
Vol.:(0123456789)

SN Computer Science (2023) 4:151
https://doi.org/10.1007/s42979-022-01532-z

SN Computer Science

ORIGINAL RESEARCH

The Universal Safety Format in Action: Tool Integration and Practical
Application

Frederik Haxel1 · Alexander Viehl1 · Michael Benkel2 · Bjoern Beyreuther2 · Klaus Birken3 · Rolf Schmedes4 ·
Kim Grüttner4 · Daniel Mueller‑Gritschneder5

Received: 22 May 2022 / Accepted: 25 November 2022 / Published online: 9 January 2023
© The Author(s) 2023

Abstract
Designing software that meets the stringent requirements of functional safety standards imposes a significant development
effort compared to conventional software. A key aspect is the integration of safety mechanisms into the functional design to
ensure a safe state during operation even in the event of hardware errors. These safety mechanisms can be applied at different
levels of abstraction during the development process and are usually implemented and integrated manually into the design.
This does not only cause significant effort but does also reduce the overall maintainability of the software. To mitigate this,
we present the Universal Safety Format (USF), which enables the generation of safety mechanisms based on the separation
of concerns principle in a model-driven approach. Safety mechanisms are described as generic patterns using a transforma-
tion language independent from the functional design or any particular programming language. The USF was designed to
be easily integrated into existing tools and workflows that can support different programming languages. Tools supporting
the USF can utilize the patterns in a functional design to generate and integrate specific safety mechanisms for different
languages using the transformation rules contained within the patterns. This enables not only the reuse of safety patterns in
different designs, but also across different programming languages. The approach is demonstrated with an automotive use-
case as well as different tools supporting the USF.

Keywords  Functional safety · Software safety mechanism · Model transformation · Code generation · Domain-specific
language

Introduction

Safety-critical systems should never cause harm to peo-
ple or property even in the presence of random hardware
faults. Functional safety standards guide the development
of such systems. Several standards exist for programmable

This article is part of the topical collection “Advances on Model-
Driven Engineering and Software Development” guest edited by
Luís Ferreira Pires and Slimane Hammoudi.

 *	 Frederik Haxel
	 haxel@fzi.de

	 Alexander Viehl
	 viehl@fzi.de

	 Michael Benkel
	 benkel@scopeset.de

	 Bjoern Beyreuther
	 beyreuther@scopeset.de

	 Klaus Birken
	 klaus.birken@itemis.de

	 Rolf Schmedes
	 rolf.schmedes@dlr.de

	 Kim Grüttner
	 kim.gruettner@dlr.de

	 Daniel Mueller‑Gritschneder
	 daniel.mueller@tum.de

1	 FZI Research Center for Information Technology, Karlsruhe,
Germany

2	 ScopeSET GmbH, Fischbachau, Germany
3	 itemis AG, Stuttgart, Germany
4	 German Aerospace Center (DLR), Oldenburg, Germany
5	 Technical University of Munich, Munich, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01532-z&domain=pdf

	 SN Computer Science (2023) 4:151151  Page 2 of 22

SN Computer Science

electronic systems, such as the general IEC 61508 [1] or
domain-specific standards such as ISO 26262 [2] for the
automotive domain. These standards specify additional
development steps such as the implementation and integra-
tion of safety mechanisms. These mechanisms are techni-
cal solutions to detect faults or control failures in order to
achieve or maintain a safe state, and can be implemented in
software, hardware, or a combination of both. While his-
torically many safety mechanisms have been implemented
through additional hardware components, software safety
mechanisms are becoming increasingly important due to
the growth of software-intensive systems and the desire
to use more commercial off-the-shelf hardware. Software
safety mechanisms can be integrated into the functional
design at different levels of abstractions, for example, in
a model of the design [3, 4], in the source code [5], or
at binary level [6–9]. The optimal abstraction level and
modeling/programming language (hereafter referred to as
domain) for the integration of each software safety mecha-
nism depends on many aspects and is very application-
specific. Therefore, it is not uncommon to use a combina-
tion of abstraction levels to integrate safety mechanisms.
The development of safety mechanisms is only one part
of the overall safety engineering process, but while there
exist many methodologies and tools to support engineers
in different parts of this process, the development of appli-
cation-specific software safety mechanisms remains a pre-
dominantly manual process, which is prone to errors and
time-consuming. However, these safety mechanisms can
be often divided into different types of mechanisms that
share a common structure regardless of the application and
even across different domains [10]. Additionally, the inte-
gration of safety mechanisms into the functional design
bloats the overall software, which not only increases the
maintenance effort, but also tends to make it significantly
more difficult to understand the functional software.

To automate this labor-intensive realization of software
safety mechanisms for different domains, we introduced the
Universal Safety Format (USF) methodology in [11]. In
this methodology, safety mechanisms are generalized and
described in the USF via patterns in a dedicated domain-
independent transformation language. The patterns can then
be used in a design by a domain-specific tool that supports
the USF to implement the domain-agnostic transformation
in a domain-specific context. This allows the user not only
to generate the safety mechanisms, but also to keep the func-
tional software separate from the safety mechanisms, as they
can be integrated at any time. While [11] focused on the
concept of USF, this paper explores the technical aspects
of the approach in more detail. The main contributions are:

•	 A detailed description of the USF metamodel that forms
the basis for the USF transformation language.

•	 A comprehensive explanation of the USF transformation
language (UTL) used to integrate safety mechanism pat-
terns into a model.

•	 An extended evaluation showing how the USF is inte-
grated with various tools to apply safety mechanisms at
different levels of abstraction.

The remainder of this work is structured as follows: Sec-
tion “Safety Engineering in a Nutshell” provides a brief
summary of the safety engineering process and introduces a
running example. Section “USF in the Development Flow”
outlines how the USF process can be incorporated into an
established development workflow. A description of the USF
metamodel is given in Section “USF Metamodel”, whereas
Section “USF Transformation Language” addresses the
UTL. Section “Evaluation” presents several tools that sup-
port the USF as well as the application of safety mechanisms
on the presented running example at a model and source
code level. The results are discussed in Section “Discussion”
and a comparison of our approach with related research as
well as with existing modeling and transformation languages
is given in Section “Related Work”. Section “Conclusions”
provides a summary of our findings and outlines future
work.

Safety Engineering in a Nutshell

To minimize the risk of system failure, safety standards such
as the aforementioned IEC 61508 [1] or one of its indus-
try-specific adaptations such as the ISO 26262 [2] were
elaborated. Those standards provide information on how
to design, deploy and maintain a system for safety-related
applications. For a better understanding of the topic of safety
engineering, the following will take a closer look at the IEC
61508 standard, which assumes that every safety-related
system must function or fail predictably and safely under all
possible conditions.

IEC 61508 presents a comprehensive and holistic devel-
opment process called the safety life cycle for the devel-
opment of safety-related systems. The standard is struc-
tured in 16 phases, starting with analysis, continuing with
the principles for realization and ending with phases on
the operation of a system. The overarching goal of these
phases is the correct execution of the safety-related func-
tions. A fundamental part of this life cycle is the proba-
bilistic failure approach, which classifies the safety impact
that a failure of a component would have. It is part of the
hazard and risk analysis, which consists of three phases:
hazard identification, analysis assessment and risk assess-
ment. For the risk assessment, risk is considered as a func-
tion of the probability of a hazardous event and the sever-
ity of its consequences. Either qualitative or quantitative

SN Computer Science (2023) 4:151	 Page 3 of 22  151

SN Computer Science

analytical methods can be used to quantify the risk. This
assessment provides information on which risks need to be
reduced and thus enables an appropriate design of the pro-
tection system. Under-specification or over-specification
thus become less likely.

To comply with the standard, the safety requirements
must be provided with a target safety integrity level (SIL).
The term safety integrity is defined by the standard as the
probability that the safety-related system will satisfacto-
rily perform the required safety functions under all stated
conditions. There are four discrete safety integrity levels
that define the safety integrity requirements of a function.
The general reasoning behind SILs is then as follows: For
a greater necessary risk reduction, the safety-related sys-
tem needs to be more reliable, so the targeted SIL has to
be higher.

