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Abstract
Many of the laminar-turbulent flow localisation techniques are strongly dependent upon expert control even-though deter-
mining the flow distribution is the prerequisite for analysing the efficiency of wing & stabiliser design in aeronautics. Some 
recent efforts have dealt with the automatic localisation of laminar-turbulent flow but they are still in infancy and not robust 
enough in noisy environments. This study investigates whether it is possible to separate flow regions with current deep learn-
ing techniques. For this aim, a flow segmentation architecture composed of two consecutive encoder-decoder is proposed, 
which is called Adaptive Attention Butterfly Network. Contrary to the existing automatic flow localisation techniques in the 
literature which mostly rely on homogeneous and clean data, the competency of our proposed approach in automatic flow 
segmentation is examined on the mixture of diverse thermographic observation sets exposed to different levels of noise. 
Finally, in order to improve the robustness of the proposed architecture, a self-supervised learning strategy is adopted by 
exploiting 23.468 non-labelled laminar-turbulent flow observations.

1  Introduction

Building aircraft wings and stabilisers necessitates com-
prehensive design, test, and optimisation iterations in order 
to satisfy the expected criteria for efficiency, safety and 
robustness in aeronautics. Among those iterative steps, 
some of them are more data-centric and require profound 
human effort to reach a conclusion. For instance, investiga-
tion for determining laminar-turbulent boundaries is mostly 
dependent upon manual or semi-automated annotation of 

images captured from the wings and stabilisers. Thus, the 
main objective of this study is to seek a reliable automation 
method using recent artificial intelligence approaches for 
facilitating the localisation of laminar-turbulent flow regions 
on the captured measurement images.

Before elaborating on the objective, having a clear picture 
of high-level workflow for design, test and analysis iterations 
would be useful as illustrated in Fig. 1:

•	 In the first step, the design team devises or revises wings, 
stabilisers or blades.

•	 In the second step, a new measurement system is installed 
to examine the devised or revised aircraft body compo-
nents. The installation environment might be in wind tun-
nels on the ground, or on flight as detailed in Sect. 3.1.

•	 In the third step, thermographic measurements are col-
lected from the region of interest on the aircraft body, as 
some of the examples can be seen in Sect. 5.1.

•	 In the fourth step, experts in the investigation team deter-
mine the laminar-turbulent regions on the measurement 
images. However, those investigations might be entirely 
manual, or semi-automatic such that experts can draw the 
flow boundary lines or they can benefit from some image 
processing tools to determine the parameters which will 
be later utilised for separating the laminar-turbulent 
regions. Nevertheless, the main issue here, each time the 
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experts may need to re-calibrate the parameters in the 
processing tool because those parameters may become 
obsolete if the observation data varies due to changing 
conditions during the course of the measurements. That 
is why our main focus is to optimise this step in this 
study.

•	 After a long analysis and annotation period on those 
measurement images, the investigation team delivers the 
results (such as laminar-turbulent boundaries, or coordi-
nate points of those regions corresponding to the refer-
ence markers as explained in Sect. 3.2) to the design team 
back.

•	 Finally, the design team considers those processed 
images and investigation results to decide if the original 
design is satisfactory or if it needs some revisions.

In the light of the workflow above, Sect. 1.1 explains the 
laminar-turbulent flow phenomenon for those who has no 
fluid dynamics background, Sect. 1.2 details the issues in 
the automation of laminar-turbulent flow localisation, and 
Sect. 1.3 lists the contributions of our study to overcome the 
issues mentioned in Sect. 1.2.

1.1 � What is laminar and turbulent flow?

Laminar-Turbulent flow is a fluid dynamics phenomenon 
that refers to the motion of particles as they move through 
a substance. The distinction between laminar and turbulent 
flow is eminently important in aerodynamics and hydro-
dynamics because the type of flow has a profound impact 

on how momentum and heat are transferred. In principle, 
when particles of fluid have a property of a streamlined flow, 
and they follow a smooth path without interfering with one 
another, it is called laminar flow. On the other hand, turbu-
lent flow means the chaotic and rough movement of particles 
through a substance (Emmons 1951), such as mixing and 
shifting between the flow layers and whirlpool-like patterns 
as illustrated in Fig. 2.

Specifically, detection of laminar and turbulent flow 
regions and transition locations in between are of crucial 
interest in a range of aviational applications, since the 
achievement of a fuel-efficient wing, airfoil or rotor blade 
design and reducing the instability caused by drag forces 
are strongly related with the way of handling laminar and 
turbulent flow exposed by the wing and blade surfaces. To 
illustrate, friction resistance accounts for about half of the 
total drag exposing to an aircraft in cruise (Schrauf 2005), 
and extending the laminar flow regions decrease frictional 
resistance, so it has the potential to significantly reduce fuel 
combustion. That is why sophisticated experimental tech-
niques to determine the surface friction distribution have 
been applied in the industry and academia for the purpose of 
validating the consistency among the measurements, perfor-
mance assessments and design methods (Bégou et al. 2017).

Observation techniques for determining the laminar-tur-
bulent flow regions in aviational applications fall into two 
broad categories, which are (i) intrusive methods (e.g. hot 
films, temperature-sensitive paint, oil-flow), and (ii) non-
intrusive methods (Joseph et al. 2016). In this study, we 
have applied to one of the non-intrusive methods, which 
is infrared thermography, a known technique for visualis-
ing different flow states by utilising temperature differences 
on an object surface. Basically, heat transfer between an 
object surface and an external flow is proportional to the 
friction that occurs at the surface, which is exposed to this 
flow (Quast 2006; De Luca et al. 1990) . In other words, the 
surface exposed to a laminar boundary layer will develop a 
different temperature than the surface exposed to a turbulent 

Fig. 1   High-level workflow for building new wings, stabilisers or 
blades (Please note that the workflow ignores some of the side steps 
which are out of context for this study)

Fig. 2   Airflow over a wing exhibiting transition from laminar to tur-
bulent
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boundary layer. Thus, the temperature difference can be 
observed through a thermographic camera in case of apply-
ing the method of infrared (IR) thermography.

1.2 � What are the main issues in flow localisation?

Once the temperature distributions caused by laminar and 
turbulent flows are measured, those data should be inter-
preted in a various manner for determining the flow regions 
and transition locations, which is traditionally handled by 
human experts. However, such a visual interpretation is not 
always effective due to (i) the induced bias by the experts 
with different experience levels, and (ii) the time-consuming 
nature of manual observation and interpretation (Crawford 
et al. 2015). Even, at some point, noise and low contrast will 
make analysis difficult for a human.

Although there have been some recent efforts, as detailed 
in Sect. 2.1, to automatise the separation or localisation 
of flow states, they often lack reproducibility due to their 
dependence on clean, high-contrast and homogeneous IR 
data. For instance, IR images may look different depending 
on surface material (metal vs. composite), surface heating 
(none vs. internal vs. external), observed object (fixed-wing 
vs. rotor), environment (wind tunnel vs. flight test), camera 
sensor, view angle and the distance between camera and 
object to mention just a few influences. For this reason, a 
classical processing technique - such as differential thermog-
raphy or thresholding - may work for one setup, but may fail 
at a different task. Hence, a more general approach is neces-
sary to automatically localise the flow states in images from 
a wide range of test setups.

