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Abstract
Aims/hypothesis Although insulin resistance often leads to type 2 diabetes mellitus, its early stages are often unrecognised, thus
reducing the probability of successful prevention and intervention. Moreover, treatment efficacy is affected by the genetics of the
individual. We used gene expression profiles from a cross-sectional study to identify potential candidate genes for the prediction
of diabetes risk and intervention response.
Methods Using a multivariate regression model, we linked gene expression profiles of human skeletal muscle and intermuscular
adipose tissue (IMAT) to fasting glucose levels and glucose infusion rate. Based on the expression patterns of the top predictive
genes, we characterised and compared individual gene expression with clinical classifications using k-nearest neighbour clus-
tering. The predictive potential of the candidate genes identified was validated using muscle gene expression data from a
longitudinal intervention study.
Results We found that genes with a strong association with clinical measures clustered into three distinct expression patterns.
Their predictive values for insulin resistance varied substantially between skeletal muscle and IMAT. Moreover, we discovered
that individual gene expression-based classifications may differ from classifications based predominantly on clinical variables,
indicating that participant stratification may be imprecise if only clinical variables are used for classification. Of the 15 top
candidate genes, ST3GAL2, AASS, ARF1 and the transcription factor SIN3A are novel candidates for predicting a refined diabetes
risk and intervention response.
Conclusion/interpretation Our results confirm that disease progression and successful intervention depend on individual gene
expression states. We anticipate that our findingsmay lead to a better understanding and prediction of individual diabetes risk and
may help to develop individualised intervention strategies.
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Abbreviations
BW Body weight
FFE Fat-free mass
FG Fasting glucose
GIR Glucose infusion rate
IMAT Intermuscular adipose tissue
kNN k-nearest neighbour
NNN Nearest neighbour network
qRT-PCR Quantitative reverse transcription PCR
RelFat Relative fat mass

Introduction

Obesity is a frequent precondition for the development of
chronic metabolic diseases such as insulin resistance and type
2 diabetes. Based on the recently published results from the
2017–2018 National Health and Nutrition Examination
Survey (NHANES), 42.5% of US adults are currently obese
and are thus at high risk for developing type 2 diabetes and its
complications [1]. Moreover, the IDF predicts that there will
be a 51% increase in the number of individuals with diabetes
worldwide by 2045, from 463 million to 700 million, and
indicates that one in two adults with diabetes remain undiag-
nosed at presence [2]. Although the current assessment of

diabetes and impaired glucose tolerance is based on purely
glycaemic indicators, it is important to emphasise that the risk
for developing diabetes is also dependent on age, sex, fat
tissue distribution, genetics and gene expression, ethnicity
and environmental characteristics. Depending on these indi-
vidual risk factors and on the inclusion criteria for the cohorts
studied, wide heterogeneity in the progression from impaired
glucose tolerance to diabetes has been observed. Emerging
evidence from a population-based study with 381,363 partic-
ipants indicates that even people referred to as having ‘meta-
bolically healthy obesity’ are at a substantially higher risk of
developing diabetes and its complications [3]. Althoughmedi-
cal interventions or changes in lifestyle (diet, exercise) reduce
the risk of severe complications, evidence is emerging in
population-based cohorts that treatment efficacy also depends
on individual genetics [4–7]. This means that patients treated
with glucose-lowering interventions will vary in their
response, with some gaining a considerable benefit, others
seeing no benefit and some experiencing limiting side effects.
Taking all of the evidence together, it is becoming increasing-
ly clear that the current clinical standards for defining the
metabolic health status of an individual are not adequate and
that new strategies for the effective prevention of diabetes are
critically important to reduce the burden of this disease. A
deeper understanding of the individual features and precise
phenotyping of impaired glucose tolerance may improve strat-
ification of disease risk and optimise the benefit/risk ratio and
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cost-effectiveness of therapeutic approaches for the preven-
tion and treatment of type 2 diabetes.

