
Autonomous Robots (2023) 47:229–247
https://doi.org/10.1007/s10514-022-10062-9

Collaborative programming of robotic task decisions and recovery
behaviors

Thomas Eiband1 · Christoph Willibald1 · Isabel Tannert2 · Bernhard Weber1 · Dongheui Lee1,2

Received: 27 July 2021 / Accepted: 5 September 2022 / Published online: 31 October 2022
© The Author(s) 2022

Abstract
Programming by demonstration is reaching industrial applications, which allows non-experts to teach new tasks without
manual code writing. However, a certain level of complexity, such as online decision making or the definition of recovery
behaviors, still requires experts that use conventional programming methods. Even though, experts cannot foresee all possible
faults in a robotic application. To encounter this, we present a framework where user and robot collaboratively program a
task that involves online decision making and recovery behaviors. Hereby, a task-graph is created that represents a production
task and possible alternative behaviors. Nodes represent start, end or decision states and links define actions for execution.
This graph can be incrementally extended by autonomous anomaly detection, which requests the user to add knowledge for
a specific recovery action. Besides our proposed approach, we introduce two alternative approaches that manage recovery
behavior programming and compare all approaches extensively in a user study involving 21 subjects. This study revealed the
strength of our framework and analyzed how users act to add knowledge to the robot. Our findings proclaim to use a framework
with a task-graph based knowledge representation and autonomous anomaly detection not only for initiating recovery actions
but particularly to transfer those to a robot.

Keywords Learning from demonstration · Programming by demonstration · Collaborative programming · Interactive
programming · Anomaly detection · Recovery behavior · Task-graph · Conditional task · Force-based tasks · Execution
monitoring

1 Introduction

We are heading towards an age where robot programming
is no longer subject to experts but requires shop floor work-
ers and people in daily life situations to seamlessly program
robots. It has been shown that Learning from Demonstration
(LfD) is an intuitive technique to transfer task knowledge to
a robot. More specifically, Programming by Demonstration
(PbD) avoids manual code writing that is usually done by
robotic experts (Calinon and Lee, 2018).

Since we move from purely repetitive robot tasks used
in manufacturing and assembly lines towards more adap-
tive, collaborative and intelligent robotic applications, there

B Thomas Eiband
thomas.eiband@dlr.de

1 German Aerospace Center (DLR), Institute of Robotics and
Mechatronics, Wessling, Germany

2 Department of Electrical and Computer Engineering,
Technical University of Munich (TUM), Munich, Germany

is a high demand to increase robustness and adaptability of
the robotic behavior. An exemplary scenario is a workspace,
which is shared between human and robot and where the
human causes uncertainties or intentionally adapts object
positions. Oneway to achieve robustness is a recovery behav-
ior, where the robot has knowledge about how to resolve an
erroneous state. Another way is to increase the adaptability
to the environment with task decisions that are made based
on the environmental state and that enable the robot to act in
different ways. With that in mind, we are highly motivated
to transfer such knowledge to a robot in an intuitive way,
such that end users are capable of creating robot programs
that include recovery behaviors and task decisions. To give
examples for these scenarios, a robot could react to a failed
grasp by a regrasping action or a robot could make a deci-
sion based on a specific object property, for instance, sort
objects by their weight. Since conditions have to be moni-
tored in an online fashion, these scenarios are also referred
to as conditional tasks.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-022-10062-9&domain=pdf
http://orcid.org/0000-0002-1074-9504


230 Autonomous Robots (2023) 47:229–247

Demonstrate

Execute & Monitor

Collaborate

Detect Anomaly

? !

start end

start

end

DS start

end

?

start end

Fig. 1 Interactive programming by demonstration (PbD) framework
for programming of task decisions and recovery behaviors, achieved by
inserting decision states (DS) into a task-representing graph. In clock-
wise order, a human provides an initial demonstration (left), the robot
executes and monitors the current action (top), the robot detects a pos-
sible anomaly (right), human and robotic agent interact about how the
new information shall be used (bottom) and either the robot executes
again or the task structure is extended

The goal of this work is to propose a new framework for
programming conditional tasks, called Collaborative Incre-
mental Programming, which is confronted with two other
alternative approaches. To give a broader overview about the
methodology of the compared frameworks, we structured it
by two means, which are task representation and teaching
interaction strategy. In the first part, we introduce two dif-
ferent task structures which represent the main task and its
recovery behaviors or alternative actions. In the second part,
we compare two different teaching interaction strategies that
rely either on manual or automatic detection of erroneous
states during execution. The comparison allows the analy-
sis of intuitiveness and teaching efficiency for the end-user.
This was achieved by conducting a study involving 21 users,
which is evaluated by teaching and execution metrics as well
as by user ratings.

The main contribution of this work is twofold: first, we
propose a PbD task-graph learning framework that allows
intuitive transfer of task knowledge including task decisions
and recovery behaviors using a bidirectional communication
channel between human and robot (see concept in Fig. 1).
Second, we provide valuable insights of how users employ
and understand PbDusing different task representation struc-
tures and different interaction methods within a user study.
In comparison to works that focus on the teacher’s efficiency
(e.g. Sena and Howard (2020)), we introduce a new pro-
gramming framework and analyze how end-users collaborate
with the robot as an autonomous agent via textual dialogs to
achieve their task goals.

In our experimental evaluation, we show the advantage
of our newly task-graph based method over an unstructured
task representation in terms of robust and semantically con-

sistent action transitioning. Further, we evaluate our anomaly
detection method that relies on the robot’s perception capa-
bilities in comparison to a user-triggered anomaly detection.
Our findings suggest that end-users have a biased impression
about the robot’s sensing capabilities, even though they were
informed about them before usage.

This work gives a more detailed overview of our prelim-
inary study on collaborative programming (Willibald et al.,
2020) regarding task representations, evaluates the frame-
work in different applications and adds a user study in order
to reveal how people interact with different frameworks.

2 Related work

It has been early shown that PbD is a reasonable method for
robot programming systems (Muench et al., 1994), which
is also employed in our proposed framework. According to
the problem to be solved, PbD can allow non-expert users
to intuitively set up a new robotic tasks in comparison to
manual programming. More recently, it has been shown that
PbD can be successfully combined with other task learn-
ing methods such as human feedback and transfer learning
of similar tasks (Mollard et al., 2015). After PbD has been
established in the state of the art, researchers came up with
structured representations of tasks, for example in the form
of task-graphs (Su et al., 2018; Sauer et al., 2019; Niekum et
al., 2013, 2015; Caccavale et al., 2017). In the presence of
humans, who might cause uncertainties in the workspace or
given a rather complex task, the robot requires some robust-
ness to reach the task goal. In the work of Caccavale et al.
Caccavale et al. (2017), this has been achieved by the struc-
tured task representation on a visual perception level, where
only branches of the task-graph are executed that are feasible
for the robot at the given environmental state. A collabora-
tive robot programming framework has been presented in
Materna et al. (2018) which uses augmented reality projec-
tions and a touch-enabled table to intuitively parameterize
an existing robot program. The program itself allows prepro-
grammedbranchingor cyclingoperations.Weenable the user
to program branching operations by learning such behaviors
from scratch without predefined skills, objects and environ-
mental conditions. As the environment is not always fully
observable and properties such as forces cannot be observed
beforehand, we present a reactive task-graph-based frame-
work that encounters unknownstateswith recoverybehaviors
that can be defined by the user.

2.1 Task decisions

Several works have shown a sequential programming
paradigm, where the robot executes a sequence of actions or
skills in order to achieve the task (Eiband et al., 2019; Pais et

123



Autonomous Robots (2023) 47:229–247 231

al., 2015; Steinmetz et al., 2019). However, a fixed sequence
of actions is not able to solve conditional tasks, since it does
not include replanning or decision making on the task level.
Therefore, we introduced in a priorwork (Eiband et al., 2019)
how intuitively task decisions can be programmed by demon-
stration, termed as Sequential Batch Programming (SBP).
Compared to this work, we substantially changed the way of
task encoding and user interaction to allow a robust execu-
tion that is able to cope with unseen task faults. Although
replanning of a robotic task during execution is possible, it
requires a goal definition and world representation for the
planner to work. We instead use the demonstrations itself
to transfer the decision making strategy to the robot, which
directly learns the required actions from the user. With that
strategy, we enable both the definition of task decisions and
recovery behaviors within the same framework.

