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Abstract
We present a framework for the structure-preserving approximation of partial differential
equations on mapped multipatch domains, extending the classical theory of finite element
exterior calculus (FEEC) to discrete de Rham sequences which are broken, i.e., fully dis-
continuous across the patch interfaces. Following the Conforming/Nonconforming Galerkin
(CONGA) schemes developed in Campos Pinto and Sonnendrücker (Math Comput 85:2651–
2685, 2016) and Campos Pinto and Güçlü (Broken-FEEC discretizations and Hodge Laplace
problems. arXiv:2109.02553, 2022), our approach is based on: (i) the identification of a
conforming discrete de Rham sequence with stable commuting projection operators, (ii)
the relaxation of the continuity constraints between patches, and (iii) the construction of
conforming projections mapping back to the conforming subspaces, allowing to define dis-
crete differentials on the broken sequence. This framework combines the advantages of
conforming FEEC discretizations (e.g. commuting projections, discrete duality and Hodge–
Helmholtz decompositions) with the data locality and implementation simplicity of interior
penalty methods for discontinuous Galerkin discretizations. We apply it to several initial-
and boundary-value problems, as well as eigenvalue problems arising in electromagnetics.
In each case our formulations are shown to be well posed thanks to an appropriate stabiliza-
tion of the jumps across the interfaces, and the solutions are extremely robust with respect to
the stabilization parameter. Finally we describe a construction using tensor-product splines
on mapped cartesian patches, and we detail the associated matrix operators. Our numerical
experiments confirm the accuracy and stability of this discrete framework, and they allow
us to verify that expected structure-preserving properties such as divergence or harmonic
constraints are respected to floating-point accuracy.
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1 Introduction

Thanks to enlightening research conducted over the last few decades [1, 6, 11, 15, 33,
35, 38], it is now well understood that preserving the geometrical de Rham structure of
physical problems is a key tool in the design of good finite element methods. A significant
field of success is electromagnetics, where this principle has produced stable and accurate
discretization methods, from simplicial Whitney forms [9, 49] to high order curved elements
in isogeometric analysis [14, 27], via edge Nédélec elements [8, 42]. The latter, in particular,
have been proven to yield Maxwell solvers that are free of spurious eigenmodes in a series
of works dedicated to this issue [7, 10, 26, 43]. Here the existence of stable commuting
projection operators plays a central role, as highlighted in the unifying analysis of finite
element exterior calculus (FEEC) [1, 2].

A central asset of structure-preserving finite elements is their ability to reproduce discrete
Hodge–Helmholtz decompositions which, in combination with proper commuting projec-
tion operators, allow them to preserve important physical invariants such as the divergence
constraints inMaxwell’s equations [21, 22, 44], or the Hamiltonian structure of theMHD and
Vlasov–Maxwell equations [24, 36, 40]. In the latter application the aforementioned com-
muting projection operators couple structure-preserving finite element fields with numerical
particles.

As they primarily involve strong differential operators, structure-preserving finite ele-
ments have been essentially developed within the scope of conforming methods, where the
discrete spaces form a sub-complex of the continuous de Rham sequence. In practice this
imposes continuity conditions at the cell interfaces which strongly degrade the locality of
key operations such as L2 projections, as sparse finite element mass matrices have no sparse
inverses in general. In the natural framework of dual complexes composed of weak differ-
ential operators, this leads to Galerkin Hodge operators which are global, in the sense that
on a given cell their values depend a priori on the function values on the whole domain. As
the Hodge operators allow to map from the dual spaces to the primal ones, this results in dis-
crete coderivatives operators that share this undesirable globality property. Furthermore the
canonical commuting projection operators for the dual sequence are also global, since they
coincidewith the L2 projections on the discrete finite element spaces. This featuremakes their
application potentially expensive on fine meshes, and it represents a serious hurdle in parallel
codes where communications between distant cells should be avoided as much as possible.

In this article we follow the broken FEEC approach [23] first developed for Conform-
ing/Nonconforming Galerkin (CONGA) schemes in [18, 19]. The principle is to consider
local de Rham sequences on subdomains (which we shall call patches) and discretize the
global problems with broken finite element spaces, which are fully discontinuous at the patch
interfaces. Strong differential operators are then obtained by composing the local (broken)
ones with conforming projection operators that enforce the proper continuity conditions at
the interfaces. Being fully discontinuous at the patch interfaces, the broken finite element
spaces have mass matrices which are block diagonal (with blocks corresponding to patches)
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so that the inverse mass matrices are also block diagonal. This readily yields L2 projections
and Galerkin Hodge operators which are patch-local.

Since the coupling betweenneighboring patches is encoded bydiscrete conforming projec-
tion operators which in practice involve the averaging of degrees of freedom across interfaces,
the corresponding derivative and coderivative operators are local in the sense that on a given
patch their values only depend on the function values on the contiguous patches. In addition
our broken FEEC sequences admit dual commuting projection operators that involve L2 pro-
jections on the broken spaces and transposed conforming projection matrices [23], so these
are also local.

The good news is that this approach does not sacrifice structure preservation, indeed our
broken FEEC sequences satisfy primal/dual commuting diagrams, uniform stability esti-
mates and discrete Hodge–Helmholtz decompositions [18, 23]. In particular, broken FEEC
sequences should allow one to construct structure-preserving finite element solvers on com-
plex domains with enhanced locality properties.

In the present work we follow this principle and propose specific numerical schemes for
several boundary value problems arising in electromagnetics. We describe their precise form
in the case of multipatch mapped spline spaces [15, 27] on general non-contractible domains,
and we perform several numerical experiments to study their practical behaviour. As our
results show, this approach indeed allows us to preserve most properties of the conforming
FEEC approximations, such as stability and accuracy of the solutions, topological invariants,
as well as harmonic and divergence constraints of the discrete fields.

The outline is as follows: We first recall in Sect. 2 the main lines of FEEC discretizations
using conforming spaces and we describe their extension to broken spaces, with a detailed
description of the fully discrete diagrams involving the primal (strong) and dual (weak) de
Rham sequences and their respective broken commuting projection operators. In Sect. 3
we apply this discretization framework to a series of classical electromagnetic problems,
namely Poisson’s and harmonic Maxwell’s equations, curl-curl eigenvalue problems, and
magnetostatic problems; we also recall the approximation of the time-dependent Maxwell
equations from Campos Pinto and Sonnendrücker [18]. For each problem we state a priori
results about the solutions, assuming the well-posedness of the corresponding conforming
FEEC discretization. In Sect. 4 we detail the construction of a geometric broken FEEC
spline discretization on mapped multipatch domains. Here we consider a 2D setting for
simplicity, but the same method applies to 3D domains. In Sect. 5 we conduct extensive
numerical experiments for the electromagnetic problems described in the article, which verify
the robustness of our approach. Finally, in Sect. 6 we summarize the main results of our work
and provide an outlook on future research.

Some necessary “standard” definitions are specified in the Appendix, which provides a
self-containednotation for thematerial of Sect. 4:AppendixSect.Adescribes the construction
of brokenmultipatch spline complexes,whileAppendix Sect. B defines the geometric degrees
of freedom and the corresponding commuting projection operators.

2 Principle of FEEC and Broken FEEC Discretizations

2.1 De Rham Sequences and Hodge–Helmholtz Decompositions

In this work we consider discretizations of Hilbert de Rham sequences. At the continuous
level these are of the form
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V 0 grad−−−→ V 1 curl−−−→ V 2 div−−−→ V 3 (1)

with infinite-dimensional spaces such as

V 0 = H1
0 (�), V 1 = H0(curl;�), V 2 = H0(div;�), V 3 = L2(�). (2)

Following the well established analysis of Hilbert complexes by Arnold, Falk and Winther
[1, 2] we also consider the dual sequence

V ∗
0

div←−−− V ∗
1

curl←−−− V ∗
2

grad←−−− V ∗
3 (3)

involving the adjoint differential operators (denoted with their usual name) and their corre-
sponding domains, namely

V ∗
3 = H1(�), V ∗

2 = H(curl;�), V ∗
1 = H(div;�), V ∗

0 = L2(�). (4)

Here the construction is symmetric, in the sense that the inhomogeneous sequence (4) could
have been chosen for the primal one and the homogeneous (2) for the dual one. Since the
symmetry is broken in the finite element discretization, to fix the ideas in this articlewemostly
consider the choice (1)–(4), except for a few places where we adopt a specific notation. A
key property of these sequences is that each operator maps into the kernel of the next one,
i.e., we always have curl grad = 0 and div curl = 0. This allows us to write an orthogonal
Hodge–Helmholtz decomposition for L2(�)3, of the form

L2(�)3 = grad V 0 ⊥⊕ H1 ⊥⊕ curl V ∗
2 (5)

where H1 := {v ∈ V 1 ∩ V ∗
1 : curl v = div v = 0}, see e.g. [2, Eq. (15)]. This space

corresponds to harmonic 1-forms, as it coincides with the kernel of the 1-form Hodge–
Laplace operator

L1 := − grad div+ curl curl (6)

seen as an operator L1 : D(L1) → L2(�) with domain space

D(L1) := {v ∈ V 1 ∩ V ∗
1 : curl v ∈ V ∗

2 and div v ∈ V 0}. (7)

Another orthogonal decomposition for L2(�)3 is

L2(�)3 = curl V 1 ⊥⊕ H2 ⊥⊕ grad V ∗
3 , (8)

whereH2 := {w ∈ V 2 ∩ V ∗
2 : curlw = divw = 0} is the space of harmonic 2-forms, which

coincideswith the kernel of the 2-formHodge–Laplace operatorL2 := − grad div+ curl curl
with domain space D(L2) := {w ∈ V 2 ∩ V ∗

2 : curlw ∈ V ∗
1 and divw ∈ V 3}.

We point out that, while the 1-form and 2-form Hodge–Laplace operators are formally
identical, their domain spaces differ in the boundary conditions and hence H1 	= H2: in
the case considered here where the primal sequence has homogeneous boundary conditions,
the harmonic 1-forms have vanishing tangential trace on ∂�, while the harmonic 2-forms
have vanishing normal trace on ∂�. In the symmetric case where the non-homogeoneous de
Rham sequence is considered as the primal one, one obtains the same decompositions (5) and
(8) but with opposite order: (H�)non-hom. = H3−�. This isomorphism, known as Poincaré
duality, is provided by the Hodge star operator; see [2, Sects. 5.6, 6.2].

On contractible domains the above sequences are exact in the sense that the image of
each operator coincides exactly with the kernel of the next one, and the harmonic space is
trivial, H1 = {0}. However if the domain � is non-contractible, this is no longer the case
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and there exist non trivial harmonic forms. Indeed, the dimensions of these two harmonic
spaces depend on the domain topology: dim(H2) = dim(H1)non-hom. = b1(�) is the first
Betti number, which counts the number of “tunnels” through the domain, while dim(H1) =
dim(H2)non-hom. = b2(�) is the second Betti number, which counts the number of “voids”
enclosed by the domain.

2.2 Conforming FEEC Discretizations

Finite Element Exterior Calculus (FEEC) discretizations consist of Finite Element spaces
that form discrete de Rham sequences,

V 0,c
h

grad−−−→ V 1,c
h

curl−−−→ V 2,c
h

div−−−→ V 3,c
h . (9)

Here, the superscript c indicates that the spaces are assumed conforming in the sense that
V �,c
h ⊂ V �, and the subscript h loosely represents some discretization parameters, such as

the resolution of an underlying mesh. A key tool in the analysis of FEEC discretizations is
the existence of projection operators �

�,c
h : V � → V �,c

h that commute with the differential
operators, in the sense that the relation

d��
�,c
h v = �

�+1,c
h d�v v ∈ V � (10)

holds for the different operators in the sequence (9),

d0 = grad, d1 = curl, d2 = div . (11)

In particular, the stability and the accuracy of several discrete problems posed in the sequence
(9), relative to usual discretization parameters such as the mesh resolution h or the order of
the finite element spaces, follow from the stability of the commuting projections in V � or L2

norms, see e.g. [2, Theorems 3.9, 3.19].
Denoting explicitly by

gradch := grad |V 0,c
h

, curlch := curl |V 1,c
h

, divch := div |V 2,c
h

(12)

the differential operators restricted to the discrete spaces, we define their adjoints by discrete
L2 duality, i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

〈(gradch)∗v, ϕ〉 = 〈v, grad ϕ〉 ∀v ∈ V 1,c
h , ϕ ∈ V 0,c

h

〈(curlch)∗w, v〉 = 〈w, curl v〉 ∀w ∈ V 2,c
h , v ∈ V 1,c

h

〈(divch)∗ρ,w〉 = 〈ρ, divw〉 ∀ρ ∈ V 3,c
h , w ∈ V 2,c

h

(13)

where 〈·, ·〉 denotes the L2(�) scalar product. Owing to the homogeneous boundary condi-
tions, we denote the resulting coderivative operators by

⎧
⎪⎪⎨

⎪⎪⎩

d̃iv
c
h := (− gradch)

∗ : V 1,c
h → V 0,c

h

˜curl
c
h := (curlch)

∗ : V 2,c
h → V 1,c

h

˜grad
c
h := (− divch)

∗ : V 3,c
h → V 2,c

h .

(14)

This yields a compatible discretization of both the primal and dual sequences (1) and (3), in
strong and weak form, respectively, using the same spaces (9). Note that in (13) the discrete
spaces V �,c

h are implicitely identified with their dual spaces when equippedwith the L2 norm,
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which is standard practice, see e.g. [2, Sec 3.3]. This framework can be summarized in the
following diagram

V 0 V 1 V 2 V 3

V 0,c
h V 1,c

h V 2,c
h V 3,c

h

V ∗
0 V ∗

1 V ∗
2 V ∗

3

grad

�
0,c
h

curl

�
1,c
h

div

�
2,c
h �

3,c
hgradch curlch divch

d̃iv
c
h ˜curl

c
h

˜grad
c
h

div curl grad

QV 0,c
h

QV 1,c
h

QV 2,c
h

QV 3,c
h

(15)

where the operators QV �,c
h

: L2(�) → V �,c
h represent L2 projections to the conforming dis-

crete spaces. We observe that these projections commute with the dual differential operators,
as a result of (14).

Assumption 1 Throughout the article we assume that the primal projection operators �
�,c
h

are L2 stable and satisfy the commuting property (10).

Remark 1 In practice commuting projection operators also play an important role as they
permit to approximate coupling or source terms in a structure-preserving way, see e.g. [24].
For this purpose V � or L2-stable projections may not be the best choices as they can be
difficult to apply, and simpler commuting projections, defined through proper degrees of
freedom, are often preferred. These projections are then usually defined on sequences

U 0 grad−−−→ U 1 curl−−−→ U 2 div−−−→ U 3 (16)

involving spacesU � ⊂ V � that require more smoothness (or integrability) as the ones in (2).
We refer to e.g. [5, 24, 41, 45] for some examples, and to Sect. 2.4 below for more details on
such constructions.

