as the contact stiffness is chosen based on
an estimation to limit the maximum relative penetration, which is kept
constant. Therefore, the contact stiffness is scaled according to 𝑘𝑁 ′ =
𝑓𝑘 , the damping parameter according to 𝑑 ′ = 𝑓 2𝑑 (see Eq. (4)). In
5

𝑁 𝑁 𝑁
the same fashion, the tangential contact stiffness is scaled according
to 𝑘𝑇 ′ = 𝑓𝑘𝑇 , and the tangential damping parameter according to
𝑑𝑇 ′ = 𝑓 2𝑑𝑇 . Here, the scaling of the particle radius is given by the factor
𝑓 = 𝑟′∕𝑟, where a variable with superscript (.)′ represents the scaled
quantity and a variable without superscript the original quantity. This
scaling approach corresponds to the coarse graining strategy proposed
by Bierwisch et al. [36]. The accuracy of this and other coarse graining
strategies has been studied, e.g., in [37] in the context of fluidized beds.

A simulated time of 𝑇𝑚𝑎𝑥 = 30ms is chosen, which is enough to
capture the decrease of the oscillation amplitude. The time step size
depends on the particle size [23] and is chosen as 𝛥𝑡 = 2.5 μs for the
particle size 𝐷50 = 1.0mm. In all simulations, the structural problem is
solved with the same time step size as used for the DEM model.

3. Results

Using the computational model described in Section 2, the influ-
ence of different physical effects on the dissipation is studied, namely
the packing density, the penalty parameter of the contact model, the
coefficient of friction, the coefficient of restitution, the adhesive forces,
the particle size, and finally the orientation of the beam.

For the powder and beam material representative properties of
stainless steel 316L are used. The default values of the considered
model parameters are summarized in Tables A.2 and A.3. The damping
behavior is studied based on the decay of the oscillation amplitude. The
oscillation is quantified by the displacement of the top center point on
the beams outer surface in the direction of the excitation.

3.1. Packing density

When manufacturing parts by PBF-LB/M, the powder packing den-
sity within closed cavities results from the chosen process parameters.
Different process conditions may alter the packing density and ulti-
mately influence the damping capabilities. In the context of this work,
the packing density is prescribed in a controlled manner and defined
as the ratio of particle volume to cavity volume. The cavity is always
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Fig. 2. Influence of different packing densities 𝛷 on the amplitude.
completely filled with particles such that there is no clearance between
the particle bulk and the cavity walls. The packing density is varied
between 50% and 60% in steps of 1%. For these different packing
densities, Fig. 2(a) shows the tip displacement (in 𝑥-direction) of the
oscillating beam over time. The same data is visualized in Fig. 2(b)
where only the outer envelope of successive oscillation peaks is shown
to get clearer view of the decay curve. Accordingly, there is no no-
ticeable damping for low packing densities (≤52%). For larger packing
densities the damping increases. The optimum damping is reached for
6

a packing density of approximately 58%, i.e., the amount of damping
decreases again when further increasing the packing density. This
observation may be explained as follows: at very low packing densities
(≪58%) there are too few contacts and the contact normal forces are
too small to generate noticeable dissipation. In contrast at very high
packing density (≫58%), particles are packed closely together and the
associated high contact normal forces hinder slip motion between the
particles (i.e., contacting particles predominantly remain in the stick
state), leading to reduced dissipation.
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Table 1
Damping ratio for different particles sizes and their respective optimal packing density.
𝜁𝑖 is the damping ratio for the 𝑖th period where the first period is chosen from the first
o the second local minimum (see Fig. 2). 𝜁5 is the damping ratio calculated over five

periods, i.e., from the first to the sixth local minimum.
Particle size
D50 [mm]

Packing
density 𝛷 [%]

𝜁1 𝜁2 𝜁5

0.25 61 0.217 0.166 0.075
0.5 61 0.196 0.059 0.060
1.0 58 0.160 0.186 0.121

3.2. Particle size

To study the effect of the particle size, the default particle size
of 1mm is scaled by a factor of 0.5 and 0.25, respectively. Additionally,
different packing densities for each particle size are simulated. When
the particle size is reduced by a factor of 2 to 𝐷50 = 0.5mm with
acking densities ranging from 𝛷 = 56% to 62% (∼250 000 particles),

an optimum packing density can be identified at 𝛷 = 61% (Figs. 2(c)
and 2(d)). However, the damping is slightly less than for the default
case. Another reduction in particle size by a factor of 2, i.e., 𝐷50 =
0.25mm (∼2.0 million particles), yields similar results (Figs. 2(e) and
2(f)). Again, the best damping is obtained for 𝛷 = 61%.