Given that skeletal muscle is responsible for more than
85% of insulin-stimulated whole-body glucose disposal [8],
and that any dysfunction impairing glucose metabolism in this
tissue will affect whole-body glucose homeostasis, ultimately
contributing to the development of diabetes [9], mechanistic
studies mostly focus on this tissue in attempts to elucidate
mechanisms involved in metabolic adaptation and its regula-
tion. More recently, evidence has pointed to intermuscular
adipose tissue (IMAT) accumulation as another local regulator
of muscular insulin resistance and the progression to diabetes
[10, 11]. In this study we hypothesised that tissue-specific
gene expression profiling of skeletal muscle and/or IMAT
could achieve a more specific and detailed characterisation
and classification of individual physiological states than circu-
lating variables alone. We further presumed that the expres-
sion of individual genes might (1) allow the prediction of
individual disease-related states; (2) identify individuals with
a high or low risk for diabetes; and (3) enable the potential
response of a given individual to a specific treatment strategy
to be predicted.

To this end, we aimed to investigate dependencies between
gene expression in skeletal muscle and/or IMAT and clinical
diabetes markers from individuals with obesity, with and
without type 2 diabetes. We used multivariate regression to
model the tissue-specific gene expression impact on the two
key insulin resistance markers, glucose infusion rate (GIR)
during a hyperinsulinaemic–euglycaemic clamp and fasting
glucose (FG). We used a clustering approach to compare
states (obesity and type 2 diabetes) defined by metabolic-
related gene expression patterns with binary clinical classifi-
cations. Finally, we tested selected genes for their potential to
predict individual intervention response based on an indepen-
dent lifestyle and exercise intervention study.

Methods

Human transcriptional profiling dataset Human muscle and
IMAT transcriptional profiles were obtained from a cross-
sectional study previously reported by Sachs et al [12]
(Fig. 1). To identify features suitable for characterisation of
individual prediabetic states and potentially predictive for
disease progression we selected all 16 participants with
obesity and type 2 diabetes for whom paired samples were
available. All participants were clinically characterised by
determining age, BMI, body weight, FG, fasting insulin,
fat-free mass, glucagon, height, insulin sensitivity via GIR
during a hyperinsulinaemic–euglycaemic clamp and relative
fat mass (Table 1). In total, 13 participants were of white
ethnicity and three were of Hispanic ethnicity.

Longitudinal intervention dataset Seventeen individuals with
obesity (BMI 30–40 kg/m2), with and without impaired
glucose tolerance and impaired FG, were recruited for this
study from the local Denver area. Impaired FG was defined
as FG between 5.6 and 7 mmol/l, with postprandial glucose
<7.8 mmol/l 2 h after a 75g OGTT. Impaired glucose toler-
ance was defined as normal FG <5.6 mmol/l, with postpran-
dial glucose >7.8 mmol/l 2 h after a 75g OGTT. A list of
participant exclusion criteria is available in the electronic
supplementary material (ESM; see ‘Longitudinal intervention
study’). Participants were asked to refrain from planned phys-
ical activity for 48 h before the first and second metabolic
studies and were given a standardised diet for 7 days prior to
each study (Fig. 1). After overnight fasting a basal muscle
biopsy was taken; this was followed by metabolic profiling
including a 3 h hyperinsulinaemic–euglycaemic clamp. After
the first metabolic study, participants entered a 12week super-
vised weight loss and exercise training intervention. The
weight loss intervention consisted of a medically supervised
low energy diet comprising a meal replacement product that
can be consumed as a liquid or made into a variety of food
forms (Health & Nutrition Technology, Carmel, CA, USA).
Participants were provided with powdered Health One formu-
la and instructed to consume five portions per day, providing
3724 kJ/day (890 kcal/day), 75 g of protein, 15 g of fat and
110 g of carbohydrate and 100% of the daily recommended
intake of all vitamins, minerals and micronutrients. The exer-
cise training consisted of four individually supervised sessions
per week of whole-body aerobic activity. During the first 2–3

Table 1 Participant demographics: human transcriptional profiling
(n=16)