Another asset of FEEC discretizations is to provide structure-preserving Hodge–
Helmholtz decompositions for the different spaces. For 1-forms, the discrete analog of the
continuous decomposition (5) reads

V 1,c
h = gradch V

0,c
h

⊥⊕ H1
h

⊥⊕˜curl
c
hV

2,c
h (17)

where H1
h := {v ∈ V 1,c

h : curlch v = d̃iv
c
hv = 0} is the kernel of the discrete Hodge–Laplace

operator L1,c
h : V 1,c

h → V 1,c
h defined as

L1,c
h := − gradch d̃iv

c
h +˜curl

c
h curl

c
h . (18)

The space H1
h may thus be seen as discrete harmonic 1-forms and under suitable approxi-

mation properties of the discrete spaces, its dimension coincides with that of the continuous
harmonic forms H1, which corresponds to a Betti number of � depending on the boundary
conditions, see [2, Sects. 5.6, 6.2].
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2.3 Broken FEEC Discretizations

In the case where the domain is decomposed in a partition of open subdomains �k , k =
1, . . . , K , we now consider local FEEC sequences

V 0
h (�k)

grad�k−−−−−→ V 1
h (�k)

curl�k−−−−−→ V 2
h (�k)

div�k−−−−→ V 3
h (�k) (19)

and global spaces obtained by a simple juxtaposition of the local ones

V �
h := {v ∈ L2(�) : v|�k ∈ V �

h (�k)}. (20)

One attractive feature of the broken spaces (20) is that they are naturally equipped with
local basis functions ��

i that are supported each on a single patch �k with k = k(i). The
corresponding mass matrices are then patch-diagonal, i.e., block-diagonal with blocks cor-
responding to the different patches, so that their inversion – and hence the L2 projection on
V �
h – can be performed in each patch independently of the others.
However, the spaces (20) are in general not subspaces of their infinite-dimensional coun-

terparts, indeed it is well-known that piecewise smooth fields must satisfy some interface
constraints in order to be globally smooth [5]: for H1 smoothness the fields must be contin-
uous on the interfaces, while H(curl) and H(div) smoothness of vector-valued fields require
the continuity of the tangential and normal components, respectively, on the interfaces. As
these constraints are obviously not satisfied by the broken spaces (20), we have in general

V �
h 	⊂ V �.

The approach developed for the CONGA schemes in [18, 23] extends the construction of
Sect. 2.2 to this broken FEEC setting, by associating to each discontinuous space a projection
operator on its conforming subspace,

P�
h : V �

h → V �
h ∩ V � =: V �,c

h . (21)

In practice P�
h can be defined by a local averaging of interface degrees of freedom.

Provided that these conforming spaces form a de Rham sequence (9), this allows us to
define new primal differential operators on the broken spaces

⎧
⎪⎪⎨

⎪⎪⎩

gradh := grad P0
h : V 0

h → V 1,c
h ⊂ V 1

h

curlh := curl P1
h : V 1

h → V 2,c
h ⊂ V 2

h

divh := div P2
h : V 2

h → V 3,c
h ⊂ V 3

h

(22)

and new dual ones d̃ivh : V 1
h → V 0

h ,˜curlh : V 2
h → V 1

h and˜gradh : V 3
h → V 2

h as discrete L2

adjoints, characterized by the relations

⎧
⎪⎪⎨

⎪⎪⎩

〈d̃ivhv, ϕ〉 = −〈v, grad P0
h ϕ〉 ∀ v ∈ V 1

h , ϕ ∈ V 0
h

〈˜curlhw, v〉 = 〈w, curl P1
h v〉 ∀ w ∈ V 2

h , v ∈ V 1
h

〈˜gradhρ,w〉 = −〈ρ, div P2
h w〉 ∀ ρ ∈ V 3

h , w ∈ V 2
h .

(23)
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We represent this broken FEEC discretization with the following diagram

V 0 V 1 V 2 V 3

V 0
h V 1

h V 2
h V 3

h

V ∗
0 V ∗

1 V ∗
2 V ∗

3

grad

�0
h

curl

�1
h

div

�2
h �3

h
gradh curlh divh

d̃ivh ˜curlh ˜gradh

div curl grad
�̃0

h �̃1
h �̃2

h �̃3
h

(24)

where ��
h and �̃�

h are projection operators that commute with the new primal and dual
sequences. Here ��

h are seen as unbounded operators with dense domains U � ⊂ V �. For
the dual sequence the commuting projections �̃�

h will be bounded in L2: We postpone their
description to the next sections.

We note that the presence of conforming projections P�
h in the differential operators (22)

leads to larger kernels. Specifically, we have
⎧
⎪⎪⎨

⎪⎪⎩

ker gradh = (
V 0,c
h ∩ ker grad

) ⊕ ker P0
h

ker curlh = (
V 1,c
h ∩ ker curl

) ⊕ ker P1
h

ker divh = (
V 2,c
h ∩ ker div

) ⊕ ker P2
h

where the projection kernels

ker P�
h = (I − P�

h )V �
h (25)

correspond intuitively to “jump spaces” associated with the conforming projections. In [17,
19] these extended kernels motivated a modification of the discrete differential operators in
order to retain exact sequences on contractible domains. Here we follow the approach of
[23] where the jump spaces (25) are handled by stabilisation and filtering operators in the
equations, through extended Hodge–Helmholtz decompositions.

2.4 Commuting Projections with Broken Degrees of Freedom

A practical approach for designing commuting projection operators �
�,c
h and ��

h for the
above diagrams is to define them via commuting degrees of freedom on the discrete Finite
Element spaces. In the standard case of conforming spaces these are linear forms

σ
�,c
i : U � → R, i = 1, . . . , N �,c := dim(V �,c

h )

defined on infinite-dimensional spacesU � ⊂ V � satisfying d�U � ⊂ U �+1, that are unisolvent
in V �,c

h and commute with the differential operators in the sense that there exist coefficients
D�
i, j such that

σ
�+1,c
i (d�v) =

N �,c
∑

j=1

D�
i, jσ

�,c
j (v) for i = 1, . . . N �+1,c, v ∈ U � (26)

where we have denoted again d0 = grad, d1 = curl and d2 = div. Letting �
�,c
i be the basis

of V �,c
h characterized by the relations σ

�,c
i (�

�,c
j ) = δi, j for i, j = 1, . . . N �,c, one verifies
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indeed that the operators

�
�,c
h : U � → V �,c

h , v �→
N �,c
∑

i=1

σ
�,c
i (v)�

�,c
i

are projections satisfying the commuting property (10), see e.g. [24, Lemma 2] and in passing
we note that D� is the matrix of d� in the bases just defined.

Here, we extend this approach as follows:

– Broken degrees of freedom. Each local space V �
h (�k), k = 1, . . . , K , is equipped with

unisolvent degrees of freedom

σ�
k,μ : U �(�k) → R, μ ∈ M�

h(�k) (27)

defined on local spaces U �(�k) ⊂ V �(�k) satisfying d�U �(�k) ⊂ U �+1(�k), with
multi-index sets with cardinality #M�

h(�k) = dim(V �
h (�k)). On the full domain we

simply set

σ�
k,μ(v) := σ�

k,μ(v|�k ). (28)

– Brokenbasis functions.To the above degrees of freedomweassociate local basis functions
��

k,μ ∈ V �
h (�k) (extended by zero outside of their patch), characterized by the relations

σ�
k,μ(��

k,ν) = δμ,ν for μ, ν ∈ M�
h(�k).

– Local commutation property. A relation similar to (26) must hold on each patch �k , i.e.,
there exist coefficients D�

k,μ,ν such that

σ�+1
k,μ (d�v) =

∑

ν∈M�
h(�k )

D�
k,μ,νσ

�
k,ν(v) (29)

holds for all μ ∈ M�+1
h (�k) and all v ∈ U �(�k).

– Inter-patch conformity. The global projection on V �
h ,

��
h : v �→

K∑

k=1

��
h,kv with ��

h,k : v �→
∑

μ∈M�
h(�k )

σ �
k,μ(v)��

k,μ (30)

must map smooth functions to conforming finite element fields, namely

��
hU

� ⊂ V �,c
h where U � := {v ∈ V � : v|�k ∈ U �(�k), ∀k = 1, . . . K }. (31)

This setting guarantees that the commutation properties of the local projection operators
extend to the global ones, since one has then

d�P�
h��

hv = d���
hv = ��+1

h d�v, v ∈ U �,

and it yields simple expressions for the latter in the broken bases. We refer to Sect. 4 for a
detailed construction of broken degrees of freedom that satisfy the above properties.

The dual projection operators (namely, the projection operators on the finite element
spaces which commute with the differential operators from the dual sequences) can then be
defined following the canonical approach of Campos-Pinto and Güçlü [23], as “filtered” L2

projections

�̃�
h = (P�

h )∗QV �
h

: L2 → V �
h , (32)
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where QV �
h
is now the L2 projection on the broken space V �

h ,

〈�̃�
hv,w〉 = 〈v, P�

hw〉, ∀v ∈ L2, w ∈ V �
h . (33)

By definition of the dual differentials (23), these operators indeed commute with the dual
part of the diagram (24), in the sense that

�̃0
h div = d̃ivh�̃

1
h, �̃1

h curl =˜curlh�̃
2
h, �̃2

h grad = ˜gradh�̃
3
h (34)

hold on V ∗
1 , V

∗
2 and V ∗

3 respectively. We further observe that (32)–(33) defines projection
operators on the subspaces of V �

h corresponding to the orthogonal complements of the “jump
spaces” (25). Indeed, (�̃�

h)
2 = �̃�

h holds with

Im(�̃�
h) = Im((P�

h )∗) = (ker P�
h )⊥ = {v ∈ V �

h : 〈v, (I − P�
h )w〉 = 0, ∀w ∈ V �

h }.

2.5 Differential Operator Matrices in Primal and Dual Bases

Using broken degrees of freedom and basis functions as described in the previous section,
we now derive practical representations for the operators involved in the diagram (24). To do
so we first observe that the non-conforming differential operators d�

h := d�P�
h can be refor-

mulated as d�
h = d�

pwP
�
h where d�

pw : v → ∑K
k=1 1�k d

�|�kv is the patch-wise differential

operator which coincides with d� on all v such that d�v ∈ L2. Using some implicit flattening
(k, μ) �→ i ∈ {1, . . . , N �} for the multi-indices, we represent these operators as matrices

(G)i, j = σ 1
i (gradpw �0

j ), (C)i, j = σ 2
i (curlpw �1

j ), (D)i, j = σ 3
i (divpw �2

j ) (35)

of respective sizes N 1×N 0, N 2×N 1 and N 3×N 2. These matrices have a “patch-diagonal”
structure, in the sense that they are block-diagonal, with blocks corresponding to the differ-
ential operators in each independent patch [namely, the matrices D�

k in (29)]. The matrices
of the conforming projections, seen as endomorphisms in V �

h , are

(P�)i, j = σ�
i (P�

h��
j ), i, j = 1, . . . , N �. (36)

In general P

� is not patch-diagonal, as it maps in the coefficient space of the conforming
spaces V �,c

h , where the global smoothness corresponds to some matching of the degrees of
freedom across the interfaces.

With these elementary matrices we can build the operator matrices of the non-conforming
differential operators d�

h : they read

(
O(d�

h)
)

i, j
:= σ�+1

i

(
d�
h�

�
j

)
= σ�+1

i

(
d�
pwP

�
h��

j

)
= σ�+1

i

(

d�
pw

N �
∑

k=1

��
kσ

�
k

(
P�
h��

j

))

=
N �
∑

k=1

σ�+1
i

(
d�
pw��

k

)
σ�
k

(
P�
h��

j

)
=

N �
∑

k=1

(
�
)

i,k

(
P

�
)

k, j
=

(
�
P

�
)

i, j
,
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where we have denoted (�)� = (G, C, D) for brevity. Therefore,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(gradh) =
(
σ 1
i

(
grad P0

h �0
j

) )

1≤i≤N1

1≤ j≤N0

= GP

0,

O(curlh) =
(
σ 2
i

(
curl P1

h �1
j

) )

1≤i≤N2

1≤ j≤N1

= CP

1,

O(divh) =
(
σ 3
i

(
div P2

h �2
j

) )

1≤i≤N3

1≤ j≤N2

= DP

2.

(37)

A simple representation of the dual discrete operators (23) is obtained in the dual bases
{�̃�

i : i = 1, . . . , N �} of the broken spaces V �
h . These are characterized by the relations

σ̃ �
i (�̃�

j ) = δi, j , i, j = 1, . . . N � (38)

with dual degrees of freedom defined as

σ̃ �
i (v) := 〈v,��

i 〉, v ∈ L2(�), (39)

where 〈·, ·〉 denotes again the L2 scalar product. It follows from (38) and (39) that the primal
and dual bases are in L2 duality, i.e. 〈��

i , �̃
�
j 〉 = δi, j . The matrices of the dual differential

operators in the dual bases read then

(
Õ(d̃3−�

h )
)

i, j := σ̃ �
i

(
d̃3−�
h �̃�+1

j

) = 〈
d̃3−�
h �̃�+1

j ,��
i

〉 = (−1)�+1〈�̃�+1
j , d�

h�
�
i

〉

= (−1)�+1
〈
�̃�+1

j ,

N �+1
∑

k=1

��+1
k σ�+1

k

(
d�
h�

�
i

)〉

= (−1)�+1
N �+1
∑

k=1

〈
�̃�+1

j ,��+1
k

〉
σ�+1
k

(
d�
h�

�
i

)

= (−1)�+1
N �+1
∑

k=1

δ j,k

(
D

�
P

�
)

k,i
= (−1)�+1

(
D

�
P

�
)

j,i
,

where again (D�)� = (G, C, D) for brevity. Therefore,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Õ(d̃ivh) =
(
σ̃ 0
i

(
d̃ivh�̃

1
j

))

1≤i≤N0

1≤ j≤N1

= −(GP

0)T ,

Õ(˜curlh) =
(
σ̃ 1
i

(
˜curlh�̃

2
j

))

1≤i≤N1

1≤ j≤N2

= (CP

1)T ,

Õ(˜gradh) =
(
σ̃ 2
i

(
˜gradh�̃

3
j

))

1≤i≤N2

1≤ j≤N3

= −(DP

2)T .

(40)

The change-of-basis matrices are described in the next section.
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2.6 Primal-Dual Diagram inMatrix Form

Using thematrix form of the differential operators just described, we extend the broken FEEC
diagram (24) as follows:

V 0 V 1 V 2 V 3

V 0
h V 1

h V 2
h V 3

h

C0 C1 C2 C3

C̃0 C̃1 C̃2 C̃3

V 0
h V 1

h V 2
h V 3

h

V ∗
0 V ∗

1 V ∗
2 V ∗

3

grad curl div

�0
h �1

h �2
h �3

hσ 0 σ 1 σ 2 σ 3

gradh curlh divh

I0 I1 I2 I3σ 0 σ 1 σ 2 σ 3

GP

0
CP

1
DP

2

H̃

0
H̃

1
H̃

2
H̃

3
H

0
H

1
H

2
H

3

d̃ivh ˜curlh ˜gradh
σ̃ 0 σ̃ 1 σ̃ 2 σ̃ 3Ĩ0 Ĩ1 Ĩ2 Ĩ3

−(GP

0)T (CP

1)T −(DP

2)T

(P0)T σ̃ 0 (P1)T σ̃ 1 (P2)T σ̃ 2 (P3)T σ̃ 3�̃0
h �̃1

h �̃2
h �̃3

h

div curl grad

(41)

Here C� and C̃�
are the spaces of scalar coefficients associated with the primal and dual basis

functions described in the previous Section. Both are of the formRN �
with N � = dim(V �

h ),
but we use a different notation to emphasize the different roles played by the coefficient

vectors. The interpolation operators I� : C� → V �
h and Ĩ� : C̃� → V �

h , which read

I� : c �→
N �
∑

i=1

ci�
�
i and Ĩ� : c̃ �→

N �
∑

i=1

c̃i �̃
�
i , (42)

are the right-inverses of the respective degrees of freedom σ � and σ̃ �, and also their left-
inverses on V �

h .
The matrices H

� and H̃

� are change-of-basis matrices which allow us to go from one

sequence to the other, in the sense that I� = Ĩ�
H

� and Ĩ� = I�
H̃

�: they correspond to
discrete Hodge operators [34]. Here it follows from the duality construction (38)–(39) that
they are given by the mass matrices and their inverses,

H

� = (H̃�)−1 = M

� where (M�)i, j = 〈��
i ,�

�
j 〉. (43)

In our framework, theHodgematrices have a patch-diagonal structure due to the local support
of the broken basis functions. In particular, the dual basis functions are also supported on a
single patch.