2.2 Fault detection and recovery

In the context of fault detection and recovery, a variety of
methods and applications have been presented. First, con-
sidering only fault detection, a method based on force data
to train a Support Vector Machine has been applied to
detect failures during assembly of a shield onto a counterpart
(Rodriguez et al., 2010). In Pastor et al. Pastor et al. (2011),
task outcome of failure or success is predicted by a statis-
tical model of previous sensor signals. A Hidden Markov
model (HMM) approach has been used to classify abnormal-
ities in the force domain of an assembly task (Di Lello et
al., 2013). Also based on HMM, a multi-modal abnormality
detection has been presented in Park et al. (2016) that moni-
tors forces, vision and sound during execution. Khalastchi et
al. presented a data-driven anomaly detection approach based
on dimensionality reduction of sensor data, pattern recogni-
tion and a threshold on theMahalanobis distance (Khalastchi
et al., 2015) and extensively evaluates this approach later
on Khalastchi and Kalech (2018). These approaches have in
common that they are able to detect abnormal states or faults
but are not designed to recover from them automatically.
Donald (1988) proposed the derivation of recovery behav-
iors from geometric models of the task at hand. We do not
require a geometric, predefined task model within our learn-
ing framework but extract the recovery actions directly from
the user’s demonstrations. Niekum et al. (2015) presented
the construction of a finite state machine from a number
of human demonstrations. Possible recovery behaviors were
only considered, if the human pressed a button during execu-
tion. In contrast, our presented system decides autonomously
when a demonstration is required via anomaly detection. Fur-
ther, they provide the pose of all task relevant objects to the
robot, which is hard to realize in practical applications. In
Maeda et al. (2017), low confidence task regions based on a
probabilistic model were exploited to improve the robot’s

(a) Solution pool with nom-
inal solution (middle ar-
row) and possible transi-
tions (dashed lines) to alter-
native solutions.

(b)Task-Graph where
links represent actions
and nodes represent de-
cision states.

Fig. 2 A task representation that incorporates recovery behaviors can
be defined as solution pool, where multiple solution actions exist in
parallel (a) or as task-graph, which arranges the actions as links and
decision states as nodes (b)

spatial generalization capabilities for unseen object loca-
tions. Although no anomaly detection is performed online,
the robot’s knowledge about known motions is analyzed
offline in order to request additional user demonstrations that
could prevent future execution errors. In both Niekum et al.
(2015) and Maeda et al. (2017), the force domain is not con-
sidered in the task definition process. Since we put a high
emphasis on anomaly detection including the force/torque
domain, we enable our framework to react to environmental
properties that cannot be observed visually.

2.3 Sequential batch programming (SBP)

SBP is based on the framework presented in Eiband et al.
(2019), where the teaching and execution are split up in
two distinct phases. First, the teacher successively demon-
strates all different task solutions, which are independently
stored in a solution pool (see Fig. 2a). Whenever an anomaly
is detected during the execution of a task solution, the
system switches to the state within an alternative solution
that minimizes the error between the current sensor val-
ues and all alternative solution states. This error metric is
computed by the Mahalanobis distance, that incorporates
a confidence bound around each solution. The confidence
bound is obtained by encoding multiple demonstrations per
solution in a Gaussian Mixture Model (GMM).

2.4 User-triggered incremental programming (UIP)

UIP is inspired by the framework presented in Sauer et al.
(2019) that suggests a robot state automaton which is able
to observe environmental conditions and to branch into dif-
ferent states during execution. We adapted this approach in
a way to only create graph-nodes where a decision state is
required in order to obtain a task-graph (see Fig. 2b). Ordi-
nary robot states within a trajectory are not represented as
graph nodes, which allows to visually represent the task-
graph with only the significant decision states. Similar to

123



232 Autonomous Robots (2023) 47:229–247

the approach we present, a task-representing graph is incre-
mentally constructed in a combined teaching- and execution
phase. The difference is, that with UIP, the teacher has to
detect anomalies during execution of the task and needs to
decide if and when a new demonstration is needed. A deci-
sion state can be inserted by manually triggering a button
or controlling a GUI. In contrast, we tackle this problem by
autonomous anomaly detection to remove this burden from
the user.

3 Background: programming of recovery
behaviors by demonstration

3.1 Requirements

We argue that a task decision and recovery behavior pro-
gramming framework requires the following properties:

(i) An anomaly detection mechanism (Sect. 4.2),
(ii) An extendable knowledge representation allowing to

learn from the user and environment (Sect. 4.3),
(iii) Adaptability and refinement of robotic actions to increase

robustness (Sect. 4.3, and
(iv) An adaptive system to react during task execution

(Sect. 4.4).

According to that, we developed the approach of Collabora-
tive Incremental programming (CIP) and compare it with
two other approaches we have developed in this domain,
namely Sequential Batch Programming (SBP) and User-
triggered Incremental Programming (UIP).

3.2 Task representations

We evaluate different task representations in this work that
allow reactive behaviors that are required for fault recovery
or conditional tasks. We clarify that fault recovery and con-
ditional tasks are closely related, because they require (a)
monitoring of the execution, (b) branching from the nomi-
nal execution flow, and (c) multiple actions for each decision
and recovery behavior. In the following, two fundamental
task representations are considered.

3.2.1 Solution pool

This task representation has been introduced in our previous
work (Eiband et al., 2019) and represents a storageofmultiple
actions, so called solutions (Fig. 2a). In the solution pool, no
branching states are specified, which enables transitioning
between solutions at any time during execution.

3.2.2 Task-graph

In thiswork,wemake use of a structured task-graph (Fig. 2b),
that employs specified decision states, which are the graph’s
nodes. The links represent the robotic actions that either lead
to the next decision state or to a designated termination of
the task. Later in this document, we explain how this rep-
resentation can be generated incrementally in an interactive
scheme involving user and robot.

3.3 Fault state detectionmechanisms

In the presence of possible task faults, the end user wants the
robot to handle such situations autonomously. In reality, it
might not be always clear to the robot what is exactly a fault
or erroneous state. However, a user might have capabilities
that the robot has not in order to identify such states. There-
fore, we consider both manual and autonomous detection
mechanisms in this work.

3.3.1 Manual fault state detection

It has been shown that users are able to manually identify
states where the robot shall make a decision about its next
action in a specific environmental state (Niekum et al., 2015;
Sauer et al., 2019). This can be achieved by letting the user
observe the task execution and by providing manual user
feedback, e.g. via a button or GUI.

3.3.2 Autonomous anomaly detection

This detection scheme removes the burden from the user to
observe the task execution and react accordingly. It enables
detection of abnormal states in absence of the user and
of newly occurred situations that could not be foreseen at
programming time. In contrast to the identification of low
confidence task regions to improve the robot’s spatial gener-
alization capabilities (Maeda et al., 2017), we focus on the
identification of anomalies that can occur in the position and
force domain. We introduced our anomaly detection scheme
in our previousworks Eiband et al. (2019) andWillibald et al.
(2020), which is based on a probabilistic action encoding and
a statistical outlier detection using theMahalanobis distance.
The next section introduces all parts of our methodology in
depth.

4 Collaborative incremental programming

Our proposed approach of Collaborative Incremental Pro-
gramming (CIP) combines the task-graph programmingwith
an autonomous fault detection scheme that requests new user
demonstrations in unknown regions of the input space. This

123



Autonomous Robots (2023) 47:229–247 233

(a)

(c)

(e) (f)

(g) (h)

(d)

(b)

Fig. 3 States while creating a task-graph by monitoring the execution
and by reacting to anomalies

enables the robot to decide ad-hoc when new information
is required in order to extend the task-graph with decision
states and possible recovery behaviors.

4.1 Probabilistic action encoding

We request the user to only demonstrate a new behavior once,
in order to add a new action. Since the dynamics of the kines-
thetic demonstration differ slightly from the robot execution,
we record also a robotic repetition of the given demo. Varia-
tions between user and robot performance are introduced by
small uncertainties in the environment that are possibly intro-
duced by the user, who sets the objects back to their original
positions. This shall enable the anomaly detection to handle

task-specific uncertainties that are possibly caused by uncer-
tain object locations. Additionally, the anomaly detection
shall be robust to system-specific uncertainties as they are
caused by the robot controller due to limited tracking perfor-
mance and variations in dynamics, depending on the stiffness
parameters of the impedance controller. The obtained trajec-
tory samples of the task are used to encode this action and
determine the regions of variance around the nominal trajec-
tory. An example of these variance regions can be seen in
Fig. 3a. Hereby, low variance regions lead to a more sensi-
tive anomaly detection. In parts with more variability, higher
deviations are accepted during the execution,which increases
the overall robustness. We make use of the robot’s own pro-
prioceptive sensing capabilities, where we use a force-torque
sensor at the end-effector, the Cartesian pose and the signals
from the gripper, which are the distance between the grip-
per fingers and the status informing if an object is grasped
or not, evaluated by the grasping force. An external vision
system is not required in our approach, which performs well
in partially structured production environments and hence is
independent from object visibility or lighting conditions.