1.3 � Our contributions in flow localisation

The contributions of the study are:

•	 We introduce the challenging problem of separating the 
laminar flow regions from the remaining parts of a ther-
mographic measurement image which has a low signal-
to-noise ratio, and a low contrast value. It is worth noting 
that there is only a single image from a specific test point 
in most cases in our experiments. Nevertheless, in many 
of the former efforts, multiple images from a single test 
point were mostly desired for proper separation of flows.

•	 For the first time in the literature, we propose an auto-
matic laminar flow segmentation system based on a 
variant of encoder-decoder-based deep neural networks, 
namely Adaptive Attention Butterfly Network, providing 
reproducibility in different flow measurement scenarios. 
It is also worth adding that our proposed network is a 
lightweight but better-performing alternative to some 
well-known segmentation networks as demonstrated in 
benchmark comparison in Sect. 6.2.

•	 We show that the robustness of the laminar flow seg-
mentation can be significantly improved with the self-
supervised learning strategies in the presence of a lim-
ited amount of ground-truth data due to the difficulty of 
manual labelling of thermographic measurement images.

With those contributions, the presented approach aims to 
interact as a bridge between the raw image and the post-
processing. If it would be possible to extract information 
from the original input image about the location of the lami-
nar flow area within the image, the non-laminar flow regions 
can be masked out, because the main interest in the image 
analysis is detecting where the laminar flow states are.

The rest of this paper is organised as follows: after a 
review of the state of the art in Sect. 2, the setup for col-
lecting the thermographic laminar-turbulent flow measure-
ments are explained in Sect. 3. Sect. 4 outlines the proposed 
method for automatic flow segmentation. The experimental 
framework and the discussion about the obtained results 
are given in Sects. 5 and 6. Eventually, the conclusions and 
future works are drawn in Sect. 7.

2 � Related work

2.1 � Automatic localisation of laminar‑turbulent 
flow

It is worth pointing out that the segmentation of laminar-
turbulent flow regions has been mainly handled by human 
experts so far, who observed the thermographic images and 
defined the flow transition locations by manually (or semi-
automatically) drawing the boundary lines, which is a very 
inefficient and time-consuming task. For this reason, some 
of the efforts in the literature of laminar-turbulent flow meas-
urement have focused on processing the IR thermography 
data in an automated way.

In one of the pioneering attempts, Gartenberg and Wright 
(1994) have proposed an image subtraction technique to 
illustrate the potential of image processing approaches for 
automatic detection of flow regions. By following a similar 
principle, Raffel and Merz (2014) have proposed a technique 
that provides high-contrast images using differential IR ther-
mography between two successive time steps, which are 
suitable for automated processing. Later, Grawunder et al. 
(2016) have extended differential IR thermography approach 
for low-enthalpy flows where the temperature difference 
between laminar and turbulent regions are low, while Simon 
et al. (2016) and Wolf et al. (2019) have made such an exten-
sion for unsteady flow measurements. The major drawback 
in these attempts is the need for multiple IR thermography 
measurements to detect the flow region boundaries.



	 Experiments in Fluids (2022) 63:166

1 3

166  Page 4 of 21

On the other hand, Richter and Schülein (2014) have 
put forth an automatic flow localisation method based on 
a single instantaneous thermal image using the chord-
wise temperature and infrared signal intensity distribu-
tion. Later, Crawford et al. (2015) have exploited classical 
image processing techniques like median and Gaussian 
filtering, thresholding, contour finding and extraction of 
quadrilaterals via the Ramier-Douglas-Peuker algorithm. 
Nevertheless, image inhomogeneities have been partially 
corrected or ignored in the aforementioned efforts, limit-
ing the distinguishability of flow states.

In some of the recent studies, Dollinger et al. (2018) 
have applied discrete Fourier transform to evaluate the 
mean amplitude of the temporal fluctuations which is 
less affected by spatial inhomogeneities within the flow 
states. Similarly, Gleichauf et al. (2020) have proposed a 
flow transition localisation system that increased the dis-
tinguishability between laminar and turbulent flow states 
employing non-negative matrix factorisation. Nonetheless, 
the main drawbacks of these approaches are the need for a 
priori knowledge such as frequency range of temperature 
fluctuations in the former study, or approximate location of 
the flow states in the latter one, in order to determine the 
optimal boundaries. Another recent effort from Gleichauf 
et al. (2021) exploited principal component analysis to 
reduce the image artefacts and temperature gradients 
within the flow states, achieving lower measurement error 
in the laminar-turbulent transition localisation.

A common thing among the aforementioned 
approaches, which have tried to develop automatic locali-
sation of flow transition regions, is the dependence upon 
clear IR images. They usually require:

•	 High signal-to-noise ratio (SNR), which depends upon 
the temperature resolution of camera and the tempera-
ture difference between laminar and turbulent regions;

•	 Low thermal response time, which is determined by the 
heat capacity and conductivity of the surface material;

•	 High spatial resolution, and low smearing in IR data.

Nonetheless, those requirements are difficult to meet 
in most of the measurement cases, as illustrated in Fig. 3, 
due to the possible existence of noise, low contrast, arte-
facts, reflections as well as structure elements below the 
observed surface. For this reason, more advanced methods 
are needed to cope with laminar-turbulent flow localisa-
tion under such noisy and heterogeneous measurement 
cases. Thence, in this study, we examined the feasibility of 
deep learning-based segmentation techniques to robustly 
localise the flow regions observed in the IR thermographic 
measurements on wings and stabilisers.

2.2 � Image segmentation via deep learning

Although traditional laminar-turbulent flow localisation and 
segmentation techniques have mostly relied on classical 
image processing and transformation algorithms, the impact 
of the recent deep learning-based approaches has been never 
investigated in this domain to the best of our knowledge. 
For this reason, in this section, we briefly mention some 
of the recently emerging deep learning-based segmentation 
approaches which have yielded remarkable performance 
improvement in various computer vision problems ranging 
from autonomous driving, video surveillance to medical 
diagnosis, as well as we recall the fundamental principles 
of the neural networks resorted for image segmentation.

2.2.1 � Fundamentals of encoder‑decoder networks

For segmentation tasks, the most widespread deep learn-
ing-based approaches originated from encoder-decoder net-
works. Let {�, �} be the data-label pair, and E(.) and D(.) be 
the encoder and decoder functions, respectively. Thus, the 
encoder is responsible for producing hidden code � = E(�) , 
and the decoder for constructing the output ŷ = D(�) . Here, 
minimisation of ‖D(E(�)) − �‖ is the main learning objective 
of the encoder-decoder network to achieve ŷ ≊ �.

2.2.2 � U‑Net: a special type of encoder‑decoder networks

In principle, U-Net is an encoder-decoder-based network, 
but its distinction stems from the skip connections between 
the symmetrically arranged network layers of encoder and 
decoder (Ronneberger et al. 2015). This novel arrangement 
efficiently extracts and assembles multi-scale feature maps in 
which encoded features propagate to decoder blocks via skip 
connections and a bottleneck layer, as illustrated in Fig. 4. 
To elaborate on the standard U-Net architecture:

•	 Encoding Phase consists of a series of operations involv-
ing 3 × 3 convolution followed by a ReLU activation 
function as explained in Fig. 4b. The obtained feature 
maps are downsampled with the max pooling operation, 
as depicted in Fig. 4c. Throughout the layer blocks, the 
number of feature channels are increased by a factor of 
2; whereas convolution, activation and max pooling lead 
to spatial contraction of the feature maps until the bot-
tleneck layer.