The remaining operators are the primal and dual commuting projections, respectively
defined by (30) and (32)–(33), expressed in terms of primal and dual coefficients. Using the
interpolation operators (42) we may write them as

�� = I�σ � on U � ⊂ V � and �̃� = Ĩ�
(P�)T σ̃ � on V ∗

� . (44)
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Finally we remind that here the commutation of the primal (upper) diagram follows from the
assumed properties of the primal degrees of freedom (27)–(31), while the commutation of
the dual (lower) diagram follows from the weak definition of the dual differential operators.

Remark 2 (Conforming case) The conforming FEEC diagram (15) (corresponding, e.g., to
a single patch discretization) may be extended in the same way as the broken FEEC one
(24). Apart from the differences between the discrete differential operators and commuting
projection operators already visible in (15) and (24), the resulting 6-rows diagram would be
formally the same as (41), but no conforming projection matrices would be involved any
longer.

Remark 3 (Change of basis) It may happen that the basis functions ��
i associated with the

commuting degrees of freedom σ�
i are not themost convenient ones when it comes to actually

implement the discrete operators. In such cases a few changes are to be done to the diagram
(41), such as the ones described in Sect. 4.2 for local spline spaces.

2.7 Discrete Hodge–Laplace and Jump Stabilization Operators

In addition to the first order differential operators, an interesting feature of the diagram (41)
is to provide us with natural discretizations for the Hodge–Laplace operators. On the space
V 0 this is the standard Laplace operator, L0 = −�, which is discretized as

L0
h := −d̃ivh gradh : V 0

h → V 0
h (45)

with an operator matrix in the primal basis that reads

L

0 = H̃

0(GP

0)TH

1
GP

0 . (46)

As for the Hodge–Laplace operator for 1-forms, L1 = curl curl− grad div, its discretization
is

L1
h :=˜curlh curlh − gradh d̃ivh : V 1

h → V 1
h (47)

with an operator matrix (again in the primal basis)

L

1 = H̃

1(CP

1)TH

2
CP

1 + GP

0
H̃

0(GP

0)TH

1. (48)

The Hodge–Laplace operators for 2 and 3-forms are discretized similarly.
As discussed in Sect. 2.2, a key asset of FEEC discretizations is their ability to preserve

the exact dimension of the harmonic forms, defined here as the kernel of the Hodge–Laplace
operators. In our broken FEEC framework this property is a priori not preserved by the non-
conforming operators due to the extended kernels of the conforming projection operators,
but it is for the stabilized operators L�

h,α = L�
h + αS�

h where

S�
h := (I − P�

h )∗(I − P�
h ) (49)

is the symmetrized projection operator on the jump space (25), and α is a stabilization
parameter. Indeed, it was shown in [23] that the kernel of L�

h,α coincides with that of the
conforming discrete Hodge–Laplacian, for any positive value of α > 0. Finally we note that
the corresponding stabilization matrix is readily derived from the operators in the diagram.
It reads

S

� = H̃

�(I − P

�)TH

�(I − P

�). (50)
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3 Broken FEEC Approximations of Electromagnetic Problems

In this section we propose broken FEEC approximations for several problems arising in
electromagnetics, and we state a priori results for the solutions. Let us begin by listing the
main differences between broken and conforming FEEC approximations:

– Differential and projection operators from the commuting diagram (41) apply to bro-
ken (fully discontinuous) spaces and involve conforming projection operators which in
practice couple interface degrees of freedom and can be applied matrix free.

– For problems that involve solving a system (e.g., Poisson, time-harmonic Maxwell and
Magnetostatic equations), symmetric stabilization operators must be added to make the
system non singular. This is not needed for the time-dependent Maxwell equations.

– For the former problems, our stabilized broken FEEC schemes yield the same solution as
the corresponding conforming FEECmethod. This is not the case for the time-dependent
Maxwell equations.

– For eigenvalue problems several formulations can be used (with or without stabilization
terms), depending on whether zero or positive eigenmodes are searched for.

For the sake of completeness we will provide several formulations (all equivalent) for the
discrete problems: one in operator form, one in weak form and one in matrix form, using
the primal and dual bases introduced in Sect. 2.4. As pointed out in Remark 3, practical
implementation may be more efficient with other basis functions. In this case the matrices
need to be changed, as will be described in Sect. 4.2 below.

Throughout this section we will mostly work with the homogeneous spaces V � corre-
sponding to (2). In the few cases where we will need the inhomogeneous spaces, we shall
use a specific notation V̄ � for the spaces in (4), for the sake of clarity.

3.1 Poisson’s Equation

For thePoissonproblemwith homogeneousDirichlet boundary conditions: given f ∈ L2(�),
find φ ∈ V 0 = H1

0 (�) such that

− �φ = f , (51)

we combine the stabilized broken FEEC discretization described in Sect. 2.7 for the Laplace
operator, and a dual commuting projection (32)–(33) for the source. The resulting problem
reads: Find φh ∈ V 0

h such that

(L0
h + αS0h )φh = �̃0

h f (52)

and it enjoys the following property.

Proposition 1 For all α 	= 0, Eq. (52) admits a unique solution φh which belongs to the
conforming space V 0,c

h = V 0
h ∩ H1

0 (�) and solves the conforming Poisson problem

〈grad ϕc, grad φh〉 = 〈ϕc, f 〉 ∀ϕc ∈ V 0,c
h . (53)

In particular, φh is independent of both α and the specific projection P0
h .

Proof By definition of the different operators, (52) reads
( − d̃ivh gradh +α(I − P0

h )∗(I − P0
h )

)
φh = �̃0

h f (54)
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which may be reformulated using test functions ϕ ∈ V 0
h , as

〈grad P0
h ϕ, grad P0

h φh〉 + α〈(I − P0
h )ϕ, (I − P0

h )φh〉 = 〈P0
h ϕ, f 〉. (55)

Taking ϕ = (I − P0
h )φh yields φh = P0

h φh ∈ V 0,c
h as long as α 	= 0, and (53) follows by

considering test functions ϕ in the conforming subspace V 0,c
h . ��

The matrix formulation of (52) is easily derived by using the diagram (41), writing the
equation in the dual basis in order to obtain symmetric matrices as is usual with the Poisson
problem. Denoting by φ = σ 0(φh) the coefficient vector of φh in the primal basis, we thus
find

A

0φ = (P0)T σ̃ 0( f ) (56)

with a stabilized stiffness matrix

A

0 = H

0(L0 + αS

0) = (GP

0)TH

1
GP

0 + α(I − P

0)TH

0(I − P

0). (57)

3.2 Time-Harmonic Maxwell’s Equation

The time-harmonic Maxwell equation with homogeneous boundary conditions reads: given
ω ∈ R and J ∈ L2(�), find u ∈ H0(curl;�) such that

− ω2u + curl curl u = J . (58)

Here the (complex) electric field corresponds to E(t, x) = iω u(x)e−iωt . When ω2 is not an
eigenvalue of the curl curl operator, Eq. (58) is well-posed: see e.g. [3, Theorem 8.3.3]. For
this problem we propose a stabilized broken FEEC discretization where uh ∈ V 1

h solves

(−ω2(P1
h )∗P1

h +˜curlh curlh +αS1h)uh = �̃1
h J , (59)

with a parameter α ∈ R. We remind that S1h := (1− P1
h )∗(1− P1

h ) is the jump stabilization
operator, according to (49) and (25) for � = 1. With test functions v ∈ V 1

h , the discrete
problem (59) writes

−ω2〈P1
h v, P1

h uh〉 + 〈curl P1
h v, curl P1

h uh〉 + α〈(I − P1
h )v, (I − P1

h )uh〉 = 〈P1
h v, J 〉.

(60)

Here, we note that the zeroth-order term is filtered by the symmetric operator (P1
h )∗P1

h : this
allows us to obtain a conforming solution in the broken space.

Proposition 2 Let α 	= 0, and ω such that ω2 is not an eigenvalue of the conforming discrete
˜curl

c
h curl

c
h operator defined in (12)–(14). Then Eq. (59) admits a unique solution uh which

belongs to the conforming space V 1,c
h = V 1

h ∩H0(curl;�), and solves the conforming FEEC
Maxwell problem

− ω2〈vc, uh〉 + 〈curl vc, curl uh〉 = 〈vc, J 〉, ∀vc ∈ V 1,c
h . (61)

In particular, uh is independent of both α and the specific projection P1
h .

Proof Taking v = (I − P1
h )uh in (60) gives uh = P1

h uh ∈ V 1,c
h as long as α 	= 0, and (61)

follows by considering test functions v = vc in V 1,c
h . Existence and uniqueness follow from

the assumption that ω is not an eigenvalue of the conforming curl curl operator. ��
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The matrix form of (59) is easily derived from diagram (41). It reads

A

1u = (P1)T σ̃ 1(J ) (62)

where u := σ 1(uh) is the (column) vector containing the coefficients of uh in the primal
basis of V 1

h , and A

1 is the resulting stabilized stiffness matrix,

A

1 = (P1)T (−ω2
H

1 + C

T
H

2
C)P1 + α(I − P

1)TH

1(I − P

1). (63)

3.3 Lifting of Boundary Conditions

In the case of inhomogeneous boundary conditions a standard approach is to introduce a
lifted solution and solve the modified problem in the homogeneous spaces. This approach
applies seamlessly to broken FEEC approximations. For a Poisson equation of the form

{−�φ = f in �

φ = g on ∂�
(64)

this corresponds to introducing φg ∈ H1(�) such that φg = g on ∂�, and characterizing
the solution as φ = φg + φ0, where φ0 ∈ V 0 = H1

0 (�) solves (51) with a modified source,
namely

−�φ0 = f + �φg.

For an inhomogeneous Maxwell equation of the form
{−ω2u + curl curl u = J in �

n × u = g on ∂�
(65)

we introduce ug ∈ H(curl;�) such that n × ug = g on ∂�, and characterize the solution as
u = ug + u0, where u0 ∈ H0(curl;�) solves (58) with a modified source, namely

− ω2u0 + curl curl u0 = J + (ω2 − curl curl)ug. (66)

The lifting approach can be applied in broken FEEC methods by combining the dis-
cretizations of the homogeneous and inhomogeneous sequences (2) and (4), which amounts
to combining different conforming projections. For clarity we denote in this section the
respective homogeneous and inhomogeneous spaces by V � and V̄ �. At the discrete level the
broken spaces V �

h have no boundary conditions, so that the distinction only appears in the

conforming projections to the spaces V �,c
h = V �

h ∩ V � and V̄ �,c
h = V �

h ∩ V̄ �, which we natu-
rally denote by P�

h and P̄�
h respectively. In practice the latter projects on the inhomogeneous

conforming spaces, while the former further sets the boundary degrees of freedom to zero.
For the Poisson equation where V 0 = H1

0 (�) and V̄ 0 = H1(�), we first compute
φg,h ∈ V 0

h that approximates g on ∂�, and then we compute the homogeneous part of the
solution, φ0,h := φh − φg,h ∈ V 0

h , by solving the homogeneous CONGA problem with
modified source

〈grad P0
h ϕ, grad P0

h φ0,h〉 + α〈(I − P0
h )ϕ, (I − P0

h )φ0,h〉
= 〈P0

h ϕ, f 〉 − 〈grad P0
h ϕ, grad P̄0

h φg,h〉 (67)

for all ϕ ∈ V 0
h , which also reads in matrix form

A

0φ0 = (P0)T
(
σ̃ 0( f ) − G

T
H

1
GP̄

0φg

)
(68)
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where A

0 is the stabilized stiffness matrix (57), P̄

0 is the matrix of the inhomogeneous
projection P̄0

h , and the coefficient vectors involve the broken degrees of freedom φ0 =
σ 0(φ0,h), φg = σ 0(φg,h) in the full broken space V 0

h .
For the Maxwell equation where V 1 = H0(curl;�) and V̄ 1 = H(curl;�), the method

consists of first computing ug,h ∈ V 1
h such that n × ug,h approximates g on ∂�, and then

characterizing the homogeneous part of the solution, u0,h := uh − ug,h ∈ V 1
h , by

−ω2〈P1
h v, P1

h u0,h〉 + 〈curl P1
h v, curl P1

h u0,h〉 + α〈(I − P1
h )v, (I − P1

h )u0,h〉
= 〈P1

h v, J 〉 + ω2〈P1
h v, P̄1

h ug,h〉 − 〈curl P1
h v, curl P̄1

h ug,h〉 (69)

for all v ∈ V 1
h . In matrix terms, this reads

A

1u0 = (P1)T
(
σ̃ 1(J ) + (ω2

H

1 − C

T
H

2
C)P̄1ug

)
(70)

where A

1 is the stabilized stiffness matrix (63), P̄

1 is the matrix of the inhomogeneous
projection P̄1

h , and the coefficient vectors involve the broken degrees of freedom u0 =
σ 1(u0,h), ug = σ 1(ug,h) in the full broken space V 1

h .

Proposition 3 Let α and ω be as in Proposition 2. Then (69) admits a unique solution u0,h
which belongs to the conforming space V 1,c

h = V 1
h ∩ H0(curl;�). The projection of the full

solution in V̄ 1,c
h = V 1

h ∩ H(curl;�), uch := P̄1
h uh, approximates the boundary condition,

n × uch ≈ g on ∂�, and it solves the discrete conforming Maxwell equation inside �, in the
sense that

− ω2〈vc, uch〉 + 〈curl vc, curl uch〉 = 〈vc, J 〉, ∀vc ∈ V 1,c
h . (71)

In particular, uch is independent of both α and P1
h . Moreover if the lifted boundary condition

ug,h is chosen in V̄ 1,c
h , then uh = uch.