A data sample at time t is given as

xt = [ p, o, f , τ , g, h]T ∈ R
15,

consisting of the end-effector’s Cartesian position p =
[x, y, z] and orientation in unit quaternions o = [qw, qx ,
qy, qz], force f = [ fx , fy, fz] and torque τ = [τx , τy, τz],
as well as the gripper finger distance g and grasp status
h ∈ {−1, 0, 1}. The grasp status is defined as follows:
h = −1 for no object in gripper, h = 0 for gripper clos-
ing or opening, and h = 1 for object in gripper. We choose
these state variables since they were offered from the grip-
per hardware interface. The data is recorded at a frequency
of 1 kH and is downsampled to 50Hz to reduce the com-
putational effort in learning. The recorded data from user
demonstration XUdem = [xU,1, . . . , xU,NU] ∈ R

15×NU and
robot repetition XRrep = [xR,1, . . . , xR,NR] ∈ R

15×NR with
respective sample length NU and NR is collected for each
new demonstration.

Similar to Eiband et al. (2019), we first apply dynamic
time warping (DTW) to align the two sensor sequences on
a common time axis and equalize their length N . In a pre-
ceding step, the data is standardized dimension-wise with
the z-transformation by subtracting the mean and dividing
by the standard deviation. This assures that each dimension
contributes equally to the dynamic time warping error. After
warping the data, the standardization is undone by applying
the inverse z-transformation dimension-wise.

In the next step, Expectation Maximization (EM) is used
to learn a multivariate, time-based Gaussian Mixture model

123



234 Autonomous Robots (2023) 47:229–247

Robot

MonitoringExecution

Scheduler

command:
confidence:

measurementcommand

trajectory error events

stop request

,

Fig. 4 System components for realtime execution and monitoring.
Solid connections are realtime-capable up to 1 kHz, dashed connections
are slow asynchronous connections

(GMM) for the input matrix

Gs =
[
n n
XU XR

]
∈ R

16×2N (1)

for an action s and a time vector n = [1, . . . , N ]. The
variables XU and XR refer to demonstrated and repeated tra-
jectories respectively, where possible scenarios are explained
in detail in Sect. 4.3. The model complexity is chosen such
that the number of model components k is proportional to the
temporal length N of the demonstrated time series data. In
the experiments, we chose to add one model component per
second of the time series, which has shown to be a reasonable
trade off between model accuracy and smoothing of demon-
strated motions. The EM algorithm is then initialized using
k-means clustering with a number of k clusters. From here,
we obtain a model M = GMM(Gs) that can be used to
reproduce a trajectory. GaussianMixture Regression (GMR)
is applied to reproduce a generalized trajectory

Y s = [μ1, . . . ,μN ] ∈ R
15×N

with an associated sequence of covariance matrices

Zs = [�1, . . . ,�N ] ∈ R
15×15×N .

These results allow the execution of the mean trajectory with
a controller and to monitor the execution within a confidence
area that is derived from the covariance matrices.

4.2 On-line anomaly detection

The system design for on-line anomaly detection is shown
in Fig. 4. Themain goal is tomonitor the execution and detect
new situations that are not known to the system. Hereby, sen-
sor modalities are introduced to distinguish also the source
of error. These modalities are

1. the robot pose ( p, o),

2. the wrench ( f , τ ), and
3. the gripper opening g and grasp status h.

For each of these modalities, the system constantly compares
the commanded and measured values to detect abnormal
states. Therefore, not only new situations can be detected but
also a possible error source can be assigned, e.g. an abnormal
state resulting from external forces. In each time step t of the
execution, the deviation between the measurement mi,t and
commanded state μi,t of a modality i is quantified using the
Mahalanobis distance

DM(i,t) =
√

(mi,t − μi,t )
T�−1

i,t (mi,t − μi,t ) . (2)

By defining a custom anomaly threshold εi for eachmodality
of an action s, this metric leads to a higher error sensitiv-
ity in time steps where the execution needs to be precise,
indicated by small values of the reduced covariance matrix
�i,t . During the execution, all modalities are monitored in
parallel. If any DM(i,t) exceeds its action and modality spe-
cific anomaly threshold εi for e consecutive time steps, an
anomaly is detected.

Our approach does not rely on manual error threshold
tuning but is automatically parameterized from the training
data. We compute an anomaly threshold εi for each modal-
ity of an action, based on the recorded trials of the user
demonstration U and robot repetition R. After encoding a
new demonstration in a GMM, we determine the highest
occurring Mahalanobis distance for deviations between the
samples xd,i,t of each demonstration d ∈ {U, R} belonging
to one action and the associated mean μi,t by

D̃M(d,i) = max
t∈[1,N ]

√
(md,i,t − μi,t )

T�−1
i,t (md,i,t − μi,t ). (3)

Then, the maximum distance over all trials is extracted with

εi = max
d∈{U,R} D̃M(d,i) (4)

and used as modality specific error threshold.

4.3 Collaborative and incremental graph
construction

We use a task-graph to structure the available robotic actions
and possible decision states on an abstract level (such as
shown in Fig. 3h). This graph is incrementally built by gain-
ing task knowledge from user demonstrations. The graph’s
nodes represent system states that can be of type start, end,
and decision state (DS) that is explained later on.

In order to construct a new task, a user triggers a demon-
stration phase and provides an initial task demonstration.
A robotic action is extracted from this demonstration as

123



Autonomous Robots (2023) 47:229–247 235

explained in Sect. 4.1 (Fig. 3a). Next, a start and end state is
added to the beginning and end of this action. The result can
be seen in Fig 3b, which allows an execution of that simple
task.

If an anomaly is detected during execution, as explained
in Sect. 4.2, the robot stops at the unseen state (Fig. 3c and
d). The system now queries the user to choose from the fol-
lowing options. The detected situation shall be handled by a
new action in future executions (Graph Extension), or must
be incorporated as refinement for the current action (Action
Refinement). These two options are explained subsequently.
Graph Extension: If the user selects to add a new action that
should resolve the current situation, the robot switches to a
demonstration phase and waits for the user input. The robot
configuration is still at the abnormal state and can now be
changed by the user via kinesthetic teaching. We assume
that an anomaly has been detected beforehand at timestep
tanomaly. In the following, a user demonstration XUdem is
recorded. This data is appended to the time-series M that
is recorded during the interval [tα; tanomaly], resulting in
X̃Udem = [M, XUdem]. After finishing the demonstration,
the user is requested by the system to restore the environ-
ment to the state before the demonstration, which means that
manipulated object locations are set back to the beginning.
Now, the robot moves to the configuration at time step tα
and repeats the extended user demonstration X̃Udem. The
two time-series from user and robot are then probabilisti-
cally encoded and saved as action s2.

Finally, a new decision state is inserted into the graph,
splitting up action s1 into two actions before and after the
anomaly, depicted s1A and s1B respectively (see Fig. 3g and
h). The actions s1B and s2 are then appended to the newly
inserted decision state. In detail, action s1 is split at time step

tα = tthresh + αe , (5)

where tthresh is the time step in which the error metric DM(i,t)

first exceeds the anomaly threshold εi . The parameter e is
the number of consecutive time steps for which DM(i,t) > εi
until an anomaly is triggered. The scaling factor α (0 < α <

1) places the decision state in between time step tthresh and
tanomaly.