To get a sense for the damping capabilities, the damping ratio for
the particle sizes 𝐷50 = 0.25, 0.5, and 1.0 mm are summarized in Table 1
for the respective optimal packing densities. As damping is highly
non-linear for particle dampers, the damping ratio of the first two
periods is given, starting from the first local minimum, and the damping
ratio for the fifth period, computed from the first to the sixth local
minimum. The damping ratio 𝜁 = 1

/

√

1 + (2𝜋∕𝛿)2 is calculated from
the logarithmic decrement 𝛿 = 1

𝑛 ln (𝑥(𝑡)∕𝑥(𝑡 + 𝑛𝑇 )), with the oscillation
period T and the integer 𝑛 (where 𝑛 = 1 for 𝜁1, 𝜁2 and 𝑛 = 5 for
𝜁5). The damping ratio at the respective optimal packing densities is
quite similar. The damping ratios at the optimal packing densities of the
different particle sizes may even be closer together when more packing
densities are studied near the current optimum. Generally, the particle
size has only a small influence on the dissipation behavior compared
to the large influence of the packing density.

3.3. Contact stiffness

As typical for DEM simulations, the contact stiffness is intentionally
chosen lower than the actual Young’s modulus of the material to allow
for significantly larger time step sizes [26]. To check the validity of the
stiffness reduction, additional damping simulations are performed with
increased values of the penalty parameter. Fig. 3(a) shows the oscilla-
tions of the beam with packing density 𝛷 = 58% for the default contact
stiffness 𝑘𝑁 = 5642Nm−1 and increased values by a factor of 2, 4, 8, and
16, respectively. The same data is represented in Fig. 3(b) by the outer
envelope of successive oscillation peaks. Accordingly, increasing the
contact stiffness leads to a reduced dissipation. However, at a penalty
value of approximately 4 × 𝑘𝑁 a saturation is observed, i.e., further
increasing the penalty parameter does not alter the damping behavior
anymore. To check the detailed influence of the increased contact
stiffness (by a factor 4), the packing density is varied from 50–60% for
this case. Fig. 3(c) shows the displacement curve for selected packing
densities while Fig. 3(d) shows the outer envelope of successive oscil-
lation peaks. Also for the increased contact stiffness, there is a strong
dependence of the dissipation characteristics on the packing density
and an optimal dissipation is achieved at 𝛷 = 58%. Thus, it is concluded
that the same fundamental trends and correlations already observed for
the original penalty parameter 𝑘𝑁 are also visible for higher penalty
values, which are closer to the actual stiffness characteristics of metallic
powders. Consequently, the (computationally cheaper) default contact
stiffness 𝑘 will be applied in the remainder of this work.
7

𝑁

3.4. Coefficient of friction

With friction being one of the two main dissipation mechanisms
for particle dampers, the coefficient of friction is varied from 𝜇 = 0
to 𝜇 = 0.7 (in steps of 0.1), while the coefficient of restitution is
𝑒 = 0.4. According to Fig. 4(a), coefficients of friction 𝜇 ≤ 0.2 show only

oderate damping. In particular, this behavior can also be observed
hen no friction is considered at all. This suggests that a certain
ortion of the dissipation can be attributed to inelastic impacts. The
amping increases for higher values of the coefficient of friction (as
onsequence of higher sliding friction forces) and reaches an optimum
or 𝜇 = 0.4. Further increasing the coefficient of friction slightly reduces
he damping again. A greater coefficient of friction results in greater
ransferable tangential forces. So, similar to the observations already
ade for very high packing fractions (i.e., high contact normal forces),

or a greater coefficient of friction a significant portion of particles
witches from slip to stick friction, reducing the overall dissipation.