Clinical variable Obesity Type 2 diabetes

No. of participants 10 6

Age (years) 40.5±2.4 45.7±2.5

BMI (kg/m2) 36.7±1.6 34.8±1.7

BW (kg) 116.8±7.4 101.4±6.4

FFM (kg) 71.9±4.8 63.0±4.5

FG (mmol/l) 4.9±0.2 10.2±0.9***

Fasting insulin (pmol/l) 122.2±22.9 173.6±27.8

Glucagon (ng/l) 70.6±9.7 87.7±10.1

Height (m) 1.8±0.04 1.7±0.03

Insulin sensitivity/GIR (mg kg–1 min–1) 5.1±1.0 1.7±0.7*

RelFat (%) 38.2±2.6 37.8±2.7

Data are mean ± SEM

The human transcriptional profiling dataset included eight participants of
white ethnicity and two participants of Hispanic ethnicity with obesity,
and five participants of white ethnicity and one of Hispanic ethnicity with
type 2 diabetes. Insulin sensitivity data were normalised to kg of BW

*p<0.05 and ***p<0.001 for difference between obesity and type 2
diabetes (one-way ANOVA)
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weeks of training, the exercise duration and intensity were grad-
ually increased to 45 min at 80–85% of the maximal heart rate.
After the 3 month intervention, participants transitioned to a 2
week weight maintenance diet. Participants continued to exer-
cise during the weight stabilisation period. After completing the
intervention and 2weekweightmaintenance period, participants
then repeated the metabolic study with the muscle biopsy and
3 h hyperinsulinaemic–euglycaemic clamp (Table 2). Metabolic
studies consisted of measurements of age, BMI, BW, FG,
fasting insulin, FFM, glucagon, insulin sensitivity via GIR
during the hyperinsulinaemic–euglycaemic clamp, relative fat

mass and V̇O2peak (Table 2). See ESM, ‘Longitudinal interven-
tion study’, for further details.

Changes in metabolic variables pre to post intervention
were estimated using a paired t test. Pre- and post-
intervention biopsies were used for gene expression analysis.
Because insufficient RNA was isolated from the IMAT
samples or the RNA integrity number did not match quality
requirements for gene expression analysis, we removed all
IMAT samples and used only the remaining muscle samples
for gene expression analysis. Pre- to post-differential gene
expression was estimated using one-way ANOVA. See
ESM, ‘Gene expression analysis’, for further information.

Models and statistics To estimate the impact of gene expres-
sion on FG and GIR we used linear multivariate regression
models. Thus, we created one predictive model for each gene,
simultaneously predicting clinical variables based on gene
expression in skeletal muscle and IMAT. Models can be
formalised in matrix notation as Y = βXj + ε, where Y is a
matrix of the sampled response variables GIR (g) and FG (f)
and X is a matrix of the predictor values, the expression of
gene j in muscle (m) and IMAT (i). β forms the 2 × 2 matrix
of the four estimated regression coefficients βmg, βmf, βig and
βif describing the four relationships between tissue-specific
gene expression and response variables. The residues or errors
are formed in ε. Our approach can be interpreted as a mixture
model that allows us to jointly estimate these four coefficients
in one model to predict insulin sensitivity and glucose homeo-
stasis from gene expression in muscle and IMAT. Genes that
contributed the most to insulin sensitivity and glucose homeo-
stasis were then scored based on the log-likelihood and nega-
tive log-likelihood of the single regression models.
Subsequently, hierarchical clustering was performed to group
the selected genes into distinct clusters with similar expression

Table 2 Participant demographics: longitudinal intervention study
(n=17)

Clinical variable Pre
intervention

Post
intervention

Age (years) 46.5±2.2

BMI (kg/m2) 34.7±1.0 30.7±1.0***

BW (kg) 96.9±2.7 85.9±2.6***

FFM (kg) 56.7±1.8 52.9±1.5***

FG (mmol/l) 5.2±0.1 5.0±0.1

Fasting insulin (pmol/l) 110.4±9.7 78.5±9.7***

Glucagon (ng/l) 82.2±4.0 71.4±3.7***

Insulin sensitivity/GIR (mg kg–1 min–1) 3.5±0.4 5.4±0.5***

RelFat (%) 41.3±1.5 38.0±1.8***

V̇O2peak (l/min) 2.2±0.1 2.5±0.1*

Relative V̇O2peak (ml/kg min–1) 23.2±1.0 29.6±1.4*

Data are mean ± SEM

The study included 12 individuals of white, three of Hispanic, one of East
Indian and one of African American ethnicity. Ethnicity was not taken
into account in statistical analyses. Insulin sensitivity data were normal-
ised to kg of BW