An early and smooth transition from action s1A to its suc-
cessor without following a possibly erroneous strategy too
long, requires a minimal α. This means that the decision
state would be placed close to the timestep tthresh. However,
making a robust decision requires a long enough sequence of
unambiguous sensor readings that can be assigned to a spe-
cific action, pushing the decision state towards tanomaly and
thereby α → 1. Furthermore, the decision for the subsequent
action must be made before tanomaly is reached during exe-
cution of action s1A, otherwise the anomaly detection would
wrongly identify a new situation for the scenario handled by

s2 (see Fig. 3h). Preliminary experiments have shown that
setting the number of error samples e = 30 (corresponding
to 30/50Hz = 0.6 s) and the scaling factor α = 1/3 is a
good compromise between robustness and delay in decision-
making.
Action refinement: In case the user wants to refine the action
s, duringwhich the anomalywas detected, its encoded trajec-
tory Y s with associated sequence of covariance matrices Zs

is adjusted by new data. Hereby, an existing action becomes
capable of handling more diverse conditions such that the
robot learns which features are important to observe and
which regions of the state space do not require a tight mon-
itoring and error handling. For instance, a sorting task for
geometrically different objects, that ignores the objectweight
can be achieved by refining the actions that handle the differ-
ent geometries. In that case, the refinement leads to actions,
where themonitoring becomes invariant to the objectweights
and therefore avoids false-positive force anomaly detection
in future task executions. Such an example is later on eval-
uated in the experiments section. A trial of the new setup is
either acquired by a user demonstration in a user-refinemode
or by the robot in auto-refine mode.

In user-refine mode, a manual demonstration offers the
possibility to adjust the full trajectory of the correction,which
directly starts at the anomaly configuration. In comparison,
the auto-refine mode lets the robot autonomously continue
the execution after the anomaly has been detected until the
end of the action. Since we know already that a new sit-
uation shall be incorporated into the action encoding, the
anomaly detection is disabled for the remainder of the execu-
tion. For both possible modes, the recorded time-series XRref

is appended to the time-series M of the action before the
anomaly, resulting in a stacked matrix X̃Rref = [M, XRref].
This data is used together with the initial user demonstration
XUdem and robot repetition XRrep of that action for a new
probabilistic encoding, as described in Sect. 4.1. Finally, the
task-graph is updated with the new action model.

4.4 Task execution

Our main goal is the efficient combination of teaching and
execution phases, that switch ad-hoc according to changes
in environmental conditions. After an initial task demonstra-
tion, an execution phase can immediately follow to start the
production. It is seamlessly possible to add knowledge at any
time to the task-graph. Either, the user can intentionally add
knowledge for known situations from the beginning, or the
system just comes back to the user at any time, for instance
after unforeseen faults occurred during production. The task-
graph enables the robot to reproduce any demonstrated task,
but furthermore, allows to adapt to environmental states by
exploiting known decision states. This allows a fundamen-
tal extension to a simple sequential task execution, which is

123



236 Autonomous Robots (2023) 47:229–247

namely the selection of the appropriate action based on the
current sensor readings. Conditional tasks allow, for instance,
sorting by object properties, or selection of recovery behav-
iors at erroneous states.

The task-graph structures the available actions on a high
level, while the actions themselves are encoded probabilis-
tically on a low level, enabling their realtime monitoring.
Decision states are automatically inserted at critical state
transitions of the task, which simplifies the decision process
for a specific state, but also eliminates perceptual aliasing
and thereby the risk of deciding for a wrong action. Since
decision states are known after the first anomaly occurred,
the system can evaluate the measurements in an early state
and avoid unnecessary robot movements.

Our approach identifies the sensor modality that con-
tributed most to the anomaly, where only relevant sensor
values are considered to select the subsequent action in a
decision state. In the following, an example is used to explain
the action selection in a decision state, referred to Fig. 3h. The
robot starts with the first action s1A. If no anomaly is detected
during the execution, the robot reaches the first decision state
(DS), in which the subsequent action ŝ is determined by

ŝ = argmin
s

(‖mDS − μs,0‖) . (6)

mDS is the measured state of of a modality in the decision
state and μs,0 is the sample of the same modality at the first
time step of an encoded action. In our example, the action ŝ
that is executed next is selected from {s1B, s2}, which are all
actions that are attached to the decision state. In contrast to
the anomaly detection, we use the Euclidean distance metric
here, because the Mahalanobis distance favors actions with
high uncertainty, expressed by large values in the covariance
matrix that lead to very small errors in the first time step.With
our proposed scheme, the robot always chooses an action
that minimizes the error to the current environmental state
and keeps on monitoring that action to detect possible future
anomalies.

5 Experiments

Our experiment shows a scenario where a user transfers a
sorting task to a robot by adding knowledge incrementally.1

Hereby, the system queries only three demonstrations from
the user by interacting via the GUI. If the robot detects an
anomaly during task execution, the user can either demon-
strate a new action that solves this unique situation or refine
the current action by incorporating the new conditions into
the expected outcome of that action. With this experiment

1 The accompanyingmultimediamaterial contains a videoof this exper-
iment (video 1).

Fig. 5 Experimental setup where a conveyor belt (blue in the bottom
left) delivers new parts to a pick location, fromwhere they can be sorted
(Color figure online)

we want to demonstrate both the action refinement and the
task-graph extension capabilities of our approach allowing
the robot to ignore irrelevant features and to learn relevant
features of a task.

5.1 Experimental setup

As seen in Fig. 5, a DLR LWR IV is mounted on a linear
axis and equipped with a “Robotiq 85” 2-finger gripper as
well as a FT-sensor measuring the forces and torques acting
on the end-effector. The robot is impedance controlled with
a control frequency of 1 kHz and parameterized with con-
stant stiffness- and damping coefficients ktrans = 1200 N/m,
krot = 100 Nm/rad and dm = 0.3 Ns/m respectively. Pedals
and a tablet displaying a GUI allow the user to interact with
the GUI while guiding the robot at the same time. The ped-
als are used to open or close the gripper and to start or stop
the demonstration recording when using kinesthetic teaching
in gravity compensation. The GUI guides the user through
the teaching process and requests input from the user when
the task definition requires it. A conveyor belt standing per-
pendicular to the table transports boxes with supplies for an
assembly task to a determined place in the working space.
These boxes have to be placed in a part storage on the table
in front of the user.

5.2 Geometry-based sorting task

The goal of the task is to program the robot to distinguish
the different boxes based only on their geometry in order to
place the supplies at a specific spot in the part storage where
the user expects them. Specifically, the weight of the boxes
should not be considered when deciding for the final position
of a box. Analogously, sorting of objects by their weight can
be achieved with similar means, as realized in a previous

123



Autonomous Robots (2023) 47:229–247 237

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 6 Experimental results of the box sorting task with action refinement and graph extension

work (Eiband et al., 2019). We assume that boxes of equal
dimensions always contain the same kind of pieces but do
not always contain the same number of pieces and therefore
differ in weight.

First, the user provides an initial demonstration, where the
robot picks up a box with supplies from the start position on
the conveyor belt and places it in its designated spot in the
part storage (Fig. 6d). After the user demonstration, the box
is again placed in the start position on the conveyor belt so
that the robot can repeat the demonstrated sequence. As seen
in Fig. 6a, b, and c, these two demonstrations are used to
learn a model of the action, which is then executed by the

robot. During manipulation of a box with a different weight,
the robot detects an anomaly caused by an unexpected force
fz exerted in z-direction (Fig. 6e). Since deviating weights of
boxes are not considered important features of the task, the
user decides to refine the current action in order to incorporate
the new condition into the expected trajectory for that action.
The refinement is shown inFig. 6h and carried out completely
by the robot, continuing the learned motion and placing the
box in its designated spot. However, when the robot detects
a different box geometry during gripping (Fig. 6i), the user
can demonstrate a new action, placing the box in another spot
of the part storage (Fig. 6l). This user demonstration is then

123



238 Autonomous Robots (2023) 47:229–247

again repeated by the robot and encoded into a probabilistic
model of the new action, shown in Fig. 6j.

5.3 Results

We have shown that with our approach the robot can learn
important features (box geometry), while considering devi-
ations of other features (box weight) irrelevant for specific
actions of a task. As seen in Fig. 6g, refining the learned
model with an example of a lighter box adjusts the expected
value of fz and the variance σ fz as well as the force anomaly
threshold ε f for this action (acc. to Eqs. (3) and (4)). Fol-
lowing Sect. 4.2, this leads to a less sensitive force anomaly
detection in future executions of this action. This allows to
manipulate boxeswith awide rangeof differentweightswith-
out triggering a false positive anomaly detection. At the same
time, the robot can still learn additional actions for new sit-
uations. As seen in Fig. 6i and l, a detected gripper finger
distance anomaly when grasping a different box gives the
user the opportunity to demonstrate a new action that places
this box at another goal position. At the time step of grasping
a box, a new decision state is inserted into the task-graph
(Fig. 6j) in which the robot decides for the subsequently exe-
cuted action based on the measured gripper finger distance
(see Fig. 6k, Sects. 4.3 and 4.4).