Proof The conformity and unicity of u0,h can be shown with the same arguments as in
Proposition 2. This shows that uch = u0,h + P̄1

h ug,h and that the tangential trace of uch
coincides with that of P̄1

h ug,h on the boundary, which itself should coincide with that of ug,h
as there are no conformity constraints there for the inhomogeneous space V̄ 1 = H(curl;�).
Equation (71) and the additional observations follow easily. ��

3.4 Eigenvalue Problems

Broken FEEC approximations to Hodge–Laplace eigenvalue problems of the form

L�u = λu (72)

are readily derived using the discrete operators presented in Sect. 2.7. For a general stabi-
lization parameter α ≥ 0, they take the form:

(L�
h + αS�

h)uh = λhuh (73)

with uh ∈ V �
h \ {0}. Their convergence can be established under the assumption of a strong

stabilization regime and ofmoment-preserving properties for the conforming projections, see
[23]. There it has also been shown that for arbitrary positive penalizations α > 0, the zero
eigenmodes coincide with their conforming counterparts, namely the conforming harmonic
forms,

ker(L�
h + αS�

h) = kerL�,c
h = H�

h
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see (17)–(18).
For the first space V 0 = H1

0 (�) the corresponding operator is the standard Laplace
operator L0 = −� and its broken FEEC discretization reads: Find λh ∈ R and φh ∈ V 0

h \{0}
such that

(L0
h + αS0h )φh = λhφh (74)

where L0
h and S0h are given by (45) and (49), with stabilization parameter α. For V 1 =

H0(curl;�) the Hodge–Laplace operator is L1 = curl curl− grad div and its discretization
reads: Find λh ∈ R and uh ∈ V 1

h \{0} such that

(L1
h + αS1h)uh = λhuh (75)

where L1
h = ˜curlh curlh − gradh d̃ivh , see (47), and S1h is given again by (49). Eigenvalue

problems in V 2
h and V 3

h are discretized in a similar fashion.
Another important eigenvalue problem is that of the curl-curl operator, forwhich one could

simply adapt the broken FEEC discretization (75) used for the Hodge–Laplace operator, by
dropping the term (− gradh d̃ivh). By testing such an equality with v ∈ grad P0

h V
0
h we see

that the non-zero eigenmodes satisfy d̃ivhuh = 0, hence they are also eigenmodes of (75) and
their convergence follows from the resultsmentionned above in the case of strong penalization
regimes. In the unpenalized case (α = 0) their convergence was also established, as shown
in [18].

The main drawback of the approach just described is that the computed eigenvalues do

not coincide with those of the conforming operator˜curl
c
h curl

c
h , but only approximate them.

(We recall that the knowledge of the eigenvalues of˜curl
c
h curl

c
h is needed in order to verify

the hypotheses of Proposition 2 for the source problem: ω2 should not concide with one of
them.) To overcome this difficulty we propose a novel broken FEEC discretization, which
consists of the generalized eigenvalue problem

˜curlh curlh uh = λh
[
(P1

h )∗P1
h + (I − P1

h )∗(I − P1
h )

]
uh . (76)

With test functions v ∈ V 1
h , the discrete problem (76) writes

〈curl P1
h v, curl P1

h uh〉 = λh
[〈P1

h v, P1
h un〉 + 〈(1 − P1

h )v, (1 − P1
h )uh〉

]
(77)

and its matrix formulation is provided below.

Proposition 4 For λh 	= 0, the (generalized) CONGA eigenvalue problem (76) has the same
solutions as the conforming eigenproblem

˜curl
c
h curl

c
h uh = λhuh, with uh ∈ V 1,c

h . (78)

For λh = 0, the corresponding eigenspace is

ker
(
˜curlh curlh

) = (
grad V 0,c

h

⊥⊕ H1
h

) ⊕ (I − P1
h )V 1

h . (79)

Proof For λh 	= 0 we take v = (I − P1
h )uh in (77), and find that uh = P1

h uh ∈ V 1,c
h .

Hence we can restrict the test space to functions v = P1
h v ∈ V 1,c

h , and obtain the conforming

eigenproblem 〈curl v, curl uh〉 = λh〈v, uh〉. Conversely, we verify that if uh ∈ V 1,c
h solves

(78) then it also solves (77) for all v ∈ V 1
h . The relationship (79) between the null spaces
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follows from the equalities ker
(
˜curlh curlh

) = ker(curlh), ker
(
˜curl

c
h curl

c
h

) = ker(curlch) =
grad V 0,c

h

⊥⊕ H1
h and

ker(curlh) = ker(curlch) ⊕ (I − P1
h )V 1

h

which was observed in, e.g., [18]. ��
These eigenvalue problems may be expressed in symmetric matrix form by expressing the

eigenmodes in the primal bases and the equations in the dual bases, as we did for the Poisson
and Maxwell equations in Sects. 3.1 and 3.2. For the Poisson eigenvalue problem (74) we
obtain

A

0φ = λhH

0φ (80)

with A

0 = H

0(L0 + αS

0) = (GP

0)TH

1
GP

0 + α(I − P

0)TH

0(I − P

0) as in (57). Similarly
we can write the Hodge–Laplace eigenvalue problem (75) as

A

1u = λhH

1u (81)

with matrix

A

1 = (CP

1)TH

2
CP

1 + H

1
GP

0
H̃

0(GP

0)TH

1 + α(I − P

1)TH

1(I − P

1),

and the curl-curl eigenvalue problem (76) as

(CP

1)TH

2
CP

1u = λh

[
(P1)TH

1
P

1 + (I − P

1)TH

1(I − P

1)
]
u. (82)

3.5 Magnetostatic Problems with Harmonic Constraints

We next consider a magnetostatic problem of the form
{

div B = 0

curl B = J
(83)

posed for a current J ∈ L2(�). Unlike the Poisson andMaxwell source problems above, this
problem requires an additional constraint in non-contractible domains. Indeed it can only be
well-posed if ker curl∩ ker div = {0}, i.e., if the harmonic forms are trivial. To formulate
this more precisely we need to take into account particular boundary conditions.

3.5.1 Magnetostatic Problemwith Pseudo-Vacuum Boundary Condition

We first consider a boundary condition of the form n × B = 0, which is sometimes used to
model pseudo-vacuum boundaries [39]. A mixed formulation is then: Find B ∈ H0(curl;�)

and p ∈ H1
0 (�) such that
{

〈grad q, B〉 = 0 ∀q ∈ H1
0 (�)

〈v, grad p〉 + 〈curl v, curl B〉 = 〈curl v, J 〉 ∀v ∈ H0(curl;�)
(84)

see e.g. [28]. Here the auxiliary unknown p is a Lagrange multiplier for the divergence
constraint written in weak form.
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The well-posedness of (84) is related to the space of harmonic 1-formsH1, defined as the
kernel of the Hodge–Laplace operator (6) in the homogeneous sequence, i.e.,

H1 = kerL1 = {v ∈ H0(curl;�) : curl v = div v = 0}. (85)

As discussed in [2], H1 = H1(�) is isomorphic to a de Rham cohomology group and
its dimension corresponds to a Betti number of the domain �. With homogeneous, resp.
inhomogeneous boundary conditions its dimension is b2(�) the number of cavities, resp.
b1(�) the number of handles in �. Thus in a contractible domain we have H1 = {0} and
the problem is well posed, but in generalH1 may not be trivial. Additional constraints must
then be imposed on the solution, such as B ∈ (H1)⊥, which can be associated with an
additional Lagrange multiplier z ∈ H1. The constrained problem then consists of finding
B ∈ H0(curl;�), p ∈ H1

0 (�) and z ∈ H1, such that

⎧
⎪⎨

⎪⎩

〈grad q, B〉 = 0 ∀q ∈ H1
0 (�)

〈v, grad p〉 + 〈curl v, curl B〉 + 〈v, z〉 = 〈curl v, J 〉 ∀v ∈ H0(curl;�)

〈w, B〉 = 0 ∀w ∈ H1.

(86)

In our broken FEEC framework this problem is discretized as: find ph ∈ V 0
h , Bh ∈ V 1

h
and zh ∈ H1

h , such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α0〈(I − P0
h )q, (I − P0

h )ph〉 + 〈grad P0
h q, Bh〉 = 0

〈v, grad P0
h ph〉 + 〈curl P1

h v, curl P1
h Bh〉

+ α1〈(I − P1
h )v, (I − P1

h )Bh〉 + 〈v, zh〉 = 〈curl P1
h v, J 〉

〈w, Bh〉 = 0

(87)

for all q ∈ V 0
h , v ∈ V 1

h and w ∈ H1
h . Here, α� ∈ R are stabilization parameters for the

jump terms in V 0
h and V 1

h , andH1
h = ker(L1

h + α1S1h) may be computed as the kernel of the
stabilized discrete Hodge–Laplace operator (47). As discussed above it coincides with that
of the conforming Hodge–Laplace operator, hence

H1
h = {v ∈ V 1,c

h : curl v = 0 and 〈grad q, v〉 = 0, ∀q ∈ V 0,c
h }. (88)

In operator form, this amounts to finding ph ∈ V 0
h , Bh ∈ V 1

h ∩ (H1
h)

⊥ and zh ∈ H1
h such

that
{

α0S0h ph + d̃ivh Bh = 0

gradh ph +˜curlh curlh Bh + α1S1h Bh + zh =˜curlh�̃
2
h J

(89)

Proposition 5 System (87) [or equivalently (89)] is well-posed for arbitrary non-zero stabi-
lization parameters α0, α1 	= 0, and its solution satisfies

Bh ∈ V 1,c
h ∩ (H1

h ⊕ grad V 0,c
h )⊥

ph ∈ V 0,c
h ∩ ker grad = {0}

zh = 0. (90)

Moreover the discrete magnetic field can be decomposed according to (17), as

Bh = Bg
h + Bh

h + Bc
h ∈ gradch V

0,c
h

⊥⊕ H1
h

⊥⊕˜curl
c
hV

2,c
h
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with discrete grad, harmonic and curl components characterized by
⎧
⎪⎪⎨

⎪⎪⎩

Bg
h = 0

Bh
h = 0

〈w, curl Bc
h〉 = 〈w, J 〉 ∀w ∈ curl V 1,c

h .

(91)

In particular, the solution is independent of the non-zero stabilization parameters and the
conforming projection operators.

Proof The result follows by using appropriate test functions and the orthogonality of the
conforming discrete Hodge–Helmholtz decomposition (17). In particular, taking v = zh (in
H1

h ⊂ V 1,c
h ) yields zh = 0, taking q = (I − P0

h )ph and v = grad P̄0
h ph shows that ph = 0,

and the characterization of Bh follows by taking first v = (I − P1
h )Bh and then v ∈ V 1,c

h , an
arbitrary conforming test function. ��
Remark 4 Proposition 5 states that the auxiliary unknowns ph and zh may be discarded a
posteriori from the system. However they are needed in (87) to have a square matrix.

In practice the discrete harmonic fields can be represented by a basis of H1
h , of the form

�
1,H
i , i = 1, . . . , dim(H1

h) = b2(�), computed as the zero eigenmodes of a penalized
L1
h +αS1h , where α > 0 is arbitrary and b2(�) is the Betti number of order 2, i.e. the number

of cavities in �. Using these harmonic fields, one assembles the rectangular mass matrix

(M1,H )i, j = 〈�1
i ,�

1,H
j 〉, i = 1, . . . , N 1, j = 1, . . . , b2(�). (92)

which allows us to rewrite (87) as
⎧
⎪⎪⎨

⎪⎪⎩

α0
S

0p + (GP

0)TH

1B = 0

H

1
GP

0p + (
(CP

1)TH

2
CP

1 + α1
S

1)B + M

1,Hz = (CP

1)T σ̃ 2(J )

(M1,H )TB = 0

(93)

where p, B and z contain the coefficients of ph , Bh and zh in the (primal) bases of V 0
h , V

1
h

and H1
h respectively.

3.5.2 Magnetostatic Problemwith Metallic Boundary Conditions

We next consider a boundary condition of the form

n · B = 0

which corresponds to a metallic (perfectly conducting) boundary. In our framework it can
be approximated by using the inhomogeneous sequence (4) which we denote by V̄ � as in
Sect. 3.3, and by modelling the boundary condition in a weak form. The mixed formulation
takes a form similar to (84) with a few changes. Namely, we now look for p ∈ V̄ 0 = H1(�)

and B ∈ V̄ 1 = H(curl;�), solution to
{

〈grad q, B〉 = 0 ∀q ∈ H1(�)

〈v, grad p〉 + 〈curl v, curl B〉 = 〈curl v, J 〉 ∀v ∈ H(curl;�).
(94)

Compared to (84), the only change is in the spaces chosen for the test functions. In particular
wemay formally decompose the second equation into afirst set of test functionswithq|∂� = 0
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which enforces div B = 0, and a second set with q|∂� 	= 0 which enforces n · B = 0 on the
boundary.

Again, this problem is not well-posed in general: on domains with holes (i.e., handles)
a constraint must be added corresponding to harmonic forms, which leads to an augmented
system with one additional Lagrange multiplier zh as we did in the previous section. Here
the proper space of harmonic forms is the one associated with the inhomogeneous sequence
(4) involving V̄ 1 = H(curl;�) and V̄ ∗

1 = H0(div;�). Thus, it reads

H̄1
(�) = {v ∈ H0(div;�) : curl v = div v = 0}. (95)

We also observe that now p is only defined up to constants, so that an additional constraint
needs to be added, such as p ∈ (ker grad)⊥. In practice this constraint may either be enforced
in a similar way as the harmonic constraint, or by a so-called regularization technique where
a term of the form ε〈q, p〉, with ε 	= 0, is added to the first equation of (94). The constrained

problem reads then: Find B ∈ H(curl;�), p ∈ H1(�) and z ∈ H̄1
, such that

⎧
⎪⎪⎨

⎪⎪⎩

ε〈q, p〉 + 〈grad q, B〉 = 0 ∀q ∈ H1(�)

〈v, grad p〉 + 〈curl v, curl B〉 + 〈v, z〉 = 〈curl v, J 〉 ∀v ∈ H(curl;�)

〈w, B〉 = 0 ∀w ∈ H̄1
.

(96)

We note that here the result does not depend on ε (indeed by testing with v = grad p we find
that p is a constant, and with q = p we find that p = 0), hence we may set ε = 1.

At the discrete level we write a system similar to (87) or (89), but we must replace the
space (88) with

H̄1
h = {v ∈ V̄ 1,c

h : curl v = 0 and 〈grad q, v〉 = 0, ∀q ∈ V̄ 0,c
h } (97)

where we have denoted V̄ �,c
h = V �

h ∩ V̄ �. Observe that the for the inhomogeneous sequence,
the decomposition (17) becomes

V̄ 1,c
h = gradch V̄

0,c
h

⊥⊕ H̄1
h

⊥⊕˜curl
c
h V̄

2,c
h (98)

where˜curl
c
h : V̄ 2,c

h → V̄ 1,c
h is now the discrete adjoint of curlch : V̄ 1,c

h → V̄ 2,c
h .

We compute the space (97) as the kernel of the stabilized Hodge–Laplace operator asso-

ciated with the inhomogeneous sequence, H̄1
h = ker(L̄1

h + α1 S̄1h), with an arbitrary positive

α1 > 0. Note that the matrix of L̄1
h takes the same form as in (48),

L̄

1 = H̃

1(CP̄

1)TH

2
CP̄

1 + GP̄

0
H̃

0(GP̄

0)TH

1 (99)

where P̄

0 and P̄

1 are the conforming projection matrices on the inhomogeneous spaces,
which leave the boundary degrees of freedom untouched instead of setting them to zero.
The Hodge (mass) and differential matrices are those of the broken spaces which have no
boundary conditions, hence they are the same as in Sect. 3.5.1. The resulting system reads:

find ph ∈ V̄ 0
h , Bh ∈ V̄ 1

h and zh ∈ H̄1
h , such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈q, ph〉 + α0〈(I − P̄0
h )q, (I − P̄0

h )ph〉 + 〈grad P̄0
h q, Bh〉 = 0

〈v, grad P̄0
h ph〉 + 〈curl P̄1

h v, curl P̄1
h Bh〉

+ α1〈(I − P̄1
h )v, (I − P̄1

h )Bh〉 + 〈v, zh〉 = 〈curl P̄1
h v, J 〉

〈w, Bh〉 = 0

(100)
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for all q ∈ V̄ 0
h , v ∈ V̄ 1

h and w ∈ H̄1
h . An operator form similar to (89) can also be written.