IEC 61508 and its other related safety standards provide
guidance on what safety mechanisms should be used to
achieve a target SIL. Thus, there are a number of safety
mechanisms, which are often used repeatedly in the devel-
opment of safety-related systems. Some examples are:
Error detection logic and codes, plausibility checks, range
checks of input and output data, stack overflow/underflow
detection, timing supervision with watchdogs, control flow
monitoring and external monitoring facilities, static recov-
ery mechanisms, hardware self-tests and majority voters.

To improve both the applicability and reusability of
these safety mechanisms, the paper proposes the USF
as a domain-agnostic specification format, which allows
for the automatic generation and integration of safety
mechanisms. The resulting capability to overcome these
technical implementation hurdles more easily is the main
advantage of USF. In addition to this, USF allows users of
the IEC 61508 development process to map safety require-
ments to safety mechanism instances. This can be helpful

in order to indicate whether a desired safety integrity level
will be met or not.

Running Example

A running example of a simplified adaptive cruise control
(ACC) system was chosen to demonstrate the potential of
USF. Figure 1 shows the structural and functional composi-
tion of the example. The objective of an ACC is to control
the speed of a vehicle so that it maintains a constant distance
to a vehicle ahead. To achieve this, the controller measures
its own speed and the distance to the vehicle ahead, runs a
PID control algorithm, and adjusts its own speed by setting
a new throttle value.

Executing the adaptive cruise control system on an
embedded hardware platform, which can be prone to errors,
will potentially lead to safety hazards. Evidently, a major
safety hazard arises when the required distance to the vehicle
in front is not maintained. Errors in the integrated hardware
platform can be classified either as permanent errors, e.g.,
due to aging and wear effects, or as transient errors (so-
called soft errors), which can be caused, for example, by
particle impacts in the integrated circuits. A commonly used
method to mitigate the effects of soft errors on a calculation
is to use the dual modular redundancy (DMR) pattern.

Figure 2 shows an example of the DMR mechanism used
on the PID controller. The DMR mechanism duplicates the
function and compares the two results. If both calculations
return the same result, the motor throttle is set, otherwise an
error handler is triggered.

USF in the Development Flow

Organizations often have complex development workflows
in place for the design of safety-critical systems, involving
many tools and different input and output formats. The USF
methodology aims to easily integrate with existing develop-
ment workflows and tools to automate the step of generating
and integrating application-specific safety mechanisms into
the functional design across domains by using one pattern
description per safety mechanism type. Figure 3 shows how
the separate steps of the USF interact with a typical design
flow. The flow can be divided into two different branches,

PID
controller

Speed
Sensor

Radar
Sensor

Motor

Fig. 1   Adaptive cruise control (ACC)

Fig. 2   ACC with dual modular
redundancy (DMR) PID

controller
Speed
Sensor

Radar
Sensor

Motor

PID
controller

Comparator
Error

Handler

	 SN Computer Science (2023) 4:151151  Page 4 of 22

SN Computer Science

functional and safety-related development, which result in a
combined safe software.

In general, function development follows the familiar
three steps: elaboration of functional requirements, crea-
tion of the corresponding specification, and finally imple-
menting the functional software. Based on the functional
requirements and a safety analysis of the system, the safety
requirements are derived. Analogous to functional devel-
opment, a safety specification is then drafted based on the
safety requirements and the functional specification, which
includes the necessary software safety mechanisms. In the
USF methodology, this is achieved by selecting and config-
uring appropriate safety mechanisms based on predefined
safety patterns from a library and linking them to the func-
tional design. This simplifies not only the creation of the
safety specification, but also enables a fully formalized one.

The safety specification can then be used to implement
the safety mechanisms fully automatically, i.e., to generate
the safety software and then to incorporate the generated
safety software into the functional software, thus resulting
in the final safe software. To facilitate the creation of safety
mechanisms, the core of the USF contains the following
two parts:

1.	 USF metamodel: A domain-independent metamodel
used to express the structure of functionality, including
the data and control flow.

2.	 UTL: A transformation language for specifying patterns
of safety mechanisms and their integration into USF-
based models.

Safety patterns consist of a definition including the con-
figuration parameters defined in the USF metamodel and
a transformation script written in UTL that specifies the
changes to the functional design. These patterns are col-
lected in a library, which can be easily extended during
development by adding new patterns. The safety pattern
can then be applied in a pure USF model by specifying
components within the model that should be protected
by the given mechanism, and eventually executing the
transformation.

The process of applying a DMR pattern to a USF ele-
ment is illustrated in Fig. 4. An in-depth explanation of
the metamodel is provided in Section “USF Metamodel”.

To truly take advantage of the USF, safety mechanisms
have to be applied to a domain-specific model instead of a
USF-based model. For this, the UTL scripts are interpreted
for the context of that domain, which can be automated
by integrating USF support into a domain-specific tool.
There are numerous implementation options to achieve
this, and the optimal solution depends on the domain and
the existing tool infrastructure. A detailed description of
the UTL and different options to integrate them into a
domain-specific tool is given in Section “USF Transforma-
tion Language”. But in general, they implement the fol-
lowing functions:

•	 A mapping between domain elements and abstract USF
elements.

•	 A process for annotating and configuring the safety pat-
tern to model elements using the mapping.

Fig. 3   Development flow with
USF support

Functional
Requirements

Functional
Specification

Functional
Software

Safety
Software

Safety
Requirements

Safety
Specification

Safe
Software

Selection Generation Integration

ref. ref. ref.

USF Support

Fig. 4   Application of a DMR
pattern in USF

USF
Transformation

Func_DMR

Func

Func

Comp

Error
Handler

Func

USF
Library

DMR

SN Computer Science (2023) 4:151	 Page 5 of 22  151

SN Computer Science

•	 A method to restructure the domain-specific code accord-
ing to the transformations.

•	 An approach for generating domain-specific imple-
mentations of the newly introduced subcomponents of
the pattern (e.g., comparator functions, specific error
handlers).

The USF can be applied not only to model-based
approaches, but also to conventional programming lan-
guages. An example for the application of a DMR mecha-
nism for a section of C Code is given in Fig. 5. The C code
is transformed by executing all transformation steps from the
UTL script in the C domain (dark green), analogous to the
transformation in the USF domain (light green). A detailed
description of the USF, as well as how to apply the USF to
specific domains using tools, is described in the following
sections.

USF Metamodel

The USF metamodel was developed to make sure that all
tools are based on the same concepts, and it is therefore
the foundation for a comprehensive tool support. The USF
model was inspired by well-known modeling languages like
UML and SysML to enable low-threshold entry for mod-
eling experts. It also targets simplicity, which is often a
requirement in the safety domain. The main concepts of the
USF metamodel are outlined in this section. The full USF
metamodel as well as supplementary materials are available
at https://​www.​unive​rsals​afety​format.​org/.

Structured Elements and Flows

Blocks, ports, and connections are provided in the USF
metamodel. These concepts can be used to describe the sys-
tem structure and the dataflow of the functional model. The

f USF
Transformation

DMR

 eugolan
A

 ledo
M FS

U
 nia

mo
D

Domain
Transformation

…
int r = f(a);
…

…
int r = f(a);
int r_dup = f(a);
if (r != r_dup)

handler();
…

f_DMR

f

f

Comp

Error
Handler

Fig. 5   Application of a DMR pattern in USF and C

Fig. 6   Blocks, ports, and con-
nections [11]

https://www.universalsafetyformat.org/

	 SN Computer Science (2023) 4:151151  Page 6 of 22

SN Computer Science

application of the USF illustrated that for a proper modeling
of some patterns control flow has to be taken into account as
well. In order to address this, the metamodel was enhanced
by dedicated ports and connections to specify control flow.
Figure 6 shows the part of the metamodel to describe data-
flow and control flow in one model.

A Block, characterized by a BlockType, is used to
model the functionality of a system. The information flow
between blocks is described by a DataFlowConnec-
tion, which connects two DataFlowPorts. A Data-
FlowPort defines an interface of a block and can be typed
by the USF type concept. The PortDirection specifies
the direction of a port, e.g., IN or OUT. A type concept
is also part of the USF metamodel and provides elements
like StructType, ArrayType, EnumerationType,
TemplateType, and PrimitiveType. This provides
the capabilities to type ports.
ControlFlowPort and ControlFlowConnec-

tion are provided to describe control flows. For a proper
control flow modeling additional concepts shown in Fig. 7
are provided. There are three options to split a control flow:
decisions, synchronous, and asynchronous control flow.
Decisions are typically if-else branches, which allow dif-
ferent control flows based on conditions. DecisionNode
and MergeNode are part of the metamodel to describe this.
Synchronous control flow is usually used to represent the
parallel work in multiple tasks. A ForkNode is used to split
the control flow in more than one paths, while a JoinNode
synchronizes the control flows and joins all paths back into
one. To model asynchronous control flow or the reaction on
certain signals, the SendSignalNode and ReceiveS-
ignalNode can be used. They are intended to react on

signals sent by other elements or even external libraries and
hardware.