.5. Coefficient of restitution

Varying the coefficient of restitution in the range from 0.2 to 0.8
while keeping the coefficient of friction at the default value of 𝜇 = 0.4)
hows an almost identical dissipation behavior (see Fig. 4(b)). Since the
oefficient of restitution is a measure for the amount of kinetic energy
issipated during a collision, this observed non-sensitivity leads to the
onclusion that the share of total kinetic energy dissipated by particle
ollisions is small compared to the share of total energy dissipated by
liding friction. Thus, at least for the default choice of 𝜇 = 0.4, it is
ssumed that sliding friction is the dominant mechanism of dissipation.
hough, impacts also contribute to energy dissipation up to a certain
egree, as shown in Fig. 4(a), where frictionless contact (𝜇 = 0) still
eads to some reduction of the oscillation amplitude.

.6. Adhesion

For small powder particles, as used in additive manufacturing,
dhesive forces are known to affect the flow behavior of bulk powder
ignificantly. For example, reducing the particle size by a factor of 2,
educes the gravitational force by a factor of 8 while the adhesive forces
educe only by a factor of 4. Therefore, adhesive forces dominate over
ravitational forces for small particle sizes and have a major influence
n the powder flowability, e.g., as apparent in powder spreading [22,
3]. Now, the influence of adhesive forces, which were not considered
n the previous results, are studied. To account for the up-scaled particle
ize, the cohesive surface energy is upscaled by the square of the scaling
actor to keep the dimensionless powder cohesiveness, i.e., the ratio
f gravity to adhesion forces unchanged [23]. Accordingly, the surface
nergy of the original powder 𝛾𝑟𝑒𝑓 = 0.06mJm−2 was scaled to 𝛾𝑠𝑐𝑎𝑙𝑒𝑑 =
85mJm−2 = 𝛾0 to account for the upscaled powder particle size. To
investigate the general influence of cohesion, the surface energy values
0.5 ⋅ 𝛾𝑠𝑐𝑎𝑙𝑒𝑑 and 2 ⋅ 𝛾𝑠𝑐𝑎𝑙𝑒𝑑 are studied in addition. Fig. 5 shows that
adhesive forces and different magnitudes thereof do not significantly
influence the damping. Thus, it is assumed that the normal forces
are mainly a result of the pre-compression step resulting in rather
high packing density such that the adhesive forces only have a minor
contribution.

3.7. Beam orientation

In the default case the beam is oriented vertically with the clamped
end at the bottom. In additional simulations the beam is oriented upside
down, i.e., vertically with the clamped end at the top, and horizontally
with horizontal excitation. This is easily achieved in the simulations by
changing the direction of gravity. The different setups are studied for
two packing densities.
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Fig. 3. Influence of contact stiffness 𝑘𝑁 on the amplitude.

Fig. 4. Influence of coefficient of friction 𝜇 and coefficient of restitution 𝑒 on the amplitude.
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Fig. 5. Influence of adhesion (with the scaled original surface energy 𝛾0).
Fig. 6. Influence of the beam orientation.
For the default packing density of 𝛷 = 58% a different orientation
does not influence the damping (Fig. 6b). Due to the high packing
density there is not enough free motion possible for the particles to
rearrange when turning the beam. In contrast to that, the packing
density 𝛷 = 54% allows for a more significant particle reconfiguration
(Fig. 6a) such that the beam orientation has a visible, yet small,
influence on the damping.

4. Analytical study on the influence of the particle size

The numerical results of Section 3.2 suggest that the observed
damping behavior is (approximately) independent of the particle size.
To confirm these numerical observations by analytical arguments, first-
order models for different deformation modes of particle-filled cavities
will be derived in this section. To allow for an analytical treatment
of the problem, the following simplifying assumptions are made: Since
high packing densities are present inside the cavity, it is assumed that
the particles are always in contact. With the particles always in contact,
the model only considers dissipation from friction and not from particle
impacts. Furthermore, no dissipation between particles and walls is
considered (which holds true, e.g., if the particles are sticking to the
walls). In the following, a pure shear mode and a pure bending mode
are considered. Thereto, assume a rectangular box filled with equal
sized particles of radius 𝑅 and normal forces at the walls 𝐹𝑁,𝑥 and
𝐹 (see Fig. 7(a)), which are a direct consequence of the powder
9

𝑁,𝑦
compaction process. The normal forces at each contact point 𝐹𝑁,𝑥,𝑖 and
𝐹𝑁,𝑦,𝑖 yield

𝐹𝑁,𝑦,𝑖 =
𝐹𝑁,𝑦

𝑁𝑥
and 𝐹𝑁,𝑥,𝑖 =

𝐹𝑁,𝑥

𝑁𝑦
, (17)

with the number of particles in x- and 𝑦-direction 𝑁𝑥 = 𝑏∕(2𝑅), 𝑁𝑦 =
𝑙∕(2𝑅).