Finally the matrix form of our broken FEECmagnetostatic equation with metallic bound-
ary conditions is similar to (93), with the following differences:

– the conforming projection operators map in the full conforming spaces V̄ � (boundary
dofs are not set to zero),

– the discrete harmonic space is now H̄1
h the kernel of the L̄1

h operator associated with
the full sequence, which in practice is also implemented by using conforming projection
operators on the inhomogeneous spaces,

– a regularization term M

0p involving the mass matrix in V 0
h is added to the first equation

to fully determine p.

Proposition 6 System (100) is well-posed for arbitrary stabilization parameters α0 > 0,
α1 	= 0, and its solution satisfies

Bh ∈ V̄ 1,c
h ∩ (H̄1

h ⊕ grad V̄ 0,c
h )⊥

ph = 0

zh = 0. (101)

Moreover the discrete magnetic field can be decomposed according to (98), as

Bh = Bg
h + Bh

h + Bc
h ∈ gradch V̄

0,c
h

⊥⊕ H̄1
h

⊥⊕˜curl
c
h V̄

2,c
h

with discrete grad, harmonic and curl components characterized by
⎧
⎪⎪⎨

⎪⎪⎩

Bg
h = 0

Bh
h = 0

〈w, curl Bc
h〉 = 〈w, J 〉 ∀w ∈ curl V̄ 1,c

h .

(102)

In particular, the solution is independent of the parameters α0 > 0, α1 	= 0, and the
conforming projection operators.

Proof Taking v = zh (in H̄1
h ⊂ V̄ 1,c

h ) and using the orthogonality (98) shows that zh = 0.
Taking next v = grad P̄0

h ph and using again (98) shows that P̄0
h ph is a constant, and with

q = 1 we see that 〈1, ph〉 = 0. It follows that with q = (I − P̄0
h )ph the first equation

becomes ‖ph‖2+α0‖(I − P̄0
h )ph‖2 = 0, hence ph = 0. Taking next v = (I − P̄1

h )Bh yields

‖(I − P̄1
h )Bh‖2 = 0, hence Bh ∈ V̄ 1,c

h . Since it is orthogonal to both H̄1
h and grad V̄ 0,c

h , it

belongs to˜curl
c
hV

2,c
h , and it is characterized by 〈curl v, curl Bh〉 = 〈curl v, J 〉 for all v ∈ V̄ 1,c

h ,
which completes the proof. ��

3.6 Time-Dependent Maxwell’s Equations

We conclude this section by recalling the CONGA discretization of Maxwell’s time-
dependent equations,

{
∂t E − curl B = −J

∂t B + curl E = 0
(103)
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which consists of computing Eh ∈ V 1
h and Bh ∈ V 2

h solution to
{

∂t Eh −˜curlh Bh = −Jh

∂t Bh + curlh E = 0
(104)

with a discrete source approximated with the dual commuting projection

Jh = �̃1
h J . (105)

This discretization has been proposed and studied in [18–20], where it has been shown to be
structure-preserving and have long-time stability properties: in addition to conserve energy
in the absence of sources, it preserves exactly the discrete Gauss laws

{
d̃ivh Eh = �̃0

hρ

divh Bh = 0
(106)

thanks to the commuting diagram property d̃ivh�̃1
h J = �̃0

h div J satisfied by the dual projec-
tion operators, see (34).Moreover, the filtering by (P1

h )∗ involved in the source approximation
operator (32) avoids the accumulation of approximation errors in the non-conforming part
of the kernel of the CONGA curl curl operator [18].

Remark 5 The full commuting diagram property (34) is actually not needed for the preser-
vation of the discrete Gauss law. One can indeed verify that (106) still holds for a current
source defined by a simple L2 projection,

Jh = QV 1
h
J (107)

since one has in this case 〈d̃ivh Jh, ϕ〉 = −〈Jh, grad P0
h ϕ〉 = −〈J , grad P0

h ϕ〉 =
〈div J , P0

h ϕ〉 = 〈�̃0
h div J , ϕ〉 so that (106) follows from the compatibility relation div J +

∂tρ = 0 satisfied by the exact sources. The additional filtering of the source by (P1
h )∗ involved

in the dual commuting projection (105) is nevertheless important for long term stability, as
analyzed in [18] and verified numerically in Sect. 5.7 below.

An attractive feature of the CONGA discretization is that for an explicit time-stepping
method such as the standard leap-frog scheme

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

B
n+ 1

2
h = Bn

h − �t

2
curlh E

n
h

En+1
h = En

h + �t
(
˜curlh B

n+ 1
2

h − �̃1
h J

n+ 1
2
)

Bn+1
h = B

n+ 1
2

h − �t

2
curlh E

n+1
h

(108)

each time step is purely local in space. This is easily seen in the matrix form of (108)
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Bn+ 1
2 = Bn − �t

2
CP

1En

En+1 = En + �tH̃1((CP

1)TH

2Bn+ 1
2 − (P1)T σ̃ 1(Jn+ 1

2 )
)

Bn+1 = Bn+ 1
2 − �t

2
CP

1En+1

(109)

where all the matrices except P1 are patch-diagonal, and P

1 only couples degrees of freedom
of neighboring patches.
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Another key property is that for a time-averaged current source,

Jn+ 1
2 := �t−1

∫ tn+1

tn
J (t ′) dt ′, (110)

the discrete Gauss law (106) is also preserved by the fully discrete solution, namely
{
d̃ivh E

n
h = �̃0

hρ(tn)

divh B
n
h = 0

(111)

holds for all n > 0, provided it holds for n = 0. We also remind that in the absence of source
(J = 0), the leap-frog time scheme requires a standard CFL condition for numerical stability,
of the form

�t‖| curlh ‖| < 2 (112)

where ‖| curlh ‖| = maxF∈V 1
h

‖curlh F‖
‖F‖ . Indeed the discrete pseudo-energy

Hn,∗
h := 1

2

(‖En
h‖2 + ‖Bn+ 1

2
h ‖2) + �t

2
〈curlh En

h, B
n+ 1

2
h 〉

is a constant, Hn,∗
h = H∗

h , so that (112) yields a long-time bound
(
1 + �t‖| curlh ‖|

2

)−1H∗
h ≤ 1

2

(‖En
h‖2 + ‖Bn+ 1

2
h ‖2) ≤

(
1 − �t‖| curlh ‖|

2

)−1H∗
h

valid for all n ≥ 0. In practice we set �t = Ccfl(2/‖| curlh ‖|) with Ccfl ≈ 0.8, and we
evaluate the operator norm of curlh with an iterative power method, noting that it amounts
to computing the spectral radius of a diagonalizable matrix with non-negative eigenvalues,
namely

‖| curlh ‖|2 = max
F∈V 1

h

〈˜curlh curlh F, F〉
‖F‖2 = ρ

(
H̃

1(CP

1)TH

2
CP

1).

4 Geometric Broken FEEC Discretizations with Mapped Spline Patches

In this section we detail the construction of a broken FEEC discretization on a 2Dmultipatch
domain where each patch is the image of the reference square,

�k = Fk(�̂), �̂ = ]0, 1[2 (113)

with smooth diffeomorphisms Fk , k = 1, . . . , K . For simplicity we consider the case of
planar domains�k ⊂ R2 and orientation-preservingmappings, in the sense that the Jacobian
matrices DFk(x̂) have positive Jacobian determinants JFk (x̂) = det(DFk(x̂)) > 0 for all
x̂ ∈ �̂.

We also assume that the multipatch decomposition is conforming in the sense that any
interface �k,l = ∂�k ∩ ∂�l between two distinct patches

(i) is either a vertex, or a full edge of both patches,
(ii) admits the same parametrization from both patches, up to the orientation.

In the case where the interface is a vertex, condition (ii) is empty. If it is a full patch edge of
the form

�k,l = Fk([x̂0, x̂0 + ed ]) = Fl([ ŷ0, ŷ0 + eb]) (114)
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Fig. 1 Two multipatch domains: a curved L-shaped (left) and a non-contractible domain (right). Solid and
dashed lines are used to represent the domain boundaries and the patch interfaces, respectively

where x̂0 and ŷ0 are vertices of the reference domain �̂, condition (ii) means that

Fk(x̂0 + sed) = Fl( ŷ0 + θk,l(s)eb), s ∈ [0, 1] (115)

holds with θk,l an affine bijection on [0, 1], that is θk,l(s) = s or 1 − s.
With spline spaces defined on each patch with symmetric knot sequences, these conditions

imply that the patches are fully matching in the sense of Assumption 3.3 from Buffa et al.
[13].

Examples of such domains are represented on Fig. 1 where the left one is a standard curved
L-shaped domain with circular patch boundaries that is used in some reference academic test-
cases, see e.g. [29], and the right one is a non contractible domain that also involves analytical
mappings, shaped as a simplified pretzel for cultural reasons. In the latter domain we remind
that the presence of holes leads a priori to non exact de Rham sequences, and hence non
trivial harmonic forms.

On such multipatch domains, the construction of mapped spline complexes is fairly stan-
dard

[15, 16]: for each patch a reference spline complex is first defined on the logical domain �̂

using tensor-product spaces, and the mapped spline spaces are next obtained by transforming
the reference ones with push-forward operators. To build our conforming projection opera-
tors we shall use geometric degrees of freedom corresponding to pointwise evaluations and
integrations over geometric elements, following the approach of Bochev et al. [4], Robidoux
[47] and Gerritsma [31]. Specifically, we consider broken geometric degrees of freedom of
the form

σ 0
k,i (v) = v|�k (nk,i ), σ 1

k,μ(v) =
∫

ek,μ

v|�k · τ ∗, σ 2
k,i (v) =

∫

ck,i

v|�k (116)

associated with local grids with nodes nk,i , edges ek,μ and cells ck,i in each patch �k . Here
τ ∗ = τ (a unit vector tangent to ek,μ) or τ⊥ (normal to the edge), depending on which 2D
de Rham sequence is used. We refer to Section B in the Appendix for more details.

4.1 Conforming Projection Operators

In addition to yield commuting projection operators, geometric degrees of freedom naturally
provide a simple characterization of the discrete fields vh in the broken spaces V �

h which
are actually conforming. In order to belong to the space V � appearing in the continuous de
Rham sequence (1) (and hence to the conforming spline space V �,c

h = V �
h ∩ V �) a field

must satisfy regularity conditions which are well known for piecewise-smooth functions. For
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� = 0, the condition for H1(�) regularity amounts to continuity across the patch interfaces,
which is equivalent to requiring that the broken degrees of freedom associated to the same
interpolation node coincide:

nk,i = nl, j �⇒ σ 0
k,i (vh) = σ 0

l, j (vh). (117)

For � = 1 in the grad − curl sequence, the interface constraint for H(curl;�) regularity
consists in the continuity of the tangential traces, which amounts to requiring that edge
degrees of freedom associated to the same edge coincide, up to the orientation. Namely,

ek,μ = el,ν �⇒ σ 1
k,μ(vh) = εe(k, μ; l, ν)σ 1

l,ν(vh) (118)

where εe(k, μ; l, ν) = ±1 is the relative orientation of the edges, see (B.15).
For � = 1 in the curl − div sequence, the interface constraint for H(div;�) regularity

consists in the continuity of the normal traces, which again amounts to requiring that edge
degrees of freedom associated to the same edge coincide, up to the orientation: this constraint
takes the same form as (118). Finally as V 2 = L2(�) there are no constraints for � = 2, i.e.,
the spaces V 2

h and V 2,c
h coincide. We gather these constraints in a single formula

g�
k,μ = g�

l,ν �⇒ σ�
k,μ(vh) = ε�(k, μ; l, ν)σ �

l,ν(vh) (119)

where g�
k,μ denotes the geometric element (node, edge or cell) of dimension � associated

with a multi-index (k, μ) ∈ M�
h , and ε1 denotes the relative orientation of two edges, while

ε0 = ε2 := 1.
Thanks to the conformity assumption of the multipatch geometry and to the symmetry of

the interpolatory grid, each broken degree of freedom on an interface can be matched to those
of the adjacent patches in such a way that the constraints above are satisfied. Accordingly,
the resulting broken discrete field will belong to the conforming space V �,c

h . In particular we
may define simple conforming projection operators P� by averaging the broken degrees of
freedomassociatedwith interface elements. Using the broken basis functions��

k,μ associated
with the above degrees of freedom, this yields an expression similar to the one given in [23]
for tensor-product polynomial elements, with additional relative orientation factors due to
the general mapping configurations,

P�
h��

l,ν := 1

#M�
h(g

�
l,ν)

∑

(k,μ)∈M�
h(g

�
l,ν )

ε�(k, μ; l, ν)��
k,μ (120)

whereM�
h(g

�
l,ν) contains the patch-wise indices corresponding to a given geometric element.

The entries of the corresponding operator matrix (36) read

P(k,μ),(l,ν) =
⎧
⎨

⎩

ε�(k,μ;l,ν)

#M�
h(g

�
l,ν )

if g�
k,μ = g�

l,ν

0 otherwise
(121)

for all (k, μ), (l, ν) ∈ M�
h . We may summarize our construction with the following result.

Proposition 7 The broken geometric degrees of freedom (116) satisfy the properties listed in
Sect. 2.4, with local domain spaces U �(�k) defined in (B.19) and local differential matrices
independent of the mappings Fk. Moreover, the operators P�

h : V �
h → V �

h defined by (120)

are projections on the conforming subspaces V �,c
h = V �

h ∩ V �.
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Proof The boundedness of σ�
k,μ on the local spacesU �(�k), as well as the commuting prop-

erties, are verified in Proposition B.2 in the Appendix. The inter-patch conformity property
(31) follows from the fact that piecewise smooth functions that belong to H1(�), resp.
H(curl;�) and H(div;�), admit a unique trace, resp. tangential and normal trace on patch
interfaces [5]. The same property, together with the interpolation nature of the geometric
basis functions, allows verifying that the operators P�

h : V �
h → V �

h are characterized by the
relations

σ�
k,μ(P�

h vh) = 1

#M�
h(g

�
k,μ)

∑

(l,ν)∈M�
h(g

�
k,μ)

ε�(k, μ; l, ν)σ �
l,ν(vh) (122)

for all (k, μ) ∈ M�
h . Using the geometric condition (119), this allows verifying that P�

h is

indeed a projection on the conforming subspace V �,c
h . ��

Remark 6 (Boundary conditions) As stated, the above construction actually corresponds
to the inhomogeneous sequences. If one considers the spaces with homogeneous boundary
conditions,

then P�
h should further set the boundary degree of freedom to 0, which amounts to restrict-

ing the non-zeros entries in (121) to the geometrical elements g�
k,μ that are inside �. As

already observed in Sect. 3.3, this does not affect the broken spaces V �
h since they are not

required to have boundary conditions.

Remark 7 (Extension to 3D) The extension to the 3D setting of the above construction poses
no particular difficulty, using the same tensor-product and mapped spline spaces as in [15,
27], and the same geometric degrees of freedom as in [24, Sect. 6.1] for the primal sequence.