*p<0.05 and ***p<0.001 for difference from pre intervention (paired t test)
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Fig. 1 Study designs. Data for cross-sectional transcriptional profiling
were obtained from a cohort of individuals with obesity and type 2 diabe-
tes (T2D). Intervention study data were collected from individuals with
obesity, with and without impaired glucose tolerance and impaired FG,

pre and post exercise intervention. The design of the metabolic profiling,
including the hyperinsulinaemic–euglycaemic clamp, was identical for
both studies
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profiles. These clusters were then used to compare gene
expression profiles with diagnosed disease states by generat-
ing participant k-nearest neighbour (kNN)-networks with k=3
nearest neighbours, using the Euclidean distance metric. The
predictive classification score was calculated from the maxi-
mum ratio of each participant’s direct neighbour’s clinical
classification (percentage with obesity vs percentagewith type
2 diabetes). Analysis was carried out using Matlab R2020a
(https://www.mathworks.com). See ESM for further
information.

Transcriptomic profiling Skeletal muscle and IMAT samples
from the cross-sectional study were used for transcriptional
profiling. See ESM for further information.

Gene expression analysis Quantitative reverse transcription
PCR (qRT-PCR) was used to determine relative mRNA
expression levels. See ESM for further information.

Results

Multivariate regression unravels tissue-specific gene expres-
sion patterns correlating with insulin resistance We first
compared participants’ demographic and metabolic variables.
As expected, we found sex-specific differences in RelFat
(p<0.05), FFM (p<0.001) and height (p<0.01) (ESM Fig.
1a). We also found significant differences in GIR (p<0.05)
and FG (p<0.001) between participants with obesity and those
with type 2 diabetes (Table 1, Fig. 2c,d). Additionally, as
expected, we found that low GIR values correlate with high
FG levels (ESM Fig. 1b). As shown in Fig. 2c,d, individuals
with obesity (BMI >30 kg/m2 and FG <7 mmol/l) exhibited a
wide range of insulin sensitivities (GIR 0.8–11.1 mg kg–1 min–1).
Some individuals with more severe insulin resistance (GIR
<3 mg kg–1 min–1) were still able to maintain FG levels at
<7mmol/l. In contrast, some individuals with diabetes exhib-
ited a better GIR, with levels up to 4 mg kg–1 min–1. To
explore whether transcriptional changes in muscle and
IMAT at the transition from obesity with compensated insu-
lin resistance (normoglycaemia) to type 2 diabetes
(hyperglycaemia) reflect the inconsistency between FG and
GIR, we performed a multivariate regression analysis to
identify genes whose expression had a strong link to insulin
resistance and glucose homeostasis.

After multivariate regression analysis we selected the top
59 genes (ESM Fig. 1c) contributing to GIR and FG and used
k-means to cluster them into three clusters of 14 (cluster 1), 23
(cluster 2) and 22 (cluster 3) genes with distinct expression
patterns in muscle and IMAT (Fig. 2e, ESM Fig. 1d, ESM
Table 1). We compared the corresponding β values of the

gene clusters and observed three distinct patterns (Fig. 2f,g,
ESM Fig. 1e). Cluster 1 included genes whose expression was
positively associated with GIR and negatively associated with
FG in both muscle and IMAT, thus correlating with healthy
glucose metabolism. Cluster 2 contained genes whose expres-
sion was positively correlated with GIR and negatively corre-
lated with FG in muscle, similar to cluster 1, with opposing
associations for most of the observed genes in IMAT. Cluster
3, on the contrary, contained genes whose expression was
negatively correlated with GIR and positively correlated with
FG in muscle, with no effect observed in IMAT.