•	 Decoding Phase consists of sequences of up-convolu-
tions which map each feature vector to the 2 × 2 pixel 
output window, as explained in Fig. 4d. Later, they are 
concatenated with high-resolution features coming from 
the corresponding encoded layers with skip connec-
tions. Contrary to the operations in encoder, through-
out the layer blocks, the number of feature channels are 
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decreased by a factor of 2; whereas up-convolution, con-
volution and ReLU activation operations result in spa-
tial expansion of the feature maps until the output layer. 
Finally, the output layer generates a mask comprising 
segmented background and foreground.

2.2.3 � U‑Net variants for image segmentation

Even though U-Net has been proposed firstly for medical 
image segmentation (Ronneberger et al. 2015), it has become 
a widespread solution in many segmentation tasks due to its 
data augmentation capabilities for effective learning in case 
of having a limited amount of annotated images. Neverthe-
less, its main drawbacks are a large number of parameters 
and performance losses when having different input shapes. 

To mitigate those issues, many variants of U-Net have 
emerged in recent years, which can broadly fall into the five 
categories (Punn and Agarwal 2022): (i) Improved U-Nets, 
(ii) Inception U-Nets, (iii) Attention U-Nets, (iv) Transformer 
U-Nets, and (v) Ensemble U-Nets, depending on the archi-
tectural differences:

•	 Improved U-Nets: are composed of U-Net models per-
forming better than the standard U-Net through slight 
modifications, such as adding dense or residual blocks, 
exploiting transfer learning or multi-stage training. 
Among these, it is worth mentioning Tong et al. (2018) 
with their improved U-Net which includes mini-residual 
connections within encoder-decoder phases, Alom et al. 
(2019) with their R2 U-Net which is based on a recurrent 

Fig. 3   Success and failure examples for localisation of laminar-tur-
bulent flow transition point on the flow direction. Note that a locali-
sation approach based on extrema of profile gradients works well 
with high-contrast/low-noise IR imaging (above) but might fail with 

low-contrast/high-noise IR imaging (below). The qualitative exam-
ples were composed with the data taken from the project described in 
Kruse et al. (2018)
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residual convolutional neural network, and Huang et al. 
(2020) with their U-Net 3+ which is based on full-scale 
skip connections and deep supervisions in order to incor-
porate low-level details with high-level semantics from 
feature maps in different scales.

•	 Inception U-Nets: use multi-scale feature fusion strate-
gies to learn the feature representations effectively. For 
instance, Zhang et al. (2021) have built dual encoder 
models with a densely connected recurrent convolutional 
neural network, and their DEF-U-Net performed better in 
extracting the spatial features. Recently, Xia et al. (2022) 
have put forth MC-Net which exploits the residual atten-
tion approach in multi-scale context extraction to model 

the global and local semantic information in the regions 
to be segmented.

•	 Attention U-Nets: make use of attention mechanisms 
together with convolutional layers in feature mapping to 
filter the most relevant features, such as spatial atten-
tion, channel attention or mixed attention. For instance, 
Schlemper et al. (2019) have introduced Attention U-Net 
for medical imaging that automatically learns to focus 
on target structures of varying shapes and sizes, and Ren 
et al. (2020) have combined dual attention mechanism 
(Fu et al. 2019) with capsule networks (Hinton et al. 
2018) for precise extraction of road network from remote 
sensing images.

Fig. 4   Standard U-Net architecture and summary of operations in 
it: a U-Net high-level representation, b 3 × 3 convolution and ReLU 
operation, c 2 × 2 max pooling operation, d 2 × 2 up-convolution 

operation. Note that, I and O stands for input and output feature maps, 
respectively, of any layer in U-Net
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•	 Transformer U-Nets: replaces classical convolutional 
layers with transformer-based blocks which are known 
better for capturing a long-distance pixel relation due 
to the self-attention mechanisms. For instance, Swin 
U-Net (Cao et al. 2021) is composed of pure hierarchical 
vision transformer blocks with shifted windows inspired 
by Swin Transformer (Liu et al. 2021). Similarly, Wang 
et al. (2022) have introduced Mixed-Transformer U-Net 
(MT-U-Net) which refined the self-attention mechanism 
by simultaneously obtaining intra- and inter-correlations. 
Last but not least, Trans U-Net (Chen et al. 2021) has 
combined convolutional blocks with transformers in the 
encoder part.

•	 Ensemble U-Nets: exploits multiple models and sub-
models with or without the other enhancements. For 
instance, to address the issue of dealing with different 
input shapes, Isensee et al. (2018) introduced nnU-Net 
which is a robust and self-adapting framework based 
on 2D and 3D vanilla U-Nets. On the other hand, Qin 
et al. (2020) have proposed U2-Net, which is a nested 
version of the original U-Net with residual U-blocks. 
Recently, Jha et al. (2020) have proposed a sequence of 
two U-Nets, namely DoubleU-Net, with Atrous Spatial 
Pyramid Pooling (Chen et al. 2017) in between encoder-
decoder parts, for eliminating the artefacts observed in 
medical image segmentation.

2.2.4 � Other approaches for image segmentation

Among the other most popular deep learning-based segmen-
tation models resorting to encoder-decoder architecture: Noh 
et al. (2015) introduced DeConvNet, and Badrinarayanan 
et al. (2017) proposed SegNet, which are semantic segmen-
tation models based on transposed convolution. The encoder 
parts of both architectures were adopted from the VGG-16 
network (Simonyan and Zisserman 2014), but the novelty 
of the latter one was to perform nonlinear upsampling in 
decoder layers by using pooling indices in the correspond-
ing encoder layers.

Multiscale and pyramid-based architectures are also com-
mon in image segmentation. Some of the most prominent 
models are Feature Pyramid Network introduced by Lin 
et al. (2017) for object detection but later applied to segmen-
tation, and the Pyramid Scene Parsing Network proposed by 
Zhao et al. (2017) to better learn the global context repre-
sentation of a scene. After that, atrous convolution, which 
brought the dilation rate to the convolution operation, and its 
combination with pyramid architectures have become very 
popular due to their ability in addressing the decreasing 
resolution issue, and in robustly segmenting objects at mul-
tiple scales. For instance, the core component of the family 
of DeepLab architectures introduced by Chen et al. (2017) 
is Atrous Spatial Pyramid Pooling (ASPP).

Semi-supervised and self-supervised learning method-
ologies have been also exploited for image segmentation. 
Souly et al. (2017) and Hung et al. (2019) applied to semi-
supervised learning by using generative adversarial networks 
(GANs). Goel et al. (2018) proposed a deep reinforcement 
learning approach for moving object segmentation in vid-
eos. Wang et al. (2020) put forth self-supervised equivariant 
attention mechanism for semantic segmentation.

Other very prominent image segmentation architectures 
are the variants of region-based convolutional neural net-
works (R-CNNs) (Ren et al. 2016; He et al. 2017), CNNs 
with active contour models (Chen et al. 2019; Gur et al. 
2019), and panoptic segmentation variants (Kirillov et al. 
2019; Li et al. 2019).

3 � Thermographic measurement setup

In this part, Sect. 3.1 summarises widespread use cases 
in aerodynamics requiring thermographic measurement, 
Sect. 3.2 elaborates on a particular measurement setup con-
ducted in our lab, as one of the data sources for our flow 
localisation architecture proposed in this study, Sect. 3.3 lays 
out the common features of the diverse measurement setups 
for the audience with limited aerodynamics background.