4.2 Primal-Dual Matrix Diagramwith B-Splines

In practice, a natural approach is to work with B-splines. Indeed the geometric (interpolatory)
splines��

k,μ (dual to the geometric degrees of freedom) are not known explicitly and depend
on the interpolation grids. They are also less local than the B-splines, as they are in general
supported on their full patch�k : for patches with many cells, this would lead to an expensive
computation of the fully populated mass matrices.

In our numerical experiments we have followed da Veiga et al. [27] and Campos Pinto
et al. [24] and used tensor-product splines B̂�

μ on the reference domain �̂, composed of
normalized B-splinesNp

i in the dimensions of degree p and of Curry-Schoenberg B-splines

Dp−1
i =

(
p

ξi+p+1−ξi+1

)
Np−1

i+1 (also called M-splines) in the dimensions of degree (p − 1).

On the mapped patches �k = Fk(�̂) the basis functions are defined again as push-forwards
B�
k,μ := F�

k(B̂
�
μ) for (k, μ) ∈ M�

h .
The discrete elements in the matrix diagram (41) must then be adapted for B-splines:

one first observe that the change of basis is provided by the patch-wise collocation matrices
whose diagonal blocks read

K

�
(k,μ),(k,ν) = σ�

k,μ(B�
k,ν) = σ̂ �

μ(B̂�
ν ), μ, ν ∈ M̂�

(123)
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where we have used (B.10) from the Appendix. As B�
k,ν = ∑

μ K

�
(k,μ),(k,ν)�

�
k,μ it follows

that the B-spline coefficients of the geometric projection (30), namely

��
hv =

∑

(k,μ)∈M�
h

σ�
k,μ(v)��

k,μ =
∑

(k,μ)∈M�
h

β�
k,μ(v)B�

k,μ (124)

read (using some implicit flatteningM�
h � (k, μ) �→ i ∈ {1, . . . , N �})

β�(v) = (K�)−1σ �(v). (125)

Accordingly,we obtain thematricesP

�
B = (β�

i (P
�
h B

�
j ))1≤i, j≤N � of the conforming projection

operator (120) in the B-spline bases by combining the matrices (121) with the above change
of basis: this gives

P

�
B = (K�)−1

P

�
K

�. (126)

Here we note that the collocation matrices K

� are Kronecker products of univariate banded
matrices, see [24, Sect. 6.2], so that (125) and (126) may be implemented in a very efficient
way. The primal sequence is completed by computing the patch-wise differential matrices in
the B-spline bases,

(D�
B)(k,μ),(k,ν) := β�+1

k,μ (d�B�
k,ν).

Thanks to the univariate relation d
dxN

p
i = Dp−1

i−1 − Dp−1
i , these are patch-wise incidence

matrices, just as the ones in the geometric bases [24, 27]. For the dual sequence we use
bi-orthogonal splines characterized by the relations

B̃k,μ ∈ V �
h (�k), β̃�

k,ν(B̃
�
k,μ) = δμ,ν ∀μ, ν ∈ M̂�

with dual degrees of freedom

β̃�
k,μ(v) := 〈v, B�

k,μ〉. (127)

This leads to defining again the primal Hodge matrices as patch-diagonal mass matrices,
H

�
B = M

�
B and the dual Hodge ones as their patch-diagonal inverses H̃

�
B = (M�

B)−1. These
matrices can be computed on the reference domain according to

(M�
B)(k,μ),(k,ν) = 〈B�

k,μ, B�
k,ν〉 = 〈F�

k(B̂
�
μ),F�

k(B̂
�
ν )〉. (128)

Specifically, for the 2D grad − curl sequence we obtain

(M�
B)(k,μ),(k,ν) =

⎧
⎪⎨

⎪⎩

∫

�̂
B̂0

μ B̂
0
ν JFk dx̂, for� = 0

∫

�̂
(B̂1

μ)T (DFT
k DFk)−1 B̂1

ν JFk dx̂, for� = 1
∫

�̂
(B̂2

μ)T B̂2
ν J

−1
Fk

dx̂, for� = 2

(129)

and for the 2D curl − div sequence we find

(M1
B)(k,μ),(k,ν) =

∫

�̂

(B̂1
μ)T DFT

k DFk B̂
1
ν J

−1
Fk

dx̂, (130)

while M

0
B and M

2
B take the same values as in (129). Here we have used the explicit form of

the pull-back operators (A.12) and (A.13) recalled in the Appendix. In 3D the formulas can
be derived from the pull-backs given in [27].
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Finally the coefficients of the dual commuting projections (32)–(33) in the dual B-spline
bases read

β̃
�
(�̃�

hv) = (P�
B)T β̃

�
(v)

using the dual degrees of freedom (127) and the same implicit flattening as in (125), (126).
Gathering the above elements in 3D we obtain a new version of diagram (41), where the

coefficient spaces (still defined as RN �
) are now denoted C�

B and C̃�

B to indicate that they
contain coefficients in the B-spline and dual B-spline basis, respectively.

V 0 V 1 V 2 V 3

V 0
h V 1

h V 2
h V 3

h

C0B C1B C2B C3B

C̃0B C̃1B C̃2B C̃3B

V 0
h V 1

h V 2
h V 3

h

V ∗
0 V ∗

1 V ∗
2 V ∗

3

grad curl div

�0
h �1

h �2
h �3

h
(K0)−1σ 0 (K1)−1σ 1 (K2)−1σ 2 (K3)−1σ 3

gradh curlh divh

I0B I1B I2B I3B
β0 β1 β2 β3

GBP

0
B CBP

1
B DBP

2
B

H̃

0
B H̃

1
B H̃

2
B H̃

3
BH

0
B H

1
B H

2
B H

3
B

d̃ivh ˜curlh ˜gradh
β̃
0

β̃
1

β̃
2

β̃
3Ĩ0B Ĩ1B Ĩ2B Ĩ3B

−(GBP

0
B)T (CBP

1
B)T −(DBP

2
B)T

(P0
B)T β̃

0
(P1

B)T β̃
1

(P2
B)T β̃

2
(P3

B)T β̃
3

�̃0
h �̃1

h �̃2
h �̃3

h

div curl grad

(131)

Note that here the primal and dual interpolation operators are simply

I�
B : b �→

N �
∑

i=1

bi B
�
i and Ĩ�

B : b̃ �→
N �
∑

i=1

b̃i B̃
�
i . (132)

5 Numerical Validation of the Broken FEEC Schemes

In this section we conduct numerical experiments to test our novel broken FEEC schemes
from Sect. 3 using the multipatch spline spaces described in Sect. 4. These experiments
have been performed with the Psydac library [32], where the different operators from the
primal/dual commuting diagram (131) have been implemented. In contrast to conforming
FEEC appproximations, we remind that these operators are local in the sense explained in the
introduction, thanks ot the use of the fully discontinuous spaces V �

h and the local conforming
projections represented by the matrices P

�
B .
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Table 1 Relative L2 errors for the Poisson problem with homogeneous boundary conditions discretized with
(52), using various numbers of cells per patch and spline degrees. In each case the error is computed with
respect to the finite element projection �0

hφ of the analytic solution (133) on the space V 0
h

Degree 2 × 2 3 × 3 4 × 4 5 × 5

Cells p.p.

4 × 4 0.99420 0.73962 0.35919 0.41536

8 × 8 0.11599 0.12811 0.13921 0.16493

16 × 16 0.00692 0.00892 0.01013 0.00684

Fig. 2 Solutions φh ∈ V 0
h computed by the scheme (52), with spline elements of degree 3× 3 and N × N of

cells per patches as indicated, corresponding to some of the errors shown in Table 1

5.1 Poisson Problemwith Homogeneous Boundary Conditions

We first test our CONGA scheme for the homogeneous Poisson problem presented in
Sect. 3.1. For this we consider an analytical solution on the pretzel-shaped domain shown in
Fig. 1, given by

φ(x) = exp
(

− τ 2(x)

2σ 2

)
with τ(x) = as2(x) + bt2(x) − 1. (133)

Here, s(x) = x̃ − ỹ, t(x) = x̃ + ỹ with x̃ = x − x0, ỹ = y − y0 and we take x0 = y0 = 1.5,
a = (1/1.7)2, b = (1/1.1)2 and σ = 0.11 in order to satisfy the homogeneous boundary
condition with accuracy ≈ 1e − 10. The associated manufactured source is

f = −�φ = −
(

τ 2‖∇τ‖2
σ 4 − τ�τ + ‖∇τ‖2

σ 2

)

φ . (134)

In Table 1 we show the relative L2 errors corresponding to different grids and spline
degrees, and in Fig. 2 we plot the numerical solutions corresponding to spline elements of
degree 3×3 on each patch. These results show that the numerical solutions converge towards
the exact one as the grids are refined. We do not observe significant improvements however
when higher order polynomials are used. As the next results will show, this is most likely
due to the steep nature of the solution.

5.2 Poisson Problemwith Inhomogeneous Boundary Conditions

Our second test is with an inhomogeneous Poisson–Dirichlet problem (64), using the lifting
method described in Sect. 3.3 for the boundary condition and the solver tested just above for
the homogeneous part of the solution. Specifically, we define φg,h ∈ V 0

h by computing its
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Fig. 3 Convergence study for the inhomogeneous Poisson solver with source and boundary conditions given
by (135). The left plot shows the relative L2 errors corresponding to various grids of N × N cells per patch
(i.e., 18N2 cells in total) and spline degrees p × p as indicated. The right plot shows one numerical solution
φh of good accuracy

boundary degrees of freedomfrom thedata g on ∂� (this is straightforwardwith our geometric
boundary degrees of freedom (B.12)), and we compute φ0,h = φh − φg,h by solving (67).
As we are not constrained by a specific condition on the domain boundary we consider a
smooth solution to assess whether high order convergence rates can be observed despite the
singularities in the domain boundaries. Specifically, we use again the pretzel-shaped domain
and set the source and boundary condition as

f (x) = −2π2 sin(πx) cos(π y) in �, g(x) = φ(x) on ∂� (135)

where φ(x) = sin(πx) cos(π y) is the exact solution.
In Fig. 3 we plot the convergence curves corresponding to various N × N grids for the

18 patches of the domain, and various degrees p = 2, . . . 5. They show that the solutions
converge with optimal rate p + 1 (and even p + 2 for p = 2) as the patch grids are refined.
Since the stabilized broken FEEC solution coincides with the conforming one according to
our analysis in Sects. 3.1 and 3.3, these rates follow from the optimality of conforming FEM
approximations to elliptic problems and the approximation power of multipatch spline spaces
established in [16].

5.3 Time-Harmonic Maxwell Problemwith Homogeneous Boundary Conditions

We next turn to a numerical assessment of our CONGA solvers for the Maxwell equation,
and as we did for the Poisson equation we begin with the homogeneous case presented in
Sect. 3.2. Since now the solution depends a priori on the time pulsation ω we opt for a
physically relevant current source localized around the upper right hole of the pretzel-shaped
domain,

J = φcurlτ (136)

where φ and τ are as in (133). We plot this source in Fig. 4.
We then consider two values for the time pulsation, namely ω = √

50 and ω = √
170,

and for each of these values we use as reference solutions the numerical solutions computed
using our method on amesh with 20×20 cells per patch (i.e. 7200 cells in total) and elements
of degree 6 × 6 in each patch. These reference solutions are shown in Fig. 5. Interestingly,
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Fig. 4 Source (136) (vector field and amplitude) for the homogeneous Maxwell solutions plotted in Fig. 5
below

Fig. 5 Reference numerical solutions for the homogeneous Maxwell problem with source (136) and time
pulsation ω = √

50 (top) and ω = √
170 (bottom). These solutions have been obtained using 20 × 20 cells

per patch and spline elements of degree 6 × 6. The vector fields are shown on the left while the amplitudes
are shown on the right
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Table 2 L2 errors for the solution
of the homogeneous Maxwell
problem with source (136) and
time pulsation ω as indicated.
Here the errors are computed
using the numerical reference
solutions shown in Fig. 5

Degree 2 × 2 3 × 3 4 × 4 5 × 5

Cells p.p.

Errors for ω = √
50

4 × 4 1.32277 1.53875 0.42168 0.02399

8 × 8 0.45461 0.03990 0.03640 0.02547

16 × 16 0.02158 0.02354 0.01333 0.00738

Errors for ω = √
170

4 × 4 0.99472 1.00119 1.00864 1.00200

8 × 8 1.03397 1.39890 0.29048 0.11714

16 × 16 0.68206 0.00828 0.00880 0.00484

Fig. 6 Numerical solutions obtained with spline elements of degree 3 × 3 and different grids as indicated,
corresponding to the errors shown in Table 2

we observe that for the higher pulsation ω = √
170 the source triggers a time-harmonic field

localized around the upper left hole, opposite to where the source is.
In Table 2we show the L2 errors corresponding to different grids and spline degrees for the

two values of the pulsation ω, and we also plot in Fig. 6 the different solutions corresponding
to spline elements of degree 3× 3. These results show that the numerical solutions converge
towards the reference ones as the grids are refined, and with a faster convergence in the case
of the lower pulsationω = √

50, due to the higher smoothness of the corresponding solution.

5.4 Time-Harmonic Maxwell Problemwith Inhomogeneous Boundary Conditions

As we did for the Poisson problem, we next test our Maxwell solver with a smooth solution
and handle the inhomogeneous boundary conditions with the lifting method described in
Sect. 3.3. Specifically, we define ug,h ∈ V 1

h by computing its boundary degrees of freedom
from the data g = n × u on ∂� [this is again straightforward with our geometric boundary
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Fig. 7 Convergence study for the time-harmonic Maxwell solver with source given by (137) and inhomoge-
neous boundary conditions n × u = g. Relative L2 errors are plotted on the left for various grids of N × N
cells per patch (corresponding to a total of 18N2 cells) and spline degrees p × p as indicated. The right plot
shows the amplitude of a numerical solution uh of good accuracy

degrees of freedom (B.13)], and we compute u0,h = uh − ug,h by solving (69). Here we
take ω = π and consider (65) with the source-solution pair

J =
(−π2 sin(π y) cos(πx)

0

)

, u =
(

sin(π y)
sin(πx) cos(π y)

)

(137)

and a boundary condition given by g := n × u on ∂�.
In Fig. 7 we plot the convergence curves corresponding to spline elements of various

degrees p× p and N ×N cells per patch. The results are similar to what was observed for the
Poisson problem: the solutions convergewith optimal rate p+1 as the grids are refined (again
a rate of p+2 is observed for= 2)which confirms the numerical accuracy of our approach for
theMaxwell problem combined with a geometric lifting technique for the Dirichlet boundary
condition. These convergence rates can be justified by the approximation power ofmultipatch
spline spaces established in [16] and the error analysis fromMonk andDemkowicz [43]which
establishes optimal convergence under the condition that the finite element spaces satisfy the
discrete compactness property: for FEEC spaces the discrete compactness property follows
from the existence of L2 stable commuting projection operators (see Sect. 3.6 [2]), and for
multipatch spaces this has been recently proven in [25]. Note that the convergence observed
here is actually better than expected, since H(curl) multipatch spline spaces of maximal
degree p should only have p order accuracy [16].

5.5 Eigenvalue Problems

We next assess the accuracy of our CONGA approximation (76) for the curl-curl eigenvalue
problem.