Our results suggest that these largely different gene expres-
sion profiles in muscle and IMAT are associated with varying
impacts on glucose metabolism. In particular, expression of
PDK4, which has been linked to diabetes and glucose metab-
olism previously [13], shows a high correlation with GIR and
FG in muscle but almost none in IMAT (Fig. 2f,g). We also
identified genes with opposing effects on glucose metabolism
in muscle compared with IMAT, such as UBTD1 and
ST3GAL2. Both genes show strong positive β coefficients
for FG and negative β coefficients for GIR in muscle whereas
in IMAT we observed negative β coefficients for FG and
positive β coefficients for GIR (Fig. 2f,g). Both genes were
associated with cluster 3. In contrast, NAPB from cluster 2
shows the opposite associations. In a third observation we
found genes, here represented by SIN3A, that seem to have a
relatively high predictive value for FG but a low or no predic-
tive value for GIR in muscle but completely opposing values
in IMAT (high value for GIR, low value for FG).

Taken together, the genes identified in all three clusters
show a striking association between expression in muscle
and GIR and FG, while only genes in cluster 1 show an asso-
ciation between IMAT expression and glucose homeostasis
and insulin sensitivity (Fig. 2f,g, ESM Fig. 1e). These results
suggest that muscle gene expression profiles may allow for a
more specific and detailed characterisation and classification
of individual physiological states than serum-based physio-
logical variables alone.

Gene expression-based classification enables a refined view
of the individual physiological state of individuals with obesi-
ty To test our hypothesis that gene expression patterns are
superior to conventional clinical markers for categorising indi-
vidual insulin resistance states, we performed a kNN classifi-
cation for each tissue and gene cluster based solely on expres-
sion profiles. Thus, we generated six nearest neighbour
networks (NNNs) representing expression-based participant
similarities for all 16 participants (Fig. 3a,b). Based on direct
network neighbours we then calculated a predictive classifi-
cation score for each individual (Fig. 3a,b, ESM Fig. 2). For
muscle, we found a non-unique classification over all three
NNNs for five of the 16 participants (twowith obesity: Pb029,
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Pb043; three with type 2 diabetes: Pb034, PB053, Pb032).
After averaging over the three clusters, one participant with
obesity was classified as having type 2 diabetes (Pb043) and
two participants with type 2 diabetes were classified with

obesity (Pb034, Pb053). For the IMAT-derived NNNs we
found a predicted classification that differed from the clinical
classification for seven participants (three with obesity:
Pb048, Pb028, Pb043; four with type 2 diabetes: Pb034,
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Pb053, Pb033, Pb032). Averaging over the three clusters
resulted in a different classification for two participants
compared with the clinical classification: Pb043 (obesity)
and Pb033 (type 2 diabetes). Averaging over both tissues,
we identified two participants with a divergent classification:
Pb043 and Pb053. Overall, the classification of obesity was
more consistent than the classification of type 2 diabetes, with
only two participants consistently classified as having type 2
diabetes (Pb036, Pb052).

When comparing the NNN-based classification with meta-
bolic variables, we found that an increase in the probability of
developing type 2 diabetes correlated with decreasing GIR for
participants with obesity in both muscle tissue and IMAT
(Fig. 3c–e). In contrast, for hyperglycaemic participants clin-
ically classified as having type 2 diabetes (FG >7 mmol/l), the
NNN-based classification did not correlate with either GIR or
FG in either tissue. These results suggest that, beyond a binary
clinical classification of type 2 diabetes and normoglycaemia
as FG >7 mmol/l and FG ≤7 mmol/l, respectively, there is a
continuous development from insulin resistance to diabetes
that follows an individual trajectory, which means that there
is diagnostic potential to predict an individual’s risk for diabe-
tes or their potential to respond to interventions.