A linear shear deformation with angle 𝜑 (see Fig. 7(b)) results in a
relative motion

𝛥𝑑 = 2𝑅 ⋅ tan(𝜑) (18)

between two contacting particles. The work contribution 𝑊𝑥,𝑖 for one
particle is given by

𝑊𝑥,𝑖 = 𝐹𝑇 ,𝑥,𝑖𝛥𝑑 with 𝐹𝑇 ,𝑥,𝑖 = 𝜇𝐹𝑁,𝑦,𝑖, (19)

where 𝐹𝑇 ,𝑥,𝑖 is the friction force acting in 𝑥-direction and 𝜇 the co-
efficient of friction. Assuming that all contacts are subject to sliding
friction, the work is dissipated. Then, the total dissipation is the sum
over the work of all contacts 𝑖 that have relative motion

𝑊 =
∑

𝑖
𝑊𝑥,𝑖 =

∑

𝑖
𝜇
𝐹𝑁,𝑦

𝑁𝑥
𝛥𝑑 = 𝑁𝑥(𝑁𝑦 − 1)𝜇

𝐹𝑁,𝑦

𝑁𝑥
𝛥𝑑

≈ 𝑁 𝜇𝐹 𝛥𝑑 = 𝑙 𝜇𝐹 2𝑅 tan(𝜑) = 𝑙𝜇𝐹 tan(𝜑),
(20)
𝑦 𝑁,𝑦 2𝑅 𝑁,𝑦 𝑁,𝑦
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Fig. 7. Analytical model to describe the influence of the particle size for shear and bending deformation.
using that there are 𝑁𝑥 = 𝑙∕(2𝑅) contacts in 𝑥-direction and 𝑁𝑦 −
1 ≈ 𝑁𝑦 = 𝑏∕(2𝑅) contacts in 𝑦-direction. This result means that the
dissipation for the shear case is independent of the particle radius.
Halving the particle size increases the number of contact points by a
factor of four, but also halves the contact force and the relative sliding
distance such that the total work remains the same within this model.

For pure bending, a linear deformation is considered (see Fig. 7(c)).
The deformation is idealized such that all particles remain in con-
tact. There is no displacement in 𝑥-direction and the displacement in
𝑦-direction is given by

𝛥𝑦 = −𝛥𝑦𝑚𝑎𝑥
𝑥
𝑏∕2

𝑦
𝑙∕2

= 𝑓 ⋅ 𝑥𝑦, (21)

here 𝛥𝑦𝑚𝑎𝑥 = 𝑏∕2 ⋅ tan(𝜑) is the maximum displacement at the corners
nd 𝑓 = 4𝛥𝑦𝑚𝑎𝑥∕(𝑏𝑙) is introduced to summarize the constant factors.
he relative motion between two particles (with coordinates (𝑥1, 𝑦) and
𝑥2, 𝑦) in the undeformed configuration) is then given by

𝑑 = 𝑓𝑥2𝑦 − 𝑓𝑥1𝑦 = 𝑓 (𝑥2 − 𝑥1)𝑦 = 𝑓 ⋅ 2𝑅 ⋅ 𝑦, (22)

where 𝑥2 −𝑥1 = 2𝑅 such that the relative motion between the particles
depends on their y-position. Note that there is only relative motion
between contacting particles which are at the same height in the
undeformed configuration, i.e., at the same y-coordinate. Again, the
work contribution 𝑊𝑥,𝑖 for one pair of particles is calculated

𝑊𝑦,𝑖 = 𝛥𝑑𝑖𝐹𝑇 ,𝑦,𝑖 with 𝐹𝑇 ,𝑦,𝑖 = 𝜇𝐹𝑁,𝑥,𝑖, (23)

with the friction force 𝐹𝑇 ,𝑦,𝑖 in 𝑦-direction. Again, it is assumed that
all particles remain in contact and are in sliding friction. The total
dissipation results in