Safety Pattern

Safety patterns are formalized specifications for safety
mechanisms, which can be seen as technical solutions to
protect a functional system. The USF metamodel provides
the capabilities to define the interface of a safety pattern.
This interface definition shows all the required parameters
and therefore provides a brief documentation. An example
of a safety pattern definition is shown in Fig. 8.

To apply a safety pattern, a model transformation is
executed. Such a transformation is implemented in UTL, a
transformation language described in more detail later in this
paper. A skeleton of a transformation script can be created
from the safety pattern definition, listing all the parameters,
and providing a basic validation of the parameters. The pat-
tern specification as well as its assignment provide the input
for the transformation. The functional model is converted by
the model transformation into an enriched model where all
assigned safety patterns have been applied. The main USF
concepts for safety patterns are shown in Fig. 9.

All the required parameters that are needed for the trans-
formation are specified in the model by a SafetyPat-
tern, which can be seen as a template that needs to be
configured to run the transformation. A SafetyPat-
ternApplication is assigned to system elements, like
blocks and connections, to apply a SafetyPattern. To
run the transformation properly, the template with all the
defined parameters needs to be filled in with concrete values
to configure the transformation. Values can be references to
model elements or primitive values.

Several properties allow to add more details to SafetyPat-
tern descriptions, like adding traceability to safety goals or
requirements. This provides the capabilities to describe to
which extent a pattern may support fulfilling specific safety
standard requirements or recommendations.

Fig. 7   Control flow concepts Fig. 8   Safety pattern definition [11]

SN Computer Science (2023) 4:151	 Page 7 of 22  151

SN Computer Science

Pattern Application

This section describes how the USF can be used to apply
safety mechanisms to a functional model of a system. The
first step is to define the SafetyPattern. Figure 8
shows the definition of the DMR pattern in a safety pattern
diagram.

On the left side, all required model parameters of a
SafetyPattern are listed in the blue box. These param-
eters need to be instantiated during the pattern application
by references to concrete model elements. The yellow box
shows additional primitive parameters, which usually consist
of boolean, integer and string values. These primitive param-
eters can have default values, which can be overwritten in
the safety pattern application.

Figure 10 shows the functional model of an ACC system
in a block diagram and how the DMR pattern is applied for
the Controller task. The green shield symbol shows an
instance of the DMR2Pattern with a list of all parameters
according to the pattern definition. All model parameters are

applied by drawing assignment links to model elements in
the diagram. The inst parameter is assigned to the Con-
troller block, since this is the block that should be dupli-
cated for a redundant execution. The DMR Comparator
is a new block that is needed to compare the results of the
redundant execution. This comparator is added automati-
cally to the block diagram by the UTL script as well as the
redundant execution of the Controller. The assignment
of the ErrorHandler shows how an existing error han-
dler can be used as well. These assignments are passed to the
transformation script when the transformation is executed.

Note that USF does not offer rule-based application of
safety patterns using pattern matching. This is a deliber-
ate restriction, as there might be very similar model con-
texts where the decision of a safety engineer on the actual
application of a safety pattern has to be based on semantic
information, which cannot be retrieved from the model auto-
matically. However, if the domain-specific model provides
all necessary information, a generic algorithm for rule-based

Fig. 9   Safety pattern and safety
pattern application [11]

Fig. 10   Safety pattern applica-
tion [11]

	 SN Computer Science (2023) 4:151151  Page 8 of 22

SN Computer Science

pattern application can be added on top of USF (e.g., apply
DMR to all C-functions with at least one GPIO access).

Hardware Abstraction Layer

Some safety patterns require the use of software as well as
hardware resources. Therefore, a general extension mecha-
nism was added to the USF. Such extension mechanisms are
well known from modeling languages like UML. Stereotypes
and parameters can be used to extend the vocabulary of USF
and can be assigned to BlockTypes, Blocks, Ports, and
Connections. Table 1 provides a list of stereotypes that
have been used to describe hardware resources in the ACC
example. This list can be easily extended for project specific
needs by defining additional stereotypes.

Two additional relationships have been added to USF to
describe the usage of hardware resources. Figure 11 shows
these relationships and how they are used.

The deployedAt relationship describes that a Block
is executed on a specific target, e.g., a timer is executed on
a specific CPU. The uses relationship describes that a
Block uses a specific hardware resource. Both relation-
ships can used by the code generator to create the target
specific code.

USF Transformation Language

In the previous section, we introduced the metamodel for
USF. In order to reach our primary goal of automatically
integrating safety mechanisms into code and models, the
first step is to formally define these artifacts as instances of
the USF metamodel. The actual weaving of patterns into
such models can then be defined as model transformations.
In the following text, we will use the term weaving for the
automatic integration of safety mechanisms, following the
terminology of aspect-oriented programming (AOP [13]).

Although it is possible to implement model transforma-
tions using general-purpose languages like Java or C++, it
has turned out that domain-specific languages are a better
approach for this task. These model transformation DSLs
can support typical model traversal and manipulation opera-
tions as first-class language concepts, thus allowing a more
concise and effective specification of transformations. In
order to understand the features to be supported by a USF

Table 1   Short list of used stereotypes

Stereotype Description

≪ HW ≫ General hardware resource
≪ CPU ≫ CPU resource
≪ IRQ ≫ Interrupt request

Fig. 11   deployedAt and uses relationships

SN Computer Science (2023) 4:151	 Page 9 of 22  151

SN Computer Science

transformation language, we will review the requirements
specific to safety weaving in the next section.

Requirements for the USF Transformation Language

The specification of model transformations is a mature field.
Therefore, a couple of general-purpose transformation lan-
guages exist (e.g., ATL [14]), providing different degrees of
declarative vs. imperative representation of the model trans-
formations. The following list contains our requirements for
the USF transformation language, marked with one or two
stars if they are specific (*) or highly specific (**) to our
goal of safety weaving and cannot be supported directly by
general-purpose transformation languages.

•	 The language should be easy to use esp. for safety engi-
neers, which usually do not have a strong background on
software development. (**)

•	 The transformation language should allow the definition
of safety patterns independent from the target domain.
E.g., it should be possible to apply the same model trans-
formation to C code as well as to SysML models. (*)

•	 As the model transformations will be done from a source
model to a target model on the same USF metamodel,
the language has to support uni-directional, endogenous
transformation specifications only. Bi-directional trans-
formations or transformations between two different
metamodels are not needed. (*)

•	 The language should be statically typed in order to avoid
runtime errors during transformation application.

•	 The language shall support basic data types (esp. inte-
gers, strings and booleans) and the usual operations (e.g.,
string concatenation) on these types.

•	 It also has to support the canonical set of operations on
all concepts from the USF metamodel.

•	 For the sake of simplicity, the language should contain
a basic set of generic operations and control structures,
but not more. (*)

•	 It should be possible to modularize model transforma-
tions, i.e., build complex transformations using more
basic ones as building blocks. (*)

•	 The language should allow convenient creation of USF
model fragments (using models as blueprint, e.g., con-
struction via quotation techniques). (**)

•	 The language shall support the integration with glue code
fragments specific to concepts from the target domain.
E.g., the C code fragment for triggering a hardware inter-
rupt on a specific hardware platform should be seam-
lessly linked to the domain-independent model transfor-
mation. (**)

This analysis shows that many of our requirements can-
not be met sufficiently by general-purpose transformation

languages. Thus, in the following we propose UTL (USF
Transformation Language), which is a transformation lan-
guage specific for safety weaving based on USF.

UTL is designed to be realized using a convenient textual
concrete syntax, implemented by a state-of-the-art parser
like ANTLR. Additionally, it can be enriched with more
elaborate notational elements if the tool platform allows it
(e.g., the language workbench tool MPS [15] by JetBrains
with its projectional editing approach).