6 User study for approach comparison

In order to evaluate the intuitiveness and user friendliness of
CIP, a user study is conducted,2 in which it is compared with
two other frameworks, SBP and UIP that were introduced
in the related work (Sect. 2). The task executions, generated
with the different programming frameworks are finally com-
pared by their performance in reaching the task goals.

6.1 Materials and study design

6.1.1 Sample

21 participants (19 male and 2 female) were recruited from
the German Aerospace Center (Age = 25.24 ± 7.03 years,
ranging from 21–56). All participants have a background in
different technical fields, but not necessarily in robotics.

6.1.2 Setup

We use the same setup as described in the previous experi-
ments section. For all robotic tasks in the user study, we use

2 The accompanyingmultimediamaterial contains a video of the exper-
iments in the user study (video 2).

Fig. 7 Initial and final setups of task 1 (left) and task 2 (right) with each
two different environmental conditions (Cond. 1 and Cond. 2)

the same object, an aluminum block visible in Fig. 7 (6.8 cm
x 4 cm x 2 cm) in different setups.

6.1.3 Procedure

Participants are informed about the aim of the study and the
procedure. In an introduction, the robot’s sensing capabilities
are explained, specifically highlighting that no vision-based
monitoring of the environment is used. After up to five min-
utes to familiarize with handling the robot and operating
the pedals, the experimental tasks are explained. Each par-
ticipant watches a short instruction video explaining each
method and then teaches both tasks for all three methods.
The order of teaching each task with each method was per-
muted among all subjects using a Latin square design (Grant,
1948).After programmingwith onemethod is completed, the
NASA-TLX (Hart and Staveland, 1988) and the Question-
naire forMeasuring the Subjective Consequences of Intuitive
Use (QUESI) (Naumann and Hurtienne, 2010) are filled out
by the participants.With the end of the experiment, an overall
evaluation of the methods takes place, where the participants
rate intuitiveness and efficiency on a 7-point Likert-type scale
followed by a semi-structured interview.

6.1.4 Data analysis

Nominal scaled successful completions were analyzed by
means of Cochran’s Q test and McNemar post hoc tests in
case of significant differences between methods. For ques-
tionnaire items, a repeatedmeasuresANOVAwas calculated.
In case of violation of sphericity (Mauchly’s sphericity test),
Huynh-Feldt (> .75) or Greenhouse-Geisser (< .75) correc-
tions were made. Post hoc tests with Bonferroni correction
were performed to identify which methods differ signifi-
cantly.

6.2 Comparedmethods

Table 1 provides an overview of the PbD approaches that are
compared in the user study, which all use the same sensory
input but no visual perception to make task decisions. The
approaches were initially described in the related work sec-

123



Autonomous Robots (2023) 47:229–247 239

Table 1 Overview of Compared Frameworks

Properties Methods
Sequential batch progr.
(SBP)

Collaborative incremental
progr. (CIP) (ours)

User-trigger.
incremental progr.
(UIP)

Task representation

Teaching-interaction unidirectional bidirectional unidirectional

Incrementally extendable ✘ ✔ ✔

Online decision making ✔ ✔ ✔

Autonomous anomaly detection for programming ✘ ✔ ✘

tions (Sects. 2.3 and 2.4) and are briefly explained in the
following.

Sequential Batch Programming (SBP) is based on the
framework presented inEiband et al. (2019),where the teach-
ing and execution phases are separated. First, the teacher
successively demonstrates all task solutions which the robot
shall be able to handle, and stores these independently in a
solution pool. If an anomaly occurs during task execution,
the system switches to the state within an alternative solu-
tion that minimizes the error between current measurement
and all alternative solution states.

Collaborative Incremental Programming (CIP) is our
proposed PbD approach that combines anomaly detection
with collaborative programming to account for new task
conditions. Compared to SBP, the decision state is explic-
itly programmed by collaboration between user and robotic
agent. Therefore, arbitrary switching states that do not guar-
antee a successful transition are avoided.

User-Triggered Incremental Programming (UIP) is
inspired by the framework presented in Sauer et al. (2019),
where similar to CIP, a task-representing graph is incremen-
tally constructed in a combined teaching and executionphase.
The difference between these methods is that the teacher has
to detect anomalies with UIP during execution of the task
and needs to decide if and when a new skill demonstration is
needed.

6.3 Hypothesis

In this study, we want to verify the following hypotheses:

– H1 (based on objective metrics): Using CIP with its
collaborative programming concept and autonomous
anomaly detection results in a significant increase in suc-
cessful task completions,

– compared to SBP (hypothesis H1.1), and
– compared to UIP (hypothesis H1.2).

– H2 (based on subjective ratings): A significant increase
in programming intuitiveness is achieved by CIP with its
collaborative programming scheme,

– compared to SBP, which uses a training phase to col-
lect all demonstrations in the beginning (hypothesis
H2.1), and

– compared to UIP, which requires the user to trigger
the insertion of decision states manually (hypothesis
H2.2).

– H3 (based on subjective ratings): A significant decrease
in workload is achieved by CIP,

– compared to SBP (hypothesis H3.1), and
– compared to UIP (hypothesis H3.2).

6.4 Experimental tasks

We designed two different tasks, namely task 1: Reorienta-
tion and task 2:Contact-based Sorting. Their initial and final
setup is shown in Fig. 7.

In task 1, the robot shall manipulate an object from an
initial location to a target. The object’s long edge shall be
aligned with a mark on the table at the target. In addition,
the object can be rotated by 90◦ in the start location such
that the gripper can grasp it over its short edge. This requires
a reorientation of the object before placing it in the target
location. A step-wise description is shown in Figs. 8 and 9.
In task 2, the robot shall fill a part storage starting with target
I (Fig. 7 right). If target I is occupied, the object shall be
placed on target II (Fig. 7 right). The manipulation steps as
well as the generation of the task-graph are shown in Figs. 11
and 12.

6.5 Results

Methods were evaluated using objective performance data
and subjective user feedback in post-experimental ques-
tionnaires and the interview. Additionally, some exemplary

123



240 Autonomous Robots (2023) 47:229–247

Fig. 8 Task 1: Reorientation, SBP: In step (1), the user demonstrates
a pick and place action s1. In step (2), the user extends the solution
pool with a second action s2, in which the object gets rotated by 90◦
before placing it in the target location. During execution of the nominal
solution s1, the rotated object in the start location causes an anomaly,
that triggers a transition to the alternative solution. The bottom row
illustrates an example of a failed execution, where the robot decides for
a wrong entry point of the alternative and skips the reorientation part of
s2

Fig. 9 Task 1: Reorientation, CIP and UIP: In step (1), the user demon-
strates a pick and place action s1. Step (2) shows the updated graph after
first execution where an anomaly leads to inserting decision state (DS)
and splitting s1 into s1A and s1B . The DS is created by the anomaly
detection algorithm in CIP and by the user manually in UIP. In step (3),
the user adds a new action s2 that accounts for the anomaly and properly
rotates the object before placing it

executions from the user study experiments are shown in
Fig. 13.

6.5.1 Objective data

Successful Completions: A binary metric was used to deter-
mine if a learned task can be successfully executed in order
to reach the task goal as described in the experimental task
description. This allows to compute the success rate of exe-
cutions for each method, as shown in Fig. 14. Cochran’s Q

(a) (b)

Fig. 10 Correct (a) and wrong (b) robot configuration to provide an
alternative action for solving a new situation. Due to the user’s influence
on the anomaly detection, a configuration in which the robot can’t sense
the anomaly is more likely with UIP

test indicated significant differences between the conditions
for task 1 (p < .001) as well as for task 2 (p < .001). McNe-
mar post hoc tests revealed significant differences between
SBP and CIP (p < .05) and CIP and UIP (p < .001) for task
1. For task 2, significant differences could be found for SBP
versus UIP (p < .001) as well as CIP versus UIP (p < .001).