𝑊 =
∑

𝑖
𝑊𝑦,𝑖 =

∑

𝑖
𝛥𝑑𝑖𝐹𝑇 ,𝑦,𝑖 =

∑

𝑖
𝑓 ⋅2𝑅 ⋅𝑦𝑖 ⋅𝜇𝐹𝑁,𝑥,𝑖 = 𝑓 ⋅2𝑅 ⋅𝜇

𝐹𝑁,𝑥

𝑁𝑦

∑

𝑖
𝑦𝑖.

(24)

The sum can be further simplified. There are 𝑁𝑥 − 1 contacts in 𝑥-
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direction with the same 𝑦 value such that the remaining sum is only
over 𝑁𝑦 contacts. Here, symmetry with respect to the 𝑥-axis can be used
and the y-coordinate is expressed in multiples of the particle diameter
𝑦𝑖 = 2𝑅 ⋅ 𝑖. For the resulting sum the summation ∑𝑛

𝑖=1 𝑖 =
𝑛(𝑛+1)

2 can be
used. This results in

∑

𝑖
𝑦𝑖 = (𝑁𝑥 − 1)

∑

𝑖𝑦

𝑦𝑖𝑦 = (𝑁𝑥 − 1)
𝑁𝑦∕2
∑

𝑖𝑦=1
2𝑅 ⋅ 𝑖𝑦 = (𝑁𝑥 − 1)2𝑅

𝑁𝑦
2 (𝑁𝑦

2 + 1)

2

≈ 2𝑅𝑁𝑥

𝑁2
𝑦

8
, (25)

where 𝑁𝑥 − 1 ≈ 𝑁𝑥 and 𝑁𝑦
2 (𝑁𝑦

2 + 1) ≈ 𝑁𝑥
4 for large 𝑁 . Finally, by

combining (24) and (25) the total work results in

𝑊 = 𝑓 ⋅ 2𝑅 ⋅𝜇
𝐹𝑁,𝑥

𝑁𝑦
⋅ 2𝑅𝑁𝑥

𝑁2
𝑦

8
= 𝑓 ⋅𝜇𝐹𝑁,𝑥 ⋅ 4𝑅2 ⋅

1
8

𝑏
2𝑅

𝑙
2𝑅

=
𝑓𝑏𝑙
8

⋅𝜇𝐹𝑁,𝑥.

(26)

Again, the result is independent of the particle size. Of course, the
real particle behavior is more complex. The particle size follows a size
distribution. Shear and bending modes occur at the same time and
are not linear. However, the results show that the influence of the
particle size is small compared to the effect of the packing density
(which directly influences the normal forces 𝐹𝑁,𝑥 and 𝐹𝑁,𝑦). So, for the
manufacturing of particle dampers, getting the right packing density
inside the cavity is more important than choosing the particle size.

5. Experimental realization

This section presents a first proof of concept regarding an ex-
perimental realization of the particle damper systems considered in
the numerical studies. In particular, it shall be demonstrated that
the time scale of damping (i.e., the oscillation time to standstill),
which is the relevant characteristic for most practical applications, is
in the same order of magnitude as observed in the numerical studies.
For these first-order comparisons, it is sufficient to take DEM model
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Fig. 8. Experimental realization.
parameters (e.g., contact stiffness, coefficient of friction, etc.) from
the literature instead of performing time-consuming model calibration
experiments [23].

Fig. 8(a) shows the experimental setup. Beams with dimensions
20 × 20 × 150 mm3 and a closed cavity of 18 × 18 × 110 mm3 at the
center are printed out of stainless steel 316L. This geometry resembles
the one used for the numerical study. The first 20mm of the beam are
clamped in a vice such that the beam is oriented vertically. The beam is
excited on one side by an automatic impulse hammer with an attached
force sensor (Dytran 1051 V4). On the opposite side a laser vibrometer
(Polytec Sensor Head OFV-505 and Polytec Vibrometer Controller OFV-
5000) measures the velocity near the top of the beam. The use of an
automatic impulse hammer allows high repeatability of the excitation.