Language Concepts of UTL

This section gives an overview on the various concepts of
the UTL language. In general, our design guideline was to
feature a primary imperative language style with some func-
tional additions, as users with limited experience in software
development often can grasp this style better than a purely
functional one (cf. the popularity of scripting languages like
Python in the ML and scientific communities).

Statically Typed Expression Language

UTL is a statically typed language with type inference. The
basis of the UTL type system is a canonical set of primitive
types (i.e., boolean, integer, string) and operations on these
types, e.g., string concatenation. In addition, a subset of the
USF metamodel concepts is available as types in UTL, esp.
Block, DataPort and ControlPort. Non-mutable
local variables can be defined for convenience to increase
code readability. Moreover, mutable variables are available
to support the imperative language style.

Modular Transformations

In order to support the requirement of building complex
transformations from smaller ones, UTL adopts the paradigm
of function calls. I.e., the interface of each model transfor-
mation is defined by a signature consisting of a name, a set
of named parameters with types and a return type (see item
1 in Fig. 12). Using this signature, a transformation can be
“called” from annotations in the domain model or in the USF
model. Usually, annotations will need to refer to specific
domain elements, which corresponds to code locations if
the target domain is program code. These model references
can be considered as join points, which is a term for code
locations from aspect-orientated programming (AOP [13]).

Operation API

The application programming interface (API) of UTL
consists of a large set of operations on USF model ele-
ments. These can be divided into two groups: The set
of canonical operations defined by the USF metamodel

	 SN Computer Science (2023) 4:151151  Page 10 of 22

SN Computer Science

(e.g., getters and setters for attributes), and a set of helper
operations which provide additional logic or shortcuts
for typical patterns (e.g., createConnection() for
creating new connection elements and linking them to the
proper Port nodes).

Creation of USF Model Fragments

A common pattern in UTL model transformations is the
necessity to create USF model fragments. In order to pro-
vide a convenient means to define these fragments and

Fig. 12   UTL example transformation: DMR mechanism [11]

SN Computer Science (2023) 4:151	 Page 11 of 22  151

SN Computer Science

instantiate them in the target model, transformation signa-
tures might also include block type definitions (according
to the USF metamodel). E.g., the transformation depicted
at item
2 in Fig. 12 uses the block type Comparator< � >.

The complementary functionality for these block type
definition parameters is the creation of actual model frag-
ments, using the parameter value as a blueprint. For this,
UTL supports a constructor syntax. A constructor call cre-
ates a new block type, using an existing one as a blueprint.
This is shown for the Comparator block type in the exam-
ple (item

3 in Fig. 12). The blueprint Comparator can be
defined using any USF model editor. In the example, it has
been defined using a textual syntax as part of the transforma-
tion signature (item

2). The blueprint is passed to the transformation body
as a parameter impl. The type of this parameter is defined
by a special hashtag-syntax; the =default syntax speci-
fies that the parameter is optional. The first parameter of
the constructor is the name of the new block type. With the
second parameter, a domain-specific implementation of type
Comparator< � > can be provided.

Abstracting from Domain‑Specific Details

The UTL language (like the USF metamodel) is not
restricted to a specific target domain. However, in order
to apply transformations on models of a given target
domain it is required to inject domain-specific details,
e.g., C glue code. The memento-like pattern based on
#Comparator and the constructor syntax can be used
to inject domain-specific behavior as implementation
of the created block type. E.g., for the C domain this
can be a C code snippet, which adheres to the interface
defined by the block type’s ports. The specific value of
the #Comparator parameter will be initialized as part
of the annotation in the domain model (e.g., the C code)
and is “tunneled” through the transformation script until
the constructor executes.

Aspects of Executing UTL Transformations

By using UTL, safety mechanisms can be specified indepen-
dently from specific target domains. This is accomplished by
“implementing” the safety mechanism as a (mostly impera-
tive) transformation script. For the automatic weaving pro-
cess, UTL scripts have to be applied to input models from
a given target domain (e.g., C code). This section describes
the interplay of the different artifacts being used throughout
this process. We will first discuss the options for execut-
ing UTL model transformations, and afterwards describe

the commonalities and differences of weaving for structural
models and program code.

Transformation Execution Approaches

For the execution of transformation scripts, which are
implemented using UTL, there are basically three different
options:

•	 Option 1: Translating each input domain-model into a
USF model and executing the transformation in a generic
way. After the execution, the result model must be trans-
lated back to the target domain.

•	 Option 2: Translating the transformation script itself into
general-purpose code (e.g., Java), which can then be exe-
cuted directly on a representation of the domain-specific
model.

•	 Option 3: Using an interpreter for UTL with a domain-
specific backend, mapping each UTL operation to a
domain-specific implementation.

Option 1 has the advantage that the actual execution of UTL
has to be implemented only once (for USF). For each tar-
get domain, just the implementation of two mapping trans-
formations from the domain model to USF and back have
to be provided. One major disadvantage of option 1 is that
the whole input model has to be sent through the three-step
pipeline, as it cannot be known in advance where the actual
weaving will happen. Option 1 is being used by the Eclipse-
based safety toolchain for Simulink models as described in
Section “Simulink”.

Option 2 requires the implementation of a code genera-
tor for UTL scripts, as these scripts have to be converted to
some general-purpose language. As with many other code
generation techniques, the generated transformation code
has to be supported by a proper runtime library.

Option 3 is similar to option 2, as each UTL language
concept has to be executed by a piece of general-purpose
code which implements the UTL operation semantics on
a given target domain. However, this is easier than with
option 2, as each operation can be tackled separately, and
significant parts of the runtime can be domain-agnostic. The
additional benefit of the interpreter approach of option 3 is
that only those parts of the target domain model have to be
manipulated which are subject to weaving. Option 3 is being
used by the C-code weaving engine of the SafetyWeaver tool
(see second part of Section “Tool support”).

When selecting the best option for the implementation of
a UTL transformation engine, a variety of factors have to be
taken into account: Constraints imposed by the tool platform
and the available technologies, integration with other tools
as part of a toolchain, the complexity of the target domain,

	 SN Computer Science (2023) 4:151151  Page 12 of 22

SN Computer Science

and requirements due to tool qualification in a safety-related
context. Esp. for program code domains (e.g., C code) the
mapping to USF concepts might be complex.

Weaving for Structural Models

The target domain of structural models allows representing
hierarchically structured architectures with components and
ports. Typical industry-relevant domains from this category
are AUTOSAR, Simulink, SysML, and other SysML-like
proprietary models. For instance, applications in the auto-
motive domain often use the Eclipse platform Artop (an
EMF-based AUTOSAR implementation [16]). This can be
integrated easily with the USF reference implementation,
as both frameworks use the EMF technology for the defini-
tion of their metamodels. Often the programming language
Xtend [17] is being used on this technology stack for imple-
menting transformation engines.

The mapping from structural models to USF is quite
straightforward. USF block types and blocks will represent
components in the target domain, and port concepts can
often be mapped directly. Component hierarchies (consist-
ing of nested components and subcomponents) are natively
supported by USF blocks and block types as well. Therefore,
the execution of UTL transformation scripts on these struc-
tures is possible with a minimal additional mapping logic.

Weaving for Program Code, esp. C

Our implementation of weaving tools showed that C code
safety weaving is more challenging than weaving for structural
models (e.g., SysML block diagrams). The artifacts required
for C code weaving and their interplay are shown in Fig. 13.

In compilers and other code-related tools, program code
(e.g., C) is represented as abstract syntax tree (AST). In
order to map this domain to USF, elements of the AST have
to be represented by USF blocks and other elements. USF
has been designed to cover this, esp. by supporting dataflow

and control flow concepts. Despite this support, the mapping
between a C AST and USF block models is not straightfor-
ward. E.g., the conceptual mappings for some elements of
the C AST and USF ports are shown in Table 2.

In our reference implementation using the JetBrains MPS
language workbench, a UTL interpreter with an API for
domain-specific plug-ins has been realized. The C domain
plug-in creates the USF model from the input C code on the
fly, starting from the annotated code elements (e.g., C func-
tions or C blocks). The UTL interpreter will create new
blocks and connections depending on the statements of the
actual transformation scripts. In a post-processing step, the
resulting USF model is converted into C AST elements and
manifested as code. The control flow connections on USF
block level determine the order of the newly created C code
blocks. The post-processing also uses a rule-based approach
to replace goto/label pairs (introduced during the weaving)
by structured code.