3.1 � Common use cases for thermographic 
measurement

IR thermography in aerodynamics is nowadays commonly 
used in a vast variety of measurement setups. Applications 
can be found at wind turbines (rotor blades), wind tunnel 
experiments (huge variety of measurement setups) as well 
as on ground and flight tests on helicopters (rotating blades) 
and fixed wing aircrafts (e.g. wings, flaps, stabilisers). Thus, 
the experimental setup for a thermographic measurement 
will almost always differ from one to another.

To have a general insight into the common use cases 
for the application of IR thermography measurements, the 
reader might have a look at the listed references: (Quast 
1987; Dollinger et al. 1992; Raffel and Merz 2014; Traphan 
et al. 2015; Bakunowicz and Szewczyk 2015; Joseph et al. 
2016; Koch et al. 2020; Gardner et al. 2020; Schrauf and 
von Geyr 2021).

For wind turbines, an IR camera might be installed on 
the ground or directly at the wind turbine. The usual region 
of interest (ROI) in these cases is the observation of a wind 
turbine rotor part.

Wind tunnel projects also may differ in the number of 
featured IR cameras. It is quite common to have one or two 
IR cameras installed; however, one of the authors of this 
manuscript has participated in a wind tunnel test featur-
ing five IR cameras of different types. As the IR images 
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presented in this work are linked to aerodynamic research, 
the ROI in wind tunnel project is often the suction and/or 
the pressure side of the wind tunnel model. The model itself 
might be (Fig. 5):

•	 a 2D-wing model, featuring only a profile of constant 
width, which is stretched perpendicular to the profile 
plane to generate a span width;

•	 a 2.5D-wing model, which is a 2D-model, but with a 
sweep angle;

•	 a 3D-wing model, featuring sweep angle, wing taper, 
twist and bend;

•	 a 3D-wing model including moveable devices like slats 
and flaps;

•	 an aircraft half-span model (e.g. half of fuselage + com-
plete wing);

•	 a full span model (e.g. complete aircraft model).

To mention some other examples, flight tests on sail 
planes (gliders) (Seitz 2007; Barth 2021), have been con-
ducted using only one IR camera. On the other hand, flight 
tests on small and large motorised aircrafts of very different 
kinds have featured at least one or two IR cameras. Besides, 
laminar-turbulent transition detection is used in industry and 
research facilities worldwide for the sub-, trans- and super-
sonic flight tests (Frederick et al. 2015).

3.2 � Specifications of thermographicmeasurement 
setup for a use case

The examples in the previous section put forth the diversity 
of measurement setups featuring IR thermography. Even 
though the existence of such widespread applications, most 
of the measurement results may not be published due to 
binding confidentiality agreements. This is especially the 
case for the research collaborations including partners from 

the industry. Nevertheless, the authors would like to portray 
a single example from a recent flight test setup conducted 
in their institute, under the scope of the AFLoNext Project 
(AFLoNext 2018a), which made its test flights in spring 
2018 (AFLoNext 2018b). The description of the test setup 
is given below:

Beside other flight test instrumentation, two IR cameras 
had been installed into the horizontal tail plane (HTP) of the 
test aircraft, which was an AIRBUS A320. One IR camera 
was installed at the port (left hand) and one at the starboard 
(right hand) side of the aircraft. Both cameras were orien-
tated in such a way that they observed a ROI at the vertical 
tail plane (VTP). As a consequence, IR images could be 
taken during flight simultaneously both from the left- and 
right-hand side of the VTP, as illustrated in Fig. 6.

The cameras were of type FLIR SC3000, which featured a 
320 × 240 pixel QWIP sensor. This camera type is specified 
to detect temperature differences of 20 mK at 30◦C and oper-
ates in the spectral range of 8 − 9 �m . Both cameras were 
equipped with a 20◦ lens and connected to a data acquisition 
(DAQ) system, which was used to operate the cameras and 
display and record the IR images. A set of IR images of 

Fig. 5   a Schematic iso-view on a generic 2D-wing profile. Top and side view on different wing model types: b 2D-model, c 2.5D-model, and d 
3D-model, respectively

Fig. 6   AFLoNext, digital mockup field of view (FoV) study using 20◦ 
lens
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this flight test campaign has been exploited within this work 
together with the images from other test campaigns as seen 
in Fig. 11, to train our proposed neural network for laminar-
turbulent flow separation.

Since only sun illumination could be used to increase 
image contrast between laminar and turbulent flow, a thin 
black foil was applied onto the surface to increase image 
quality as observed in Fig. 7. The foil will not act so much 
as an insulation to the underlying structure - which would 
prevent the appearance of the structure in the IR image - but 
more as a heating device. The black foil absorbs the energy 
of the solar radiation, resulting in a surface temperature 
increase. Thus, the surface temperature difference between 
the airflow and the surface will increase, resulting in a higher 
image contrast on the VTP side that is faced to the sun.

Reference markers have been also applied to measure the 
laminar-turbulent transition location as also seen in Fig. 7.

3.3 � Generalisation of measurement setup

As described in Sects. 3.1 and 3.2, measurement setups 
may differ from use case to use case. However, at least three 
things are shared between all setups: (i) a surface, (ii) an 
airflow to which the surface is exposed to, and (iii) at mini-
mum, one IR camera observing the surface.

Parameters like model orientation (horizontal vs. verti-
cal), camera view angle, object-camera-distance, field of 
view, surface heating, surface coating, surface material, 
thermographic system (camera type) and many more are in 
their combination most likely unique for every test setup.

As illustrated in Fig. 8, a simplified laminar-turbulent 
flow measurement setup applied in the variety of our experi-
ments can be described as follows: A surface of an object 
is observed by an IR camera. The camera together with its 
optical system (lenses) spans a field of view (FoV) onto 
the object surface. Everything on this FoV is visible within 
the recorded image. As camera and object have their own 

reference system, coordinate systems for the object and 
camera exist. Modern IR cameras work with a focal plane 
array (FPA) being the sensor, hence the image plane is put 
into the sensor plane. Perpendicularly from the camera sen-
sor plane, a view axis can be defined, which is the optical 
axis. The intersection of the optical axis with the surface is 
the focal point of the camera. Reference markers located 
in the FoV allow the image transformation from image to 
object coordinates. Since the work presented here is based 
on images in the aerodynamic field, the object of interest is 
exposed to a flow with a dedicated flow direction. Eventu-
ally, a laminar and turbulent region may develop inside the 
FoV if the object (flight-wings and vertical stabiliser in our 
experiments) is exposed to a flow.

In the scope of this paper, the laminar-turbulent-transition 
type (e.g. Tollmien-Schlichting or Cross-Flow-Transition) is 
of no interest. Other flow phenomena, such as the presence 
of laminar separation bubbles, play a minor role. Consid-
ering these effects will require different training data and 
may change the neural network weights, but won’t change 
the essence of the automatic flow localisation/segmentation 
approach proposed in this paper.

4 � Proposed flow segmentation 
methodology

As already mentioned in Sect. 1, three major problems in the 
thermographic measurement of laminar-turbulent regions 
led us to the proposed approach in this study. Those are (i) 
noisy observations with some artefacts, reflections or low 
contrast among the flow regions which makes the automatic 
localisation of flow regions difficult, (ii) limited amount of 
labelled data preventing to build an efficient segmentation 
system based on neural networks, and (iii) the computational 
complexity of our early deep learning-based segmentation 
attempts for our regular workflow depicted in Fig. 1.