ST3GAL2, SIN3A, ARF1 and AASS mRNA levels in muscle
tissue predict intervention response To evaluate whether
gene expression profiles within muscle and/or IMAT define
individual health states with predictive potential for disease
progression or modulation of insulin sensitivity, we analysed
17 individuals with obesity, with and without impaired
glucose tolerance, undergoing a combined weight loss and
exercise training intervention (Table 2). Clinical variables
such as GIR, FG, BW, RelFat, FFM and BMI were measured
pre and post intervention. Almost all individuals showed an
increase in GIR (p=2.2 × 10–5) after the intervention and a
decrease in BMI (p=2.3 × 10–8), BW (p=6.1 × 10–8), RelFat

(p=2.7 × 10–6) and FFM (p=1.4 × 10–6). A change in FG
levels post intervention was not observed (p=0.12) (Fig. 4a–f).
However, when correlating the relative pre/post change (Δ%)
between all clinical variables, we found that a change in GIR
was significantly correlated only with a change in BW (ESM
Fig. 3). A decrease in FG, in turn, was significantly correlated
with a relative decrease in BMI, FFM and BW.

To test if these physiological changes are linked to individ-
ual gene expression in muscle, biopsies taken before and after
the intervention were used for RNA expression analysis. Six
pre- and eight post-intervention muscle samples did not meet
quality requirements and were removed from subsequent anal-
yses. We combined various criteria to select 15 candidate
genes for validation from the three clusters of 59 genes initially
identified in our first patient cohort. Gene expression in muscle
tissue was measured using qRT-PCR (ESM Table 2) in this
second independent intervention trial. Among the genes select-
ed, SIN3A, UBTD1, ST3GAL2 and NAPB showed notable β
value profiles (Fig. 2f,g). AASS, DBNDD1, PDK4, PIGA,
POLR3GL, SNAP23, SPCS2, SSU72 and UBTD1 could be
linked to diabetes-associated SNPs identified in the Type 2
Diabetes Knowledge Portal [14] and ARF1, BCAT2 and
LDHD could be linked to skeletal muscle lipid and glucose
metabolism and insulin resistance [15–17]. PDK4 was includ-
ed as a well-described marker of muscle insulin resistance and
as a potential therapeutic target [18]. Of these 15 genes, five
(LDHD, ARF1 NAPB, POLR3GL and SNAP23) showed a
significant change in expression between pre and post inter-
vention (Fig. 4g). As we hypothesised that distinct gene
expression states may relate to individual disease states, we
tested selected genes for their predictive potential for individ-
ual intervention response. To this end, we correlated individual
pre-intervention gene expression with the relative change (pre
to post) in the clinical variables BMI, BW, FFM, FG, GIR and
RelFat (Fig. 4a–f). ΔGIR and ΔRelFat could not be signifi-
cantly correlated with any of the genes tested. A change in the
remaining variables could be significantly predicted by the
genes ST3GAL2 (FG, BW, FFM and BMI), SIN3A (FG,
FFM and BMI), ARF1 (FG) and AASS (FFM) (Fig. 4h–m,
ESM Fig. 4, ESM Table 3). In contrast to the five genes that
showed a change in expression post intervention (LDHD,
ARF1,NAPB, POLL3GL and SNAP23), none of the four genes
identified with predictive character appeared to be differential-
ly expressed between pre and post intervention (Fig. 4g).
Together, these findings indicate that individual susceptibility
to exercise intervention for the improvement of glucose
homeostasis is independent of the individual clinical variables,
but correlates with individual gene expression profiles prior to
intervention. We next compared these four identified genes
with PDK4, a well-described muscle marker for insulin resis-
tance. To our surprise, PDK4 was not significantly associated
with any intervention-induced change in metabolic variables
(ESM Fig. 4).