The domain library (cf. Fig. 13) contains glue code frag-
ments (C snippets) necessary for linking the code resulting
from the weaving with the actual capabilities and APIs of
the target system. E.g., initializing a hardware timer might be
done differently for specific combinations of firmware and
processor hardware. This approach allows assigning differ-
ent responsibilities to corresponding experts with matching
skills, e.g., an embedded engineer owns the domain library,
whereas the safety expert takes care of the USF library.

Evaluation

Several demonstrators have been developed and assessed
to validate the presented approach. In these demonstrators,
various safety patterns are used at different levels of abstrac-
tion. Starting point in all demonstrators is the functional
software system, which is provided as C source code, Sim-
ulink, or SysML models. Common safety patterns can be
organized in libraries and provided to the end users. This
allows an out of the box usage of proven safety patterns for
any functional model. Some safety patterns that have been
used in the demonstrators are listed in Table 3. In this paper
the previously described ACC system is used as an example
to describe how safety patterns can be described and applied.

Fig. 13   Applying transformations (example: C domain) [11]

Table 2   Mapping of USF to C code elements (subset)

USF port type C code element

Dataflow output port New local variable with initializer
Dataflow input port Read access to local variable
Control flow output port Sequential execution or C-goto
Control flow input port Sequential execution or C-label

SN Computer Science (2023) 4:151	 Page 13 of 22  151

SN Computer Science

Tool Support

The application of safety patterns and therefore the creation
of safe software systems can be done in a semi-automated
way. Dedicated USF modeling and model transformation
tools have been developed to provide an appropriate tool
support for the description and application of safety patterns.
This section gives a brief overview of the tools SafetyMod-
eler and SafetyWeaver. Since the development of the demon-
strators and the USF tools happened in parallel, a permanent
feedback loop in an agile approach was used.

As USF and UTL are standardized specifications, it is
possible for any vendor to provide an implementation using
their preferred tool platform. For the Eclipse platform,
SafetyModeler provides an open-source, ready-to-use
implementation of both specifications. On the other hand,
SafetyWeaver uses JetBrains MPS to implement the speci-
fications. Based on the specified metamodels, exchange of
USF models and UTL scripts between tools is easily pos-
sible, allowing to form tool chains for specific tasks (e.g., as
demonstrated in Section “Simulink”).

SafetyModeler

In order to view and to create USF models in a graphical
way, a newly developed tool named SafetyModeler offers
functional block modeling with dataflows and control flows.
To deploy safety patterns, it also provides functionality to
define safety patterns and to apply them in the functional
model. Modeling capabilities can be extended by defining
stereotypes and data types.

An XMI interface allows the import of functional models
from other sources. If necessary, layout algorithms support
the creation of diagrams in a semi-automated way. Safety-
Modeler provides the following main functionality:

•	 Block Diagrams to describe functional systems in a
graphical way

•	 Description of dataflow and control flow in the same
view

•	 Definition of safety patterns and safety pattern applica-
tions

•	 Definition of transformations for safety patterns in UTL
•	 Execution of transformations and visualization of the

resulting model

The user interface of SafetyModeler provides several views.
The main part is the drawing canvas in the middle including
the symbol palettes, which allows the graphical modeling of
a functional software, the safety patterns, and the safety pat-
tern application. Figure 14 shows the block diagram of the
previously described ACC system in SafetyModeler. A tree
view on the left-hand side helps to easily navigate through
a more complex model. Details of a selected element in the
tree or in the drawing canvas can be viewed and edited in
the properties view.

UTL support is also part of SafetyModeler. It offers
functionality to define transformation scripts in UTL using
a language sensitive editor. A skeleton for the transforma-
tion is created the first time the UTL editor is called for a
defined safety pattern. To support the editing of UTL scripts
the editor provides color coding and name completion for
all defined functions in the USF metamodel and also high-
lights errors in a UTL script. The final script can be executed
within SafetyModeler. This will create a new save functional
model including the applied safety patterns. To verify the
correct application of safety patterns in the new model, it
can be visualized in SafetyModeler again.

SafetyModeler was also very helpful during the develop-
ment phase of the USF metamodel to instantiate and visu-
alize certain milestones. The validation of a current USF
metamodel and the identification of missing pieces was
much easier. By this means, SafetyModeler supported the
agile development approach for USF. It is published as open
source software and available on an update site as an Eclipse
plugin (cf. [12]). It can be easily installed into a running
Eclipse Modeling installation.

SafetyWeaver

The SafetyWeaver tool mainly targets embedded developers
and safety engineers. It combines the following aspects in
one integrated tool environment:

•	 extensible IDE support for C-developers
•	 editor for UTL transformation scripts and C glue code
•	 automatic weaving for C code and other target domains
•	 additional features for building and using DSLs, esp.

structural models

SafetyWeaver is using the JetBrains MPS platform [15],
which allows combining various different notations (textual,
graphical, tables, tree structures) as well as authoring new

Table 3   Selected safety patterns supported by USF and their mention
in safety standards

Pattern name Description IEC 61508 ISO 26262

DMR Dual modular redundancy ✓

TMR Triple modular redundancy ✓

Watchdog Hardware watchdog ✓ ✓

CRC​ CRC generation and checks ✓ ✓

ESM-ICU External safety mechanism:
interrupt controller unit
test

	 SN Computer Science (2023) 4:151151  Page 14 of 22

SN Computer Science

DSLs and flexibly integrating them [18]. This results in a
consistent and intuitive user experience when working with
SafetyWeaver. Here are some examples [11]:

•	 safety engineers can add and edit annotations directly in
the C code and still get context-specific proposals (e.g.,
for selecting the proper transformation script and its
parameters, see green elements in Figs. 20 and 22)

•	 transformation authors can provide online documenta-
tion (e.g., for each transformation and its parameters)
which is presented to transformation users as type system
checks and tooltips

•	 platform architects who implement the C glue code can
use a code block editor which enforces the constraints
defined by the transformation definition (e.g., dataflow
input ports represented as read-only C variables)

•	 the resulting C code is automatically annotated with pro-
jected trace information, providing trace links leading
back to the applied UTL-scripts, and additional glue code
blocks (traceability, see Fig. 21 and Fig. 24)

Figure 15 illustrates the benefits provided by the editor for
glue code: By setting the block type to Comparator,

the dataflow and control flow ports of this block type
uniquely define the interface for the glue code (see
also Fig. 12).

E.g., the dataflow input port in1 is represented by a read-
only local variable of the same name in the implementa-
tion-section of the glue code editor. Note that the editor
supports generic data types: For the comparator the generic
type T will be bound to a specific type, depending on the
output of the code block, which is duplicated by the DMR
mechanism.

For the C support, SafetyWeaver uses the open source
mbeddr platform [19]. mbeddr stores the C code as AST.
SafetyWeaver relies on that representation to implement the
weaving of UTL mechanisms as a direct interpretation of the
UTL transformation scripts (cf. Section “Aspects of Execut-
ing UTL Transformations”). SafetyWeaver transforms only
those parts of the C AST to in-memory USF models, which
are required for the weaving. As part of the transformation
postprocessing, the output USF model is optimized (e.g.,
control flow clean-up), transformed back to C AST subtrees
and integrated into the original C AST. This approach allows
efficient transformation even of big C codebases, as only the
parts relevant for safety weaving have to be transformed.

Fig. 14   Views in SafetyModeler

SN Computer Science (2023) 4:151	 Page 15 of 22  151

SN Computer Science

The internal implementation of UTL distinguishes
between core operations and additional operations (“syn-
tactic sugar”). SafetyWeaver reduces all syntactic sugar
operations from a transformation script using the incremen-
tal Shadow Model engine [20]. This allows simplifying the
actual model transformation process, as only the core lan-
guage features have to be supported by the execution engine
(i.e., the interpreter with all its domain-specific plug-ins).
This is especially valuable because the transformations have
to be applied on several different target domains.

Domain‑Specific Safety Pattern Application

In this section, we demonstrate how the previously intro-
duced tools can be used to realize domain-specific safety
mechanisms.

Simulink

As noted in Section “Safety Engineering in a Nutshell”, the
ACC’s main functionality is realized by a PID controller,
which regulates the throttle according to the speed of the
vehicle and the distance to the vehicle ahead in order to
maintain a fixed distance between them.