We test our discretization on the two domains shown in Fig. 1, and plot in Fig. 8 the
amplitude of the first five eigenmodes, together with their positive eigenvalues. Here the
eigenmodes are computed using spline elements of degree 6× 6 and 56× 56, resp. 20× 20
cells per patch in the case of the curved L-shaped, resp. pretzel-shaped domain composed of
3, resp. 18 patches. On the former domain this corresponds to 9408 cells in total and 22,692
degrees of freedom for the broken space V 1

h , while on the latter domain it corresponds to 7200
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cells and 23,400 degrees of freedom for V 1
h (a higher value than for the L-shaped domain

despite less cells, because of the duplication of boundary dofs at the patch interfaces).
In Fig. 9 we then plot the relative eigenvalue errors

eh,i = |λi − λh,i |
max(λi , λh,i )

(138)

as a function of the eigenvalue index i , for degrees p = 3 and 5, and N × N cells per patch
with N = 2, 4, 8 and 16. For the curved L-shaped domainwe use as reference the eigenvalues
provided as benchmark in [29, 30], and for the pretzel-shaped domain we use the eigenvalues
computed using our CONGA scheme, with as many reliable digits as we could find using
uniform patches with degree 6× 6 and N × N cells per patch with N ≤ 20 (this limit being
imposed by the fact that we compute the matrix eigenmodes with Scipy’s eigsh solver with
a sparse LU decomposition).

This allows us to verify numerically that the discrete eigenvalues converge towards the
exact ones, with smaller errors corresponding to the smoother eigenmodes visible in Fig. 8.

5.6 Magnetostatic Test-Cases

We next study the CONGA discretizations of the magnetostatic problems presented in
Sect. 3.5: either the one for the problem with pseudo-vacuum boundary conditions (86)
or the one with metallic boundary conditions (96).

To this end we consider a scalar dipole current source,

Jz = ψ0 − ψ1 where ψm = exp
(

−
(
(x − xm)2 + (y − ym)2

)2

2σ 2

)
(139)

in the pretzel-shaped domain, with σ = 0.02.We set the positive current pole at x0 = y0 = 1
and the negative one at x1 = y1 = 2. We then consider the discrete solvers described in
Sects. 3.5.1 and 3.5.2 for the problems with pseudo-vacuum and metallic boundary condi-
tions, respectively.

In Fig. 10 we plot the scalar source Jz together with the vector-valued curlJz field, and
for each of the boundary conditions, we plot in Fig. 11 fine solutions computed using the
CONGA scheme on a mesh with 20×20 cells per patch (i.e. 7200 cells in total) and elements
of degree 6 × 6 in each patch.

In Table 3 we then show the relative L2 errors corresponding to coarser grids and lower
spline degrees for both boundary conditions, using as reference the fine solutions shown in
Fig. 11.We also plot in Fig. 12 the solutions corresponding to spline elements of degree 3×3
on each patch. Again these results indicate that our CONGA solutions converge nicely as the
grids are refined, with smaller errors associated with higher polynomial degrees.

5.7 Time-Dependent Maxwell Equation

We finally assess the qualitative and quantitative properties of our mapped spline-based
CONGA scheme for the time-dependent Maxwell system, using a leap-frog time stepping
(108)–(109). We will consider two test-cases.

Our first test-case consists of an initial electric pulse

E(t = 0) = curlψ, ψ(x) = exp
(

−
(
(x − x0)2 + (y − y0)2

)2

2σ 2

)
(140)
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Fig. 8 Eigenmodes of the
curl-curl problem on the
curved-L-shaped domain (left)
and on the pretzel domain (right),
obtained on fine grids with
20 × 20 cells per patch and
degree 6 × 6
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Fig. 9 Relative eigenvalue errors (138) for the curl-curl problem on the curved-L-shaped domain (left) and
on the pretzel domain (right), using elements of degree p × p as indicated, and N × N cells per patch with
N = 2, 4, 8 and 16. The resulting total numbers of cells are nc = 3N2 and 18N2 for the respective multipatch
domains

Fig. 10 Source for the magnetostatic test-cases: the scalar current density (139) is plotted on the left panel
and its vector-valued curl is shown on the right
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Fig. 11 Reference numerical solutions obtained with 20 × 20 cells per patch and elements of degree 6 × 6,
for the magnetostatic test-cases with pseudo-vacuum (top) and metallic boundary conditions (bottom). The
vector fields are shown on the left while the amplitudes are shown on the right

Table 3 L2 errors for the Bh
solutions of the magnetostatic
test-cases with pseudo-vacuum
and metallic boundary
conditions, corresponding to the
amplitude plots shown in Fig. 12.
Here the errors are computed
using numerical reference
solutions obtained with 20 × 20
cells per patch and degree 6 × 6

Degree 2 × 2 3 × 3 4 × 4 5 × 5

Cells p.p.

Errors for pseudo-vacuum boundary conditions

2 × 2 0.23443 0.16028 0.10290 0.06425

4 × 4 0.10514 0.05855 0.05773 0.03029

8 × 8 0.03909 0.02414 0.01893 0.01542

16 × 16 0.018733 0.01193 0.008375 0.00567

Errors for metallic boundary conditions

2 × 2 0.37023 0.24518 0.15902 0.09266

4 × 4 0.15490 0.07747 0.08660 0.03508

8 × 8 0.03776 0.01840 0.01736 0.01550

16 × 16 0.00544 0.00187 0.00153 0.00085
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Fig. 12 Numerical solutions for the magnetostatic test-cases with pseudo-vacuum (top) andmetallic boundary
conditions (bottom), obtained with elements of degree 3 × 3 and different patch-wise grids, as indicated

in the pretzel-shaped domain, with x0 = y0 = 1 and σ = 0.02. The initial magnetic field
and the source is

B(t = 0) = 0, and J(t, x) = 0. (141)

In Fig. 13 we compare successive snapshots of two solutions corresponding to different
numbers N × N of cells per patch and degrees p × p: on the left plots the solution is
computed with N = 8 and p = 3, while that on the right plots uses N = 20 and p = 6.
We observe that these results display a qualitatively correct behaviour for propagating waves
with reflecting boundary conditions, and that the profile for both resolutions are similar up
to small scale features, which can be seen as a practical indicator of convergence.

Since this test-case iswithout source the discrete energy should be preserved up to bounded
oscillations, as recalled in Sect. 3.6. In Fig. 14we plot the time evolution of the discrete energy
Hh(tn) = 1

2

(‖En
h‖2 + ‖Bn

h ‖2), together with that of the electric and magnetic fields, and
we observe that the total energy is very stable. We also plot the amplitude of the discrete
divergence as time evolves: assuming all computations exact it should be zero according to
(106), indeed we have ρ = div E(t = 0) = 0 in this test case. On Fig. 14 we verify that it is
zero up to machine accuracy and small quadrature errors.

We next study the quality of the source approximation operator J → Jh which is involved
in the discrete Ampere equation (104). For this we use a second time-dependent test-case
with a zero initial condition

E(t = 0) = 0, and B(t = 0) = 0 (142)

and a source of the form

J(t) = curlψ − cos(ωt) gradψ (143)

with ψ as in (140). The associated charge density is then

ρ(t) = −
∫ t

0
div J(t ′) dt ′ = ω−1 sin(ωt)�ψ.
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Fig. 13 Snapshots of numerical solutions to the time-dependent Maxwell test-case (140)–(141) at t = 0, 0.4,
0.8, 1.6 and 3.2 (from top to bottom) discretized with the CONGA method (104) using spline elements of
degree p × p and N × N cells per patch, and a leap-frog time stepping. The solution on the left corresponds
to N = 8 and p = 3, while the one on the right has been obtained N = 20 and p = 6
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Fig. 14 Energy (top) and discrete divergence amplitude (bottom) of the coarse (left) and fine (right) numerical
solutions of the time-dependent Maxwell test-case (140)–(141) shown in Fig. 13

In Figs. 15 and 16 we compare three different approximation operators for the current source,
namely:

(i) the primal finite element projection: Jh = �1
h J ,

(ii) the L2 projection on the broken space: Jh = QV 1
h
J ,

(iii) the dual projection: Jh = �̃1
h J

where we remind that �̃1
h = (P1

h )∗QV 1
h
, see (32). We note that each of these projection oper-

ators are local, in the sense that none requires solving a global problem on the computational
domain �. We also remind that the primal projection �1

h interpolates the geometric (edge)
degrees of freedom and satisfies a commuting diagram property with the primal (strong) dif-
ferential operators, but not with the dual ones. Hence it does not allow to preserve the discrete
electric Gauss law in (106). In contrast, both the L2 projection on the broken space V 1

h and
the dual projection �̃1

h guarantee the preservation of the discrete Gauss laws, however we
expect an increased stability for the latter one as discussed in Remark 5.

In Fig. 15 we first show some snapshots of the three numerical solutions on a time range
t ∈ [0, T ] with T = 20: There we see that the primal projection yields a very strong and
steadily growing field in the region of the source (visible from the changing color scale) which
points towards a large error. In contrast, the L2 and the dual projections produce solutions
with moderate amplitude with some visible differences, namely an electric field that also
builds up in the region where the source is located.

To better analyse the quality of these simulations we next show in Fig. 16 two error
indicators for each one of the numerical strategies described above, namely the Gauss law
errors associated with the broken solution Gnh(En

h), and that of its conforming projection
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Gnh(P1
h E

n
h), where we have denoted

Gnh(Fh) = ‖d̃ivhFh − �̃0ρ(tn)‖ for Fh ∈ V 1
h . (144)

Here the former errors are expected to be zero for both the L2 and dual projections, see
Remark 5: The numerical results confirm this value, up to machine accuracy, whereas they
show significant errors for the primal projection shown in the left plots. As for the second
error, it has no reason to be strictly zero but should remain small for accurate and stable
solutions, hence it is also an interesting error indicator. Here the curves show very large
values (around 80 at t = T ) for the primal projection operator �1

h , with a linear time growth
(which is somehow consistent with the strong growth of the former error indicator Gnh(En

h)).
For the L2 projection the error is smaller but it is far from being negligible (close to 3), and
also grows linearly in time. In contrast, the error is much smaller (on the order of 0.01) for
the dual projection �̃1

h , and it oscillates but does not seem to grow. These results tend to
indicate that the growing field visible in Fig. 15 corresponds to a numerical error, and they
highlight the improved stability of the CONGA scheme with a proper source approximation.

6 Conclusions

In this work we have extended the classical theory of finite element exterior calculus (FEEC)
tomappedmultipatch domains, using finite element spaces that are fully discontinuous across
the patch interfaces.We refer to this approach as the “brokenFEEC”or “CONGA” (COnform-
ing/Non conformingGAlerkin)method.While the foundational theory relative to the solution
of theHodge–Laplace equationwas presented in recentwork [23], herewe have presented sta-
ble broken FEEC formulations for many problems arising in electromagnetic applications,
including Poisson’s equation, time-dependent and time-harmonic (source and eigenvalue)
Maxwell’s problems, and magnetostatic problems with pseudo-vacuum and metallic bound-
ary conditions. Further, we have detailed a numerical framework based on tensor-product
splines on each patch, under the assumption of geometric conformity across the patch inter-
faces.

For all the electromagnetic problems presented, we have verified our broken FEEC frame-
work through extensive numerical testing in L-shaped and pretzel-like two-dimensional
domains. The latter geometry is particularly challenging because of its three holes and
sharp reentrant corner. The nominal order of accuracy was achieved in all cases, and the
structure-preserving properties (such as divergence of harmonic constraints) were respected
to floating-point accuracy. For the time-dependentMaxwell problemwith a current source,we
could also observe long-term stability of the method, and presented alternative formulations
which lack this property.

As explained in the introduction, the main benefit of our approach compared to a standard
conforming FEEC discretization is to provide local coderivative operators, as well as local
Hodge and commuting projection operators for both the primal and dual complexes. As such,
broken FEEC methods allow for parallel algorithms where only communications between
contiguous patches are needed in the direct application of every operator appearing in the
primal/dual commuting diagram.

Another appealing feature of this approach lies in the modularity of the implementa-
tion: as every operator in the commuting diagram involves either a single patch operator
or a conforming projection (which performs averages between contiguous patches and can
be applied matrix-free), extending a single-patch code to multipatch domains essentially
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Fig. 15 Snapshots of numerical solutions to the time-dependent Maxwell problem with a time-varying source
(143) discretized with the CONGA scheme (104) using spline elements of degree 3 × 3 and 8 × 8 cells per
patch. The amplitudes |P1

h E
n
h | are shown at t = 2, 5, 10 and 20 (from top to bottom). In the left panels

the source projection J → Jh is a primal projection operator �1
h which does not commute with the dual

differential operators (note the time-varying color scale). The middle panels use an orthogonal projection
QV 1

h
, and the ones on the right a dual commuting projection �̃1

h . See the text for more details

amounts to writing these conforming projections operators. In particular, solving problems
in the broken multipatch spaces can be done with a global data structure that just consists of
a list of the patch-wise data structures.

Given its solid theoretical bases and convincing numerical results, we are confident that
the broken FEEC framework will find practical use in the computational physics community.
To this end we plan to relax the grid conformity constraints at the interfaces, allowing for
independent refinement of the patches, and to investigate the efficiency of parallel imple-
mentations for high-performance computing applications. This will allow us to tackle large
problems in three dimensions, including MHD and kinetic models for plasma physics.

Acknowledgements The authors would like to thank Eric Sonnendrücker for inspiring discussions throughout
this work.
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Fig. 16 Discrete Gauss law errors (144) as a function of time for the test-case (142)–(143), using different
approximation operators for the discrete source Jh = PJ J . The top panels show the errors relative to the
broken field Eh , whereas those on the bottom panels show the error relative to its conforming projection
P1
h Eh . For each indicator, the left, middle and right plots correspond to the different source approximation

operators shown in Fig. 15
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Appendix

A BrokenMultipatch Spline Complexes

In this appendix we detail the construction of broken spline complexes on 2D multipatch
spaces.

A.1 De Rham Sequences in 2D

In 2D the de Rham sequence (1) may be reduced in two different ways, namely

V 0 grad−−−→ V 1 curl−−−→ V 2 (A.1)

and

V 0 curl−−−→ V 1 div−−−→ V 2 (A.2)

where curl and curl denote the vector and scalar-valued curl operators respectively (for clarity
we use bold fonts to denote vector-valued fields and operators in the subsequent sections).
Here the operators in the second sequence are dual to those in the first one, and in each case
we may consider spaces with homogeneous boundary conditions, namely

V 0 = H1
0 (�), V 1 = H0(curl;�), V 2 = L2(�) (A.3)

for the first sequence and

V 0 = H0(curl;�), V 1 = H0(div;�), V 2 = L2(�) (A.4)

for the second one, or the full inhomogeneous spaces

V 0 = H1(�), V 1 = H(curl;�), V 2 = L2(�), (A.5)

and

V 0 = H(curl;�), V 1 = H(div;�), V 2 = L2(�). (A.6)

In the numerical examples presented in this article we will consider the first sequence
(A.1) as the primal one, both with homogeneous spaces (A.3) or inhomogeneous ones (A.5).
As mentioned in Sect. 3.3 this distinction only affects the conforming projection operators,
indeed the broken spaces consist of local spaces which have no boundary conditions. This
point is also discussed in Remark 6.