H1.1 does not hold for task 1 (✘) but holds for task 2 (�)
such that there are significantly more successful task com-
pletions by using the collaborative programming scheme of
CIP compared to the collection of demonstrations in a batch,
used in SBP. This could be explained by the importance of
right timing in task 1 (Reorientation), where it was critical
for SBP to find the precise entry point in the alternative solu-
tion, which could lead to failed grasps and an unsuccessful
task outcome. In task 2, this timing issue was less critical as
the recovery behavior did not grasp the object again, but just
executed an action with different trajectory while the grip-
per remained closed. H1.2 holds for both tasks (�) with
significantly more successful task completions by using the
autonomous anomaly detection of CIP in favor of a man-
ual anomaly detection in UIP. Due to this discrepancy in the
success rates, we analyzed where exactly the decision states
were inserted in these approaches.
Decision State Insertion: The timestep where the anomaly
is detected defines where the decision state is inserted in
the task-graph. This is critical for selecting the appropriate
action from the task-graph during execution. This timestep
reflects a specific position of the end effector. In both tasks,
the position of the end effector at the decision state is themain
constraint to allow force sensing or grasp status identifica-
tion of an object. To analyze this further, we derive a ground
truth for the position of a decision state for each task. Hereby,
we store the end effector position of all decision states from
successful task executions of both CIP and UIP. Next, we
compute the mean over all stored positions. This serves as
ground truth, which can be considered as a near optimal solu-
tion to solve the task. Finally, we compute the distance dEE,C

123



Autonomous Robots (2023) 47:229–247 241

Fig. 11 Task 2: Contact-based Sorting, SBP: The user successively
demonstrates two pick and place actions in step (1) and (2). In demon-
stration of action s2, the object is placed in target location II, if target
location I is occupied by another object. The bottom row shows the exe-
cution of the nominal solution s1, where an unexpected contact force
triggers a transition to s2 while approaching target location I. The robot
interpolates to the entry state of the alternative solution and places the
object in location II

Fig. 12 Task 2: Contact-based Sorting, CIP andUIP: Step (1) shows the
initial demonstration of a pick and place action s1. Step (2) shows the
updated graph after first execution where an anomaly leads to decision
state (DS) insertion and splitting of s1 into s1A and s1B . TheDS is created
by the anomaly detection algorithm in CIP and by the user manually in
UIP. In step (3), the user added a new action s2 that recovers from the
anomaly

between the end effector position of each decision state and
the ground truth and show these values as green marks in
Fig. 15. With CIP (left column), the automatically identified
decision states lie close to the ground truth while with UIP,
these were manually inserted and show larger errors. These
errors lead to decision states, that are not physically grounded
because the targeted sensor signal is not present in that state.
Imagine that a user manually triggers a decision state that
should decide about the weight of an object before the robot
actually grasped it, which makes it impossible to sense such
property.

6.5.2 Subjective data

Workload:
NASA-TLX overall score (see Fig. 16) revealed a signif-

icant ANOVA main effect (F(2, 40) = 4.30; p < .05). With
post-hoc comparisons we found a significant lower workload
for SBP (M = 4.48; SD = 2.21) compared to UIP (M = 5.82;
SD = 2.79; p < .05). No significant difference was evident
comparing CIP (M = 4.81; SD = 2.29) to any other method.
QUESI ratings: As reported in Fig. 17, users rated the intu-
itive use of SBP best, followed by CIP, except for “perceived
achievement of goals”, where CIP reached the highest score.
UIP was rated worst for all scales. A repeated measures
ANOVA showed that statistically significant differences
occurred for the subscales “Subjective Mental Workload”
(F(1.37, 27.39) = 5.36; p < .05), “Perceived Effort of Learn-
ing” (F(1.38, 27.67) = 5.39; p < .05) and “Familiarity” (F(2,
40) = 4.09; p< .05). Post-hoc comparisons showed that SBP
scored higher for those items than UIP (“Subjective Mental
Workload”: p < .001; “Perceived Effort of Learning”: p <

.05; “Familiarity”: p < .05) (see Fig. 17).
H3.1 suggests that the programming workload is reduced

by CIP in comparison with SBP andH3.2 suggests the same
effect for the comparison of CIP with UIP. Both hypotheses
were rejected, instead we only see a significant difference
between SBP and UIP. That SBP shows the smallest work-
load rating could be explained by a minimum of required
human-robot interactions, where all knowledge is transferred
sequentially in the teaching phase before the robot executes
the task.
Overall Evaluation: The user ratings for the following two
items are shown in Fig. 18. Intuitiveness of the method (“The
method was easy to use and intuitive”).CIP (M = 6.29; SD =
1.35) andSBP (M=6.00; SD=1.10)weremore intuitive than
UIP (M = 4.95; SD = 1.69). This is supported by a significant
ANOVA main effect (F(2, 40) = 4.89; p < .05), where CIP
and UIP significantly differ (p < .05). Conventional level of
significance for the difference between SBP and UIP was not
reached (p = .053).

H2.1 that suggests a higher intuitiveness of CIP com-
pared to SBP in programming a task is supported by the
overall QUESI ratings but without statistically significant
effect (Fig. 17 very left). In contrast, H2.1 holds for the
comparison of CIP with UIP (�) and shows a significantly
higher intuitiveness in programming a task.

Efficiency of the method (“I could solve the given tasks
efficiently with the method”). Subjects rated CIP (M = 6.43;
SD = 0.98) as most efficient, followed by SBP (M = 6.24;
SD = 1.09). UIP (M = 5.52; SD = .47) was slightly less effi-
cient. However, this is not supported by a significant ANOVA
effect.

123



242 Autonomous Robots (2023) 47:229–247

Task 1: Reorientation Task 2: Contact-based Sorting
SBP

1 2 2

(a) At timestep (1), the robot detects an unexpected griper
opening that triggers switching to an alternative action. The
robot chooses a wrong entry timestep in the alternative ac-
tion, thus skipping the reorientation part, which leads to an
unsuccessful task execution (2).

1

1

2 2

(b) When trying to place the object in the occupied target
location I, the robot senses an unexpected force in z-direction
(1) that triggers switching to an alternative action. The robot
transitions to a correct entry timestep in the alternative ac-
tion, adjusting the end effector’s y-position (2) before suc-
cessfully placing the object in target location II.

CIP

1

1

2 2

(c) When grasping the object, the robot decides for the sub-
sequent action s2 in the decision state (1) based on the mea-
sured gripper opening. Using action s2, the robot rotates the
object before successfully placing it in the goal location (2).

1

1

2 2

(d) When trying to place the object in the occupied target
location I, the robot senses a contact force in z-direction in
the decision state (1) and decides for the subsequent action
s2. Using action s2, the robot adjusts the end effector’s y-
position (2) before successfully placing the object in target
location II.

UIP

1

1

2 2

(e) In the decision state (1), the next action is chosen before
grasping the object, at a time step in which the robot does
not interact with the environment and thus cannot sense a
difference between action s1B and s2. The robot selects the
unsuited action s1B for this situation, which leads to an un-
successful task execution (2).

2 21

1

(f) In the decision state (1), the next action is chosen before
the object in target location I can be detected by a contact
force in z-direction. The robot selects the unsuited action
s1B for this situation and tries to place the object in the
occupied target location (2), thus leading to an unsuccessful
task execution.

1

Fig. 13 Exemplary executions from the user study experiments

123



Autonomous Robots (2023) 47:229–247 243

Fig. 14 Successful completions of the different tasks for all threemeth-
ods in percent.*, p < .05; **, p < .01; ***, p < .001

(a) (b)

(c) (d)

Fig. 15 Each plot shows the probability density (blue curve) for the
computed distances between decision state position and ground truth.
These distances are marked by the green samples on the x-axis. The
left column displays the automatically detected decision states by CIP,
while the right column shows the manually triggered decision states by
UIP. Automatically detected states (left column) lie notably closer to
the ground truth (Color figure online)

20

16

12

8

4

0

Fig. 16 NASA-TLX workload

6.6 Discussion

6.6.1 Objective data

The results from the performance evaluation show, that only
programs created with CIP reliably solved both experimental
tasks.

Fig. 17 Scores for QUESI (error bars indicate 95% confidence inter-
vals).*, p < .05; **, p < .01; ***, p < .001

Fig. 18 Scores for overall evaluation. p < .05; **, p < .01; ***, p <

.001

Due to the different abilities of the user and the robot to
perceive the environment (e.g. vision), UIP cannot guarantee
that the robot will be able to measure abnormal values when
the user identifies a new situation and demonstrates an alter-
native behavior. As seen in Fig. 10b, during the experiments,
many subjects did not wait with a demonstration until the
robot senses the transition condition for the second sub-task.
When programming the Reorientation task, 13 participants
demonstrated a new action before the robot closed the gripper
to grasp the turned object. For the contact-based sorting task,
even 16 subjects did not wait until the robot could detect an
object in the target location. With CIP, however, a deviation
in sensor values is a requirement for detecting new situations.
Thereby a measurable difference between the programmed
transition conditions for every action of a decision state can
be guaranteed. This leads to a successful transition to the
appropriate successor action when reproducing the situation,
because the measured sensor values reflect a programmed
condition for action transitioning.