Figure 16 shows an implementation of the PID control-
ler inside a subsystem of a Simulink block diagram. Using
the Simulink Embedded Coder, this model could now be
used to generate C code for an embedded target. However,
analogous to the introductory example, a DMR pattern is
first applied to the Simulink subsystem to mitigate the effects

of soft errors during computation. In order to use the USF
approach with Simulink models, tool support had to be
implemented. For this purpose, we decided to implement a
minimal tool support that relies on SafetyModeler. As a first
step, the mapping between Simulink block diagrams and the
USF had to be created. Due to the structural similarity of
the models, e.g., Simulink blocks to USF blocks, Simulink
signals to USF data flow, etc., this was fairly straightforward.
Through this mapping, we then created simple model-to-
model transformations between Simulink models and USF
models and vice versa with the Eclipse Epsilon plugin [21],
which provides an interface to query and modify Simulink
models in Eclipse via the MATLAB API.

Figure 17 shows the equivalent USF model of the PID
controller, as well as an applied DMR pattern to the whole
PID component in SafetyWeaver. Using the built-in trans-
formation engine, we then applied the pattern.

To completely convert the USF model back to a Simulink
model, we first had to provide Simulink implementations

Fig. 15   Example of the glue code editor in the SafetyWeaver tool: C code for DMR comparator

Fig. 16   PID controller in Simulink

	 SN Computer Science (2023) 4:151151  Page 16 of 22

SN Computer Science

for the two new subcomponents used in the DMR pattern
(comparator and error handler). To do this, we simply added
a new Simulink library with the analogous subcomponents
as Simulink subsystems. The implementation of the com-
parator can be seen in Fig. 18 and the error handler was
implemented as a so-called S-function, which simply calls
an existing error handler in the embedded system.

Using the transformed USF model, which includes the
DMR pattern and the Simulink library, we then transformed
the USF model back into a Simulink model. Figure 19 shows
the result of the model transformation. The resulting Sim-
ulink subsystem was then translated with the Simulink
Embedded Coder to C.

Safety‑Mechanism for C

An alternative way of implementing the PID controller
software for the ACC application is by using C embedded

code directly. Figure 20 shows the C code for the actual
PID algorithm, which has been annotated by a safety engi-
neer in order to indicate where the DMR pattern should
be applied (green box referring to the UTL transformation
APPLY_DMR).

In the example, specifically marked locations in the
C code are handed over to the transformation as parameter
values. E.g., the INPUT_V is a join point at the local vari-
able declaration curr_v (cf. Section “Language Concepts
of UTL”). It represents a dataflow input port after the map-
ping to USF.

Figure 21 illustrates how the SafetyWeaver tool auto-
matically changes the C code based on the input from the
annotation. The green annotation box has been removed
by the transformation engine and the DMR pattern has
been applied instead. The data path of the manually writ-
ten code has been duplicated and a new code block for
the comparator aspect of the DMR mechanism has been
added. The error check compares the original result
variable throttle_u with its duplicated counterpart
throttle_u_dup and triggers the error handling if
the values are different. The glue code for error detection
and reporting has been provided by a platform architect
via the domain library (as explained in Section “Aspects
of Executing UTL Transformations”).

Another application of a very simple safety mechanism
is shown in Fig. 22. Here, a Watchdog safety mechanism
is applied in order to ensure the periodic execution of the
C function writeActuator(). If the actuator updates

Fig. 17   PID controller in USF

Fig. 18   Simulink implementation for the comparator

SN Computer Science (2023) 4:151	 Page 17 of 22  151

SN Computer Science

are missing at some point in time due to some hardware or
software fault, an emergency situation is detected, which
has to be handled properly. The only goal of the safety
mechanism is triggering a hardware watchdog. If the
watchdog is not triggered for a defined period of time, the
error handling must kick in. The UTL transformation script

is shown in Fig. 23. Its main task is to add a new code
block at the location given by the control port parameter
triggerWD.

Figure 24 illustrates the code, which has been added by
the automatic safety weaving by executing the transforma-
tion script.

Fig. 19   PID controller with applied DMR pattern

Fig. 20   Embedded code of the
ACC control SW with selected
DMR safety mechanism (before
transformation)

	 SN Computer Science (2023) 4:151151  Page 18 of 22

SN Computer Science

It just inserted a simple block with some glue code,
which retriggers the hardware watchdog timer. Again,
the actual code line to do this has been defined in the
domain library. If the domain library contains several
glue code implementations for different timer hardware,
the linked hardware abstraction elements from the USF
model (cf. Fig. 11) should be used by the tool to limit
the shortlist of implementations to the ones matching the
actual timer hardware.

Discussion

With the evaluation, we illustrated how the USF approach
can be applied to realize software safety mechanisms.
This, of course, requires a significant initial development
effort to enable a user-friendly and powerful method to
generate safety mechanisms. As previously noted, tool
adaptations can be rather complex, but are needed only
once per domain. On the other hand, creating new patterns
via UTL is quite easy, especially with an appropriate tool

Fig. 21   Embedded code of the
ACC control SW with inserted
DMR safety mechanism (after
transformation)

Fig. 22   Embedded code of the
ACC control SW with selected
safety mechanism to trigger
a hardware watchdog (before
transformation)

SN Computer Science (2023) 4:151	 Page 19 of 22  151

SN Computer Science

support. Nevertheless, to support fully automatic genera-
tion of the safe software, newly introduced subcomponents
used in the safety patterns (such as comparators) require a
provided or generated implementation per domain.

These implementations often represent fairly simple
functionality and can be used in multiple patterns, often
resulting in modest overhead per domain. In certain cases
(e.g., if a pattern requires bare-metal access to a timer
without any hardware abstraction layer) several implemen-
tations may be required, depending on the used timer. This
may lead to a considerable additional effort due to the
possible potential of the function, but especially due to the
multitude of implementations. Nevertheless, we believe
that these development costs will be amortized over a few
designs, since hardware, for example, is usually reused.

In order to take full advantage of these simple patterns,
an appropriate level of abstraction must be chosen that
matches the granularity of the desired safety mechanism.
For example, changes at the software architecture level can
be easily achieved by applying a simple pattern to a high-
level model, while the same changes in the C code would
most likely require a complex and non-generic pattern.

For brevity, we have presented the generation of only
two patterns in this work. During the development of the
USF approach, we analyzed a variety of software safety
mechanisms used in industry to create an initial library of
safety patterns. These patterns can roughly be divided into
application-specific and non-application-specific ones.

The DMR pattern can be classified as an application-spe-
cific pattern. Application-specific patterns must be customized
and interwoven into the functionality, often deep within the
functional software. For this reason, in conventional develop-
ment, this usually resulted in a manual re-implementation of
the safety mechanism rather than a reusable pattern. These
steps can now be fully automated with the USF approach.

Patterns that are not application-specific, such as an inter-
rupt controller test, do not need to be customized to the func-
tional design, but must still be called and thus woven into the
software at the correct point. The recommendations in safety
manuals, often provided by hardware manufacturers for their
platforms, are examples of these patterns. Much like conven-
tional development, this requires effort to adapt to a new hard-
ware platform, but the mechanisms can then be shared between
projects that use the same hardware. Although the merits of the
USF approach for some of these safety mechanisms may be
limited to automatic integration of existing implementations
or may be useful only in some domains, it can still be very
beneficial to express them through patterns. As the example
in Figs. 20 and 21 has shown, the use of the USF approach
and tools such as the SafetyWeaver allows the user to keep
functional and safety software separate, but to combine them
at any time following the principle of separation of concerns.
Thus, the maintenance of the functional software is simplified.
In addition, the description of all mechanisms via the USF pat-
tern enables the creation of a formalized safety specification.

As outlined in Section “Safety Engineering in a Nut-
shell”, the realization of software safety mechanisms is a
part of the larger safety engineering process and must always
be examined in that larger context. This means, for example,
that the safety mechanisms must be developed according to
the stringent rules of the safety standards and that suitable
patterns are selected by a safety engineer to ensure that the
safety goals are met. This includes not only the detection
and handling of certain errors, but also other requirements
such as the observance of time and memory constraints.
Since some safety mechanisms can impose a huge overhead
that can conflict, for example, with strict application dead-
lines, this can be a complicated tradeoff. Automating the

Fig. 23   UTL example transformation: Hardware watchdog mecha-
nism

Fig. 24   Embedded code of ACC control SW with inserted safety
mechanism, which triggers a hardware watchdog (after transforma-
tion)

	 SN Computer Science (2023) 4:151151  Page 20 of 22

SN Computer Science

realization of safety mechanisms can also assist the safety
engineer in this regard through enabling the fast develop-
ment of various design alternatives that can subsequently
be evaluated to check if they fulfill all given requirements.