A.2 Reference Spline Complexes

On each mapped patch the local sequence (19) is built as the push-forward of tensor-product
spline spaces defined on the reference patch �̂ = ]0, 1[2 following [14, 15]. To simplify
the construction of the conforming spaces {V �,c

h }� over domains with non-trivial inter-patch
connectivities, we consider a discretization which has reflectional and rotational symmetries
over �̂. This amounts to using the same knot sequence along every dimension of �̂, and to
require such a knot sequence to be left-right symmetric as explained below.

To construct the reference tensor-product spline complex with maximal coordinate degree
p ≥ 1 on a grid with N cells per dimension, we equip the interval [0, 1] with an open knot
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sequence

0 = ξ0 = · · · = ξp < ξp+1 < · · · < ξn−1 < ξn = · · · = ξn+p = 1 (A.7)

where n = N + p. This sequence is assumed symmetric for simplicity, in the sense that
ξi = 1 − ξn+p−i for all i . For i = 0, . . . , n − 1 and q ∈ {p − 1, p} we then let Nq

i be
the normalized B-spline of degree q associated with the knots (ξi , . . . , ξi+q+1), see [48,
Definition 4.19]. The spline space Sq = Sq(ξ) := Span{Nq

i : i = 0, . . . , n − 1} then
corresponds to splines of maximal regularity on the given subdivision, namely

Sq = {v ∈ Cq−1([0, 1]) : v|(ξq+ j ,ξq+ j+1) ∈ Pq , ∀ j = 0, . . . , N − 1}.
Notice that here Np−1

0 vanishes identically; it is only kept in the formulas for notational
simplicity. Tensor-product spline spaces of degree q ∈ {p − 1, p}2 are then defined on the
reference domain �̂ as

Sq := Span
{Nq

i : i ∈ �0, n − 1�2
}

with Nq
i (x̂) :=

2∏

d=1

Nqd
id

(x̂d). (A.8)

The reference spline complex [14] associated with the grad−curl sequence (A.1) reads then

V̂0 := S(p,p)
grad−−→ V̂1 :=

(
S(p−1,p)
S(p,p−1)

)
curl−−→ V̂2 := S(p−1,p−1) (A.9)

while the one associated to the curl − div sequence (A.2) reads

V̂0 := S(p,p)
curl−−→ V̂1 :=

(
S(p,p−1)
S(p−1,p)

)
div−→ V̂2 := S(p−1,p−1). (A.10)

A.3 Broken FEEC Spaces on theMapped Patches

Following Monk and Demkowicz [35], Buffa et al. [15] and Perse et al. [46] we define the
local spaces (19) on the mapped patches �k = Fk(�̂) as push-forwards of the reference
spline spaces, namely

V �
h (�k) := F�

k(V̂
�) (A.11)

where the push-forward transforms associated with a mapping Fk are obtained as the 2D
reduction of the usual ones in 3D. For the grad − curl sequence (A.1) they read

⎧
⎪⎪⎨

⎪⎪⎩

F0
k : v̂ �→ v := v̂ ◦ F−1

k

F1
k : v̂ �→ v := (

DF−T
k v̂

) ◦ F−1
k

F2
k : v̂ �→ v := (

J−1
Fk

v̂
) ◦ F−1

k

(A.12)

and for the curl − div sequence (A.2) they read
⎧
⎪⎪⎨

⎪⎪⎩

F0
k : v̂ �→ v := v̂ ◦ F−1

k

F1
k : v̂ �→ v := (

J−1
Fk

DFk v̂
) ◦ F−1

k

F2
k : v̂ �→ v := (

J−1
Fk

v̂
) ◦ F−1

k

(A.13)

We remind that DFk = (
∂b(Fk)a(x̂)

)

1≤a,b≤2 denotes the Jacobian matrix of Fk , and JFk
its (positive) metric determinant corresponding to the surface measure for two-dimensional
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manifolds inR3, see e.g. [16, 35, 37, 41]. The inverse transforms (F�
k)

−1 are called pull-backs,
and a fundamental property of these transforms is that they commute with the differential
operators [31, 35], namely

(F�+1
k )−1(d�) = d̂�(F�

k)
−1 (A.14)

holds with (d0, d1) the differential operators in the sequences (A.1) or (A.2), and (d̂0, d̂1)
their counterparts on the logical (reference) domain. As these transforms are linear operators,
the local spaces are spanned by the push-forwarded basis functions. In particular, setting

��
k,μ :=

{
F�
k(�̂

�
μ) on �k

0 on � \ �k
for (k, μ) ∈ �1, K � × M̂�

(A.15)

provides us with local bases for the global broken spaces (20), i.e.,

V �
h = Span{��

k,μ : (k, μ) ∈ M�
h} where M�

h := �1, K � × M̂�
. (A.16)

B Broken Geometric Degrees of Freedom

Using the notation introduced in Sect. A we now detail the geometric degrees of freedom
involved in our broken FEEC diagram (131).

B.1 Geometric Degrees of Freedom on the Reference Patch

Following Bochev et al. [4], Robidoux [47], Gerritsma [31], Campos Pinto et al. [24] we
equip the reference complexes (A.9) and (A.10) with geometric degrees of freedom which
are known to commute with the differential operators. They are based on an interpolation
grid

0 = ζ0 < · · · < ζn−1 = 1

for the univariate spline space Sp in the sense of [48, Th. 4.61], that is also symmetric,
namely ζi = 1 − ζn−1−i for all i = 0, . . . , n − 1. Here the usual choice is to consider
Greville points associated with the knots (A.7). On the reference domain �̂ we then consider
the interpolatory nodes, edges and cells

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n̂i := (ζi1 , ζi2) for i ∈ M̂0

êd,i := [n̂i , n̂i+ed ] for (d, i) ∈ M̂1

ĉi := [ê1,i , ê1,i+e2 ] =
∏

1≤d≤2

[ζid , ζid+1] for i ∈ M̂2
.

(B.1)

Here the square brackets [·] denote convex hulls, ed is the canonical basis vector ofR2 along
dimension d and the multi-index sets read

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M̂0 := {i : i ∈ �0, n − 1�2}
M̂1 := {(d, i) : d ∈ �1, 2�, i ∈ �0, n − 1�2, id + 1 < n}
M̂2 := {i : i ∈ �0, n − 2�2}.
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Geometric degrees of freedomassociatedwith the grad−curl sequence (A.1) are then defined
as the linear forms

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ̂ 0
i (v) := v(n̂i ) for i ∈ M̂0

σ̂ 1
d,i (v) :=

∫

êd,i

v · ed for (d, i) ∈ M̂1

σ̂ 2
i (v) :=

∫

ĉi

v for i ∈ M̂2

(B.2)

wherewe observe that the reference edges are oriented according to their natural parametriza-
tion,

x̂ed,i (s) := n̂i + (s − ζid )ed for s ∈ [ζid , ζid+1]. (B.3)

For the curl − div sequence (A.2) we define σ̂ 0
i and σ̂ 2

i similarly, while the intermediate
degrees of freedom are modified such that

σ̂ 1
d,i (v) :=

∫

êd,i

v · e⊥
d for (d, i) ∈ M̂1

, (B.4)

where e⊥
d := (e2,−e1)T corresponds to a π/2 rotation (counterclockwise) of the basis

vector ed . As these degrees of freedom are unisolvent we let �̂�
μ, μ ∈ M̂�

, be the geometric

basis for the spline space V̂�, characterized by the duality relations

σ̂ �
μ(�̂�

ν) = δμ,ν for μ, ν ∈ M̂�
. (B.5)

Because the degrees of freedom σ̂ 0
μ are based on point values they cannot be applied to

general functions in H1(�̂), indeed this space contains discontinuous and even unbounded
functions. Similarly the degrees of freedom σ̂ 1

μ are not well-defined on H(curl; �̂) since
functions in this space may not have tangential traces on local edges. Thus we are in the
situation described in Remark 1 where the degrees of freedom are not well-defined on the
sequence

V̂ 0 := H1(�̂)
grad−−−→ V̂ 1 := H(curl; �̂)

curl−−−→ V̂ 2 := L2(�̂). (B.6)

Hence, we need to specify some proper domain spaces.

Proposition B.1 The reference degrees of freedom σ̂ �
μ are well defined on the domain spaces

Û � := V̂ � ∩ Û �
L1 , where we have set

Û 0
L1 := W 1

1,2(�̂)
grad−−→ Û 1

L1 :=
(
W 1

2 (�̂)

W 1
1 (�̂)

)
curl−−→ Û 2

L1 := L1(�̂) (B.7)

for the grad − curl sequence (A.1), and

Û 0
L1 := W 1

1,2(�̂)
curl−−→ Û 1

L1 :=
(
W 1

1 (�̂)

W 1
2 (�̂)

)
div−→ Û 2

L1 := L1(�̂) (B.8)

for the curl − div sequence (A.2), with anisotropic Sobolev spaces defined as W 1
1,2(�̂) :=

{v ∈ L1(�̂) : ∂1∂2v ∈ L1(�̂)} and W 1
d (�̂) := {v ∈ L1(�̂) : ∂dv ∈ L1(�̂)} for d ∈ {1, 2}.
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Moreover they commute with the local differential operators, namely we have

σ̂ �+1
μ (d�v) =

∑

ν∈M̂�

D̂�
μ,ν σ̂

�
ν (v) ∀ v ∈ Û �, ∀ μ ∈ M̂�

, (B.9)

with graph-incidence Kronecker-product matrices D̂�.

Proof Nodal degrees of freedom σ̂ 0
μ are well defined on Û 0

L1 = W 1
1,2(�̂) because this space

is continuously imbedded inC0(�̂): this can be verified using Remarks 9 and 13 from Brezis
[12, Sect. 9], and a density argument. Next we observe that edge degrees of freedom (B.2)
along horizontal edges e1,i are of the form

σ̂1,i (v) =
∫ ζi1

ζi1+1

v1(x
′, ζi2) dx ′ = φ(ζi1+1, ζi2) − φ(ζi1 , ζi2)

whereφ(x, y) := ∫ x
0 v1(x ′, y) dx ′. If v1 ∈ W 1

2 (�̂), thenwe see that bothφ and ∂1∂2φ = ∂2v1

are in L1(�̂), hence φ ∈ W 1
1,2(�̂) ⊂ C0(�̂), in particular σ̂1,i is indeed well defined on Û 1

L1 .

Similarly we see that σ̂2,i is also well defined on Û 1
L1 , and the other degrees of freedom are

analyzed with the same reasoning. We also verify easily that in both cases, namely (B.7)
and (B.8), the spaces Û �

L1 form a de Rham sequence. Taking the intersection with (B.6) thus

yields a subsequence Û � ⊂ V̂ � where the degrees of freedom are indeed well-defined. As for
the commuting property, it is well known and follows from the Stokes formula, see e.g. [4].
We refer to [24] for a description of the graph-incidence and Kronecker-product structure of
the matrices D̂�. ��

B.2 Geometric Degrees of Freedom on theMapped Patches

In connection with the multipatch structure of V �
h we define broken degrees of freedom using

pull-back transforms, which are the inverse of the push-forward operators (A.12) or (A.13),
to obtain

σ�
k,μ(v) := σ̂ �

μ

(
(F�

k)
−1(v|�k )

)
for (k, μ) ∈ M�

h . (B.10)

By construction these degrees of freedom are in duality with the local basis functions (A.15),
i.e.

σ�
k,μ(��

l,ν) = δ(k,μ),(l,ν) for (k, μ), (l, ν) ∈ M�
h . (B.11)

A key feature of the pull-back operators is to carry the geometric nature of the reference
degrees of freedom to the mapped elements. For � = 0 the degrees of freedom simply consist
of pointwise evaluations on the mapped nodes, i.e.

σ 0
k,i (v) = v|�k (nk,i ) with nk,i := Fk(n̂i ). (B.12)

For � = 1 with the grad − curl sequence (A.1), they correspond to line integrals along the

mapped edges ek,μ := Fk(êμ) with μ = (d, i) ∈ M̂1
. Specifically, using the pull-back

v̂k := (F1
k)

−1(v|�k ) = DFT
k (v|�k ◦ Fk) from (A.12) and the parametrization (B.3), we

have

σ 1
k,μ(v) =

∫ ζid+1

ζid

(
v|�k (Fk(x̂

e
μ(s))

) · (
DFk(x̂

e
μ(s))ed

)
ds =

∫

ek,μ

v|�k · τ (B.13)
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where τ is the unit vector tangent to ek,μ with the orientation inherited from that of êμ, as
mapped by Fk : at x = xek,μ(s) = Fk(x̂

e
μ(s)) it reads

τ (x) = τ̃ (s)

‖τ̃ (s)‖ with τ̃ (s) := ∂xek,μ
∂s

(s) = DFk(x̂
e
μ(s))ed . (B.14)

According to the interpatch conformity assumption (114)–(115), we observe that the relation

∂xek,μ
∂s

(s) = εe(k, μ; l, ν)
∂xel,ν
∂s

(θk,l(s)) (B.15)

holds with a constant εe(k, μ; l, ν) = ±1 corresponding to the relative orientation of the
edges ek,μ and el,ν .

For � = 1 in the curl − div sequence (A.2), the pull-back corresponding to (A.13) reads
v̂k := (F1

k)
−1(v|�k ) = JFk DF−1

k (v|�k ◦ Fk), so that (B.4) gives

σ 1
k,μ(v) =

∫ ζid+1

ζid

(
v|�k (Fk(x̂

e
μ(s))

) · (
JFk DF−T

k (x̂eμ(s))e⊥
d

)
ds =

∫

ek,μ

v|�k · τ⊥(B.16)

where τ⊥ is the result of a π/2 rotation (counterclockwise) of the unit tangent vector (B.14),
and reads

τ⊥ = τ̃⊥(s)

‖τ̃ (s)‖ with τ̃⊥(s) = JFk DF−T
k (x̂eμ(s))e⊥

d . (B.17)

Finally for � = 2 the degrees of freedom are the integrals on the mapped cells,

σ 2
k,i (v) =

∫

ĉi

(
v|�k (Fk(x̂)

)
JFk (x̂) dx̂ =

∫

ck,i

v|�k with ck,i := Fk(ĉi ). (B.18)

Proposition B.2 The broken degrees of freedom σ�
k,μ are well defined on the local domain

spaces

U �(�k) := F�
k(Û

�) = {v ∈ V �(�k) : (F�
k)

−1(v) ∈ Û �} (B.19)

which involve the spaces Û � from (B.7) and (B.8), and form local de Rham sequences.
Moreover these degrees of freedom commute with the local differential operators. Namely,
(29) holds on U �(�k) with the coefficients D�

k,μ,ν = D̂�
μ,ν from Proposition B.1 which are

independent of the mapping Fk.

Proof The first statement is a direct consequence of the definition (B.10) and Proposition B.1.
In particular the fact that the spaces (B.19) form a sequence follows from the similar property
of the reference spaces and the commutation (A.14) of the pull-backs. As for the local
commutingproperty, it also follows from (A.14) and the similar property (B.9) of the reference
degrees of freedom, indeed

σ�+1
k,μ (d�v) = σ̂ �+1

μ ((F�+1
k )−1(d�v)) = σ̂ �+1

μ (d̂�(F�
k)

−1v)

=
∑

ν∈M̂�

D̂�
μ,ν σ̂

�
ν ((F�

k)
−1v) =

∑

ν∈M̂�

D̂�
μ,νσ

�
k,ν(v).

��
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