With SBP, a transition between actions is triggered when
an anomaly is detected during the task execution. The time
step of an actionwith the closest sensor values to the anomaly
state is chosen as an entry point to continue the task. Since
all time steps of all actions are potential candidates for the
entry point, the approach is prone to perceptual aliasing, that

123



244 Autonomous Robots (2023) 47:229–247

causes transitions to wrong actions or entry points. Further-
more, the interpolation to the entry point does not guarantee a
collision-free trajectory. In CIP, a transition between actions
only happens in decision states. This limits the number of
possible successor actions to the intended ones for a situation
and thereby avoids perceptual aliasing andwrong transitions.
This guarantees a successful transition between actionswhen
reproducing known situations.

6.6.2 Subjective data

From analyzing the questionnaires and the responses in the
interviews can be concluded, that SBP is an easily usable
and intuitive framework for programming a-priori known
tasks and conditions. However, compared to SBP, CIP has
the advantage that overlapping parts of actions can be reused
between different scenarios and complex tasks can be incre-
mentally generated. For taskswith several different decisions
and actions, it is difficult to predict all scenarios and to
demonstrate the corresponding behavior prior to the execu-
tion. We argue, that for more complex tasks, the advantages
of CIP can be fully exploited, since the user does not have to
anticipate or detect new situations, but can demonstrate new
actions when anomalies are detected during the execution.
Furthermore, the combined teaching and execution of CIP
gives the users the opportunity to instantly verify the result
of their demonstrations.

From analysis of the NASA-TLX sub-categories can be
seen, that CIP especially reduces the user’s mental workload
when programming a task, compared to UIP. CIP reached in
this sub-category a score of 6.2, compared to 8.5 forUIP. This
is in accordance with the results from the guided interviews,
where 19 of 21 participants mentioned as advantages of CIP,
that the robot autonomously detects new situations and that
the user does not have to pay constant attention. Whereas
the negative aspects for UIP, related to an increased need for
attention and mental demand, were mentioned 17 times. The
increased intuitiveness of CIP over UIPwas confirmed by the
overall evaluation of the methods. As mentioned 11 times in
the interviews, deciding for the right moment to stop the task
execution of UIP in order to add a new action is not intuitive
for the user. This decision requires a deeper understanding
of the principle behind the method. As seen in Fig. 10, by
eliminating the user’s influence on that decision, the robot
automatically stops the task execution when an anomaly can
be sensed by the robot, which significantly improves the task
performance.

6.7 Post-experiment user ratings

In a final evaluation, we consulted five subjects again to
obtain their ratings for the intuitiveness and efficiency of each

intuitiveness efficiency
−2.0

−1.5

−1.0

−0.5

0.0

0.5

sc
or

e
sh

ift

-0.60

-0.00

-0.40

-0.80

0.20

-1.80

SBP CIP UIP

Fig. 19 Shift of intuitiveness and efficiency scores before and after users
have seen the robot’s execution, i.e. a negative sign means that users
have downgraded their ratings on average compared to their first ratings

of the programming approaches.3 Since we have their ratings
frombefore seeing the execution,we are able to compare their
scores from before and after they have seen the execution of
their own programmed tasks. Fig. 19 shows the results of the
comparison. We can see that for both alternative approaches,
the intuitiveness and efficiency dropped noticeable, while for
our approach the intuitiveness remained the same (no change)
and the efficiency increased by 0.2 points on the Likert-type
scale. That supports the assumption, that due to the addi-
tional feedback loop in CIP, the participants have a better
understanding of the robot’s changing task knowledge when
teaching a task compared to SBP.

This concludes that our framework is more transparent to
the user in terms of what the system has learned and what the
robot is expected to do in the task execution. In relation to
that, Sena and Howard (2020) proposed an objective metric
to evaluate the teacher’s efficiency in robot learning, given
a specific feedback channel, e.g. by observing the robot’s
execution performance. We concluded from the success rate
that our method performed best but the efficiency was still
rated by the users, which is a subjective measure. Hence,
analyzing the effect of different task representations used as
feedback channel in terms of the teaching efficiency could
aid developers to create better user interfaces.

7 Conclusion and future work

We presented a framework that allows non-experts to intu-
itively program conditional tasks that enables the robot
to make decisions ad-hoc during task execution. Hereby,
the complete task structure is transferred by demonstration
involving sensor readings of motion, force and grasp status
and no predefined symbols or objects are required. We have
demonstrated that task decisions can be effectively trans-
ferred by our interactive programming scheme, where the

3 The robot’s execution success was evaluated in absence of the 21
users. After that, we were able to contact again five subjects from the
original group for this analysis.

123



Autonomous Robots (2023) 47:229–247 245

robot asks for user input in unknown environmental sit-
uations. An on-line anomaly detection reduces the user’s
workload by just querying necessary information and guar-
antees a functioning task model, since transitions to specific
actions are only allowed within a decision state. This enables
the user to scale the complexity of a task over time without
cumbersome reprogramming of the whole task.

We compared our framework experimentally with two
alternative approaches in a user study, which lets us draw the
conclusion that Collaborative Incremental Programming is
the approach which users rated as most intuitive to use to
transfer knowledge to the system and the one that is reli-
able in handling decisions during execution according to its
success rate.

As a limitation, we state that the anomaly detection halts
the robot motion in order to query the user, which could be
infeasible for highly dynamic tasks. Further, the reusability of
the knowledge represented as task-graph could be improved
in the future as only the branching at decision states is con-
sidered, but not merging states or the recurrence of actions.

In this work, we stressed on the discrepancies in human
and robot perception, since humans use vision but not every
robotic system does so. In the future, we would like to
consider a vision system as an additional sensor source
given the fact that some anomalies can be observed visually
before object interaction and some cannot, such as interaction
forces.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-022-10062-
9.

Acknowledgements This work has been partially funded by the
Helmholtz Association.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Caccavale, R., Saveriano, M., Finzi, A., & Lee, D. (2017). Kinesthetic
teaching and attentional supervision of structured tasks in human-
robot interaction. Autonomous Robots (AURO).

Calinon, S., & Lee, D. (2018). Learning control. In P. Vadakkepat & A.
Goswami (Eds.), Humanoid robotics: A reference. Springer.

Di Lello, E., Klotzbucher, M., De Laet, T., & Bruyninckx, H. (2013).
Bayesian time-series models for continuous fault detection and
recognition in industrial robotic tasks. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 5827–
5833. IEEE

Donald, B. R. (1988). A geometric approach to error detection and
recovery for robot motion planning with uncertainty. Artificial
Intelligence, 37(1–3), 223–271.

Eiband, T., Saveriano, M., & Lee, D. (2019). Intuitive programming
of conditional tasks by demonstration of multiple solutions. IEEE
Robotics and Automation Letters, 4(4), 4483–4490. https://doi.
org/10.1109/LRA.2019.2935381

Eiband, T., Saveriano, M., & Lee, D. (2019). Learning haptic explo-
ration schemes for adaptive task execution. In: IEEE International
Conference on Robotics and Automation (ICRA), pp. 7048–7054.
IEEE.

Grant, D.A. (1948). The latin square principle in the design and analysis
of psychological experiments. Psychological Bulletin, 45(5), 427.

Hart, S.G.,&Staveland, L.E. (1988).Development of nasa-tlx (task load
index): Results of empirical and theoretical research. In: Advances
in psychology, vol. 52, pp. 139–183. Elsevier.

Khalastchi, E., & Kalech, M. (2018). A sensor-based approach for fault
detection and diagnosis for robotic systems. Autonomous Robots,
42(6), 1231–1248.

Khalastchi, E., Kalech, M., Kaminka, G. A., & Lin, R. (2015). Online
data-driven anomaly detection in autonomous robots. Knowledge
and Information Systems, 43(3), 657–688.

Maeda, G., Ewerton, M., Osa, T., Busch, B., & Peters, J. (2017). Active
incremental learningof robotmovement primitives. In:Conference
on Robot Learning, pp. 37–46.