Related Work

This section on related work is divided into three parts.
First, USF and UTL are compared against established
concepts. We then compare our approach to other model-
driven approaches for generating safety mechanisms, and
finally present approaches that focus on the automatic
integration of safety mechanisms at the code level.

System Modeling and Model Transformations

There are different benefits of applying domain-specific
languages (DSLs) and model-to-model transformations for
safety-critical system development. Aside from weaving
safety mechanisms into functional code as described here,
the language workbench JetBrains MPS has been used for
complete generation of safety-critical code and tests from
DSL-based models [22]. Another interesting use case is
the generation of fault-trees from SysML-like component
models using MPS [23].

The mainstream standardized language for modeling
systems is SysML [24]. It offers a profile mechanism
which can be used to specialize its generic metamodel
and diagrams in order to support functional safety aspects
of systems (e.g., dependability analysis in the aerospace
domain [25]). On the other hand, the USF metamodel as
a DSL offers the streamlined combination of structural
aspects as well as control-/dataflow in the same model.
Using a DSL avoids the necessity of using stereotypes,
which provides benefits both for manual editing and auto-
mated model transformations.

As discussed earlier, automatic safety weaving is imple-
mented as model-to-model transformations supported by
the UTL. The general approach is inspired by the aspect-
oriented programming (AOP [13]) methodology. However,
USF patterns might be applied to different target domains
(not only to source code of a single programming lan-
guage). Therefore, USF safety weaving is not equivalent
to AOP.

For the definition of transformations on generic meta-
models, a variety of languages and corresponding imple-
mentations has been developed. QVT [26] is a standard-
ized transformation/query language operating on models,
which conform to MOF 2.0. ATL [14] is a QVT-like
language for EMF models. Viatra2 [27] is also a query/
transformation language operating on EMF models, but

with a high-performance incremental implementation.
Xtend [17] is a general-purpose programming language
with special focus on model-to-text generation and useful
language concepts for model-to-model transformations
(e.g., create methods, builder syntax and higher-order
functions). As shown in Section “Requirements for the
USF Transformation Language”, many of the require-
ments of UTL are specific to the task of safety weaving
and the needs of safety engineers. Therefore, we pre-
ferred designing a DSL tailored for this task and the cor-
responding user group.

Model‑Driven Safety Mechanism Generation

The main advantage of model-driven approaches is that
even complex safety mechanisms can be incorporated into
the design at an early stage of development and, moreo-
ver, are often independent of the target platform. Since the
model-based designs are usually easier to understand than,
for example, the plain source code, this also potentially eases
the validation effort for the safety engineer. There are several
model-driven approaches that automatically integrate soft-
ware safety mechanisms via model transformations but are
limited to a specific type of safety mechanism and a specific
modeling language. Trindade et al. [5], for example, intro-
duce a technique to generate boundary checks for AUTO-
SAR software components from semi-formal requirements.
In [4] Hu et al. propose an approach to applying N-version
programming in the Cyber-Physical Action Language and
Ding et al. [3] presented a flow to integrate different compu-
tational redundancy mechanisms, e.g., DMR, into Simulink
models.

A more general approach is presented by Huning
et al. [28]. The authors present a workflow for applying
safety patterns to UML models, which are then used to gen-
erate code. Adding new safety patterns is a multi-step pro-
cess. This includes the creation of new stereotypes, model-
to-model and model-to-text transformations for each pattern.
While this approach is limited to UML models, there are
similarities between this concept and our approach. How-
ever, there does not appear to be any additional tool sup-
port for creating new patterns beyond what is provided by
standard UML and model transformation tools. Making it
significantly more laborious to add new patterns compared
to our approach.

Code Transformation Methods

The model-based USF flow can be applied at source code
level using the SafetyWeaver tool. The transformations
integrate (weave) safety-related source code snippets at the
defined places into the functional source code based on the
USF transformation language. These code modifications

SN Computer Science (2023) 4:151	 Page 21 of 22  151

SN Computer Science

are source-to-source (S2S) code transformations. They
could also be used with other C/C++ frameworks that
allow S2S transformations such as LLVM [29] or the Rose
Compiler [30].

Code transformations for safety can also be used to
implement so-called SW-implemented HW fault toler-
ance (SIHFT) methods. These methods add either dual
redundancy to the software program to detect transient
hardware errors that lead to data corruption in the proces-
sor, or they add signatures to code basic block to detect
corruptions in the control flow of the program. Different
SIHFT variants exist to protect computation [6, 7, 31] as
well as conditions [8] and control flow [9]. A major prob-
lem for implementing SIHFT methods is that the compiler
can detect and remove redundant computations. Hence,
these techniques are best added at the assembly code level
during the backend code generation of the compiler. These
methods can be integrated in the presented model-based
safety flow in a straightforward way. USF transformations
add additional markers to source code sections such as
functions to indicate to the compiler that a specific SIHFT
method should be applied to harden this code section
against random hardware errors.

Conclusions

In this work, we demonstrated a model-driven approach to
automatically adapt, generate, and integrate domain-specific
software safety mechanisms using the Universal Safety
Format. Safety mechanisms are generalized by patterns
described via the domain-agnostic transformation language
UTL, which operates on USF models. Once created, these
safety patterns can be reused in various designs and at dif-
ferent design stages. We have demonstrated how USF sup-
port can be integrated into domain-specific tools such as
the SafetyModeler and the SafetyWeaver, which can then
apply USF safety patterns in a domain context to realize
the software safety mechanisms. From our evaluations, we
have shown how this can be implemented for very different
domain contexts, such as Simulink models or C code, using
the same patterns. Additional information and open source
implementations can be found on the USF website [12].

In future work, we are investigating how this approach
can be extended to the generation of security mechanisms
as well as how the approach can be adapted to hardware
designs.

Funding  Open Access funding enabled and organized by Projekt
DEAL. This work was supported by the German Ministry of Sci-
ence and Education (BMBF) in the project SAFE4I under Grant No.
01IS70320.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 IEC 61508. Functional Safety of Electrical/Electronic/Program-
mable Electronic Safety-related Systems (E/E/PE, or E/E/PES.
Geneva, CH: The International Electrotechnical Commission,
2010.

	 2.	 ISO 26262. Road vehicles – Functional safety. Geneva, CH: Inter-
national Organization for Standardization; 2018.

	 3.	 Ding K, Morozov A, Janschek K. MORE: MOdel-based REdun-
dancy for Simulink. In: Gallina B, Skavhaug A, Bitsch F, edi-
tors. Computer safety, reliability, and security. Cham: Springer;
2018. p. 250–64.

	 4.	 Hu T, Cibrario Bertolotti I, Navet N, Havet L. Automated fault
tolerance augmentation in model-driven engineering for CPS.
Comput Standards Interface. 2020;70: 103424. https://​doi.​org/​
10.​1016/j.​csi.​2020.​103424.

	 5.	 Trindade RFB, Bulwahn L, Ainhauser C. Automatically gen-
erated safety mechanisms from semi-formal software safety
requirements. In: Bondavalli A, Di Giandomenico F, editors.
Computer safety, reliability, and security. Cham: Springer;
2014. p. 278–93.

	 6.	 Didehban M, Shrivastava A. NZDC: A Compiler Technique for
near Zero Silent Data Corruption. In: Proceedings of the 53rd
Annual Design Automation Conference. DAC ’16. 2016;New
York, NY, USA: Association for Computing Machinery; p. 1–6.

	 7.	 Reis GA, Chang J, Vachharajani N, Rangan R, August DI. SWIFT:
Software Implemented Fault Tolerance. In: International Sym-
posium on Code Generation and Optimization. IEEE. 2005;p.
243–254.

	 8.	 Didehban M, Shrivastava A, Lokam SRD. NEMESIS: A soft-
ware approach for computing in presence of soft errors. In: 2017
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2017;p. 297–304.