To deal with the first and the last problems, we pro-
posed Adaptive Attention Butterfly Network (shortly 
ButterflyNet) for the effective separation of laminar flow 

Fig. 7   Black foil within the AFLoNext IR-FOV port side, showing 
the reference markers. Flow direction is from left to right

Fig. 8   A simplified laminar-turbulent flow measurement setup
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from the other flow regions, as detailed in Sect. 4.1. The 
proposed ButterflyNet falls into the category of Ensemble 
U-Nets already described in Sect. 2.2.3, with the inspi-
ration from the following studies: (i) Attention U-Net 
variants (Schlemper et al. 2019; Fu et al. 2019; Ren et al. 
2020) which increase the model sensitivity and prediction 
accuracy with minimal computational overhead, (ii) Dou-
bleU-Net (Jha et al. 2020) which is useful to eliminate the 
small artefacts in the segmented areas, and (iii) nnU-Net 
(Isensee et al. 2018) which enables dynamic adaptation 
of network topologies to different image modalities and 
geometries, and compensates the issue of having a large 
number of network parameters and of inefficient through-
put time in case of using cascaded networks as similar to 
our proposed ButterflyNet.

Nevertheless, our second problem, having few amounts 
of labelled images, might reduce the robustness of the seg-
mentation due to the model overfitting or the lack of gener-
alisation ability. That is why we adopted a self-supervised 
learning strategy, SimCLR (Chen et al. 2020), to exploit 
non-labelled thermographic measurements along with 
the labelled ones for more reliable flow segmentation, as 
detailed in Sect. 4.2.

4.1 � Adaptive attention butterfly network

The ButterflyNet is composed of two cascaded networks 
(WING1 and WING2 ) as shown on the left side of Fig. 9. 

Input image �I ∈ ℝ
wI×hI×ci is fed into the WING1 of the 

network to get the segmented output image �o1 ∈ ℝ
wI×hI×co 

where wI and hI are the image width and height, and ci and 
co are the number of channels at the input and output images, 
respectively. Later, element-wise multiplication ( ⊙ ) of input 
�I and output �o1 is fed into the WING2 of the network to get 
the final output, �o2 ∈ ℝ

wI×hI×co , such that:

To elaborate on the wings, each of them contains NL num-
ber of encoder blocks ( El ) and decoder blocks ( Dl ) with 
0 ≤ l < NL , where l stands for the block order. Each El and 
Dl blocks are linked with the skip connections, and an ASPP 
(Chen et al. 2017) is placed between the blocks ENL−1

 and 
DNL−1

 . When a skip connection takes place inside a wing, an 
additive attention gate (AGa ) filters the features propagated 
through the connection. However, if a skip connection is 
between WING1 and WING2 , a multiplicative attention gate 
(AGm ) filters the features.

Each encoder block, El , is composed of two consecutive 
convolutional blocks (CONV l  ) and one 2 × 2 max pooling 
operation (POOL2×2 ) for downsampling. Thus, each encoder 
block El can map a feature vector �l

e
 to the next block with 

the following series of functions:

(1)
�o1 = WING1(�I)

�o2 = WING2(�I ⊙ �o1)

(2)El

def
= POOL2x2◦CONVl◦CONVl ∶ �l

e
↦ �l+1

e

Fig. 9   The Adaptive Attention Butterfly Network (ButterflyNet) architecture (left), and the details of the blocks utilised in the ButterflyNet 
(right)



Experiments in Fluids (2022) 63:166	

1 3

Page 11 of 21  166

Conversely, each decoder block, Dl , starts with one 2 × 2 
upsampling operation (UP2×2 ). After that, the outputs of 
UP2×2 and the attention gates, AGa and AGm , are concat-
enated and later fed into two consecutive CONV l  blocks. 
Thus, a decoder block Dl can be formulated as:

As illustrated in Fig. 9, each CONVl  block contains:

•	 Convolution function, fconv(�;�) , where � is 3 × 3 kernel 
parameter with filter size Fl = F0 × 2l where F0 ∈ ℤ

+,
•	 Batch normalisation (BN) layer,
•	 And parametric rectified linear unit (PReLU).

Thus, CONVl block is formulated as:

Furthermore, attention gate (AG) is a mechanism that 
identifies salient image regions and prune relevant fea-
ture responses to a specific task by scaling feature vector 
� with attention coefficient � . Thus, the output of an AG 
is �̂ = �⊤� . In our proposed ButterflyNet, attention coef-
ficient � is computed as follows by adapting the approach in 
(Schlemper et al. 2019):

where AG is characterised by set of parameters �att consist-
ing of linear transformations �x , �g , � and bias terms bx , 
bg , b� . Moreover, �(�) = �∕1+e−� and �(�) = �∕1+e−� are the 
sigmoid and swish nonlinear activation functions, respec-
tively. Note that, in AG, the features coming from skip con-
nections are considered as input signal � , whereas the fea-
tures mapped from the previous layer are considered as gate 
signal �.

Besides, our proposed network is subject to the mean-abso-
lute error function to be minimised:

where pij and p̂ij are the ground-truth pixel label and the 
predicted pixel label belonging to a segmentation output, 
respectively.

(3)

Dl
def
= CONVl◦CONVl◦CONCAT:�l+1d ↦ �ld , where:

CONCAT
def
=

{

[UP2×2, (AGa◦UP2×2) ] if on WING1

[UP2×2, (AGa◦UP2×2), (AGm◦UP2×2) ] if on WING2

(4)CONVl

def
= BN◦PReLU◦fconv ∶ �l ↦ �̂l,

(5)

� = �
(

AG(�, �;�att)
)

, where

AG =

{

�⊤(�
(

(�⊤
x � + bx)⊙ (�⊤

g � + bg)
))

+ b� if multiplicative
�⊤(�

(

(�⊤
x � + bx) + (�⊤

g � + bg)
))

+ b� if additive

(6)LMAE =
∑

i

∑

j

|p̂ij − pij|,

4.2 � Self‑supervised learning framework

Self-supervised learning methodologies are aiming at 
designing pretext tasks (e.g. relative position prediction, 
image colourisation, or spatial transformation predic-
tion) to generate labels instead of using a large amount 
of annotated labels to train a network (Wang et al. 2020). 
Similarly, SimCLR, which learns visual representations 
by maximising agreement between differently augmented 
views of the same data via a contrastive loss, is counted 
as one of the simplest and most powerful techniques for 
self-supervision (Chen et al. 2020). That is why we rely on 
the SimCLR architecture with some task-based modifica-
tions in our study.

As illustrated in Fig. 10, our self-supervised learning 
framework is composed of the following components:

•	 A stochastic data augmentation module, T  , to ran-
domly transform a data into correlated views of it,

•	 The ButterflyNet without the decoder part at the second 
wing, as a base encoder module of the framework, f(.),

•	 A projection head module, h(.), composed of multilayer 
perceptron (MLP) with two hidden layers, followed by 
�2 normalisation to extract feature representations,

•	 A binary classifier with a fully-connected layer, g(.).