Materna, Z., Kapinus, M., Beran, V., Smrž, P., & Zemčík, P. (2018).
Interactive spatial augmented reality in collaborative robot pro-
gramming: User experience evaluation. In: 2018 27th IEEE
International Symposium on Robot and Human Interactive Com-
munication (RO-MAN), pp. 80–87. IEEE.

Mollard,Y.,Munzer, T., Baisero,A., Toussaint,M.,&Lopes,M. (2015).
Robot programming from demonstration, feedback and transfer.
In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1825–1831. IEEE.

Muench, S., Kreuziger, J., Kaiser,M., &Dillman, R. (1994). Robot pro-
grammingbydemonstration (rpd)-usingmachine learning anduser
interaction methods for the development of easy and comfortable
robot programming systems. In: Proceedings of the International
Symposium on Industrial Robots, vol. 25, pp. 685. International
Federation of Robotics & Robotic Industries.

Naumann, A., &Hurtienne, J. (2010). Benchmarks for intuitive interac-
tion with mobile devices. In: Proceedings of the 12th International
Conference on Human Computer Interaction withMobile Devices
and Services, MobileHCI ’10, pp. 401-402. Association for Com-
puting Machinery. https://doi.org/10.1145/1851600.1851685

Niekum, S., Chitta, S., Barto, A.G., Marthi, B., & Osentoski, S. (2013).
Incremental semantically grounded learning from demonstration.
In: Robotics: Science and Systems, vol. 9.

Niekum, S., Osentoski, S., Konidaris, G., Chitta, S., Marthi, B., &
Barto, A. G. (2015). Learning grounded finite-state representa-
tions from unstructured demonstrations.The International Journal
of Robotics Research, 34(2), 131–157.

123

https://doi.org/10.1007/s10514-022-10062-9
https://doi.org/10.1007/s10514-022-10062-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/LRA.2019.2935381
https://doi.org/10.1109/LRA.2019.2935381
https://doi.org/10.1145/1851600.1851685


246 Autonomous Robots (2023) 47:229–247

Pais, A. L., Umezawa, K., Nakamura, Y., & Billard, A. (2015).
Task parameterization using continuous constraints extracted from
human demonstrations. IEEE Transactions on Robotics, 31(6),
1458–1471.

Park, D., Erickson, Z., Bhattacharjee, T., & Kemp, C.C. (2016). Mul-
timodal execution monitoring for anomaly detection during robot
manipulation. In: IEEE International Conference on Robotics and
Automation (ICRA), pp. 407–414. IEEE.

Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., & Schaal, S.
(2011). Skill learning and task outcome prediction for manip-
ulation. In: IEEE International Conference on Robotics and
Automation (ICRA), pp. 3828–3834. IEEE.

Rodriguez, A., Bourne, D., Mason, M., Rossano, G.F., & Wang, J.
(2010). Failure detection in assembly: Force signature analysis.
In: Automation Science and Engineering (CASE), IEEE Confer-
ence on, pp. 210–215. IEEE

Sauer, L., Henrich, D., & Martens, W. (2019). Towards intuitive
robot programming using finite state automata. In: Joint Ger-
man/Austrian Conference on Artificial Intelligence (Künstliche
Intelligenz), pp. 290–298. Springer.

Sena, A., & Howard, M. (2020). Quantifying teaching behavior in
robot learning from demonstration. The International Journal of
Robotics Research, 39(1), 54–72.

Steinmetz, F., Nitsch, V., & Stulp, F. (2019). Intuitive task-level pro-
gramming by demonstration through semantic skill recognition.
IEEE Robotics and Automation Letters, 4(4), 3742–3749. https://
doi.org/10.1109/LRA.2019.2928782

Su, Z., Kroemer, O., Loeb, G.E., Sukhatme, G.S., & Schaal, S. (2018).
Learning manipulation graphs from demonstrations using mul-
timodal sensory signals. In: IEEE International Conference on
Robotics and Automation (ICRA), pp. 2758–2765. IEEE.

Willibald, C., Eiband, T., & Lee, D. (2020). Collaborative programming
of conditional robot tasks. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Thomas Eiband is a Ph.D. can-
didate at the Institute of Robotics
and Mechatronics of the German
Aerospace Center (DLR), Wess-
ling, Germany. He obtained his
Master’s Degree in Electrical Engi-
neering and Information Science
from the Technical University of
Munich in 2017. His main research
interests are robot skill learning
and intuitive programming appro-
aches with a focus on force and
contact-based robot skills. His
main work is on approaches for
recognition and parameterization

of robot skills from human demonstrations.

Christoph Willibald received his
B.Sc. in Mechanical Engineering
and his M.Sc. in Mechatronics
at the Technical University of
Munich (TUM), Germany, in 2016
and 2020, respectively. He joined
the Institute of Robotics and
Mechatronics at the German Aero-
space Center (DLR) in Wessling,
Germany, for his Master’s The-
sis in 2019. Since 2020 he is
a Research Scientist at the Insti-
tute of Robotics and Mechatron-
ics at DLR and a Ph.D. Student
at the Human-centered Assistive

Robotics group at TUM. His research interests include learning from
demonstration, cognitive robotics and human-robot interaction.

Isabel Tannert received her Bach-
elor’s and Master’s degree at the
Technical University of Munich
(TUM), in 2018 and 2021, respec-
tively. From 2019–2021 she
worked at the Germany Aerospace
Center (DLR), Institute of
Robotics and Mechatronics,
Wessling, Germany, as a work-
ing student in the area of human
factors. Her main research inter-
ests are human factors topics in
robotics and haptics as well as
biomechanics.

Bernhard Weber received his
Dipl.-Psych. and PhD degree at
the University of Wuerzburg, Ger-
many, in 2004 and 2008, respec-
tively. From 2008–2010 he was
with the German Aerospace Cen-
ter (DLR), Institute of Flight Guid-
ance, Brunswick, Germany and
since 2010 at the DLR Institute
of Robotics and Mechatronics,
Wessling, Germany, as a human
factors expert. His main research
interests are human factors in teler-
obotic systems, evaluation of hap-
tic interaction technology, and sen-

sorimotor performance under conditions of microgravity.

123

https://doi.org/10.1109/LRA.2019.2928782
https://doi.org/10.1109/LRA.2019.2928782


Autonomous Robots (2023) 47:229–247 247

Dongheui Lee is Associate Pro-
fessor at the Department of Elec-
trical and Computer Engineering,
Technical University of Munich
(TUM). She is also leading the
Human-centered assistive robotics
group at the German Aerospace
Center (DLR). Her research inter-
ests include human motion under-
standing, human robot interaction,
machine learning in robotics, and
assistive robotics. She obtained
her B.S. (2001) and M.S. (2003)
degrees in mechanical engineer-
ing at Kyung Hee University,

Korea and a PhD degree from the department of Mechano-Informatics,
University of Tokyo, Japan in 2007. She was a research scientist at
the Korea Institute of Science and Technology (KIST) (2001–2004),
Project Assistant Professor at the University of Tokyo (2007–2009)
and joined TUM as professor. She was awarded a Carl von Linde
Fellowship at the TUM Institute for Advanced Study (2011) and a
Helmholtz professorship prize (2015).

123


	Collaborative programming of robotic task decisions and recovery behaviors
	Abstract
	1 Introduction
	2 Related work
	2.1 Task decisions
	2.2 Fault detection and recovery
	2.3 Sequential batch programming (SBP)
	2.4 User-triggered incremental programming (UIP)

	3 Background: programming of recovery behaviors by demonstration
	3.1 Requirements
	3.2 Task representations
	3.2.1 Solution pool
	3.2.2 Task-graph

	3.3 Fault state detection mechanisms
	3.3.1 Manual fault state detection
	3.3.2 Autonomous anomaly detection


	4 Collaborative incremental programming
	4.1 Probabilistic action encoding
	4.2 On-line anomaly detection
	4.3 Collaborative and incremental graph construction
	4.4 Task execution

	5 Experiments
	5.1 Experimental setup
	5.2 Geometry-based sorting task
	5.3 Results

	6 User study for approach comparison
	6.1 Materials and study design
	6.1.1 Sample
	6.1.2 Setup
	6.1.3 Procedure
	6.1.4 Data analysis

	6.2 Compared methods
	6.3 Hypothesis
	6.4 Experimental tasks
	6.5 Results
	6.5.1 Objective data
	6.5.2 Subjective data

	6.6 Discussion
	6.6.1 Objective data
	6.6.2 Subjective data

	6.7 Post-experiment user ratings

	7 Conclusion and future work
	Acknowledgements
	References