	 9.	 Vankeirsbilck J, Penneman N, Hallez H, Random BJ. Additive
signature monitoring for control flow error detection. IEEE Trans
Reliab. 2017;66(4):1178–92. https://​doi.​org/​10.​1109/​TR.​2017.​
27545​48.

	10.	 Armoush A. Design patterns for safety-critical embedded systems
[Ph.D. thesis]. RWTH Aachen University; 2010.

	11.	 Haxel F, Viehl A, Benkel M, Beyreuther B, Birken K, Schmedes
R, et al. Universal Safety Format: Automated Safety Software
Generation. In: Pires LF, Hammoudi S, Seidewitz E, editors. Pro-
ceedings of the 10th International Conference on Model-Driven
Engineering and Software Development, MODELSWARD

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csi.2020.103424
https://doi.org/10.1016/j.csi.2020.103424
https://doi.org/10.1109/TR.2017.2754548
https://doi.org/10.1109/TR.2017.2754548

	 SN Computer Science (2023) 4:151151  Page 22 of 22

SN Computer Science

2022, Online Streaming, February 6–8, 2022. SCITEPRESS. p.
155–166.

	12.	 USF.: Universal Safety Format - Website. Last checked on
May 20, 2022. Available from: https://​www.​unive​rsals​afety​for-
mat.​org/.

	13.	 Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes CV,
Loingtier J, et al. Aspect-Oriented Programming. In: Aksit M,
Matsuoka S, editors. ECOOP’97 - Object-Oriented Programming,
11th European Conference, Jyväskylä, Finland, June 9–13, 1997,
Proceedings. vol. 1241 of Lecture Notes in Computer Science.
Springer; 1997. p. 220–242.

	14.	 Jouault F, Allilaire F, Bézivin J, Kurtev I. ATL: A model trans-
formation tool. Sci Comput Program 2008;72(1):31–39. Special
Issue on Second issue of experimental software and toolkits
(EST). https://​doi.​org/​10.​1016/j.​scico.​2007.​08.​002.

	15.	 MPS.: Meta Programming System (MPS) by JetBrains. Last
checked on May 20, 2022. Available from: https://​www.​jetbr​ains.​
com/​mps/.

	16.	 Knüchel C, Rudorfer M, Voget S, Eberle S, Sezestre R, Loyer A.
Artop an ecosystem approach for collaborative AUTOSAR tool
development. In: ERTS2 2010, Embedded Real Time Software &
Systems.

	17.	 Xtend.: Xtend programming language homepage. Last checked
on May 20, 2022. Available from: http://​www.​eclip​se.​org/​xtend.

	18.	 Voelter M. Generic Tools, Specific Languages [Ph.D. thesis].
Delft University of Technology, 2014.

	19.	 Voelter M, Ratiu D, Kolb B, Schaetz B. mbeddr: Instantiating
a Language Workbench in the Embedded Software Domain.
Autom Softw Eng. 2013;20(3):339–90. https://​doi.​org/​10.​1007/​
s10515-​013-​0120-4.

	20.	 Voelter M, Birken K, Lisson S, Rimer A. Shadow Models: Incre-
mental Transformations for MPS. In: Proceedings of the 12th
ACM SIGPLAN International Conference on Software Language
Engineering. SLE 2019. New York, NY, USA: Association for
Computing Machinery; p. 61–65.

	21.	 Sanchez B, Zolotas A, Hoyos Rodriguez H, Kolovos D, Paige R.
On-the-Fly Translation and Execution of OCL-Like Queries on
Simulink Models. In: 2019 ACM/IEEE 22nd International Con-
ference on Model Driven Engineering Languages and Systems
(MODELS); 2019;p. 205–215.

	22.	 Voelter M, Kolb B, Birken K, Tomassetti F, Alff P, Wiart L, et al.
Using language workbenches and domain-specific languages
for safety-critical software development. Softw Syst Model.
2019;18(4):2507–30. https://​doi.​org/​10.​1007/​s10270-​018-​0679-0.

	23.	 Munk P, Nordmann A. Model-based safety assessment with
SysML and component fault trees: application and lessons
learned. Softw Syst Model. 2020;19(4):889–910. https://​doi.​org/​
10.​1007/​s10270-​020-​00782-w.

	24.	 Mann C. A Practical Guide to SysML: The Systems Modeling
Language. Kybernetes, 2009;38.

	25.	 Steurer M, Morozov A, Janschek K, Neitzke KP. SysML-based
Profile for Dependable UAV Design. IFAC-PapersOnLine.
51(24):1067–1074. 10th IFAC Symposium on Fault Detection,
Supervision and Safety for Technical Processes SAFEPROCESS,
2018. https://​doi.​org/​10.​1016/j.​ifacol.​2018.​09.​722.

	26.	 Bast W, Murphree M, Michael L, Duddy K, Belaunde M, Griffin
C, et al. MOF QVT final adopted specification: meta object facil-
ity (MOF) 2.0 query/view/transformation specification. Object
Management Group, 2005.

	27.	 Bergmann G, Ujhelyi Z, Ráth I, Varró D. A Graph Query Lan-
guage for EMF models. In: Cabot J, Visser E, editors. Theory
and Practice of Model Transformations, Fourth International
Conference, ICMT 2011, Zurich, Switzerland, June 27-28, 2011.
Proceedings. vol. 6707 of Lecture Notes in Computer Science.
Springer. Springer; p. 167–182.

	28.	 Huning L, Iyenghar P, Pulvermüller E. A Workflow for Auto-
matically Generating Application-level Safety Mechanisms from
UML Stereotype Model Representations. In: Ali R, Kaindl H,
Maciaszek LA, editors. Proceedings of the 15th International
Conference on Evaluation of Novel Approaches to Software Engi-
neering, ENASE 2020, Prague, Czech Republic, May 5–6, 2020.
SCITEPRESS; 2020. p. 216–228.

	29.	 Lattner C, Adve V. LLVM: a compilation framework for lifelong
program analysis amp; transformation. In: International Sympo-
sium on Code Generation and Optimization, 2004. CGO 2004.;
p. 75–86.

	30.	 Quinlan D, Liao C. The ROSE source-to-source compiler infra-
structure. In: Cetus users and compiler infrastructure workshop,
in conjunction with PACT. vol. 2011. Citeseer; p. 1.

	31.	 Sharif U, Mueller-Gritschneder D, Schlichtmann U. REPAIR:
Control Flow Protection Based on Register Pairing Updates for
SW-Implemented HW Fault Tolerance. ACM Trans Embed Com-
put Syst. 2021;20(5s). https://​doi.​org/​10.​1145/​34770​01.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.universalsafetyformat.org/
https://www.universalsafetyformat.org/
https://doi.org/10.1016/j.scico.2007.08.002.
https://www.jetbrains.com/mps/
https://www.jetbrains.com/mps/
http://www.eclipse.org/xtend
https://doi.org/10.1007/s10515-013-0120-4
https://doi.org/10.1007/s10515-013-0120-4
https://doi.org/10.1007/s10270-018-0679-0
https://doi.org/10.1007/s10270-020-00782-w
https://doi.org/10.1007/s10270-020-00782-w
https://doi.org/10.1016/j.ifacol.2018.09.722
https://doi.org/10.1145/3477001

	The Universal Safety Format in Action: Tool Integration and Practical Application
	Abstract
	Introduction
	Safety Engineering in a Nutshell
	Running Example

	USF in the Development Flow
	USF Metamodel
	Structured Elements and Flows
	Safety Pattern
	Pattern Application
	Hardware Abstraction Layer

	USF Transformation Language
	Requirements for the USF Transformation Language
	Language Concepts of UTL
	Statically Typed Expression Language
	Modular Transformations
	Operation API
	Creation of USF Model Fragments
	Abstracting from Domain-Specific Details

	Aspects of Executing UTL Transformations
	Transformation Execution Approaches
	Weaving for Structural Models
	Weaving for Program Code, esp. C

	Evaluation
	Tool Support
	SafetyModeler
	SafetyWeaver

	Domain-Specific Safety Pattern Application
	Simulink
	Safety-Mechanism for C

	Discussion
	Related Work
	System Modeling and Model Transformations
	Model-Driven Safety Mechanism Generation
	Code Transformation Methods

	Conclusions
	References