�Fig. 2 Multivariate regression analysis unravels tissue-specific gene
expression patterns correlating with insulin resistance. (a–d) Boxplots
comparing FG (mmol/l) and insulin sensitivity (GIR, mg kg–1 min–1)
distributions between participants of different sexes (a, b) and
classifications (c, d). F, female; M, male; OB, obesity; T2D, type 2
diabetes. Red circles indicate outliers. *p<0.05 and ***p<0.001 (one-
way ANOVA). (e) Heatmaps of muscle and IMAT genes correlating
with insulin resistance identified by multivariate regression. Colours in
the dendrogram refer to clusters 1 (blue), 2 (red) and 3 (yellow). The
colours in the bars below the heatmaps indicate individual disease
classification, GIR, FG levels and sex. Vertical colour bars show the
four estimated regression coefficients for each gene, indicating the four
relationships between tissues and response variables (GIR and FG). (f, g)
Scatterplots comparing gene-specific β coefficients for GIR and FG for
muscle (f) and IMAT (g). The colours of the dots refer to gene cluster
assignment
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Next, we found that low expression levels of three of the
four genes (AASS, ARF1 and SIN3A) was associated with a
good health prognosis. In particular, ARF1 showed a signifi-
cant decrease in expression on exercise intervention. In turn,
ST3GAL2 was the only gene for which increased expression
levels in muscle tissue increased the likelihood of an effective
intervention. In summary, within this independent interven-
tion trial we were able to validate our hypothesis that muscle

gene expression profiles have predictive potential for individ-
ual insulin resistance states.

Discussion

In this study we showed that human transcriptional
profiles of skeletal muscle and IMAT from individuals
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Fig. 3 Gene expression-based participant classification reveals a refined
view of physiological state. (a, b) kNN-networks for the three clusters in
muscle (a) and IMAT (b). Nodes refer to individual participants. Node
shape refers to the assigned clinical classification: obesity (OB; diamond)
or type 2 diabetes (T2D; circle). Node colour refers to the estimated

disease state based on connected individuals. (c–e) Scatter plots display-
ing the clinical variables FG and GIR for all individuals. Node shape
refers to the assigned clinical classification: OB (diamond) or T2D
(circle). Node colour refers to the estimated disease state across all three
gene clusters for muscle (c), IMAT (d) and both tissues combined (e)
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with obesity, with and without type 2 diabetes, are differ-
entially coupled to insulin resistance and glucose homeo-
stasis. We identified predictive gene clusters that mirror
gene expression states reflecting a continuous progression
from early insulin resistance to type 2 diabetes according
to individual traits. From a subset, the genes AASS, ARF1,
SIN3A and ST3GAL2 predicted individual improvement of
impaired glucose metabolism by means of an exercise and
lifestyle intervention.

We started our analysis with the observation that there is
overlap of GIR measurements between obesity and type 2
diabetes. We hypothesised that the binary clinical classifica-
tion of type 2 diabetes does not reflect individual underlying
gene expression states and that specific gene expression
patterns in skeletal muscle and/or IMAT may have the poten-
tial to identify and predict individuals with a high or low risk
of developing diabetes or to predict individual susceptibility to
interventions.

Our multivariate regression analysis revealed a strong asso-
ciation of all three gene clusters in muscle with GIR and FG,
while only the genes in cluster 1 in IMAT were associated
with glucose homeostasis and insulin resistance. Together
with the observation that β coefficients estimates in cluster 2
showed opposing associations with FG and GIR in muscle
compared with IMAT, we concluded that IMAT and muscle
contribute differentially to glucose metabolism. However,
there is higher variance in IMAT gene expression [12], which
may mean that any correlation is harder to detect. The
increased variability in IMAT gene expression may arise from
technical difficulties in dissecting IMAT from muscle, result-
ing in less material for RNA extraction, or the higher hetero-
geneity of IMAT itself, which is composed of multiple cell
types such as pre-adipocytes, adipocytes, adipocyte-like cells,
myoblasts and stromal and vascular cells.

Participant classification based on kNN-networks revealed
that insulin sensitivity could be accurately predicted for
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Fig. 4 ST3GAL2, SIN3A, ARF1 and AASS mRNA expression in muscle
predicts intervention response. (a–f) Changes in clinical variables from
pre to post intervention: (a) BMI, (b) BW, (c) FFM, (d) FG, (e) GIR and
(f) RelFat. ***p<0.001 (paired t test). (g) Relative mRNA levels (to the
reference gene TBP) of selected genes pre and post intervention, shown as
log2 (2

−ΔΔCt ). *p<0.05, **p<0.01 and ***p<0.001 (one-way ANOVA).