In a first study, the beam is excited with a force of 108N. The
measured displacement curve is compared to the corresponding sim-
ulation results. Given that the DEM model parameters have not been
calibrated to match the experimental powder material, the simulated
damping behavior agrees well with the experimental measurements
(see Fig. 8(b)). In particular, the time scale of damping (i.e., time to
standstill), which is relevant for many practical applications, shows a
very good agreement. The experimental result lies between the simu-
lation results with a packing density of 𝛷 = 57% and 𝛷 = 58% (both
for the particle size 𝐷50 = 1.0mm) and is of the same order of magni-
tude. For a future quantitative comparison, relevant model parameters,
e.g., contact stiffness, coefficient of friction, and material damping,
need to be calibrated with experiments. Moreover, the packing density
in experiments needs to be measured with high fidelity.

6. Conclusion and outlook

In the present work, a two-way coupled discrete element - finite
element model has been proposed to study the fundamental dissipation
mechanisms in additively manufactured particle dampers. In particu-
lar, the proposed DEM-FEM framework allowed for the first time to
consistently describe the interaction between oscillating deformable
structures and enclosed powder packings, revealing for the considered
system that sliding friction between powder particles, as imposed by the
deformable cavity walls, is the main mechanism of dissipation. Simu-
lations of the free oscillation of hollow cantilever beams with enclosed
powder packings showed that there is an optimal packing density at
which the best damping is achieved. For the powder sizes studied in
this work, the optimal packing density ranged from 58% to 61% for the
unfused powder. Packing densities different from the optimal packing
densities yielded significantly worse damping. This strong dependence
of the particle damper on the packing density should be considered
11
when additively manufacturing particle dampers and could present a
way to control the dissipation. Further, the results showed only a small
influence of different particle sizes on the dissipation which could be
verified by first-order models of the shear and bending mode of a
powder cavity. Cohesive forces between particles were found to have
no noticeable influence on the damping. Similarly, the influence of the
coefficient of restitution, i.e., the parameter defining the dissipation
from impacts, was small. In turn, the coefficient of friction had a large
influence where the best damping was achieved at a coefficient of
friction 𝜇 = 0.4. A first comparison of the simulated damping behavior
agreed well with experiments.

Future work will be concerned with the calibration of the model
with experimental data. In addition, the goal is to optimize the design
of the powder cavities in terms of size, shape, and positioning within
the part in order to achieve desired damping properties of components.
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Table A.2
Tabulated values for the parameters of the DEM model.

Symbol Parameter Value Unit

𝜌 Density 8000 kgm−3

𝑘𝑁 Penalty parameter 5642 Nm−1

𝑐𝑔 Maximum relative penetration 0.055 –
𝜇 Coefficient of friction 0.4 –
𝑒 Coefficient of restitution 0.4 –
𝜈 Poisson’s ratio 0.27 –
𝑔 Gravity 9.81 ms−2

𝛥𝑡 Time step size 2.5 ⋅ 10−6 s
𝐴 Hamaker constant 40 ⋅ 10−20 J
𝑐𝐹𝑆0 Cut-off radius adhesion 0.01 –

Original log-normal particle size distribution

𝐷50 Median 0.0265646 mm
𝜎 Sigma 0.2707 –
𝐷90 90th percentile 0.0375828 mm
𝐷10 10th percentile 0.0187766 mm

Scaled log-normal particle size distribution

𝐷50 Median 1.0 mm
𝜎 Sigma 0.2707 –
𝑟𝑚𝑎𝑥 Maximum cutoff radius 0.707385 mm
𝑟𝑚𝑖𝑛 Minimum cutoff radius 0.353414 mm

Table A.3
Tabulated values for the FEM model.

Symbol Parameter Value Unit

𝜌 Density 8000 kgm−3

𝐸 Young’s modulus 175 GPa
𝜈 Poisson’s ratio 0.27 –
ℎ Element size (hex8) 1.0 mm
𝜖 Tolerance DEM-FEM coupling 1.0 ⋅ 10−3 –

Algorithmic parameters of generalized-𝛼 method

𝜌∞ Spectral radius 0.8 –
𝛼𝑓 0.4 –
𝛼𝑚 0.3 –
𝛽 0.30864 –
𝛾 0.61111 −

Appendix. Computational modeling parameters

See Table A.2 and A.3.
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