To elaborate on, let B = {�1, .., �j, .., �NB
} be the batch of NB 

random image samples, and let two augmentation opera-
tors, t� ∼ T  and t�� ∼ T  , be sampled from the data augmen-
tation module to obtain two different views of images in 
B , such that t� ∶ �j ↦ �

�

j
 , t�� ∶ �j ↦ �

��

j
 ; therefore, the feature 

representations ( �j’s) for those images are obtained as:

where �(1) and �(2) are the linear transformations in MLP 
and � is the swish nonlinear activation. Moreover, binary 
decision about if two separate feature representations stems 
from the same input is obtained as follows:

where �c is the linear transformation in the binary classifier, 
� is the sigmoid nonlinear activation, and y is the pretext 
label for output �.

Therefore, the self-supervised learning framework is sub-
ject to the following loss function to be minimised:

(7)
𝓁2◦h◦f ∶ �

�

j
↦ �

�

j
, �

��

j
↦ �

��

j
, where:

𝓁2(�) =
�

‖�‖2
and h(�) = 𝜚

�
�(2)

�
𝜚(�⊤

(1)
�)
��

(8)g(�) = 𝜎(�⊤
c
�), � = �

�

i
− �

��

j
, y(�) =

{
0 if i = j

1 if i ≠ j

(9)Ltotal = � ⋅ LCL + � ⋅ LBCE,
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where � and � are tuning parameters, LCL and LBCE are con-
trastive and binary cross entropy losses, respectively. Here, 
the contrastive loss for a positive pair is defined as:

where sim(�, �) = �⊤�∕‖�‖‖�‖ denotes the cosine similarity, 
and the binary cross entropy loss is defined as:

where y and ŷ are the pretext label and the predicted labels 
for output � , respectively.

5 � Experimental framework

In this section, we present the dataset of laminar-turbulent 
flow measurements, experimental protocols of different 
learning strategies and metrics utilised for validating our 
approach.

5.1 � Thermographic measurement dataset

Our dataset comprises 23.468 non-labelled and 356 labelled 
samples where each sample is 512 × 512 × 1 dimensional 
IR image collected with the thermographic measurement 
specifications already described in Sect. 3. However, for the 
efficient use of the computing sources, images have been 
resized to 128 × 128 × 1 in our experiments.

As shown in Fig. 11, some samples contain scars, shad-
ows, salt & pepper noises and contrast burst regions, dem-
onstrating that realistic laminar-turbulent flow observation 
scenarios are subject to high noise. Besides, a laminar flow 

(10)LCL = −log
e
sim(�

�

i
,�
��

i
)∕�

∑NB

j=1

�
e
sim(�

�

i
,�
�

j
)∕� + e

sim(�
�

i
,�
��

j
)∕�
�
⋅ y

(11)LBCE = −y ⋅ log ŷ − (1 − y) ⋅ log (1 − ŷ)

area may occur brighter or darker as compared to the regions 
in a turbulent flow. Due to some effect (e.g. shadowing the 
sun) it is even possible that, in one part of the image, the 
laminar flow area appears darker, and in another part, it 
appears brighter than the turbulent flow area.

5.2 � Network training and validation protocol

We have conducted the experiments in the following order:

•	 Supervised learning: The ButterflyNet has been trained 
on the labelled samples of laminar-turbulent flow meas-
urements in order to compare its performance against the 
benchmark segmentation architectures including U-Net 
(Ronneberger et al. 2015), DoubleU-Net (Jha et al. 2020), 
and Attention U-Net (Schlemper et al. 2019).

•	 Self-supervised learning: The ButterflyNet and the best 
performing benchmark architecture have been taken as 
base networks to train the self-supervised framework on 
the non-labelled samples.

•	 Supervised fine-tuning: The model weights of Butterfly-
Net and the best performing benchmark architecture have 
been initialised with the base network weights obtained 
from the regarding self-supervised models. Later, the 
ButterflyNet and the benchmark have been fine-tuned 
with a supervised learning strategy on the labelled data.

When conducting all of the experiments, the datasets have 
been randomly split into three different partitions: 80% for 
training, 10% for validation and 10% for testing. Furthermore, 
after shuffling the samples across the partitions, each experi-
ment has been repeated multiple times in order to report 
mean and variance values in the obtained results.

Fig. 10   The architecture for 
self-supervised learning. Note 
that the augmented views are 
originated from either same 
or different inputs by random 
switching



Experiments in Fluids (2022) 63:166	

1 3

Page 13 of 21  166

5.2.1 � Data augmentation

It has been utilised due to the following reasons: (i) in case 
of supervised learning or fine-tuning, augmentation has been 
applied to mitigate the labelled data insufficiency and over-
fitting issue, (i) whereas, in self-supervised learning, Sim-
CLR variants need series of spatial, geometric and appear-
ance transformations in augmentation policy to learn visual 
representations efficiently (Chen et al. 2020). That is why, 
in our experiments, image rotation, horizontal and vertical 
flipping and shifting, image cropping and resizing, blurring, 

colour distortion and coarse dropout have been applied to 
generate various augmented views of an input image.

5.2.2 � Network initialisation and optimisation

For the network architectures considered in this study, adap-
tive moment estimation (ADAM) (Kingma and Ba 2014) 
with a batch size of 64 has been used for training optimisa-
tion. During the ADAM optimisation, the learning rate has 
been initialised in the range [0.00001 − 0.01] and divided 
by 10 after reaching a plateau. The maximum number of 
training epochs has been set to 200 with the validation loss 

Fig. 11   Thermographic measurement examples from wind tunnel and 
flight test experiments: i. top and bottom row: wind tunnel ii. center 
row: vertical stabiliser from AFLoNext Project (AFLoNext 2018a). 
Note that the red flow-separation lines were semi-automatically 
drawn as ground-truths by an internal software of our institution. In 

principle, the software took some pixel samples selected by human 
experts for each flow region as input, and it accordingly drew laminar 
flow boundary after statistical analysis on the selected pixels. Finally, 
if mislocalisation happened in the separation lines, human experts 
corrected them in an iterative way
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monitored to determine when to stop the learning processes. 
Glorot Uniform (Glorot and Bengio 2010) has been pre-
ferred in the weight initialisation of the networks except 
for supervised fine-tuning. While training the ButterflyNet, 
the initial size of the convolution filter has been determined 
as F0 ∈ {16, 24, 32} , and the total number of the decoder 
and encoder layers has been set to NL ∈ {3, 4, 5} . In super-
vised learning and fine-tuning, the mean-absolute error has 
been preferred as a loss function. In self-supervised learn-
ing, the tuning parameters of the contrastive and binary 
cross-entropy losses have been sought in the range of � , 
� ∈ [0 − 1] , and the temperature parameter has been set to 
� ∈ {0.001, 0.01, 0.1, 1}.

5.2.3 � Hardware and software specifications

Experiments have been conducted on a system equipped 
with 128Gb RAM, NvidiaTM Tesla V100 GPU, running 
under Ubuntu 18.04 LTE and using the Keras framework 
with Tensorflow version 2.3.1 (Abadi et al. 2016).

Besides, the following python libraries have been 
exploited: Numpy, Scipy, Pandas and Scikit-learn for 
numerical processing, Albumentation for data augmenta-
tion, Seaborn and Matplotlib for data visualisation. For 
providing the reproducible machine learning pipeline for the 
interested audiance, those software dependencies have been 
included in a Docker container (Anderson 2015), as can be 
seen in the project source code1.