Error bars denote SEMs. (h–m) Correlation volcano plots of pre-inter-
vention mRNA expression and relative change in clinical variables
between pre and post intervention: (h) BMI (kg/km2), (i) BW (kg), (j)
FFM (kg), (k) FG (mmol/l), (l) GIR (mg kg–1 min–1) and (m) RelFat (%).
Significantly correlated mRNAs are shown in orange. FC, fold change
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individuals without diabetes from gene expression patterns,
whereas gene expression patterns for participants with
hyperglycaemia scored differently from the clinical classifica-
tion in several cases. The latter observation is consistent with
the idea that hyperglycaemia occurs in a late state of disease
progression as a consequence of pancreatic beta cell failure. In
addition, insulin sensitivity is associated with multiple organ
malfunction and, in particular, skeletal muscle is the primary
organ for glucose uptake [19]. Although GIR measured using
a hyperinsulinaemic–euglycaemic clamp is still the gold stan-
dard for directly measuring insulin resistance, it is highly inva-
sive and time-consuming and has very limited predictive
potential. FG levels by themselves are unlikely to identify
individuals with obesity and impaired glucose tolerance; rath-
er, they identify individuals with severe insulin resistance with
an increased risk for irreversible damage of tissues and organs
[20]. We thus conclude that both GIR and FG levels are not
suitable for a reliable early diagnosis and prognosis of disease
progression. In contrast, the gene expression profiles identi-
fied here, which represent a muscle-specific state of individual
insulin resistance, have predictive potential for the character-
isation of individual insulin sensitivity.

This predictive potential was tested on muscle tissue from
an additional independent cohort of 17 individuals with
impaired glucose metabolism undergoing a 12 week
combined weight loss and exercise intervention. By correlat-
ing the pre-intervention expression levels of our candidate
genes with the relative change in clinical variables post inter-
vention we identified four genes with significant predictive
value: AASS, ARF1, SIN3A and ST3GAL2. Lower levels of
expression of AASS, ARF1 and SIN3A indicated a positive
prognosis. AASS encodes the enzyme aminoadipate-
semialdehyde synthase, which is involved in mammalian
lysine degradation and in hyperlysinaemia [21], but which
has not yet been characterised in the context of impaired
glucose metabolism, insulin resistance or diabetes. Beside its
predictive potential we also found that expression of ARF1,
which encodes ADP ribosylation factor 1, was significantly
reduced after the intervention. ADP ribosylation factor 1 was
recently linked to rapamycin (mTOR) complex 2 (mTORC2)
[22], which has been shown to be involved in exercise-
dependent regulation of muscle glucose uptake in mice [23].
SIN3 transcription regulator family member A, encoded by
SIN3A, has been linked to glucose metabolism in murine beta
cells [24]. It has further been shown that SIN3A is an insulin-
sensitive forkhead box protein O1 (FOXO1) corepressor of
glucokinase in murine liver [25]. SIN3A was also shown to
negatively regulate insulin receptor (Insr/INSR) mRNA in
mice and human muscle [26]. Finally, ST3GAL2, which
encodes ST3 beta-galactoside alpha-2,3-sialyltransferase 2,
was the only gene identified to positively predict exercise
response at high expression levels. Mice lacking this protein
have been shown to develop obesity and insulin resistance

after 7–9 months of age [27]. In summary, three of the four
predictive genes that we identified have already been linked to
insulin resistance and diabetes but their predictive potential
has not yet been explored.

In conclusion, we identified novel markers for predicting
impaired insulin sensitivity in human muscle and found four
markers that predict individual exercise intervention responses
in participants with diabetes. These findings may help to clas-
sify and characterise individuals with obesity, impaired
glucose tolerance or diabetes more precisely than using
state-of-the-art variables such as GIR and FG alone.
Additionally, we anticipate that these findings may also help
to develop precise and individualised intervention strategies
for patients at risk of obesity and type 2 diabetes.
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