5.3 � Evaluation metrics

The networks examined in our study have been evaluated on 
the basis of Pixel Accuracy (PA), Sørensen-Dice coefficient 
(SDC), Intersection over Union (IoU), Precision and Recall, 
such that:

where pij is the number of pixel of class i predicted as 
belonging to class j and K is the number of foreground 
classes.

where A and B denote the prediction and ground-truth seg-
mentation maps ranging between [0 − 1] . Note that, in binary 

(12)PA =

∑K

i=0
pii

∑K

i=0

∑K

j=0
pij

(13)IoU =
|A ∩ B|
|A ∪ B|

(14)SDC = 2
|A ∩ B|
|A| + |B|

segmentation, SDC is equal to F1-score which is the har-
monic mean of precision and recall:

where TP, FP and FN refer to the true positive, false positive 
and false negative fractions in segmentation maps.

6 � Results and discussion

In this section, we present the laminar-turbulent flow seg-
mentation results achieved via the examined networks. In 
Sect.  6.1, optimum hyper-parameters have been sought 
for the ButterflyNet. In Sect. 6.2, benchmark architectures 
have been compared with the ButterflyNet, and in Sect. 6.3, 
the effect of self-supervised learning for the performance 
improvement has been demonstrated.

6.1 � Examining butterflyNet with various parametric 
scenarios

First of all, the best performing encoder and decoder param-
eters of the ButterflyNet have been searched by comparing 
different initial filter sizes ( F0 ) and total number of block 
layers ( NL ) in supervised learning scenario. As summarised 
in Table 1, as the number of layers or filter size increases, 
a trend towards improvement in segmentation performance 
can be noticed. In terms of IoU and SDC, the highest per-
formance can be achieved when the initial filter size and the 
number of layers are F0 = 24 and NL = 5 , respectively. How-
ever, it has come with over 40 million network parameters, 
meaning more complexity in training and inference. That 
is why the ButterflyNet with F0 = 32 and NL = 4 has been 
rather chosen for the further experiments and the benchmark 
comparison due to its significant gain in total number of 
network parameters in return of negligible performance drop 
in segmentation.  

Additionally, since the ButterflyNet has comprised two 
cascaded networks, WING1 and WING2 , quantitative com-
parison among the outputs of them has been done to examine 
if the cascading had a positive impact in flow segmentation. 
As given in Table 2, WING2 is outperforming WING1 , prov-
ing that feeding the element-wise multiplication of the input 
and the output of WING1 into WING2 , as described in Eq. 1, 
has increased the flow segmentation performance.

(15)Precision =
TP

TP + FP

(16)Recall =
TP

TP + FN

1  https://​github.​com/​ridva​nsali​hkuzu/​butte​rflyn​et

https://github.com/ridvansalihkuzu/butterflynet


Experiments in Fluids (2022) 63:166	

1 3

Page 15 of 21  166

Besides, the qualitative analysis in Fig. 12 verifies that 
masking the input with the output of WING1 and later feed-
ing it into WING2 could eliminate some unwanted artefacts 
when automatically localising the separation boundary of 
laminar flow from turbulent flow.

6.2 � Comparing butterflyNet with benchmark 
networks

In order to demonstrate the effectiveness of our proposed 
flow segmentation architecture, the quantitative comparison 
among the benchmark architectures have been conducted 
after running the tests 20 times for each architecture. As 
summarised in Table 3, ButterflyNet has excelled all the 
segmentation architectures in all evaluation metrics, and 
the second best architecture has become U-Net 3+ (Huang 
et al. 2020). Besides, as shown in Fig. 13, the ButterflyNet 
is computationally less expensive than 4 of the benchmarks 
with total number of 15.11 Giga-Flops, and more mem-
ory efficient than 3 of the benchmarks with 24.64 million 
parameters.

Moreover, the kernel density estimation (KDE) drawn 
by the segmentation scores acquired from each benchmark 
architecture is illustrated in Fig. 14. It is worth mentioning 
that KDE of ButterflyNet has the lowest variance as com-
pared to other architectures, which means consistency of 
predictions is higher in our proposed architecture. Moreover, 
Attention U-Net (Schlemper et al. 2019) has also relatively 
low variance. On the other hand, U-Net (Ronneberger et al. 
2015) and U2-Net (Qin et al. 2020) are the worse perform-
ing segmentation architectures in our experiments (Fig. 15).

6.3 � Self‑supervised learning and supervised 
fine‑tuning

As already demonstrated in Eq. 8, the pretext task in our 
self-supervised learning strategy is the binary decision about 

if the inputs are augmented from the same view or not. Thus, 
as an initial step, the self-supervised network weights have 
been generated by training the model with different combi-
nations of loss-tuning parameters, � for tuning contrastive 
loss and � for tuning cross-entropy loss, as described in 
Eq. 9.

When the self-supervised model (SSM) weights were 
ready, the MLP Projection Head has been cut out, and the 
remaining parts of the model have been utilised to initial-
ise the ButterflyNet weights except for the decoder part at 
WING2 where random initialisation has been done. After 
that, the ButterflyNet has been fine-tuned with the labelled 
data for laminar-turbulent flow segmentation.

If WING2 results reported in Table 2 are considered 
as the baseline performance of the ButterflyNet, all the 
fine-tuned supervised models initialised with SSM weights 
have resulted in better performance in flow segmentation 
except the model initialised with SSM-Butterfly-01 as sum-
marised in Table 4. In other words, the existence of con-
trastive loss ( 𝛽 > 0 ) in SimCLR variants of self-supervised 
learning is indispensable for outperforming the baseline.

In the model SSM-Butterfly-05, binary cross-entropy 
loss has been ignored ( � = 0 ) in order to have only con-
trastive loss as proposed in the original SimCLR archi-
tecture (Chen et  al. 2020). Even though such network 
initialisation with the original SimCLR strategy is still 
outperforming as shown in the last line of Table 4, the best 
flow segmentation performance has been accomplished 
after the network initialisation with SSM-Butterfly-02 

Table 1   Searching encoder 
and decoder parameters in 
ButterflyNet

Network  
parameters

Total Number of  
Network Parameters

Average evaluation metrics (%)

F
0

N
L

PA IoU Prec Recall SDC

16 3 5, 457, 219 96.73 88.11 91.05 96.48 93.68
24 3 8, 745, 599 96.64 88.17 91.25 96.33 93.71
32 3 12, 476, 539 96.12 87.79 91.67 95.40 93.49
16 4 8, 785, 286 96.96 88.40 91.73 96.13 93.88
24 4 15, 817, 442 96.61 88.73 91.72 96.40 93.99
32 4 24, 637, 694 96.99 89.21 91.94 96.81 94.31
16 5 20, 743, 689 96.50 88.24 90.78 96.96 93.77
24 5 41, 843, 621 97.32 89.40 91.96 96.70 94.40
32 5 70, 113, 793 96.86 89.02 90.88 97.80 94.20

Table 2   Quantitative comparison of WING
1
 and WING

2
 in Butterfly-

Net

Output 
taken at

Average evaluation metrics (%)

PA IoU Precision Recall SDC

WING
1

96.7 ± 0.8 87.7 ± 2.1 91.7 ± 1.9 95.3 ± 1.5 93.5 ± 1.5

WING
2

97.0 ± 0.5 89.2 ± 1.6 91.9 ± 1.4 96.8 ± 0.8 94.3 ± 1.0
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Fig. 12   Qualitative comparison of WING
1
 and WING

2
 in terms of flow segmentation. Note that WING

2
 has generated less artefacts than WING

1
 

where the false positives (FP) are magenta and false negatives (FN) are cyan
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where the contrastive and binary cross-entropy losses have 
been summed with different weights, � = 0.1 , � = 0.9 , 
respectively.

When the supervised fine-tuning has been conducted for 
another benchmark network, U-Net 3+ Huang et al. (2020), 
the similar patterns occurred as summarised in Table 5, 
which means that flow segmentation performs best when 
� = 0.1 and � = 0.9 for self-supervised learning losses. It is 
also worth mentioning that the SSM-Butterfly-02 and SSM-
UNet3+-02 which are subject to those same � and � value 
have led to the minimum loss in the pretext task learning, 
proving that the combination of contrastive and binary cross 
entropy losses in SimCLR provides better self-supervision 
than original SimCLR.

Another important impact of self-supervised learn-
ing is the reduction in the network variance. For instance, 
while supervised learning of ButterflyNet has resulted in a 

Table 3   Quantitative 
comparison among the 
benchmark architectures

Benchmark architectures Average evaluation metrics (%)

PA IoU Precision Recall SDC

U-Net (Ronneberger et al. 2015) 94.9 ± 1.5 83.0 ± 3.9 87.3 ± 3.7 94.5 ± 3.8 90.6 ± 2.4

U2-Net (Qin et al. 2020) 94.8 ± 1.2 81.9 ± 3.8 85.6 ± 3.3 95.0 ± 2.0 90.0 ± 2.3

R2 U-Net (Alom et al. 2019) 96.2 ± 1.3 86.6 ± 3.5 89.7 ± 2.8 96.1 ± 1.7 92.8 ± 2.0

U-Net 3+ (Huang et al. 2020) 96.4 ± 0.8 87.0 ± 3.2 90.7 ± 2.8 95.5 ± 2.3 93.0 ± 1.9

Trans U-Net (Chen et al. 2021) 95.8 ± 1.0 85.4 ± 4.5 89.0 ± 3.0 95.5 ± 1.8 92.1 ± 2.0

DoubleU-Net (Jha et al. 2020) 95.9 ± 1.1 86.0 ± 3.1 89.8 ± 2.4 95.4 ± 2.0 92.5 ± 1.8

Attention U-Net (Schlemper et al. 2019) 96.1 ± 0.9 86.1 ± 2.1 89.5 ± 1.9 95.9 ± 1.5 92.6 ± 1.2

ButterflyNet 97.0 ± 0.5 89.2 ± 1.6 91.9 ± 1.4 96.8 ± 0.8 94.3 ± 1.0

Fig. 13   Sórensen-Dice coefficient vs. computational complex-
ity where G-FLOPs stands for the number floating-point operations 
required for a single forward pass, and the size of each ball corre-
sponds to the model complexity

Fig. 14   Kernel density estimations drawn by the segmentation scores 
taken from each test run in terms of the evaluation metrics PA, IoU 
and SDC. The comparison demonstrates that ButterflyNet has the 

highest average segmentation performance and the lowest variance as 
compared to the other architectures



	 Experiments in Fluids (2022) 63:166

1 3

166  Page 18 of 21

standard deviation of ±1.65 in IoU and ±1.01 in SDC, the 
network initialisation with SSM-Butterfly-02 and supervised 
fine-tuning of ButterflyNet has suppressed those values to 
±1.39 for IoU metric and ±0.77 for SDC metric as dem-
onstrated in Table 4. Similarly, using SSM-UNet3+-02 for 
network initialisation has reduced the standard deviation of 
IoU from ±3.23 to ±1.97 and of SDC from ±1.87 to ±1.13 
for U-Net 3+-based flow segmentation as summarised in 
Table 5. Such reduction implies that self-supervised learning 
improves not only the segmentation performance but also 
the consistency in different predictions by reducing the risk 
of overfitting caused by the presence of a limited number of 
ground-truth data in the supervised training.

7 � Conclusions

In this paper, we handled the automatic separation of dif-
ferent flow regions over flight-wings and stabilisers using 
the thermographic flow observations and applying deep 
learning techniques, because detection of flow distribution 
has crucial importance for optimising the wing & stabiliser 
geometry and improving the flight efficiency. Since the 
laminar-turbulent flow measurements are usually exposed 
to high noise and variance across different thermographic 
observations, the existing efforts for the automation of 
flow localisation in the literature had lack of reproducibil-
ity, or they only achieved semi-automation with a strong 

Fig. 15   Qualitative comparison of benchmark architectures. In the 
ground truth, the laminar flow regions are denoted as white (positive 
condition), while the rest is black (negative condition). Similarly, in 

the comparison of architectures, TPs are white, TNs are black, FPs 
are magenta and FNs are cyan

Table 4   Self-supervised learning of ButterflyNet on the pretext task with different combinations of loss tuning parameters (Left) and the corre-
sponding flow segmentation performances after supervised fine-tuning with labelled data on those models (Right)

The best performing loss and metrics are shown in bold

Self-supervised learning Supervised Fine-tuning on a given Self-supervised Model

Self-supervised Model ID Tuning Loss for 
Pretext 
Task

Accuracy for 
Pretext Task

Average Evaluation Metrics (%)

� � PA IoU Precision Recall SDC

SSM-Butterfly-01 0.0 1.0 0.3076 0.9419 95.84 ± 0.63 87.46 ± 2.06 90.52 ± 1.93 96.41 ± 0.90 93.36 ± 1.16

SSM-Butterfly-02 0.1 0.9 0.1988 0.9843 97.34 ± 0.53 91.17 ± 1.39 93.43 ± 1.15 97.47 ± 0.68 95.41 ± 0.77

SSM-Butterfly-03 0.5 0.5 0.3442 0.9921 97.00 ± 0.36 90.11 ± 1.34 93.26 ± 1.31 96.42 ± 0.62 94.80 ± 0.78

SSM-Butterfly-04 0.9 0.1 0.4769 0.9905 97.09 ± 0.45 89.70 ± 1.71 92.68 ± 1.63 96.62 ± 0.93 94.60 ± 0.96

SSM-Butterfly-05 1.0 0.0 0.3936 0.9998 97.06 ± 0.39 89.73 ± 1.56 92.36 ± 1.61 96.98 ± 0.89 94.60 ± 1.15

Baseline (random init. without self-supervised weights) 97.00 ± 0.54 89.21 ± 1.65 91.94 ± 1.41 96.81 ± 0.77 94.31 ± 1.01
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dependency on human experts for guidance and correc-
tion. To overcome such difficulties, we introduced a novel 
encoder-decoder architecture, namely ButterflyNet, for 
the automatic segmentation of flow regions. In order to 
compensate for the lack of manually labelled data caused 
by the time-consuming nature of analysis on IR thermog-
raphy samples, we customised a self-supervised strategy 
and, in this way, we benefited from diverse sets of raw 
thermographic observations to improve the robustness 
of flow segmentation. The proposed approach achieved 
97.34% pixel accuracy and 91.17% intersection-over-union 
in the automatic separation of laminar flow regions from 
the remaining regions.

The future study could extend this approach to detect 
other flow phenomena (e.g. Tollmien- Schlichting or 
Cross-Flow-Transition) as well as to separate automati-
cally laminar and turbulent flow regions with coordinate 
points after re-labelling the data accordingly, such as by 
including the reference coordinate markers into the train-
ing process.
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